This patch removes the mmu reload logic for kvm on s390. Via Martin's
new gmap interface, we can safely add or remove memory slots while
guest CPUs are in-flight. Thus, the mmu reload logic is not needed
anymore.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch removes kvm-s390 internal assumption of a linear mapping
of guest address space to user space. Previously, guest memory was
translated to user addresses using a fixed offset (gmsor). The new
code uses gmap_fault to resolve guest addresses.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
When running a kvm guest we can get intercepts for tprot, if the host
page table is read-only or not populated. This patch implements the
most common case (linux memory detection).
This also allows host copy on write for guest memory on newer systems.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
commit 628eb9b8a8
KVM: s390: streamline memslot handling
introduced kvm_s390_vcpu_get_memsize. This broke guests >=4G, since this
function returned an int.
This patch changes the return value to a long.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch relocates the variables kvm-s390 uses to track guest mem addr/size.
As discussed dropping the variables at struct kvm_arch level allows to use the
common vcpu->request based mechanism to reload guest memory if e.g. changes
via set_memory_region.
The kick mechanism introduced in this series is used to ensure running vcpus
leave guest state to catch the update.
Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
To ensure vcpu's come out of guest context in certain cases this patch adds a
s390 specific way to kick them out of guest context. Currently it kicks them
out to rerun the vcpu_run path in the s390 code, but the mechanism itself is
expandable and with a new flag we could also add e.g. kicks to userspace etc.
Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch reworks the s390 clock comparator wakeup to hrtimer. The clock
comparator is a per-cpu value that is compared against the TOD clock. If
ckc <= TOD an external interrupt 1004 is triggered. Since the clock comparator
and the TOD clock have a much higher resolution than jiffies we should use
hrtimers to trigger the wakeup. This speeds up guest nanosleep for small
values.
Since hrtimers callbacks run in hard-irq context, I added a tasklet to do
the actual work with enabled interrupts.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Ehrhardt <ehrhardt@de.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The kernel handles some priviledged instruction exits. While I was
unable to trigger such an exit from guest userspace, the code should
check for supervisor state before emulating a priviledged instruction.
I also renamed kvm_s390_handle_priv to kvm_s390_handle_b2. After all
there are non priviledged b2 instructions like stck (store clock).
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch introduces interpretation of some diagnose instruction intercepts.
Diagnose is our classic architected way of doing a hypercall. This patch
features the following diagnose codes:
- vm storage size, that tells the guest about its memory layout
- time slice end, which is used by the guest to indicate that it waits
for a lock and thus cannot use up its time slice in a useful way
- ipl functions, which a guest can use to reset and reboot itself
In order to implement ipl functions, we also introduce an exit reason that
causes userspace to perform various resets on the virtual machine. All resets
are described in the principles of operation book, except KVM_S390_RESET_IPL
which causes a reboot of the machine.
Acked-by: Martin Schwidefsky <martin.schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch introduces in-kernel handling of _some_ sigp interprocessor
signals (similar to ipi).
kvm_s390_handle_sigp() decodes the sigp instruction and calls individual
handlers depending on the operation requested:
- sigp sense tries to retrieve information such as existence or running state
of the remote cpu
- sigp emergency sends an external interrupt to the remove cpu
- sigp stop stops a remove cpu
- sigp stop store status stops a remote cpu, and stores its entire internal
state to the cpus lowcore
- sigp set arch sets the architecture mode of the remote cpu. setting to
ESAME (s390x 64bit) is accepted, setting to ESA/S390 (s390, 31 or 24 bit) is
denied, all others are passed to userland
- sigp set prefix sets the prefix register of a remote cpu
For implementation of this, the stop intercept indication starts to get reused
on purpose: a set of action bits defines what to do once a cpu gets stopped:
ACTION_STOP_ON_STOP really stops the cpu when a stop intercept is recognized
ACTION_STORE_ON_STOP stores the cpu status to lowcore when a stop intercept is
recognized
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch introduces in-kernel handling of some intercepts for privileged
instructions:
handle_set_prefix() sets the prefix register of the local cpu
handle_store_prefix() stores the content of the prefix register to memory
handle_store_cpu_address() stores the cpu number of the current cpu to memory
handle_skey() just decrements the instruction address and retries
handle_stsch() delivers condition code 3 "operation not supported"
handle_chsc() same here
handle_stfl() stores the facility list which contains the
capabilities of the cpu
handle_stidp() stores cpu type/model/revision and such
handle_stsi() stores information about the system topology
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch contains the s390 interrupt subsystem (similar to in kernel apic)
including timer interrupts (similar to in-kernel-pit) and enabled wait
(similar to in kernel hlt).
In order to achieve that, this patch also introduces intercept handling
for instruction intercepts, and it implements load control instructions.
This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both
the vm file descriptors and the vcpu file descriptors. In case this ioctl is
issued against a vm file descriptor, the interrupt is considered floating.
Floating interrupts may be delivered to any virtual cpu in the configuration.
The following interrupts are supported:
SIGP STOP - interprocessor signal that stops a remote cpu
SIGP SET PREFIX - interprocessor signal that sets the prefix register of a
(stopped) remote cpu
INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed
and for smp_call_function() in the guest.
PROGRAM INT - exception during program execution such as page fault, illegal
instruction and friends
RESTART - interprocessor signal that starts a stopped cpu
INT VIRTIO - floating interrupt for virtio signalisation
INT SERVICE - floating interrupt for signalisations from the system
service processor
struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting
an interrupt, also carrys parameter data for interrupts along with the interrupt
type. Interrupts on s390 usually have a state that represents the current
operation, or identifies which device has caused the interruption on s390.
kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a
disabled wait (that is, disabled for interrupts), we exit to userspace. In case
of an enabled wait we set up a timer that equals the cpu clock comparator value
and sleep on a wait queue.
[christian: change virtio interrupt to 0x2603]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This path introduces handling of sie intercepts in three flavors: Intercepts
are either handled completely in-kernel by kvm_handle_sie_intercept(),
or passed to userspace with corresponding data in struct kvm_run in case
kvm_handle_sie_intercept() returns -ENOTSUPP.
In case of partial execution in kernel with the need of userspace support,
kvm_handle_sie_intercept() may choose to set up struct kvm_run and return
-EREMOTE.
The trivial intercept reasons are handled in this patch:
handle_noop() just does nothing for intercepts that don't require our support
at all
handle_stop() is called when a cpu enters stopped state, and it drops out to
userland after updating our vcpu state
handle_validity() faults in the cpu lowcore if needed, or passes the request
to userland
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
This patch contains the port of Qumranet's kvm kernel module to IBM zSeries
(aka s390x, mainframe) architecture. It uses the mainframe's virtualization
instruction SIE to run virtual machines with up to 64 virtual CPUs each.
This port is only usable on 64bit host kernels, and can only run 64bit guest
kernels. However, running 31bit applications in guest userspace is possible.
The following source files are introduced by this patch
arch/s390/kvm/kvm-s390.c similar to arch/x86/kvm/x86.c, this implements all
arch callbacks for kvm. __vcpu_run calls back into
sie64a to enter the guest machine context
arch/s390/kvm/sie64a.S assembler function sie64a, which enters guest
context via SIE, and switches world before and after that
include/asm-s390/kvm_host.h contains all vital data structures needed to run
virtual machines on the mainframe
include/asm-s390/kvm.h defines kvm_regs and friends for user access to
guest register content
arch/s390/kvm/gaccess.h functions similar to uaccess to access guest memory
arch/s390/kvm/kvm-s390.h header file for kvm-s390 internals, extended by
later patches
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>