Add name field to omapdss's outputs so that in the following patches
panels refer to the output by their name. The name also helps debugging.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Archit Taneja <archit@ti.com>
Some of the output drivers need to handle FRAMEDONE interrupt from
DISPC. This creates a direct dependency to dispc code, and we need to
avoid this to make the compat code to work.
Instead of the output drivers registering for dispc interrupts, we
create new mgr-ops that are used to register a framedone handler. The
code implementing the mgr-ops is responsible for calling the handler
when DISPC FRAMEDONE interrupt happens. The compat layer is improved
accordingly to do the call to the framedone handler.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We currently attach an output to a dssdev in the initialization code for
dssdevices in display.c. This works, but doesn't quite make sense: an
output entity represents (surprisingly) an output of DSS, which is
managed by an output driver. The output driver also handles adding new
dssdev's for that particular output.
It makes more sense to make the output-dssdev connection in the output
driver. This is also in line with common display framework.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Export dss_get_def_display_name() with the name of
omapdss_get_def_display_name() so that omapfb can use it after the next
patch which moves default display handling to omapfb.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the RFBI output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
Add output structs to output driver's private data. Register output instances by
having an init function in the probes of the platform device drivers for
different outputs. The *_init_output for each output registers the output and
fill up the output's plaform device, type and id fields. The *_uninit_output
functions unregister the output.
In the probe of each interface driver, the output entities are initialized
before the *_probe_pdata() functions intentionally. This is done to ensure that
the output entity is prepared before the panels connected to the output are
registered. We need the output entities to be ready because OMAPDSS will try
to make connections between overlays, managers, outputs and devices during the
panel's probe.
Signed-off-by: Archit Taneja <archit@ti.com>
We currently create omap_dss_devices statically in board files, and use
those devices directly in the omapdss driver. This model prevents us
from having the platform data (which the dssdevs in board files
practically are) as read-only, and it's also different than what we will
use with device tree.
This patch changes the model to be in line with DT model: we allocate
the dssdevs dynamically, and initialize them according to the data in
the board file's dssdev (basically we memcopy the dssdev fields).
The allocation and registration is done in the following steps in the
output drivers:
- Use dss_alloc_and_init_device to allocate and initialize the device.
The function uses kalloc and device_initialize to accomplish this.
- Call dss_copy_device_pdata to copy the data from the board file's
dssdev
- Use dss_add_device to register the device.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We have boards with multiple panel devices connected to the same
physical output, of which only one panel can be enabled at one time.
Examples of these are Overo, where you can use different daughter boards
that have different LCDs, and 3430SDP which has an LCD and a DVI output
and a physical switch to select the active display.
These are supported by omapdss so that we add all the possible display
devices at probe, but the displays are inactive until somebody enables
one. At this point the panel driver starts using the DSS, thus reserving
the physcal resource and excluding the other panels.
This is problematic:
- Panel drivers can't allocate their resources properly at probe(),
because the resources can be shared with other panels. Thus they can
be only reserved at enable time.
- Managing this in omapdss is confusing. It's not natural to have
child devices, which may not even exist (for example, a daughterboard
that is not connected).
Only some boards have multiple displays per output, and of those, only
very few have possibility of switching the display during runtime.
Because of the above points:
- We don't want to make omapdss and all the panel drivers more complex
just because some boards have complex setups.
- Only few boards support runtime switching, and afaik even then it's
not required. So we don't need to support runtime switching.
Thus we'll change to a model where we will have only one display device
per output and this cannot be (currently) changed at runtime. We'll
still have the possibility to select the display from multiple options
during boot with the default display option.
This patch accomplishes the above by changing how the output drivers
register the display device. Instead of registering all the devices
given from the board file, we'll only register one. If the default
display option is set, the output driver selects that display from its
displays. If the default display is not set, or the default display is
not one of the output's displays, the output driver selects the first
display.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We used to have all the displays of the board in one list, and we made a
"displayX" directory in the sysfs, where X was the index of the display
in the list.
This doesn't work anymore with device tree, as there's no single list to
get the number from, and it doesn't work very well even with non-DT as
we need to do some tricks to get the index nowadays.
This patch changes omap_dss_register_device() so that it doesn't take
disp_num as a parameter anymore, but uses a private increasing counter
for the display number.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Recent commit dca2b1522c (OMAPDSS: DSI:
Maintain copy of operation mode in driver data) broke DSI for video mode
displays. The commit changed the way dssdev->caps are initialized, and
the result was that every DSI display is initialized with manual-update
and tear-elim caps.
The code that sets dssdev->caps is not very good, even when fixed.
omapdss driver shouldn't be writing dssdev->caps at all.
This patch fixes the problem with video mode displays by moving the
initialization of dssdev->caps to the panel driver. The same change is
done for RFBI.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The RFBI driver currently relies on the omap_dss_device struct to receive the
rfbi specific timings requested by the panel driver. This makes the RFBI
interface driver dependent on the omap_dss_device struct.
Make the RFBI driver data maintain it's own rfbi specific timings field. The
panel driver is expected to call omapdss_rfbi_set_interface_timings() to
configure the rfbi timings before the interface is enabled.
Signed-off-by: Archit Taneja <archit@ti.com>
The RFBI driver currently relies on the omap_dss_device struct to configure the
number of data lines as specified by the panel. This makes the RFBI interface
driver dependent on the omap_dss_device struct.
Make the RFBI driver data maintain it's own data lines field. A panel driver
is expected to call omapdss_rfbi_set_data_lines() to configure the pixel format
before enabling the interface or calling omap_rfbi_configure().
Signed-off-by: Archit Taneja <archit@ti.com>
The RFBI driver currently relies on the omap_dss_device struct to receive the
desired pixel size of the panel. This makes the RFBI interface driver dependent
on the omap_dss_device struct.
Make the RFBI driver data maintain it's own pixel format field. A panel driver
is expected to call omapdss_rfbi_set_pixel_size() to configure the pixel format
before enabling the interface or calling omap_rfbi_configure().
Signed-off-by: Archit Taneja <archit@ti.com>
RFBI drivers requires configuration of the update area. Since we don't support
partial updates, the size to be configures is the panel size itself.
Add a timings field in RFBI's driver data. Apart from x_res and y_res, all the
other fields are configured to an initial value when RFBI is enabled. A panel
driver is expected to call omapdss_rfbi_set_size() configure the size of the
panel.
Signed-off-by: Archit Taneja <archit@ti.com>
Partial update suppport was removed from DISPC and DSI sometime back. The RFBI
driver still tries to support partial update without the underlying support in
DISPC.
Remove partial update support from RFBI, only support updates which span acros
the whole panel size. This also helps in DSI and RFBI having similar update
ops.
Signed-off-by: Archit Taneja <archit@ti.com>
The RFBI driver uses a direct DISPC register write to enable the overlay
manager. Replace this with dss_mgr_enable() which checks if the connected
overlay and managers are correctly configured, and configure DSS for
fifomerge.
Signed-off-by: Archit Taneja <archit@ti.com>
Replace the DISPC fuctions used to configure LCD channel related manager
parameters with dss_mgr_set_lcd_config() in APPLY. This function ensures that
the DISPC registers are written at the right time by using the shadow register
programming model.
The LCD manager configurations is stored as a private data of manager in APPLY.
It is treated as an extra info as it's the panel drivers which trigger this
apply via interface drivers, and not a DSS2 user like omapfb or omapdrm.
Storing LCD manager related properties in APPLY also prevents the need to refer
to the panel connected to the manager for information. This helps in making the
DSS driver less dependent on panel.
A helper function is added to check whether the manager is LCD or TV. The direct
DISPC register writes are removed from the interface drivers.
Signed-off-by: Archit Taneja <archit@ti.com>
Create a dss_lcd_mgr_config struct instance in RFBI. Fill up all the parameters
of the struct with configurations held by the panel, and the configurations
required by RFBI.
Use these to write to the DISPC registers. These direct register writes would be
later replaced by a function which applies the configuration using the shadow
register programming model.
Create function rfbi_config_lcd_manager() which fills up the mgr_config
parameters and writes to the DISPC regs.
Signed-off-by: Archit Taneja <archit@ti.com>
Remove omap_lcd_display_type enum
The enum omap_lcd_display_type is used to configure the lcd display type in
DISPC. Remove this enum and always set display type to TFT by creating function
dss_mgr_set_lcd_type_tft().
Signed-off-by: Archit Taneja <archit@ti.com>
If runtime PM is not enabled in the kernel config, pm_runtime_get_sync()
will always return 1 and pm_runtime_put_sync() will always return
-ENOSYS. pm_runtime_get_sync() returning 1 presents no problem to the
driver, but -ENOSYS from pm_runtime_put_sync() causes the driver to
print a warning.
One option would be to ignore errors returned by pm_runtime_put_sync()
totally, as they only say that the call was unable to put the hardware
into suspend mode.
However, I chose to ignore the returned -ENOSYS explicitly, and print a
warning for other errors, as I think we should get notified if the HW
failed to go to suspend properly.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: Jassi Brar <jaswinder.singh@linaro.org>
Cc: Grazvydas Ignotas <notasas@gmail.com>
Move the platform-data based display device initialization into a
separate function, so that we may later add of-based initialization.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Now that each output driver creates their own display devices, the
output drivers can also initialize those devices.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Currently the higher level omapdss platform driver gets the list of
displays in its platform data, and uses that list to create the
omap_dss_device for each display.
With DT, the logical way to do the above is to list the displays under
each individual output, i.e. we'd have "dpi" node, under which we would
have the display that uses DPI. In other words, each output driver
handles the displays that use that particular output.
To make the current code ready for DT, this patch modifies the output
drivers so that each of them creates the display devices which use that
output. However, instead of changing the platform data to suit this
method, each output driver is passed the full list of displays, and the
drivers pick the displays that are meant for them. This allows us to
keep the old platform data, and thus we avoid the need to change the
board files.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Now that the core.c doesn't fail if output driver's init fails, we can
change the uses of platform_driver_register to platform_driver_probe.
This will allow us to use __init in the following patches.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Instead of having an ugly #ifdef mess in the core.c for creating debugfs
files, add a dss_debugfs_create_file() function that the dss drivers
can use to create the debugfs files.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Now that the omapdss_core device is the parent for all other dss
devices, we don't need to use the dss_runtime_get/put anymore. Instead,
enabling omapdss_core will happen automatically when a child device is
enabled.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
For unknown reasons we seem to have a return in each of the omapdss's
uninit functions, which is a void function.
Remove the returns.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Replace the function dispc_mgr_set_timings() with dss_mgr_set_timings() in the
interface drivers. The latter function ensures that the timing related DISPC
registers are configured according to the shadow register programming model.
Remove the call to dispc_mgr_go() in dpi_set_timings() as the manager's go bit
is set by dss_mgr_set_timings().
Signed-off-by: Archit Taneja <archit@ti.com>
Currently, a LCD manager's timings is set by dispc_mgr_set_lcd_timings() and TV
manager's timings is set by dispc_set_digit_size(). Use a common function called
dispc_mgr_set_timings() which sets timings for both type of managers.
We finally want the interface drivers to use an overlay manager function to
configure it's timings, having a common DISPC function would make things
cleaner.
For LCD managers, dispc_mgr_set_timings() sets LCD size and blanking values, for
TV manager, it sets only the TV size since blanking values don't exist for TV.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The RFBI driver uses dispc_mgr_set_lcd_size() to set the width and height of
the LCD manager. Replace this to use dispc_mgr_set_lcd_timings(), pass dummy
blanking parameters like done in the DSI driver.
This prevents the need to export dispc_mgr_set_lcd_size(), and use a common
function to set lcd timings.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Now that dss is using devm_ functions for allocation in probe functions,
small reordering of the allocations allows us to clean up the probe
functions more.
This patch moves "unmanaged" allocations after the managed ones, and
uses plain returns instead of gotos where possible. This lets us remove
a bunch of goto labels, simplifying the probe's error handling.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omapdss doesn't work properly on system suspend. The problem seems to be
the fact that omapdss uses pm_runtime_put() functions when turning off
the hardware, and when system suspend is in process only sync versions
are allowed.
Using non-sync versions normally and sync versions when suspending would
need rather ugly hacks to convey the information of
suspending/not-suspending to different functions. Optimally the driver
wouldn't even need to care about this, and the PM layer would handle
syncing when suspend is in process.
This patch changes all omapdss's pm_runtime_put calls to
pm_runtime_put_sync. This fixes the suspend problem, and probably the
performance penalty of always using sync versions is negligible.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Acked-by: Kevin Hilman <khilman@ti.com>
The various devm_ functions allocate memory that is released when a driver
detaches. This patch uses these functions for data that is allocated in
the probe function of a platform device and is only freed in the remove
function.
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Partial update for manual update displays has never worked quite well:
* The HW has limitations on the update area, and the x and width need to
be even.
* Showing a part of a scaled overlay causes artifacts.
* Makes the management of dispc very complex
Considering the above points and the fact that partial update is not
used anywhere, this and the following patches remove the partial update
support. This will greatly simplify the following re-write of the apply
mechanism to get proper locking and additional features like fifo-merge.
This patch removes the partial update from the manager.c.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
With module.h being implicitly everywhere via device.h, the absence
of explicitly including something for EXPORT_SYMBOL went unnoticed.
Since we are heading to fix things up and clean module.h from the
device.h file, we need to explicitly include these files now.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Split the function dispc_set_parallel_interface_mode() into 2 separate
functions called dispc_mgr_set_io_pad_mode() and dispc_mgr_enable_stallmode().
The current function tries to set 2 different modes(io pad mode and stall mode)
based on a parameter omap_parallel_interface_mode which loosely corresponds to
the panel interface type.
This isn't correct because a) these 2 modes are independent to some extent,
b) we are currently configuring gpout0/gpout1 for DSI panels which is
unnecessary, c) a DSI Video mode panel won't get configured correctly.
Splitting the functions allows the interface driver to set these modes
independently and hence allow more flexibility.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Rename dispc's manager related functions as follows:
- Remove prepending underscores, which were originally used to inform
that the clocks needs to be enabled. This meaning is no longer valid.
- Prepend the functions with dispc_mgr_*
- Remove "channel" from the name, e.g. dispc_enable_channel ->
dispc_mgr_enable
The idea is to group manager related functions so that it can be deduced
from the function name that it writes to manager spesific registers.
All dispc_mgr_* functions have enum omap_channel as the first parameter.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Remove support for non-DISPC overlays and overlay managers.
The support to possibly have non-DISPC overlays and managers was made to
make it possible to use CPU and/or sDMA to update RFBI or DSI command
mode displays. It is ok to remove the support, because:
- No one has used the feature.
- Display update without DISPC is very slow, so it is debatable if the
update would even be usable.
- Removal cleans up code.
- If such a feature is needed later, it is better implemented outside
omapdss driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Acked-by: Archit Taneja <archit@ti.com>
None of the DSS interface drivers check if an overlay manager is
connected to the display when the display is being enabled. This leads
to null pointer crash if the display has no manager.
This patch checks for the manager and returns an error if it is null.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The HWMOD data for OMAP2 and 3 are currently not up to date regarding
DSS (OMAP4 HWMOD data is fine). This patch makes the DSS driver to get
the opt clocks needed for OMAP2/3 with the old clock names, thus
allowing DSS driver to use runtime PM.
The HWMOD databases should be fixes ASAP, and this patch can be reverted
after that.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Use PM runtime and HWMOD support to handle enabling and disabling of DSS
modules.
Each DSS module will have get and put functions which can be used to
enable and disable that module. The functions use pm_runtime and hwmod
opt-clocks to enable the hardware.
Acked-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
omapdss.h included platform_device.h and atomic.h, neither of which is
needed by omapdss.h. Remove those includes from omapdss.h, and fix the
affected .c files which did not include platform_device.h even though
they should.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add omap_rfbi_configure() which the panel driver can use to reconfigure
the data element size and the number of data lines in the RFBI bus.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
RFBI enables and disables clocks inside almost every function to get a
finegrained control to the clocks. However, the current understanding is
that this is not necessary power-management-wise.
Change the clocking scheme so that RFBI clocks are enabled when the
omapdss_rfbi_display_enable is called, and disabled when
omapdss_rfbi_display_disable is called.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add similar bus lock to RFBI as is in DSI. The panel driver can use the
bus lock to mark that the RFBI bus is currently in use.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
arch/arm/plat-omap/include/plat/display.h is an include for the OMAP DSS
driver. A more logical place for it is in include/video.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>