6fa9c3e779
915874 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
86cc339856 |
Two build fixes for a couple clk drivers and a fix for the Unisoc serial
clk where we want to keep it on for earlycon. -----BEGIN PGP SIGNATURE----- iQJFBAABCAAvFiEE9L57QeeUxqYDyoaDrQKIl8bklSUFAl6cfVgRHHNib3lkQGtl cm5lbC5vcmcACgkQrQKIl8bklSXNkA/+LRR8Z+BmvpUxuo9YxrzeoQrVTm/3YgzU 0puj9+RC1KGyFrW4McP+dX6izWT049cswt+em1fojkrQW7Ojp20t5P20SK5NTa0j hS90tIoSpORdcQBpfgBUOfk7oGmRFEGLSEjJVF+MMizFpnNroz57Y7jn0RksQe1A CDyc5WmgmayoGhnwrKc91ern9qYJW595Bpanv+vsw/wwJvpypQJ1/eT2LIb9MAlR 8GBJWGhhlNqsFsXEPZEnSFYzUZR8jE6uB2hQ70jKSzR2T/YTZO26MUZvj26WfG8O VHN0zxGqpWad9u+xasDlzPv9l7fxuKViNr5zdLrFUP+0NEgDMaIQNFg88bSov6PE UpDe9ImGbMrcaWR4QOFICYWHp1C4EPQp9VZjSJN4fSFUxQLu3WVqxVaMi/kly1w0 IH1YNU+7G/q4TRURenqUWxXOAY0ti89pW2IvhYrvAWFErJXw3XfsYFbfUdphtk1f wxF7YulCO3OnhtZ3P0E2K2gIdF8PYTR//qPwX9MYKKipnNKkeYskmirjRuCK59yF lu7DgMduprdTNMHVFwT6TmpnPrdn+g5pyEz7OMeDUklk/dwyzofHTd/GeVdj5rRC eeI8I0zka9klCEdkTWlAlH4RA4Ccn3sBD3O5fAs7ue+7xuUqj3PZqCPFtTlxp63t tVuDRwrob9A= =6Qda -----END PGP SIGNATURE----- Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux Pull clk fixes from Stephen Boyd: "Two build fixes for a couple clk drivers and a fix for the Unisoc serial clk where we want to keep it on for earlycon" * tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux: clk: sprd: don't gate uart console clock clk: mmp2: fix link error without mmp2 clk: asm9260: fix __clk_hw_register_fixed_rate_with_accuracy typo |
||
Linus Torvalds
|
0fe5f9ca22 |
A set of fixes for x86 and objtool:
objtool: - Ignore the double UD2 which is emitted in BUG() when CONFIG_UBSAN_TRAP is enabled. - Support clang non-section symbols in objtool ORC dump - Fix switch table detection in .text.unlikely - Make the BP scratch register warning more robust. x86: - Increase microcode maximum patch size for AMD to cope with new CPUs which have a larger patch size. - Fix a crash in the resource control filesystem when the removal of the default resource group is attempted. - Preserve Code and Data Prioritization enabled state accross CPU hotplug. - Update split lock cpu matching to use the new X86_MATCH macros. - Change the split lock enumeration as Intel finaly decided that the IA32_CORE_CAPABILITIES bits are not architectural contrary to what the SDM claims. !@#%$^! - Add Tremont CPU models to the split lock detection cpu match. - Add a missing static attribute to make sparse happy. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cWGsTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYod2jD/4kZqz+nEzAvx8RC/7zfLr1S6mDYcLb kqWEblLRfPofFNO3W/1Ri7xUs2VCyBcOJeG9JIugI8YV/b/5LY9j2nW30unXi84y 8DHLWgM7OG+EiNDMvdQwgnjNb9Pdl4F1e9yTTD6IRg0bHOjvtHVyq9bNg7f3iaED ZE4X5Hh5u4qFK/jmcsTF5HA/wIjELdmT32F4RxceAlmvpa5SUGlOfVVo1cSZpCbx XkrvUvEzyZhbzY+Gy1q3SHTt+fvzx1++LsnJD0Dyfe5Q47PA1Iy6Zo2+Epn3FnCu XuQKLaiDhidpkPzTGULZUsubavXbrSEu5/yhFJHyUqMy5WNOmvXBN8eVC4j1I9Ga tnt43s3AS8noz4qIb7bpoVgETFtoCfWfqwhtZmALPzrfutwxe2Ujtsi9FUca6HtA T5dKuNwc8G+Q5ZiNi+rPjcV/QGGncZFwtwwRwUl/YKgQ2VgrTgfsPc431tfSl3Q8 hVQIOhQNHCKqe3uGhiCsI29pNMDXVijZcI8w2SSmxnPyrMRXD7bTfLWnPav7SGFO aSSi9HWtghkU/MsmRgRcZc9PI5bNs6w5IkfQqfXjd/lJwea2yQg1cn1KdmGi3Q33 BNj9FudNMe4K8ITaNWiLdt5rYCDIvWEzmbwawAhevstbKrjVtrAYgNAjvgJEnXAt mZwTu+Hpd6d+JA== =raUm -----END PGP SIGNATURE----- Merge tag 'x86-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 and objtool fixes from Thomas Gleixner: "A set of fixes for x86 and objtool: objtool: - Ignore the double UD2 which is emitted in BUG() when CONFIG_UBSAN_TRAP is enabled. - Support clang non-section symbols in objtool ORC dump - Fix switch table detection in .text.unlikely - Make the BP scratch register warning more robust. x86: - Increase microcode maximum patch size for AMD to cope with new CPUs which have a larger patch size. - Fix a crash in the resource control filesystem when the removal of the default resource group is attempted. - Preserve Code and Data Prioritization enabled state accross CPU hotplug. - Update split lock cpu matching to use the new X86_MATCH macros. - Change the split lock enumeration as Intel finaly decided that the IA32_CORE_CAPABILITIES bits are not architectural contrary to what the SDM claims. !@#%$^! - Add Tremont CPU models to the split lock detection cpu match. - Add a missing static attribute to make sparse happy" * tag 'x86-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/split_lock: Add Tremont family CPU models x86/split_lock: Bits in IA32_CORE_CAPABILITIES are not architectural x86/resctrl: Preserve CDP enable over CPU hotplug x86/resctrl: Fix invalid attempt at removing the default resource group x86/split_lock: Update to use X86_MATCH_INTEL_FAM6_MODEL() x86/umip: Make umip_insns static x86/microcode/AMD: Increase microcode PATCH_MAX_SIZE objtool: Make BP scratch register warning more robust objtool: Fix switch table detection in .text.unlikely objtool: Support Clang non-section symbols in ORC generation objtool: Support Clang non-section symbols in ORC dump objtool: Fix CONFIG_UBSAN_TRAP unreachable warnings |
||
Linus Torvalds
|
3e0dea5768 |
An update for the proc interface of time namespaces: Use symbolic names
instead of clockid numbers. The usability nuisance of numbers was noticed by Michael when polishing the man page. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cVQsTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoWBjEAC0dCUHKDLoG0FeyG4tb4FEBW2iTqM8 UFirH26K18s8QSePdvfJlaxtN2SdfNZG7UgYN7wz1fDFQy05zTz7Rek8UrDuu3rh mVph/UZtUJl+6ypW2Lw9x5RWpT5yzay2iowUyBPnNxU9F/0uRKvXQFju3L83Lo/z Z4ni7gVEw87dQi5E74tEv6iaydgPuCBpGxoMahotnHyclqMjA0QuAK6nhN5ZTcAn senoorS/VqkSF5qEvIUwe7+F+kkMbwQryT7merJyNwh/F49xTTXRyBmiys1MF8Og MTEvldXKy2pCh2UfRa/x84WWwOUVNivTXdIXjhalsblczL0j1z9MsQ8b3AOXOiLf S+/Ntbb2dGo4qE22jekMwZ54Pm4x5NzChCU8+3pvd6IrPWZKi6vue74Kd0RNHQg/ 0kWOlZnIP2ArVW0bFqV6jhMYkjmVdK6gm7cUpFV66L2H8zbfFuc4OlxJYEFYivye 9Yck+rFQmMwA15ZXYIpggkd7Rf/5CGF1CiMBAvP/ILubpgbJqnn6/tGByq8tDKdy mqXX+NHF0M/7rJd5vr7wP6p3E5nQ9l/41rh9ii9EDLXf4jsWVO3EyobJ7fFHwprs 5tTWGxVJymUQLq/LQPXOVVENGK+ZsXXNGn/4n8IOVroeypxADTGyhtSh122kFFhv jPcVHqpBUd0g4Q== =slEk -----END PGP SIGNATURE----- Merge tag 'timers-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull time namespace fix from Thomas Gleixner: "An update for the proc interface of time namespaces: Use symbolic names instead of clockid numbers. The usability nuisance of numbers was noticed by Michael when polishing the man page" * tag 'timers-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: proc, time/namespace: Show clock symbolic names in /proc/pid/timens_offsets |
||
Linus Torvalds
|
b7374586eb |
Perf updates and fixes:
- Fix the header line of perf stat output for '--metric-only --per-socket' - Fix the python build with clang - The usual tools UAPI header synchronization -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cU84THHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoUs+EAChmubWOQLreEX7shBpxudvfTMP0icb 95QmXGQx2FSPBUb/pDh4FtA5bPi0xcDqK3yM1GskLutUe9fJbHbzg/ph4FuZqiho C8BwMgxFpBkPgtS55zWHa+HOEhTPFjywHZBWwFdxn4pysQBioeH1iS2+5s7svbRe bDhAYnGnNAB0zwtofIC+tk600Gz3NzkRIAqI5pUZ621FZl3gsJZhwzWQ/U7nljpX cM+KiRqtkNf2DjW4UoBU7muBdThfd1vQCkEayREbGuPnIBKC7fiqRarDiUnwHCmu jyg5jkmlMumc2p3NjMh+M8BhqoY5ySnGuGHRkYwji3WYCIpxy0y3vBP6aMmT6DOg zpV8/wCAtPV5QLMzwcd1RQQzSSVruyckfMfgScZT66Ik34q6SVSiOjZTcUyVYFaM pYrxH/wdzx1tLgd8OEDC43+Zh6sEi9wgGLamc0OtfpQvruPSxXNg3gy8BgvYh8MI fksICVfQT5GmrLZTTsVXoYQSDuaS43EfVa1NVdtObmeWYeN4CmZHMM9nHl/9Nn9F 2qepDgLuBpbwCMOrjzvbkrE65CDZgzz9WlziezSeYSGuGymhHPpSvyXm2/dH5z/5 nGvMW7x2ROKyKEc4+yDhJ8COIOb5TqUiF2vpDCBwWygYZbiaHKjh5PfJxRMppTQg dw2wq3OmN8CWGQ== =Dd1H -----END PGP SIGNATURE----- Merge tag 'perf-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf tooling fixes and updates from Thomas Gleixner: - Fix the header line of perf stat output for '--metric-only --per-socket' - Fix the python build with clang - The usual tools UAPI header synchronization * tag 'perf-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: tools headers: Synchronize linux/bits.h with the kernel sources tools headers: Adopt verbatim copy of compiletime_assert() from kernel sources tools headers: Update x86's syscall_64.tbl with the kernel sources tools headers UAPI: Sync drm/i915_drm.h with the kernel sources tools headers UAPI: Update tools's copy of drm.h headers tools headers kvm: Sync linux/kvm.h with the kernel sources tools headers UAPI: Sync linux/fscrypt.h with the kernel sources tools include UAPI: Sync linux/vhost.h with the kernel sources tools arch x86: Sync asm/cpufeatures.h with the kernel sources tools headers UAPI: Sync linux/mman.h with the kernel tools headers UAPI: Sync sched.h with the kernel tools headers: Update linux/vdso.h and grab a copy of vdso/const.h perf stat: Fix no metric header if --per-socket and --metric-only set perf python: Check if clang supports -fno-semantic-interposition tools arch x86: Sync the msr-index.h copy with the kernel sources |
||
Linus Torvalds
|
80ade29e1e |
A set of fixes/updates for the interrupt subsystem:
- Remove setup_irq() and remove_irq(). All users have been converted so remove them before new users surface. - A set of bugfixes for various interrupt chip drivers - Add a few missing static attributes to address sparse warnings. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cUuMTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoYi7EACOFPrwdOlKqDdgU1FGReEzhJeNSSyH yUp1m2nNckz8Y2B+ihnLsfvcktZSXYRuDTZ/u/rmaKqq2wH5Q/h4DNQxEfoMNUep IVBlvAFcGsvpdSbrlc+nx6sEo0K2b22AQVHdyPECiQYFZJikstAtEfzEv+ZaUr2S Lcds295BIQylbugQpcVZL73j6iUKQ+P5YU0Wlkd/Vhlnxe9UdMd/N1P3GoRaRlOa QxYDJCnZJjWkN+cEVRCAZVTat6pd3zaMHvEabI39Lzx4U+nu4vh62TILwk+wdpuA DzgA+ENFXzv2zLlnF8gB0wKWw3J99No9gfRpuK/vWBQ68UeZsPlM5PKEr93oD4cC To9D70r71UM+LS+Km8ciFlqeT4N+hIMb/x8rpIf5Tcfn5spXjNEhR4U6/d/D2ZYy cQiu82th9kSOMGBhlrfkJ0gAT20UfAktDHU1M4JhwI5Y/DLusb6mfg0CRMj8ucOV 0xrKkgHxhX162oRTKzy5OTMWQRGTvIQZg1QE3xxtrT2qCq4ypu0EHQbh3GdfcIVQ 8n+s/Dde6etmbSwDDdEuRi///zM+hvaiXi5KOV28LYgRDbU78cAX8uRgX9sq2pg+ WxK9ulprkW6Ci1yTts9Q6FY+ZBekg7NBKXXDCJdPwXxTLRrdci68pPZip12AaWxP 2HYxWhE8LvmKAw== =jaX5 -----END PGP SIGNATURE----- Merge tag 'irq-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull irq fixes from Thomas Gleixner: "A set of fixes/updates for the interrupt subsystem: - Remove setup_irq() and remove_irq(). All users have been converted so remove them before new users surface. - A set of bugfixes for various interrupt chip drivers - Add a few missing static attributes to address sparse warnings" * tag 'irq-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: irqchip/irq-bcm7038-l1: Make bcm7038_l1_of_init() static irqchip/irq-mvebu-icu: Make legacy_bindings static irqchip/meson-gpio: Fix HARDIRQ-safe -> HARDIRQ-unsafe lock order irqchip/sifive-plic: Fix maximum priority threshold value irqchip/ti-sci-inta: Fix processing of masked irqs irqchip/mbigen: Free msi_desc on device teardown irqchip/gic-v4.1: Update effective affinity of virtual SGIs irqchip/gic-v4.1: Add support for VPENDBASER's Dirty+Valid signaling genirq: Remove setup_irq() and remove_irq() |
||
Linus Torvalds
|
08dd387277 |
Two fixes for the scheduler:
- Work around an uninitializaed variable warning where GCC can't figure it out. - Allow 'isolcpus=' to skip unknown subparameters so that older kernels work with the commandline of a newer kernel. Improve the error output while at it. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cVFwTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoZAaD/9i9QgLuj1Ka59kNPAs68i5Kjar72VS us1dM2n0Tx6lIUEYsdJsu4GTRi5NEBqLbmwSgsXROnhI6Jd17hHp5JViezk1GZWc Zg2uARAj9Jsqh2q5IjriNOwzq47PDC4dmSUzaecJff8PqGkk9Lpry6qvx3A02uSn tVVQAXqwCbPTaQzuhEf/q6mbfRaO90tVqGdseD+1wE0FBFfPLwddegLEGhL1vYsA 55UhpKCGsS9lrfmgkxk1Xb3e0pJBObiV0SXdn2qHqJTpVUaDTZzsWgJHXg+0Fe1V 0ZsuGfmaaisYPBZmqRo4HALbkgnvVECSbp7FAnhvqiQMyNaciiwkkFv9Ap5+aayf c8wXz/emAmuEMNzipovyFUITCIOs6IL1CkESsbO8Bgx9sTHO+pcgNEYrsX1953UC 45GjhXR3ymnclqsVqfMWIcNRukk0g9W38yp1DgA5IIhVz1rHogEquD9F10qsCGb1 FgSOnyGlU0I0JR5tEfqR0TeCuqLGKB2NvnEgLU4OVpsdEC5ac87uvzWEZuOmR5Z4 vQCkps1z1ABW5fB/kFO83OiA5BZfDGnq5Vvh6XDOv6EeWjhIXrolu6VeTYpBSInq w0oNpsaA9wsy7WIy1RJ8jtSNsgS8fULCE5lUBtFeSUY/T7IcWd0lwnTlL97A4qzg GdYVT/UAHLCzCA== =AKgh -----END PGP SIGNATURE----- Merge tag 'sched-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Thomas Gleixner: "Two fixes for the scheduler: - Work around an uninitialized variable warning where GCC can't figure it out. - Allow 'isolcpus=' to skip unknown subparameters so that older kernels work with the commandline of a newer kernel. Improve the error output while at it" * tag 'sched-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/vtime: Work around an unitialized variable warning sched/isolation: Allow "isolcpus=" to skip unknown sub-parameters |
||
Linus Torvalds
|
5e7de58127 |
A single bugfix for RCU to prevent taking a lock in NMI context.
-----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cUf8THHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYofFtD/92Ufh1t+1uSe/txUJ/lTdY98cpcD5i UZJYdF102VLkhwA3Ors0Udtrnvuyxb5FFSfJZ3/N7tsNaXgcz1QOQsqoZz4SSgLJ pPj+2v+LNI6rIWDXuwszbLM/nT1mJGAK9NQ6+AhvIyBMPbht4/Lajsv7vkFMTzXw 8o+a5NqLKWDca7/eLcgbcMiSsulRZxRld0D7MSP7RBeEWeylt31q3JIBp7ldzJ77 0KCdQEd3TAkP+hOZW98CNgcLgGtCxiOJ5EgjUOFJyD/+5mj219czKF53HXnn4amk 5lmdzSB0RKV2JTNFKNZQOobgMPp8VIIf6R6QlDp5MdrGYWTIbV0p5Hak2u41Cyma BfxxkVZJipjC7mgAvZLgy0/Md7n2Eu5uAW0e72AYEmv7IwOGyHh9YL7IYiZQld67 5q8xEgrIIpaCwscVjZqP3+GHc8KGWYuv8puMCeOk1v7UeWsRlc8j/eGWIXnY4E8v wvqWAB91dHlBh+CHaFtdy97buYinVzW/Tv2NTxLFKgxyGJTg82H2hdTpjRVYi5Z4 DM2NQRLcD1ozvh8tsFzXWP+/uemlE+EUPBZofCjJ0WtzH1GWarf3YNqviFqldRLr GyEFoyIc3Ra/hTEzD9yCC0UWwJubhAVLWOuu9pJKuaaei8s1aiusABQGbz5sNG9l AcpB9KFMtsLAXA== =QjbA -----END PGP SIGNATURE----- Merge tag 'core-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RCU fix from Thomas Gleixner: "A single bugfix for RCU to prevent taking a lock in NMI context" * tag 'core-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: rcu: Don't acquire lock in NMI handler in rcu_nmi_enter_common() |
||
Linus Torvalds
|
439f1da923 |
Miscellaneous bug fixes and cleanups for ext4, including a fix for
generic/388 in data=journal mode, removing some BUG_ON's, and cleaning up some compiler warnings. -----BEGIN PGP SIGNATURE----- iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAl6cj80ACgkQ8vlZVpUN gaOx5Qf/XY7JUEp1nGgcdZyUd8uho3dKkG4TuUU5PvGsiDb4ozGsyU51q2LnOHWF uzDJaE03z5uc1i8C9mQRLzjzaOC8B8kQZuKfkcQ/xI4CS3cG4qRdeNdHUz5QyfhK 5THDzr2z1tuWDuhlp+jCPjCz1fJowHxva/7ktf1OrMVEErYlZXT8CPLIRBCeuuCX /07/8tJ5jJoqpI3kmy1jFotMEhIBE0vixf+sfcp2RWjdb0/1LH2JPWCytX+hhSFR SadWDvTIvVy/rMahLHgc/VyPP47QwLWzBmLm9CdyxmDeUaM4Qwx8Zfog4+8g78wl IvSuHRDdTYnOO35Qbzjl2wanhzCiQQ== =qzEh -----END PGP SIGNATURE----- Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4 Pull ext4 fixes from Ted Ts'o: "Miscellaneous bug fixes and cleanups for ext4, including a fix for generic/388 in data=journal mode, removing some BUG_ON's, and cleaning up some compiler warnings" * tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: ext4: convert BUG_ON's to WARN_ON's in mballoc.c ext4: increase wait time needed before reuse of deleted inode numbers ext4: remove set but not used variable 'es' in ext4_jbd2.c ext4: remove set but not used variable 'es' ext4: do not zeroout extents beyond i_disksize ext4: fix return-value types in several function comments ext4: use non-movable memory for superblock readahead ext4: use matching invalidatepage in ext4_writepage |
||
Linus Torvalds
|
aee0314bc3 |
Three small smb3 fixes: two debug related, and one fixing a performance problem with 64K pages
-----BEGIN PGP SIGNATURE----- iQGzBAABCgAdFiEE6fsu8pdIjtWE/DpLiiy9cAdyT1EFAl6b28kACgkQiiy9cAdy T1EZ+wwAqHCqrIgelrLFiQwHkMg1KQMBnul3mBuCJ6qxGTyzSVLWBYsfHabLqWmC Ann71PFygGc+5R195CcMZ/RAHGTTEbwJP5s/wGwm3wUfqImLPOpMr/jd8rv9GvE2 atsthBnFlPE+dY5BD9fr7JIWpZxE3yevCtVifyPjA879zzqIoT9lkFcjCNTqV37l tRe4JyObxKSrPUUELC30XPFoBGT/Cgcoz+I0JFL+gz8Yt9CEBXL2DKdnZJERbIpm t+yjKAYC9QN5eF7kew8Fide4LohH7jL2EAmllWKUTRH1pHNEKgyMbSMm3F2RzoXG 0R/70stukgXemlsCD2+BSXDZ3smPHwoKq+FftYanHd1pamOQHJMWcQ/tCk8gg9/Z Qq0wwBBbVP6HOMwoDOOW53/lwiU/hoR2Re3jy7K0DOGJAFNkxo98oXfT7HJfmKeW q1LQvKR7ch3iFaOUkg/Tv+8o3inUuYLUgegCPvM6RkGkG0Mqs8SEkA9AyyqFmBnG kY1K83Ct =G+Rl -----END PGP SIGNATURE----- Merge tag '5.7-rc-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6 Pull cifs fixes from Steve French: "Three small smb3 fixes: two debug related (helping network tracing for SMB2 mounts, and the other removing an unintended debug line on signing failures), and one fixing a performance problem with 64K pages" * tag '5.7-rc-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6: smb3: remove overly noisy debug line in signing errors cifs: improve read performance for page size 64KB & cache=strict & vers=2.1+ cifs: dump the session id and keys also for SMB2 sessions |
||
Linus Torvalds
|
1340283741 |
flexible-array member convertion patches for 5.7-rc2
Hi Linus, Please, pull the following patches that replace zero-length arrays with flexible-array members. The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] sizeof(flexible-array-member) triggers a warning because flexible array members have incomplete type[1]. There are some instances of code in which the sizeof operator is being incorrectly/erroneously applied to zero-length arrays and the result is zero. Such instances may be hiding some bugs. So, this work (flexible-array member convertions) will also help to get completely rid of those sorts of issues. Notice that all of these patches have been baking in linux-next for quite a while now and, 238 more of these patches have already been merged into 5.7-rc1. There are a couple hundred more of these issues waiting to be addressed in the whole codebase. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit |
||
Linus Torvalds
|
50cc09c189 |
SCSI fixes on 20200418
Seven fixes; three in target, one on a sg error leg, two in qla2xxx fixing warnings introduced in the last merge window and updating MAINTAINERS and one in hisi_sas fixing a problem introduced by libata. Signed-off-by: James E.J. Bottomley <jejb@linux.ibm.com> -----BEGIN PGP SIGNATURE----- iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCXptd+CYcamFtZXMuYm90 dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishbngAP46suq5 KFaRycXl1lmznlPmM7gyFfszxDV3hp9SusFrzgEAxV4S6vdgEsF2pd5F6EYZoV0i eCPKR6qDY4SaiUcGFRA= =B9UG -----END PGP SIGNATURE----- Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi Pull SCSI fixes from James Bottomley: "Seven fixes: three in target, one on a sg error leg, two in qla2xxx fixing warnings introduced in the last merge window and updating MAINTAINERS and one in hisi_sas fixing a problem introduced by libata" * tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: scsi: sg: add sg_remove_request in sg_common_write scsi: target: tcmu: reset_ring should reset TCMU_DEV_BIT_BROKEN scsi: target: fix PR IN / READ FULL STATUS for FC scsi: target: Write NULL to *port_nexus_ptr if no ISID scsi: MAINTAINERS: Update qla2xxx FC-SCSI driver maintainer scsi: qla2xxx: Fix regression warnings scsi: hisi_sas: Fix build error without SATA_HOST |
||
Gustavo A. R. Silva
|
43951585e1 |
xattr.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
6e88abb862 |
uapi: linux: fiemap.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
d6cdad8703 |
uapi: linux: dlm_device.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
06ccf63da5 |
tpm_eventlog.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
4ea19ecf32 |
ti_wilink_st.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
16c3380f8c |
swap.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
5c91aa1df0 |
skbuff.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
fe946db6ca |
sched: topology.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
9dd8bb5f8c |
rslib.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
a1c4b9247d |
rio.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
70f1451ec9 |
posix_acl.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
1223f3db71 |
platform_data: wilco-ec.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
307ed94c37 |
memcontrol.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
859b494111 |
list_lru.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
3123227228 |
lib: cpu_rmap: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
7856e9f12f |
irq.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
1d9e13e8ef |
ihex.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
0ead33642f |
igmp.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
89f60a5d9b |
genalloc.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
5299a11a93 |
ethtool.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
beb69f15a0 |
energy_model.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
192199464d |
enclosure.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
a2008395fe |
dirent.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
1fa0949bed |
digsig.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
e76018cb60 |
can: dev: peak_canfd.h: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
5a58ec8cfc |
blk_types: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
f36aaf8be4 |
blk-mq: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Gustavo A. R. Silva
|
0a368bf00e |
bio: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit
|
||
Linus Torvalds
|
eeaa762549 |
hwmon fixes for v5.7-rc2
pmbus/isl68137: Fix up chip IDs drivetemp: Return -ENODATA for invalid temperatures Use true module name k10temp: Fix static symbol warnings jc42: Use valid hwmon device name -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEiHPvMQj9QTOCiqgVyx8mb86fmYEFAl6bNhcACgkQyx8mb86f mYEGBA//b+6NN4aMBRbZjv0SHS/tl8pgu1moBrSjq5tlMSSA/yQAf+pIiIP5+qs8 EoZh0Ogw4P3L0NaVc6IAs0rz6tBK9LvC982umnRdO6GMk7hbI+38toZQokZvXr+c 8WB17GsuBh92UaEZpgQyadzCee5KfUM8scXi3VhMQMDRnVnzVAlRdi97rWvnFsmQ qFvNn57Qy6DWzP3ou4AU/uHFVmR6nfXHdTcIOwIyORxsQOGSdsKekimt3MVbv8b4 zmDC55z6Ld5fH+lKvjPhady7Eqne8COkQIbT6plvwVbuqUp0O04PK+hBpkuSI3q0 9H4PEhWLMmjRk2HMf5p9HdfcRSSQftUbfjgBx1g2R+nGn5aAc/0ZkY9mAm9N9tcS ciQTxKLBm7Cq9lTJgjHzmhT4ujghLpbi0yGRXZd3CsgRl2say8+ZvF0SodufqP0m JNhEEWWgGOJjbmu7R2iVTpXGtDcKnWRJTwZETZXvHgIwWc572sAnCqJyt7buuhDh Ck8rIvJn9UeeCWDZRuu2msbsZ43evEakFzmkf9ffwNj/ZYgajy9ZcfPIbPlIFyDg /z/XRtdGHJoIUmXbXJGgMrYP5FhsC9UId7eAIACm2p1SLB+pFTGfXfveefzJKklt jf31TuGZYpLNQm5DEoufqxt42eBUpPlz7sf6Pc6kQXOhYAg6WPo= =gfMJ -----END PGP SIGNATURE----- Merge tag 'hwmon-for-v5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging Pull hwmon fixes from Guenter Roeck: - Fix up chip IDs (isl68137) - error handling for invalid temperatures and use true module name (drivetemp) - Fix static symbol warnings (k10temp) - Use valid hwmon device name (jc42) * tag 'hwmon-for-v5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging: hwmon: (jc42) Fix name to have no illegal characters hwmon: (k10temp) make some symbols static hwmon: (drivetemp) Return -ENODATA for invalid temperatures hwmon: (drivetemp) Use drivetemp's true module name in Kconfig section hwmon: (pmbus/isl68137) Fix up chip IDs |
||
Linus Torvalds
|
c0d73a868d |
Fixes for 5.7:
- Fix a partially uninitialized variable. - Teach the background gc threads to apply for fsfreeze protection. - Fix some scaling problems when multiple threads try to flush the filesystem when we're about to hit ENOSPC. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl6ZSVQACgkQ+H93GTRK tOuPfg//XQ9HX0VAd4xYM3uAr50gNIUPMfOjrlUdZfnj+DOxJDb7IbN9t6+NXYU7 dfVdUeSPy7vwC/JUyVVgBbTfCX1CnQoeNWtg6EAdEF0msJIlbCH4sm+pI2Vofnqp 1VDT9fU1cmrtz/dtS6teJT49P/uCPCmKRGAcnIJn/E7FZUiDS0je2iwV8jbJtAyo xfTHO39t5jBxBRBLRSuJUzYYvvW1ix3zheebLUQZMolnKRkKafWPja1I2N2lRt23 VnXwEjgFpqkT2OcDk5jljkJLbImHmNNVTc6J7SomtxZfWZDwvVfIHgMUC1OsyvW3 tJCp/22xAqqkBQS6Gx6qoXQubnqsfka86krq8C/juz5q5Doc7TPClpc4eyY/XZ0+ q3/67K9Z5MbudUQRmDBrNqmBBiI93qVB6DmeDLvQbBIIBDNFcWTRar0WB+/s/i3S V4BMTyGfwU7u6ZSVzx+W619uLfgwH1mG4uzDg4xk4b4Uia3+/3zjJkh2WzrT98eq N+jwQr5MbWyxmjbFtcsO6ZUqlh7X5RXmjFXBAZjauVwCQAaSvnHR2SdyAvUrD2bG V2ujYVJ8dAJjXeS/9ILWW+oo/tQTlmmUE898oP6ZljuSYj/ONLqM4AMUoR4Ie1Vp BTuRr0VkAoJH2yTK/OTXYe6mBCFSyrp2l3CEC7EDLrCRQQInbRo= =YkcH -----END PGP SIGNATURE----- Merge tag 'xfs-5.7-fixes-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux Pull xfs fixes from Darrick Wong: "The three commits here fix some livelocks and other clashes with fsfreeze, a potential corruption problem, and a minor race between processes freeing and allocating space when the filesystem is near ENOSPC. Summary: - Fix a partially uninitialized variable. - Teach the background gc threads to apply for fsfreeze protection. - Fix some scaling problems when multiple threads try to flush the filesystem when we're about to hit ENOSPC" * tag 'xfs-5.7-fixes-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: xfs: move inode flush to the sync workqueue xfs: fix partially uninitialized structure in xfs_reflink_remap_extent xfs: acquire superblock freeze protection on eofblocks scans |
||
Linus Torvalds
|
774acb2a09 |
for-linus-2020-04-18
-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXprWIAAKCRCRxhvAZXjc omUyAQCQcvJQhilLv0b7FtBAbN7+TkzV8vAQTzEITuHPa6m/HwEA2Gp9ZDTJfQbV T6utOrTm/LT0mfBkiDLSnLPtVzh7mgE= =Jz3d -----END PGP SIGNATURE----- Merge tag 'for-linus-2020-04-18' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread fixes from Christian Brauner: "A few fixes and minor improvements: - Correctly validate the cgroup file descriptor when clone3() is used with CLONE_INTO_CGROUP. - Check that a new enough version of struct clone_args is passed which supports the cgroup file descriptor argument when CLONE_INTO_CGROUP is set in the flags argument. - Catch nonsensical struct clone_args layouts at build time. - Catch extensions of struct clone_args without updating the uapi visible size definitions at build time. - Check whether the signal is valid early in kill_pid_usb_asyncio() before doing further work. - Replace open-coded rcu_read_lock()+kill_pid_info()+rcu_read_unlock() sequence in kill_something_info() with kill_proc_info() which is a dedicated helper to do just that" * tag 'for-linus-2020-04-18' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: clone3: add build-time CLONE_ARGS_SIZE_VER* validity checks clone3: add a check for the user struct size if CLONE_INTO_CGROUP is set clone3: fix cgroup argument sanity check signal: use kill_proc_info instead of kill_pid_info in kill_something_info signal: check sig before setting info in kill_pid_usb_asyncio |
||
Linus Torvalds
|
b484f3c3c6 |
Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux
Pull i2c fixes from Wolfram Sang: "Some driver bugfixes and an old API removal now that all users are gone" * 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux: i2c: tegra: Synchronize DMA before termination i2c: tegra: Better handle case where CPU0 is busy for a long time i2c: remove i2c_new_probed_device API i2c: altera: use proper variable to hold errno i2c: designware: platdrv: Remove DPM_FLAG_SMART_SUSPEND flag on BYT and CHT |
||
Linus Torvalds
|
fecca68997 |
drm fixes for 5.7-rc2
i915: - Fix guest page access by using the brand new VFIO dma r/w interface (Yan) - Fix for i915 perf read buffers (Ashutosh) amdgpu: - gfx10 fix - SMU7 overclocking fix - RAS fix - GPU reset fix - Fix a regression in a previous s/r fix - Add a gfxoff quirk nouveau: - fix missing MODULE_FIRMWARE -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJemoBjAAoJEAx081l5xIa+rwkQAImAtHbqlyGLLjn8YFudxpOT Xmp8O8C8eFTaOdwO1dcEJpBsfD3Ymf1akQvUuB7DzAK+Nld7obmmRl9yeNYRYsHp R3w0wlXOROEPLgt/jB1mSE5DIYwW1reLDD3m6GElgrwHmVwNEg52Hrjwbh9KByaj scioyNFBLtRBLRcTreLRJ9UHgikv4LKz8/zHCs3ZWGKNYv898HUDHEXN2NZ6j5Vk QOgu3CopbVGD6K5xxeGrKQi8xj7GBujSM2C8EZUasOLnuw2k4opBM5kAtM+nKYHC T4yH1Wxzbp7Ptw200p5O9zWU9AePNsnqZBkLus2i9nAZNn+N1f5Ubo1mxSbu6MeR oyPdX+cvrjCaM3f2nUbtzDI6rIpiRzRjQL3nAfHrzUs6t78sw30i6oRhFd6p81pG cOiXgAp5Q72rPzFh58qJRmqECqcf+be7qZD7LqyG+zzi3e4EgHFHCVMsP3VorzV/ JFWBdrXjbcdR8RhjKFEtcQngyXV5fFY8xj1d5HX8uNjHFsPwzVfPDJHAmDnxmrkm e4WjsNaiSFr7otxAsoM0og3UublKaNBh5aj1C1pEEmYyV6H5IPV9PW+eSia+bJ3E IcAt35hc9snetPSUJ8vnH3BYPlqT0vMLHt8Gorbmp/9qsBmHRfyJDugw4ZbrFOdo HKjEaSHnigDqhp4oZDnx =wRCV -----END PGP SIGNATURE----- Merge tag 'drm-fixes-2020-04-18' of git://anongit.freedesktop.org/drm/drm Pull drm fixes from Dave Airlie: "Quiet enough for rc2, mostly amdgpu fixes, a couple of i915 fixes, and one nouveau module firmware fix: i915: - Fix guest page access by using the brand new VFIO dma r/w interface (Yan) - Fix for i915 perf read buffers (Ashutosh) amdgpu: - gfx10 fix - SMU7 overclocking fix - RAS fix - GPU reset fix - Fix a regression in a previous suspend/resume fix - Add a gfxoff quirk nouveau: - fix missing MODULE_FIRMWARE" * tag 'drm-fixes-2020-04-18' of git://anongit.freedesktop.org/drm/drm: drm/nouveau/sec2/gv100-: add missing MODULE_FIRMWARE() drm/amdgpu/gfx9: add gfxoff quirk drm/amdgpu: fix the hw hang during perform system reboot and reset drm/i915/gvt: switch to user vfio_group_pin/upin_pages drm/i915/gvt: subsitute kvm_read/write_guest with vfio_dma_rw drm/i915/gvt: hold reference of VFIO group during opening of vgpu drm/i915/perf: Do not clear pollin for small user read buffers drm/amdgpu: fix wrong vram lost counter increment V2 drm/amd/powerplay: unload mp1 for Arcturus RAS baco reset drm/amd/powerplay: force the trim of the mclk dpm_levels if OD is enabled Revert "drm/amdgpu: change SH MEM alignment mode for gfx10" |
||
Sascha Hauer
|
c843b382e6 |
hwmon: (jc42) Fix name to have no illegal characters
The jc42 driver passes I2C client's name as hwmon device name. In case of device tree probed devices this ends up being part of the compatible string, "jc-42.4-temp". This name contains hyphens and the hwmon core doesn't like this: jc42 2-0018: hwmon: 'jc-42.4-temp' is not a valid name attribute, please fix This changes the name to "jc42" which doesn't have any illegal characters. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Link: https://lore.kernel.org/r/20200417092853.31206-1-s.hauer@pengutronix.de Signed-off-by: Guenter Roeck <linux@roeck-us.net> |
||
Kan Liang
|
12e89e65f4 |
perf hist: Add fast path for duplicate entries check
Perf checks the duplicate entries in a callchain before adding an entry. However the check is very slow especially with deeper call stack. Almost ~50% elapsed time of perf report is spent on the check when the call stack is always depth of 32. The hist_entry__cmp() is used to compare the new entry with the old entries. It will go through all the available sorts in the sort_list, and call the specific cmp of each sort, which is very slow. Actually, for most cases, there are no duplicate entries in callchain. The symbols are usually different. It's much faster to do a quick check for symbols first. Only do the full cmp when the symbols are exactly the same. The quick check is only to check symbols, not dso. Export _sort__sym_cmp. $ perf record --call-graph lbr ./tchain_edit_64 Without the patch $time perf report --stdio real 0m21.142s user 0m21.110s sys 0m0.033s With the patch $time perf report --stdio real 0m10.977s user 0m10.948s sys 0m0.027s Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Pavel Gerasimov <pavel.gerasimov@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Stephane Eranian <eranian@google.com> Cc: Vitaly Slobodskoy <vitaly.slobodskoy@intel.com> Link: http://lore.kernel.org/lkml/20200319202517.23423-18-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Kan Liang
|
d80da766d1 |
perf c2c: Add option to enable the LBR stitching approach
With the LBR stitching approach, the reconstructed LBR call stack can break the HW limitation. However, it may reconstruct invalid call stacks in some cases, e.g. exception handing such as setjmp/longjmp. Also, it may impact the processing time especially when the number of samples with stitched LBRs are huge. Add an option to enable the approach. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Pavel Gerasimov <pavel.gerasimov@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Stephane Eranian <eranian@google.com> Cc: Vitaly Slobodskoy <vitaly.slobodskoy@intel.com> Link: http://lore.kernel.org/lkml/20200319202517.23423-17-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Kan Liang
|
13e0c844fa |
perf top: Add option to enable the LBR stitching approach
With the LBR stitching approach, the reconstructed LBR call stack can break the HW limitation. However, it may reconstruct invalid call stacks in some cases, e.g. exception handing such as setjmp/longjmp. Also, it may impact the processing time especially when the number of samples with stitched LBRs are huge. Add an option to enable the approach. The option must be used with --call-graph lbr. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Pavel Gerasimov <pavel.gerasimov@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Stephane Eranian <eranian@google.com> Cc: Vitaly Slobodskoy <vitaly.slobodskoy@intel.com> Link: http://lore.kernel.org/lkml/20200319202517.23423-16-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Kan Liang
|
680d125cd5 |
perf script: Add option to enable the LBR stitching approach
With the LBR stitching approach, the reconstructed LBR call stack can break the HW limitation. However, it may reconstruct invalid call stacks in some cases, e.g. exception handing such as setjmp/longjmp. Also, it may impact the processing time especially when the number of samples with stitched LBRs are huge. Add an option to enable the approach. Committer testing: Using the same perf.data as with the latest cset committer testing section: $ perf script --stitch-lbr <SNIP> tchain_edit 11131 15164.984292: 437491 cycles:u: 401106 f43+0x0 (/wb/tchain_edit) 40114c f42+0x18 (/wb/tchain_edit) 401172 f41+0xe (/wb/tchain_edit) 401194 f40+0x0 (/wb/tchain_edit) 40119b f39+0x0 (/wb/tchain_edit) 4011a2 f38+0x0 (/wb/tchain_edit) 4011a9 f37+0x0 (/wb/tchain_edit) 4011b0 f36+0x0 (/wb/tchain_edit) 4011b7 f35+0x0 (/wb/tchain_edit) 4011be f34+0x0 (/wb/tchain_edit) 4011c5 f33+0x0 (/wb/tchain_edit) 4011cc f32+0x0 (/wb/tchain_edit) 401207 f31+0x34 (/wb/tchain_edit) 401212 f30+0x0 (/wb/tchain_edit) 401219 f29+0x0 (/wb/tchain_edit) 401220 f28+0x0 (/wb/tchain_edit) 401227 f27+0x0 (/wb/tchain_edit) 40122e f26+0x0 (/wb/tchain_edit) 401235 f25+0x0 (/wb/tchain_edit) 40123c f24+0x0 (/wb/tchain_edit) 401243 f23+0x0 (/wb/tchain_edit) 40124a f22+0x0 (/wb/tchain_edit) 401251 f21+0x0 (/wb/tchain_edit) 401258 f20+0x0 (/wb/tchain_edit) 40125f f19+0x0 (/wb/tchain_edit) 401266 f18+0x0 (/wb/tchain_edit) 40126d f17+0x0 (/wb/tchain_edit) 401274 f16+0x0 (/wb/tchain_edit) 40127b f15+0x0 (/wb/tchain_edit) 401282 f14+0x0 (/wb/tchain_edit) 401289 f13+0x0 (/wb/tchain_edit) 401290 f12+0x0 (/wb/tchain_edit) 401297 f11+0x0 (/wb/tchain_edit) 40129e f10+0x0 (/wb/tchain_edit) 4012a5 f9+0x0 (/wb/tchain_edit) 4012ac f8+0x0 (/wb/tchain_edit) 4012b3 f7+0x0 (/wb/tchain_edit) 4012ba f6+0x0 (/wb/tchain_edit) 4012c1 f5+0x0 (/wb/tchain_edit) 4012c8 f4+0x0 (/wb/tchain_edit) 4012cf f3+0x0 (/wb/tchain_edit) 4012d6 f2+0x0 (/wb/tchain_edit) 4012dd f1+0x0 (/wb/tchain_edit) 4012e4 main+0x0 (/wb/tchain_edit) 7f41a5016f41 __libc_start_main+0xf1 (/usr/lib64/libc-2.29.so) <SNIP> $ Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Pavel Gerasimov <pavel.gerasimov@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Stephane Eranian <eranian@google.com> Cc: Vitaly Slobodskoy <vitaly.slobodskoy@intel.com> Link: http://lore.kernel.org/lkml/20200319202517.23423-15-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Kan Liang
|
b1d1429b18 |
perf report: Add option to enable the LBR stitching approach
With the LBR stitching approach, the reconstructed LBR call stack can break the HW limitation. However, it may reconstruct invalid call stacks in some cases, e.g. exception handing such as setjmp/longjmp. Also, it may impact the processing time especially when the number of samples with stitched LBRs are huge. Add an option to enable the approach. # To display the perf.data header info, please use # --header/--header-only options. # # # Total Lost Samples: 0 # # Samples: 6K of event 'cycles' # Event count (approx.): 6492797701 # # Children Self Command Shared Object Symbol # ........ ........ ............... .................. # ................................. # 99.99% 99.99% tchain_edit tchain_edit [.] f43 | ---main f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30 f31 | --99.65%--f32 f33 f34 f35 f36 f37 f38 f39 f40 f41 f42 f43 Committer testing: $ perf record --call-graph lbr /wb/tchain_edit [ perf record: Woken up 23 times to write data ] [ perf record: Captured and wrote 5.578 MB perf.data (6839 samples) ] $ perf report --header-only | egrep 'cpu(desc|.*capabilities)' # cpudesc : Intel(R) Core(TM) i5-7500 CPU @ 3.40GHz # cpu pmu capabilities: branches=32, max_precise=3, pmu_name=skylake $ Before: $ perf report --no-children --stdio # To display the perf.data header info, please use --header/--header-only options. # # # Total Lost Samples: 0 # # Samples: 6K of event 'cycles:u' # Event count (approx.): 6459523879 # # Overhead Command Shared Object Symbol # ........ ........... ................ ....................... # 99.95% tchain_edit tchain_edit [.] f43 | --99.92%--f43 f42 f41 f40 f39 f38 f37 f36 f35 f34 f33 f32 f31 f30 f29 f28 f27 f26 f25 f24 f23 f22 f21 f20 f19 f18 f17 f16 f15 f14 f13 f12 f11 0.03% tchain_edit tchain_edit [.] f42 0.01% tchain_edit tchain_edit [.] f41 0.00% tchain_edit tchain_edit [.] f31 0.00% tchain_edit ld-2.29.so [.] _dl_relocate_object 0.00% tchain_edit ld-2.29.so [.] memmove 0.00% tchain_edit [unknown] [k] 0xffffffff93a00b17 After: $ perf report --stitch-lbr --no-children --stdio # To display the perf.data header info, please use --header/--header-only options. # # # Total Lost Samples: 0 # # Samples: 6K of event 'cycles:u' # Event count (approx.): 6459496645 # # Overhead Command Shared Object Symbol # ........ ........... ................ ........................ # 99.97% tchain_edit tchain_edit [.] f43 | --99.93%--f43 f42 f41 f40 f39 f38 f37 f36 f35 f34 f33 f32 f31 f30 f29 f28 f27 f26 f25 f24 f23 f22 f21 f20 f19 f18 f17 f16 f15 f14 f13 f12 f11 f10 f9 f8 f7 f6 f5 f4 f3 f2 f1 main __libc_start_main 0.02% tchain_edit [unknown] [k] 0xffffffff93a00b17 0.01% tchain_edit tchain_edit [.] f31 0.00% tchain_edit ld-2.29.so [.] _dl_important_hwcaps Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexey Budankov <alexey.budankov@linux.intel.com> Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Pavel Gerasimov <pavel.gerasimov@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Stephane Eranian <eranian@google.com> Cc: Vitaly Slobodskoy <vitaly.slobodskoy@intel.com> Link: http://lore.kernel.org/lkml/20200319202517.23423-14-kan.liang@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |