Commit Graph

79 Commits

Author SHA1 Message Date
Ingo Molnar
48652ced15 Merge commit 'v2.6.34-rc6' into sched/core 2010-05-07 11:27:54 +02:00
James Morris
0ffbe2699c Merge branch 'master' into next 2010-05-06 10:56:07 +10:00
David Howells
e134d200d5 CRED: Fix a race in creds_are_invalid() in credentials debugging
creds_are_invalid() reads both cred->usage and cred->subscribers and then
compares them to make sure the number of processes subscribed to a cred struct
never exceeds the refcount of that cred struct.

The problem is that this can cause a race with both copy_creds() and
exit_creds() as the two counters, whilst they are of atomic_t type, are only
atomic with respect to themselves, and not atomic with respect to each other.

This means that if creds_are_invalid() can read the values on one CPU whilst
they're being modified on another CPU, and so can observe an evolving state in
which the subscribers count now is greater than the usage count a moment
before.

Switching the order in which the counts are read cannot help, so the thing to
do is to remove that particular check.

I had considered rechecking the values to see if they're in flux if the test
fails, but I can't guarantee they won't appear the same, even if they've
changed several times in the meantime.

Note that this can only happen if CONFIG_DEBUG_CREDENTIALS is enabled.

The problem is only likely to occur with multithreaded programs, and can be
tested by the tst-eintr1 program from glibc's "make check".  The symptoms look
like:

	CRED: Invalid credentials
	CRED: At include/linux/cred.h:240
	CRED: Specified credentials: ffff88003dda5878 [real][eff]
	CRED: ->magic=43736564, put_addr=(null)
	CRED: ->usage=766, subscr=766
	CRED: ->*uid = { 0,0,0,0 }
	CRED: ->*gid = { 0,0,0,0 }
	CRED: ->security is ffff88003d72f538
	CRED: ->security {359, 359}
	------------[ cut here ]------------
	kernel BUG at kernel/cred.c:850!
	...
	RIP: 0010:[<ffffffff81049889>]  [<ffffffff81049889>] __invalid_creds+0x4e/0x52
	...
	Call Trace:
	 [<ffffffff8104a37b>] copy_creds+0x6b/0x23f

Note the ->usage=766 and subscr=766.  The values appear the same because
they've been re-read since the check was made.

Reported-by: Roland McGrath <roland@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-04-22 09:14:29 +10:00
David Howells
eff30363c0 CRED: Fix double free in prepare_usermodehelper_creds() error handling
Patch 570b8fb505:

	Author: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
	Date:   Tue Mar 30 00:04:00 2010 +0100
	Subject: CRED: Fix memory leak in error handling

attempts to fix a memory leak in the error handling by making the offending
return statement into a jump down to the bottom of the function where a
kfree(tgcred) is inserted.

This is, however, incorrect, as it does a kfree() after doing put_cred() if
security_prepare_creds() fails.  That will result in a double free if 'error'
is jumped to as put_cred() will also attempt to free the new tgcred record by
virtue of it being pointed to by the new cred record.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-04-21 09:20:35 +10:00
Ingo Molnar
b257c14ceb Merge branch 'linus' into sched/core
Merge reason: merge the latest fixes, update to -rc4.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-04-15 09:36:16 +02:00
Eric Paris
0968d0060a security: remove dead hook cred_commit
Unused hook.  Remove.

Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-04-12 12:19:15 +10:00
Tejun Heo
336f5899d2 Merge branch 'master' into export-slabh 2010-04-05 11:37:28 +09:00
Li Zefan
32bd7eb5a7 sched: Remove remaining USER_SCHED code
This is left over from commit 7c9414385e ("sched: Remove USER_SCHED"")

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Dhaval Giani <dhaval.giani@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Howells <dhowells@redhat.com>
LKML-Reference: <4BA9A05F.7010407@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-04-02 20:12:00 +02:00
Tejun Heo
5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Mathieu Desnoyers
570b8fb505 CRED: Fix memory leak in error handling
Fix a memory leak on an OOM condition in prepare_usermodehelper_creds().

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-03-30 17:15:38 +11:00
Julia Lawall
b8a1d37c5f kernel/cred.c: use kmem_cache_free
Free memory allocated using kmem_cache_zalloc using kmem_cache_free rather
than kfree.

The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)

// <smpl>
@@
expression x,E,c;
@@

 x = \(kmem_cache_alloc\|kmem_cache_zalloc\|kmem_cache_alloc_node\)(c,...)
 ... when != x = E
     when != &x
?-kfree(x)
+kmem_cache_free(c,x)
// </smpl>

Signed-off-by: Julia Lawall <julia@diku.dk>
Acked-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Steve Dickson <steved@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: James Morris <jmorris@namei.org>
2010-02-03 10:21:57 +11:00
Randy Dunlap
764db03fee creds_are_invalid() needs to be exported for use by modules:
ERROR: "creds_are_invalid" [fs/cachefiles/cachefiles.ko] undefined!

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-23 11:02:26 -07:00
Andrew Morton
74908a0009 include/linux/cred.h: fix build
mips allmodconfig:

include/linux/cred.h: In function `creds_are_invalid':
include/linux/cred.h:187: error: `PAGE_SIZE' undeclared (first use in this function)
include/linux/cred.h:187: error: (Each undeclared identifier is reported only once
include/linux/cred.h:187: error: for each function it appears in.)

Fixes

commit b6dff3ec5e
Author:     David Howells <dhowells@redhat.com>
AuthorDate: Fri Nov 14 10:39:16 2008 +1100
Commit:     James Morris <jmorris@namei.org>
CommitDate: Fri Nov 14 10:39:16 2008 +1100

    CRED: Separate task security context from task_struct

I think.

It's way too large to be inlined anyway.

Dunno if this needs an EXPORT_SYMBOL() yet.

Cc: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-23 11:01:25 -07:00
David Howells
4a5d6ba191 CRED: Allow put_cred() to cope with a NULL groups list
put_cred() will oops if given a NULL groups list, but that is now possible with
the existence of cred_alloc_blank(), as used in keyctl_session_to_parent().

Added in commit:

	commit ee18d64c1f
	Author: David Howells <dhowells@redhat.com>
	Date:   Wed Sep 2 09:14:21 2009 +0100
	KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]

Reported-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-15 09:10:57 +10:00
David Howells
ee18d64c1f KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent.  This
replaces the parent's session keyring.  Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again.  Normally this
will be after a wait*() syscall.

To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.

The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.

Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME.  This allows the
replacement to be performed at the point the parent process resumes userspace
execution.

This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership.  However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.

This can be tested with the following program:

	#include <stdio.h>
	#include <stdlib.h>
	#include <keyutils.h>

	#define KEYCTL_SESSION_TO_PARENT	18

	#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)

	int main(int argc, char **argv)
	{
		key_serial_t keyring, key;
		long ret;

		keyring = keyctl_join_session_keyring(argv[1]);
		OSERROR(keyring, "keyctl_join_session_keyring");

		key = add_key("user", "a", "b", 1, keyring);
		OSERROR(key, "add_key");

		ret = keyctl(KEYCTL_SESSION_TO_PARENT);
		OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");

		return 0;
	}

Compiled and linked with -lkeyutils, you should see something like:

	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: _ses
	355907932 --alswrv   4043    -1   \_ keyring: _uid.4043
	[dhowells@andromeda ~]$ /tmp/newpag
	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: _ses
	1055658746 --alswrv   4043  4043   \_ user: a
	[dhowells@andromeda ~]$ /tmp/newpag hello
	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: hello
	340417692 --alswrv   4043  4043   \_ user: a

Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 21:29:22 +10:00
David Howells
e0e817392b CRED: Add some configurable debugging [try #6]
Add a config option (CONFIG_DEBUG_CREDENTIALS) to turn on some debug checking
for credential management.  The additional code keeps track of the number of
pointers from task_structs to any given cred struct, and checks to see that
this number never exceeds the usage count of the cred struct (which includes
all references, not just those from task_structs).

Furthermore, if SELinux is enabled, the code also checks that the security
pointer in the cred struct is never seen to be invalid.

This attempts to catch the bug whereby inode_has_perm() faults in an nfsd
kernel thread on seeing cred->security be a NULL pointer (it appears that the
credential struct has been previously released):

	http://www.kerneloops.org/oops.php?number=252883

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 21:29:01 +10:00
David Howells
5e751e992f CRED: Rename cred_exec_mutex to reflect that it's a guard against ptrace
Rename cred_exec_mutex to reflect that it's a guard against foreign
intervention on a process's credential state, such as is made by ptrace().  The
attachment of a debugger to a process affects execve()'s calculation of the new
credential state - _and_ also setprocattr()'s calculation of that state.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-05-11 08:15:36 +10:00
Linus Torvalds
1a7d0f0bec Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/security-testing-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/security-testing-2.6:
  CRED: Fix commit_creds() on a process that has no mm
2009-01-09 13:59:25 -08:00
David Howells
43529c9712 CRED: Must initialise the new creds in prepare_kernel_cred()
The newly allocated creds in prepare_kernel_cred() must be initialised
before get_uid() and get_group_info() can access them.  They should be
copied from the old credentials.

Reported-by: Steve Dickson <steved@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-09 11:53:53 -08:00
David Howells
0de3368141 CRED: Missing put_cred() in prepare_kernel_cred()
Missing put_cred() in the error handling path of prepare_kernel_cred().

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-09 11:53:53 -08:00
David Howells
b9456371a7 CRED: Fix commit_creds() on a process that has no mm
Fix commit_creds()'s handling of a process that has no mm (such as one that is
calling or has called daemonize()).  commit_creds() should check to see if
task->mm is not NULL before calling set_dumpable() on it.

Reported-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-01-08 23:13:56 +11:00
Serge Hallyn
18b6e0414e User namespaces: set of cleanups (v2)
The user_ns is moved from nsproxy to user_struct, so that a struct
cred by itself is sufficient to determine access (which it otherwise
would not be).  Corresponding ecryptfs fixes (by David Howells) are
here as well.

Fix refcounting.  The following rules now apply:
        1. The task pins the user struct.
        2. The user struct pins its user namespace.
        3. The user namespace pins the struct user which created it.

User namespaces are cloned during copy_creds().  Unsharing a new user_ns
is no longer possible.  (We could re-add that, but it'll cause code
duplication and doesn't seem useful if PAM doesn't need to clone user
namespaces).

When a user namespace is created, its first user (uid 0) gets empty
keyrings and a clean group_info.

This incorporates a previous patch by David Howells.  Here
is his original patch description:

>I suggest adding the attached incremental patch.  It makes the following
>changes:
>
> (1) Provides a current_user_ns() macro to wrap accesses to current's user
>     namespace.
>
> (2) Fixes eCryptFS.
>
> (3) Renames create_new_userns() to create_user_ns() to be more consistent
>     with the other associated functions and because the 'new' in the name is
>     superfluous.
>
> (4) Moves the argument and permission checks made for CLONE_NEWUSER to the
>     beginning of do_fork() so that they're done prior to making any attempts
>     at allocation.
>
> (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds
>     to fill in rather than have it return the new root user.  I don't imagine
>     the new root user being used for anything other than filling in a cred
>     struct.
>
>     This also permits me to get rid of a get_uid() and a free_uid(), as the
>     reference the creds were holding on the old user_struct can just be
>     transferred to the new namespace's creator pointer.
>
> (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under
>     preparation rather than doing it in copy_creds().
>
>David

>Signed-off-by: David Howells <dhowells@redhat.com>

Changelog:
	Oct 20: integrate dhowells comments
		1. leave thread_keyring alone
		2. use current_user_ns() in set_user()

Signed-off-by: Serge Hallyn <serue@us.ibm.com>
2008-11-24 18:57:41 -05:00
David Howells
3a3b7ce933 CRED: Allow kernel services to override LSM settings for task actions
Allow kernel services to override LSM settings appropriate to the actions
performed by a task by duplicating a set of credentials, modifying it and then
using task_struct::cred to point to it when performing operations on behalf of
a task.

This is used, for example, by CacheFiles which has to transparently access the
cache on behalf of a process that thinks it is doing, say, NFS accesses with a
potentially inappropriate (with respect to accessing the cache) set of
credentials.

This patch provides two LSM hooks for modifying a task security record:

 (*) security_kernel_act_as() which allows modification of the security datum
     with which a task acts on other objects (most notably files).

 (*) security_kernel_create_files_as() which allows modification of the
     security datum that is used to initialise the security data on a file that
     a task creates.

The patch also provides four new credentials handling functions, which wrap the
LSM functions:

 (1) prepare_kernel_cred()

     Prepare a set of credentials for a kernel service to use, based either on
     a daemon's credentials or on init_cred.  All the keyrings are cleared.

 (2) set_security_override()

     Set the LSM security ID in a set of credentials to a specific security
     context, assuming permission from the LSM policy.

 (3) set_security_override_from_ctx()

     As (2), but takes the security context as a string.

 (4) set_create_files_as()

     Set the file creation LSM security ID in a set of credentials to be the
     same as that on a particular inode.

Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> [Smack changes]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:28 +11:00
David Howells
3b11a1dece CRED: Differentiate objective and effective subjective credentials on a task
Differentiate the objective and real subjective credentials from the effective
subjective credentials on a task by introducing a second credentials pointer
into the task_struct.

task_struct::real_cred then refers to the objective and apparent real
subjective credentials of a task, as perceived by the other tasks in the
system.

task_struct::cred then refers to the effective subjective credentials of a
task, as used by that task when it's actually running.  These are not visible
to the other tasks in the system.

__task_cred(task) then refers to the objective/real credentials of the task in
question.

current_cred() refers to the effective subjective credentials of the current
task.

prepare_creds() uses the objective creds as a base and commit_creds() changes
both pointers in the task_struct (indeed commit_creds() requires them to be the
same).

override_creds() and revert_creds() change the subjective creds pointer only,
and the former returns the old subjective creds.  These are used by NFSD,
faccessat() and do_coredump(), and will by used by CacheFiles.

In SELinux, current_has_perm() is provided as an alternative to
task_has_perm().  This uses the effective subjective context of current,
whereas task_has_perm() uses the objective/real context of the subject.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:26 +11:00
David Howells
98870ab0a5 CRED: Documentation
Document credentials and the new credentials API.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:26 +11:00
David Howells
a6f76f23d2 CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.

This patch and the preceding patches have been tested with the LTP SELinux
testsuite.

This patch makes several logical sets of alteration:

 (1) execve().

     The credential bits from struct linux_binprm are, for the most part,
     replaced with a single credentials pointer (bprm->cred).  This means that
     all the creds can be calculated in advance and then applied at the point
     of no return with no possibility of failure.

     I would like to replace bprm->cap_effective with:

	cap_isclear(bprm->cap_effective)

     but this seems impossible due to special behaviour for processes of pid 1
     (they always retain their parent's capability masks where normally they'd
     be changed - see cap_bprm_set_creds()).

     The following sequence of events now happens:

     (a) At the start of do_execve, the current task's cred_exec_mutex is
     	 locked to prevent PTRACE_ATTACH from obsoleting the calculation of
     	 creds that we make.

     (a) prepare_exec_creds() is then called to make a copy of the current
     	 task's credentials and prepare it.  This copy is then assigned to
     	 bprm->cred.

  	 This renders security_bprm_alloc() and security_bprm_free()
     	 unnecessary, and so they've been removed.

     (b) The determination of unsafe execution is now performed immediately
     	 after (a) rather than later on in the code.  The result is stored in
     	 bprm->unsafe for future reference.

     (c) prepare_binprm() is called, possibly multiple times.

     	 (i) This applies the result of set[ug]id binaries to the new creds
     	     attached to bprm->cred.  Personality bit clearance is recorded,
     	     but now deferred on the basis that the exec procedure may yet
     	     fail.

         (ii) This then calls the new security_bprm_set_creds().  This should
	     calculate the new LSM and capability credentials into *bprm->cred.

	     This folds together security_bprm_set() and parts of
	     security_bprm_apply_creds() (these two have been removed).
	     Anything that might fail must be done at this point.

         (iii) bprm->cred_prepared is set to 1.

	     bprm->cred_prepared is 0 on the first pass of the security
	     calculations, and 1 on all subsequent passes.  This allows SELinux
	     in (ii) to base its calculations only on the initial script and
	     not on the interpreter.

     (d) flush_old_exec() is called to commit the task to execution.  This
     	 performs the following steps with regard to credentials:

	 (i) Clear pdeath_signal and set dumpable on certain circumstances that
	     may not be covered by commit_creds().

         (ii) Clear any bits in current->personality that were deferred from
             (c.i).

     (e) install_exec_creds() [compute_creds() as was] is called to install the
     	 new credentials.  This performs the following steps with regard to
     	 credentials:

         (i) Calls security_bprm_committing_creds() to apply any security
             requirements, such as flushing unauthorised files in SELinux, that
             must be done before the credentials are changed.

	     This is made up of bits of security_bprm_apply_creds() and
	     security_bprm_post_apply_creds(), both of which have been removed.
	     This function is not allowed to fail; anything that might fail
	     must have been done in (c.ii).

         (ii) Calls commit_creds() to apply the new credentials in a single
             assignment (more or less).  Possibly pdeath_signal and dumpable
             should be part of struct creds.

	 (iii) Unlocks the task's cred_replace_mutex, thus allowing
	     PTRACE_ATTACH to take place.

         (iv) Clears The bprm->cred pointer as the credentials it was holding
             are now immutable.

         (v) Calls security_bprm_committed_creds() to apply any security
             alterations that must be done after the creds have been changed.
             SELinux uses this to flush signals and signal handlers.

     (f) If an error occurs before (d.i), bprm_free() will call abort_creds()
     	 to destroy the proposed new credentials and will then unlock
     	 cred_replace_mutex.  No changes to the credentials will have been
     	 made.

 (2) LSM interface.

     A number of functions have been changed, added or removed:

     (*) security_bprm_alloc(), ->bprm_alloc_security()
     (*) security_bprm_free(), ->bprm_free_security()

     	 Removed in favour of preparing new credentials and modifying those.

     (*) security_bprm_apply_creds(), ->bprm_apply_creds()
     (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()

     	 Removed; split between security_bprm_set_creds(),
     	 security_bprm_committing_creds() and security_bprm_committed_creds().

     (*) security_bprm_set(), ->bprm_set_security()

     	 Removed; folded into security_bprm_set_creds().

     (*) security_bprm_set_creds(), ->bprm_set_creds()

     	 New.  The new credentials in bprm->creds should be checked and set up
     	 as appropriate.  bprm->cred_prepared is 0 on the first call, 1 on the
     	 second and subsequent calls.

     (*) security_bprm_committing_creds(), ->bprm_committing_creds()
     (*) security_bprm_committed_creds(), ->bprm_committed_creds()

     	 New.  Apply the security effects of the new credentials.  This
     	 includes closing unauthorised files in SELinux.  This function may not
     	 fail.  When the former is called, the creds haven't yet been applied
     	 to the process; when the latter is called, they have.

 	 The former may access bprm->cred, the latter may not.

 (3) SELinux.

     SELinux has a number of changes, in addition to those to support the LSM
     interface changes mentioned above:

     (a) The bprm_security_struct struct has been removed in favour of using
     	 the credentials-under-construction approach.

     (c) flush_unauthorized_files() now takes a cred pointer and passes it on
     	 to inode_has_perm(), file_has_perm() and dentry_open().

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:24 +11:00
David Howells
d84f4f992c CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management.  This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.

A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().

With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:

	struct cred *new = prepare_creds();
	int ret = blah(new);
	if (ret < 0) {
		abort_creds(new);
		return ret;
	}
	return commit_creds(new);

There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.

To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const.  The purpose of this is compile-time
discouragement of altering credentials through those pointers.  Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:

  (1) Its reference count may incremented and decremented.

  (2) The keyrings to which it points may be modified, but not replaced.

The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).

This patch and the preceding patches have been tested with the LTP SELinux
testsuite.

This patch makes several logical sets of alteration:

 (1) execve().

     This now prepares and commits credentials in various places in the
     security code rather than altering the current creds directly.

 (2) Temporary credential overrides.

     do_coredump() and sys_faccessat() now prepare their own credentials and
     temporarily override the ones currently on the acting thread, whilst
     preventing interference from other threads by holding cred_replace_mutex
     on the thread being dumped.

     This will be replaced in a future patch by something that hands down the
     credentials directly to the functions being called, rather than altering
     the task's objective credentials.

 (3) LSM interface.

     A number of functions have been changed, added or removed:

     (*) security_capset_check(), ->capset_check()
     (*) security_capset_set(), ->capset_set()

     	 Removed in favour of security_capset().

     (*) security_capset(), ->capset()

     	 New.  This is passed a pointer to the new creds, a pointer to the old
     	 creds and the proposed capability sets.  It should fill in the new
     	 creds or return an error.  All pointers, barring the pointer to the
     	 new creds, are now const.

     (*) security_bprm_apply_creds(), ->bprm_apply_creds()

     	 Changed; now returns a value, which will cause the process to be
     	 killed if it's an error.

     (*) security_task_alloc(), ->task_alloc_security()

     	 Removed in favour of security_prepare_creds().

     (*) security_cred_free(), ->cred_free()

     	 New.  Free security data attached to cred->security.

     (*) security_prepare_creds(), ->cred_prepare()

     	 New. Duplicate any security data attached to cred->security.

     (*) security_commit_creds(), ->cred_commit()

     	 New. Apply any security effects for the upcoming installation of new
     	 security by commit_creds().

     (*) security_task_post_setuid(), ->task_post_setuid()

     	 Removed in favour of security_task_fix_setuid().

     (*) security_task_fix_setuid(), ->task_fix_setuid()

     	 Fix up the proposed new credentials for setuid().  This is used by
     	 cap_set_fix_setuid() to implicitly adjust capabilities in line with
     	 setuid() changes.  Changes are made to the new credentials, rather
     	 than the task itself as in security_task_post_setuid().

     (*) security_task_reparent_to_init(), ->task_reparent_to_init()

     	 Removed.  Instead the task being reparented to init is referred
     	 directly to init's credentials.

	 NOTE!  This results in the loss of some state: SELinux's osid no
	 longer records the sid of the thread that forked it.

     (*) security_key_alloc(), ->key_alloc()
     (*) security_key_permission(), ->key_permission()

     	 Changed.  These now take cred pointers rather than task pointers to
     	 refer to the security context.

 (4) sys_capset().

     This has been simplified and uses less locking.  The LSM functions it
     calls have been merged.

 (5) reparent_to_kthreadd().

     This gives the current thread the same credentials as init by simply using
     commit_thread() to point that way.

 (6) __sigqueue_alloc() and switch_uid()

     __sigqueue_alloc() can't stop the target task from changing its creds
     beneath it, so this function gets a reference to the currently applicable
     user_struct which it then passes into the sigqueue struct it returns if
     successful.

     switch_uid() is now called from commit_creds(), and possibly should be
     folded into that.  commit_creds() should take care of protecting
     __sigqueue_alloc().

 (7) [sg]et[ug]id() and co and [sg]et_current_groups.

     The set functions now all use prepare_creds(), commit_creds() and
     abort_creds() to build and check a new set of credentials before applying
     it.

     security_task_set[ug]id() is called inside the prepared section.  This
     guarantees that nothing else will affect the creds until we've finished.

     The calling of set_dumpable() has been moved into commit_creds().

     Much of the functionality of set_user() has been moved into
     commit_creds().

     The get functions all simply access the data directly.

 (8) security_task_prctl() and cap_task_prctl().

     security_task_prctl() has been modified to return -ENOSYS if it doesn't
     want to handle a function, or otherwise return the return value directly
     rather than through an argument.

     Additionally, cap_task_prctl() now prepares a new set of credentials, even
     if it doesn't end up using it.

 (9) Keyrings.

     A number of changes have been made to the keyrings code:

     (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
     	 all been dropped and built in to the credentials functions directly.
     	 They may want separating out again later.

     (b) key_alloc() and search_process_keyrings() now take a cred pointer
     	 rather than a task pointer to specify the security context.

     (c) copy_creds() gives a new thread within the same thread group a new
     	 thread keyring if its parent had one, otherwise it discards the thread
     	 keyring.

     (d) The authorisation key now points directly to the credentials to extend
     	 the search into rather pointing to the task that carries them.

     (e) Installing thread, process or session keyrings causes a new set of
     	 credentials to be created, even though it's not strictly necessary for
     	 process or session keyrings (they're shared).

(10) Usermode helper.

     The usermode helper code now carries a cred struct pointer in its
     subprocess_info struct instead of a new session keyring pointer.  This set
     of credentials is derived from init_cred and installed on the new process
     after it has been cloned.

     call_usermodehelper_setup() allocates the new credentials and
     call_usermodehelper_freeinfo() discards them if they haven't been used.  A
     special cred function (prepare_usermodeinfo_creds()) is provided
     specifically for call_usermodehelper_setup() to call.

     call_usermodehelper_setkeys() adjusts the credentials to sport the
     supplied keyring as the new session keyring.

(11) SELinux.

     SELinux has a number of changes, in addition to those to support the LSM
     interface changes mentioned above:

     (a) selinux_setprocattr() no longer does its check for whether the
     	 current ptracer can access processes with the new SID inside the lock
     	 that covers getting the ptracer's SID.  Whilst this lock ensures that
     	 the check is done with the ptracer pinned, the result is only valid
     	 until the lock is released, so there's no point doing it inside the
     	 lock.

(12) is_single_threaded().

     This function has been extracted from selinux_setprocattr() and put into
     a file of its own in the lib/ directory as join_session_keyring() now
     wants to use it too.

     The code in SELinux just checked to see whether a task shared mm_structs
     with other tasks (CLONE_VM), but that isn't good enough.  We really want
     to know if they're part of the same thread group (CLONE_THREAD).

(13) nfsd.

     The NFS server daemon now has to use the COW credentials to set the
     credentials it is going to use.  It really needs to pass the credentials
     down to the functions it calls, but it can't do that until other patches
     in this series have been applied.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:23 +11:00
David Howells
bb952bb98a CRED: Separate per-task-group keyrings from signal_struct
Separate per-task-group keyrings from signal_struct and dangle their anchor
from the cred struct rather than the signal_struct.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:20 +11:00
David Howells
f1752eec61 CRED: Detach the credentials from task_struct
Detach the credentials from task_struct, duplicating them in copy_process()
and releasing them in __put_task_struct().

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:17 +11:00