Count each transparent hugepage as HPAGE_PMD_NR pages in the LRU
statistics, so the Active(anon) and Inactive(anon) statistics in
/proc/meminfo are correct.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On small systems, the extra memory used by the anti-fragmentation memory
reserve and simply because huge pages are smaller than large pages can
easily outweigh the benefits of less TLB misses.
A less obvious concern is if run on a NUMA machine with asymmetric node
sizes and one of them is very small. The reserve could make the node
unusable.
In case of the crashdump kernel, OOMs have been observed due to the
anti-fragmentation memory reserve taking up a large fraction of the
crashdump image.
This patch disables transparent hugepages on systems with less than 1GB of
RAM, but the hugepage subsystem is fully initialized so administrators can
enable THP through /sys if desired.
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Avi Kiviti <avi@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It makes no sense not to enable compaction for small order pages as we
don't want to end up with bad order 2 allocations and good and graceful
order 9 allocations.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This takes advantage of memory compaction to properly generate pages of
order > 0 if regular page reclaim fails and priority level becomes more
severe and we don't reach the proper watermarks.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's unclear why schedule friendly kernel threads can't be taken away by
the CPU through the scheduler itself. It's safer to stop them as they can
trigger memory allocation, if kswapd also freezes itself to avoid
generating I/O they have too.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For GRU and EPT, we need gup-fast to set referenced bit too (this is why
it's correct to return 0 when shadow_access_mask is zero, it requires
gup-fast to set the referenced bit). qemu-kvm access already sets the
young bit in the pte if it isn't zero-copy, if it's zero copy or a shadow
paging EPT minor fault we relay on gup-fast to signal the page is in
use...
We also need to check the young bits on the secondary pagetables for NPT
and not nested shadow mmu as the data may never get accessed again by the
primary pte.
Without this closer accuracy, we'd have to remove the heuristic that
avoids collapsing hugepages in hugepage virtual regions that have not even
a single subpage in use.
->test_young is full backwards compatible with GRU and other usages that
don't have young bits in pagetables set by the hardware and that should
nuke the secondary mmu mappings when ->clear_flush_young runs just like
EPT does.
Removing the heuristic that checks the young bit in
khugepaged/collapse_huge_page completely isn't so bad either probably but
I thought it was worth it and this makes it reliable.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Archs implementing Transparent Hugepage Support must implement a function
called has_transparent_hugepage to be sure the virtual or physical CPU
supports Transparent Hugepages.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An huge pmd can only be mapped if the corresponding 2M virtual range is
fully contained in the vma. At times the VM calls split_vma twice, if the
first split_vma succeeds and the second fail, the first split_vma remains
in effect and it's not rolled back. For split_vma or vma_adjust to fail
an allocation failure is needed so it's a very unlikely event (the out of
memory killer would normally fire before any allocation failure is visible
to kernel and userland and if an out of memory condition happens it's
unlikely to happen exactly here). Nevertheless it's safer to ensure that
no huge pmd can be left around if the vma is adjusted in a way that can't
fit hugepages anymore at the new vm_start/vm_end address.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With transparent hugepage support we need compaction for the "defrag"
sysfs controls to be effective.
At the moment THP hangs the system if COMPACTION isn't selected, as
without COMPACTION lumpy reclaim wouldn't be entirely disabled. So at the
moment it's not orthogonal. When lumpy will be removed from the VM I can
remove the select COMPACTION in theory, but then 99% of THP users would be
still doing a mistake in disabling compaction, even if the mistake won't
return in fatal runtime but just slightly degraded performance. So from a
theoretical standpoing forcing the below select is not needed (the
dependency isn't strict nor at compile time nor at runtime) but from a
practical standpoint it is safer.
If anybody really wants THP to run without compaction, it'd be such a
weird setup that editing the Kconfig file to allow it will be surely not a
problem.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow to choose between the always|madvise default for page faults and
khugepaged at config time. madvise guarantees zero risk of higher memory
footprint for applications (applications using madvise(MADV_HUGEPAGE)
won't risk to use any more memory by backing their virtual regions with
hugepages).
Initially set the default to N and don't depend on EMBEDDED.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This tries to be more friendly to filesystem in userland, with userland
backends that allocate memory in the I/O paths and that could deadlock if
khugepaged holds the mmap_sem write mode of the userland backend while
allocating memory. Memory allocation may wait for writeback I/O
completion from the daemon that may be blocked in the mmap_sem read mode
if a page fault happens and the daemon wasn't using mlock for the memory
required for the I/O submission and completion.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's mostly a matter of replacing alloc_pages with alloc_pages_vma after
introducing alloc_pages_vma. khugepaged needs special handling as the
allocation has to happen inside collapse_huge_page where the vma is known
and an error has to be returned to the outer loop to sleep
alloc_sleep_millisecs in case of failure. But it retains the more
efficient logic of handling allocation failures in khugepaged in case of
CONFIG_NUMA=n.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With memory compaction in, and lumpy-reclaim disabled, it seems safe
enough to defrag memory during the (synchronous) transparent hugepage page
faults (TRANSPARENT_HUGEPAGE_DEFRAG_FLAG) and not only during khugepaged
(async) hugepage allocations that was already enabled even before memory
compaction was in (TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG).
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If transparent hugepage is enabled initialize min_free_kbytes to an
optimal value by default. This moves the hugeadm algorithm in kernel.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Natively handle huge pmds when changing page tables on behalf of
mprotect().
I left out update_mmu_cache() because we do not need it on x86 anyway but
more importantly the interface works on ptes, not pmds.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Flushing the tlb for huge pmds requires the vma's anon_vma, so pass along
the vma instead of the mm, we can always get the latter when we need it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Handle transparent huge page pmd entries natively instead of splitting
them into subpages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for transparent hugepages to x86 32bit.
Share the same VM_ bitflag for VM_MAPPED_COPY. mm/nommu.c will never
support transparent hugepages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PG_buddy can be converted to _mapcount == -2. So the PG_compound_lock can
be added to page->flags without overflowing (because of the sparse section
bits increasing) with CONFIG_X86_PAE=y and CONFIG_X86_PAT=y. This also
has to move the memory hotplug code from _mapcount to lru.next to avoid
any risk of clashes. We can't use lru.next for PG_buddy removal, but
memory hotplug can use lru.next even more easily than the mapcount
instead.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
register in khugepaged if the vma grows.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add khugepaged to relocate fragmented pages into hugepages if new
hugepages become available. (this is indipendent of the defrag logic that
will have to make new hugepages available)
The fundamental reason why khugepaged is unavoidable, is that some memory
can be fragmented and not everything can be relocated. So when a virtual
machine quits and releases gigabytes of hugepages, we want to use those
freely available hugepages to create huge-pmd in the other virtual
machines that may be running on fragmented memory, to maximize the CPU
efficiency at all times. The scan is slow, it takes nearly zero cpu time,
except when it copies data (in which case it means we definitely want to
pay for that cpu time) so it seems a good tradeoff.
In addition to the hugepages being released by other process releasing
memory, we have the strong suspicion that the performance impact of
potentially defragmenting hugepages during or before each page fault could
lead to more performance inconsistency than allocating small pages at
first and having them collapsed into large pages later... if they prove
themselfs to be long lived mappings (khugepaged scan is slow so short
lived mappings have low probability to run into khugepaged if compared to
long lived mappings).
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add hugepage stat information to /proc/vmstat and /proc/meminfo.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add memcg charge/uncharge to hugepage faults in huge_memory.c.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By this patch, when a transparent hugepage is charged, not only the head
page but also all the tail pages are committed, IOW pc->mem_cgroup and
pc->flags of tail pages are set.
Without this patch:
- Tail pages are not linked to any memcg's LRU at splitting. This causes many
problems, for example, the charged memcg's directory can never be rmdir'ed
because it doesn't have enough pages to scan to make the usage decrease to 0.
- "rss" field in memory.stat would be incorrect. Moreover, usage_in_bytes in
root cgroup is calculated by the stat not by res_counter(since 2.6.32),
it would be incorrect too.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No pmd_trans_huge should ever materialize in migration ptes areas, because
we split the hugepage before migration ptes are instantiated.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add madvise MADV_HUGEPAGE to mark regions that are important to be
hugepage backed. Return -EINVAL if the vma is not of an anonymous type,
or the feature isn't built into the kernel. Never silently return
success.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pte_trans_huge must not leak in certain vmas like the mmio special pfn or
filebacked mappings.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This documents how split_huge_page is safe vs new vma inserctions into the
anon_vma that may have already released the anon_vma->lock but not
established pmds yet when split_huge_page starts.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If you configure THP in addition to HUGETLB_PAGE on x86_32 without PAE,
the p?d-folding works out that munlock_vma_pages_range() can crash to
follow_page()'s pud_huge() BUG_ON(flags & FOLL_GET): it needs the same
VM_HUGETLB check already there on the pmd_huge() line. Conveniently,
openSUSE provides a "blogd" which tests this out at startup!
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs. Some of the restrictions I'd like to
see removed:
1) hugepages have to be swappable or the guest physical memory remains
locked in RAM and can't be paged out to swap
2) if a hugepage allocation fails, regular pages should be allocated
instead and mixed in the same vma without any failure and without
userland noticing
3) if some task quits and more hugepages become available in the
buddy, guest physical memory backed by regular pages should be
relocated on hugepages automatically in regions under
madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
not null)
4) avoidance of reservation and maximization of use of hugepages whenever
possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
1 machine with 1 database with 1 database cache with 1 database cache size
known at boot time. It's definitely not feasible with a virtualization
hypervisor usage like RHEV-H that runs an unknown number of virtual machines
with an unknown size of each virtual machine with an unknown amount of
pagecache that could be potentially useful in the host for guest not using
O_DIRECT (aka cache=off).
hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...). Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario. So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).
The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas. This is what this patch tries to achieve in the
least intrusive possible way. We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).
The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails! This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...
Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail. This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM. Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*. The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle). In short the
very value of split_huge_page is that it can't fail.
The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon. It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode. collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later. collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).
The default I like is that transparent hugepages are used at page fault
time. This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used. /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".
The pmd_trans_splitting/pmd_trans_huge locking is very solid. The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head. I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view. In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...). And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.
If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet). But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.
Swap and oom works fine (well just like with regular pages ;). MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.
NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores. I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks. One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault). Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only. If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot. If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time. It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).
This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone. Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation. hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits. hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.
Some performance result:
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988
============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define SIZE (3UL*1024*1024*1024)
int main()
{
char *p = malloc(SIZE), *p2;
struct timeval before, after;
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset page fault %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
return 0;
}
============
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Not worth throwing away the precious reserved free memory pool for
allocations that can fail gracefully (either through mempool or because
they're transhuge allocations later falling back to 4k allocations).
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Transparent hugepage allocations must be allowed not to invoke kswapd or
any other kind of indirect reclaim (especially when the defrag sysfs is
control disabled). It's unacceptable to swap out anonymous pages
(potentially anonymous transparent hugepages) in order to create new
transparent hugepages. This is true for the MADV_HUGEPAGE areas too
(swapping out a kvm virtual machine and so having it suffer an unbearable
slowdown, so another one with guest physical memory marked MADV_HUGEPAGE
can run 30% faster if it is running memory intensive workloads, makes no
sense). If a transparent hugepage allocation fails the slowdown is minor
and there is total fallback, so kswapd should never be asked to swapout
memory to allow the high order allocation to succeed.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the copy/clear_huge_page functions to common code to share between
hugetlb.c and huge_memory.c.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Paging logic that splits the page before it is unmapped and added to swap
to ensure backwards compatibility with the legacy swap code. Eventually
swap should natively pageout the hugepages to increase performance and
decrease seeking and fragmentation of swap space. swapoff can just skip
over huge pmd as they cannot be part of swap yet. In add_to_swap be
careful to split the page only if we got a valid swap entry so we don't
split hugepages with a full swap.
In theory we could split pages before isolating them during the lru scan,
but for khugepaged to be safe, I'm relying on either mmap_sem write mode,
or PG_lock taken, so split_huge_page has to run either with mmap_sem
read/write mode or PG_lock taken. Calling it from isolate_lru_page would
make locking more complicated, in addition to that split_huge_page would
deadlock if called by __isolate_lru_page because it has to take the lru
lock to add the tail pages.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
split_huge_page_pmd compat code. Each one of those would need to be
expanded to hundred of lines of complex code without a fully reliable
split_huge_page_pmd design.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pte alloc routines must wait for split_huge_page if the pmd is not present
and not null (i.e. pmd_trans_splitting). The additional branches are
optimized away at compile time by pmd_trans_splitting if the config option
is off. However we must pass the vma down in order to know the anon_vma
lock to wait for.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some are needed to build but not actually used on archs not supporting
transparent hugepages. Others like pmdp_clear_flush are used by x86 too.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Warn destroy_compound_page that __split_huge_page_refcount is heavily
dependent on its internal behavior.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
huge_memory.c needs it too when it fallbacks in copying hugepages into
regular fragmented pages if hugepage allocation fails during COW.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clear compound mapping for anonymous compound pages like it already
happens for regular anonymous pages. But crash if mapping is set for any
tail page, also the PageAnon check is meaningless for tail pages. This
check only makes sense for the head page, for tail page it can only hide
bugs and we definitely don't want to hide bugs.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After releasing the compound_lock split_huge_page can still run and release the
page before put_page_testzero runs.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Alter compound get_page/put_page to keep references on subpages too, in
order to allow __split_huge_page_refcount to split an hugepage even while
subpages have been pinned by one of the get_user_pages() variants.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_count shows the count of the head page, but the actual check is done
on the tail page, so show what is really being checked.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a swapcache page is replaced by a ksm page, it's best to free that
swap immediately.
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I think determine_dirtyable_memory() is a rather costly function since it
need many atomic reads for gathering zone/global page state. But when we
use vm_dirty_bytes && dirty_background_bytes, we don't need that costly
calculation.
This patch eliminates such unnecessary overhead.
NOTE : newly added if condition might add overhead in normal path.
But it should be _really_ small because anyway we need the
access both vm_dirty_bytes and dirty_background_bytes so it is
likely to hit the cache.
[akpm@linux-foundation.org: fix used-uninitialised warning]
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When numa_zonelist_order parameter is set to "node" or "zone" on the
command line it's still showing as "default" in sysctl. That's because
early_param parsing function changes only user_zonelist_order variable.
Fix this by copying user-provided string to numa_zonelist_order if it was
successfully parsed.
Signed-off-by: Volodymyr G Lukiianyk <volodymyrgl@gmail.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When kswapd is woken up for a high-order allocation, it takes account of
the highest usable zone by the caller (the classzone idx). During
allocation, this index is used to select the lowmem_reserve[] that should
be applied to the watermark calculation in zone_watermark_ok().
When balancing a node, kswapd considers the highest unbalanced zone to be
the classzone index. This will always be at least be the callers
classzone_idx and can be higher. However, sleeping_prematurely() always
considers the lowest zone (e.g. ZONE_DMA) to be the classzone index.
This means that sleeping_prematurely() can consider a zone to be balanced
that is unusable by the allocation request that originally woke kswapd.
This patch changes sleeping_prematurely() to use a classzone_idx matching
the value it used in balance_pgdat().
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After DEF_PRIORITY, balance_pgdat() considers all_unreclaimable zones to
be balanced but sleeping_prematurely does not. This can force kswapd to
stay awake longer than it should. This patch fixes it.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When kswapd wakes up, it reads its order and classzone from pgdat and
calls balance_pgdat. While its awake, it potentially reclaimes at a high
order and a low classzone index. This might have been a once-off that was
not required by subsequent callers. However, because the pgdat values
were not reset, they remain artifically high while balance_pgdat() is
running and potentially kswapd enters a second unnecessary reclaim cycle.
Reset the pgdat order and classzone index after reading.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before kswapd goes to sleep, it uses sleeping_prematurely() to check if
there was a race pushing a zone below its watermark. If the race
happened, it stays awake. However, balance_pgdat() can decide to reclaim
at order-0 if it decides that high-order reclaim is not working as
expected. This information is not passed back to sleeping_prematurely().
The impact is that kswapd remains awake reclaiming pages long after it
should have gone to sleep. This patch passes the adjusted order to
sleeping_prematurely and uses the same logic as balance_pgdat to decide if
it's ok to go to sleep.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When reclaiming for high-orders, kswapd is responsible for balancing a
node but it should not reclaim excessively. It avoids excessive reclaim
by considering if any zone in a node is balanced then the node is
balanced. In the cases where there are imbalanced zone sizes (e.g.
ZONE_DMA with both ZONE_DMA32 and ZONE_NORMAL), kswapd can go to sleep
prematurely as just one small zone was balanced.
This alters the sleep logic of kswapd slightly. It counts the number of
pages that make up the balanced zones. If the total number of balanced
pages is more than a quarter of the zone, kswapd will go back to sleep.
This should keep a node balanced without reclaiming an excessive number of
pages.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simon Kirby reported the following problem
We're seeing cases on a number of servers where cache never fully
grows to use all available memory. Sometimes we see servers with 4 GB
of memory that never seem to have less than 1.5 GB free, even with a
constantly-active VM. In some cases, these servers also swap out while
this happens, even though they are constantly reading the working set
into memory. We have been seeing this happening for a long time; I
don't think it's anything recent, and it still happens on 2.6.36.
After some debugging work by Simon, Dave Hansen and others, the prevaling
theory became that kswapd is reclaiming order-3 pages requested by SLUB
too aggressive about it.
There are two apparent problems here. On the target machine, there is a
small Normal zone in comparison to DMA32. As kswapd tries to balance all
zones, it would continually try reclaiming for Normal even though DMA32
was balanced enough for callers. The second problem is that
sleeping_prematurely() does not use the same logic as balance_pgdat() when
deciding whether to sleep or not. This keeps kswapd artifically awake.
A number of tests were run and the figures from previous postings will
look very different for a few reasons. One, the old figures were forcing
my network card to use GFP_ATOMIC in attempt to replicate Simon's problem.
Second, I previous specified slub_min_order=3 again in an attempt to
reproduce Simon's problem. In this posting, I'm depending on Simon to say
whether his problem is fixed or not and these figures are to show the
impact to the ordinary cases. Finally, the "vmscan" figures are taken
from /proc/vmstat instead of the tracepoints. There is less information
but recording is less disruptive.
The first test of relevance was postmark with a process running in the
background reading a large amount of anonymous memory in blocks. The
objective was to vaguely simulate what was happening on Simon's machine
and it's memory intensive enough to have kswapd awake.
POSTMARK
traceonly kanyzone
Transactions per second: 156.00 ( 0.00%) 153.00 (-1.96%)
Data megabytes read per second: 21.51 ( 0.00%) 21.52 ( 0.05%)
Data megabytes written per second: 29.28 ( 0.00%) 29.11 (-0.58%)
Files created alone per second: 250.00 ( 0.00%) 416.00 (39.90%)
Files create/transact per second: 79.00 ( 0.00%) 76.00 (-3.95%)
Files deleted alone per second: 520.00 ( 0.00%) 420.00 (-23.81%)
Files delete/transact per second: 79.00 ( 0.00%) 76.00 (-3.95%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds) 16.58 17.4
Total Elapsed Time (seconds) 218.48 222.47
VMstat Reclaim Statistics: vmscan
Direct reclaims 0 4
Direct reclaim pages scanned 0 203
Direct reclaim pages reclaimed 0 184
Kswapd pages scanned 326631 322018
Kswapd pages reclaimed 312632 309784
Kswapd low wmark quickly 1 4
Kswapd high wmark quickly 122 475
Kswapd skip congestion_wait 1 0
Pages activated 700040 705317
Pages deactivated 212113 203922
Pages written 9875 6363
Total pages scanned 326631 322221
Total pages reclaimed 312632 309968
%age total pages scanned/reclaimed 95.71% 96.20%
%age total pages scanned/written 3.02% 1.97%
proc vmstat: Faults
Major Faults 300 254
Minor Faults 645183 660284
Page ins 493588 486704
Page outs 4960088 4986704
Swap ins 1230 661
Swap outs 9869 6355
Performance is mildly affected because kswapd is no longer doing as much
work and the background memory consumer process is getting in the way.
Note that kswapd scanned and reclaimed fewer pages as it's less aggressive
and overall fewer pages were scanned and reclaimed. Swap in/out is
particularly reduced again reflecting kswapd throwing out fewer pages.
The slight performance impact is unfortunate here but it looks like a
direct result of kswapd being less aggressive. As the bug report is about
too many pages being freed by kswapd, it may have to be accepted for now.
The second test is a streaming IO benchmark that was previously used by
Johannes to show regressions in page reclaim.
MICRO
traceonly kanyzone
User/Sys Time Running Test (seconds) 29.29 28.87
Total Elapsed Time (seconds) 492.18 488.79
VMstat Reclaim Statistics: vmscan
Direct reclaims 2128 1460
Direct reclaim pages scanned 2284822 1496067
Direct reclaim pages reclaimed 148919 110937
Kswapd pages scanned 15450014 16202876
Kswapd pages reclaimed 8503697 8537897
Kswapd low wmark quickly 3100 3397
Kswapd high wmark quickly 1860 7243
Kswapd skip congestion_wait 708 801
Pages activated 9635 9573
Pages deactivated 1432 1271
Pages written 223 1130
Total pages scanned 17734836 17698943
Total pages reclaimed 8652616 8648834
%age total pages scanned/reclaimed 48.79% 48.87%
%age total pages scanned/written 0.00% 0.01%
proc vmstat: Faults
Major Faults 165 221
Minor Faults 9655785 9656506
Page ins 3880 7228
Page outs 37692940 37480076
Swap ins 0 69
Swap outs 19 15
Again fewer pages are scanned and reclaimed as expected and this time the
test completed faster. Note that kswapd is hitting its watermarks faster
(low and high wmark quickly) which I expect is due to kswapd reclaiming
fewer pages.
I also ran fs-mark, iozone and sysbench but there is nothing interesting
to report in the figures. Performance is not significantly changed and
the reclaim statistics look reasonable.
Tgis patch:
When the allocator enters its slow path, kswapd is woken up to balance the
node. It continues working until all zones within the node are balanced.
For order-0 allocations, this makes perfect sense but for higher orders it
can have unintended side-effects. If the zone sizes are imbalanced,
kswapd may reclaim heavily within a smaller zone discarding an excessive
number of pages. The user-visible behaviour is that kswapd is awake and
reclaiming even though plenty of pages are free from a suitable zone.
This patch alters the "balance" logic for high-order reclaim allowing
kswapd to stop if any suitable zone becomes balanced to reduce the number
of pages it reclaims from other zones. kswapd still tries to ensure that
order-0 watermarks for all zones are met before sleeping.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Eric B Munson <emunson@mgebm.net>
Cc: Simon Kirby <sim@hostway.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Running the annotated branch profiler on a box doing average work
(firefox, evolution, xchat, distcc farm), the likely() used in
grab_cache_page_write_begin() was incorrect most of the time:
correct incorrect % Function File Line
------- --------- - -------- ---- ----
1924262 71332401 97 grab_cache_page_write_begin filemap.c 2206
Adding a trace_printk() and running the function tracer limited to
just this function I can see:
gconfd-2-2696 [000] 4467.268935: grab_cache_page_write_begin: page= (null) mapping=ffff8800676a9460 index=7
gconfd-2-2696 [000] 4467.268946: grab_cache_page_write_begin <-ext3_write_begin
gconfd-2-2696 [000] 4467.268947: grab_cache_page_write_begin: page= (null) mapping=ffff8800676a9460 index=8
gconfd-2-2696 [000] 4467.268959: grab_cache_page_write_begin <-ext3_write_begin
gconfd-2-2696 [000] 4467.268960: grab_cache_page_write_begin: page= (null) mapping=ffff8800676a9460 index=9
gconfd-2-2696 [000] 4467.268972: grab_cache_page_write_begin <-ext3_write_begin
gconfd-2-2696 [000] 4467.268973: grab_cache_page_write_begin: page= (null) mapping=ffff8800676a9460 index=10
gconfd-2-2696 [000] 4467.268991: grab_cache_page_write_begin <-ext3_write_begin
gconfd-2-2696 [000] 4467.268992: grab_cache_page_write_begin: page= (null) mapping=ffff8800676a9460 index=11
gconfd-2-2696 [000] 4467.269005: grab_cache_page_write_begin <-ext3_write_begin
Which shows that a lot of calls from ext3_write_begin will result in the
page returned by "find_lock_page" will be NULL.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Nick Piggin <npiggin@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
IS_ERR() already implies unlikely(), so it can be omitted here.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__get_user_pages gets a new 'nonblocking' parameter to signal that the
caller is prepared to re-acquire mmap_sem and retry the operation if
needed. This is used to split off long operations if they are going to
block on a disk transfer, or when we detect contention on the mmap_sem.
[akpm@linux-foundation.org: remove ref to rwsem_is_contended()]
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use a single code path for faulting in pages during mlock.
The reason to have it in this patch series is that I did not want to
update both code paths in a later change that releases mmap_sem when
blocking on disk.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the code to mlock pages from __mlock_vma_pages_range() to
follow_page().
This allows __mlock_vma_pages_range() to not have to break down work into
16-page batches.
An additional motivation for doing this within the present patch series is
that it'll make it easier for a later chagne to drop mmap_sem when
blocking on disk (we'd like to be able to resume at the page that was read
from disk instead of at the start of a 16-page batch).
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently mlock() holds mmap_sem in exclusive mode while the pages get
faulted in. In the case of a large mlock, this can potentially take a
very long time, during which various commands such as 'ps auxw' will
block. This makes sysadmins unhappy:
real 14m36.232s
user 0m0.003s
sys 0m0.015s
(output from 'time ps auxw' while a 20GB file was being mlocked without
being previously preloaded into page cache)
I propose that mlock() could release mmap_sem after the VM_LOCKED bits
have been set in all appropriate VMAs. Then a second pass could be done
to actually mlock the pages, in small batches, releasing mmap_sem when we
block on disk access or when we detect some contention.
This patch:
Before this change, mlock() holds mmap_sem in exclusive mode while the
pages get faulted in. In the case of a large mlock, this can potentially
take a very long time. Various things will block while mmap_sem is held,
including 'ps auxw'. This can make sysadmins angry.
I propose that mlock() could release mmap_sem after the VM_LOCKED bits
have been set in all appropriate VMAs. Then a second pass could be done
to actually mlock the pages with mmap_sem held for reads only. We need to
recheck the vma flags after we re-acquire mmap_sem, but this is easy.
In the case where a vma has been munlocked before mlock completes, pages
that were already marked as PageMlocked() are handled by the munlock()
call, and mlock() is careful to not mark new page batches as PageMlocked()
after the munlock() call has cleared the VM_LOCKED vma flags. So, the end
result will be identical to what'd happen if munlock() had executed after
the mlock() call.
In a later change, I will allow the second pass to release mmap_sem when
blocking on disk accesses or when it is otherwise contended, so that it
won't be held for long periods of time even in shared mode.
Signed-off-by: Michel Lespinasse <walken@google.com>
Tested-by: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When faulting in pages for mlock(), we want to break COW for anonymous or
file pages within VM_WRITABLE, non-VM_SHARED vmas. However, there is no
need to write-fault into VM_SHARED vmas since shared file pages can be
mlocked first and dirtied later, when/if they actually get written to.
Skipping the write fault is desirable, as we don't want to unnecessarily
cause these pages to be dirtied and queued for writeback.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Theodore Tso <tytso@google.com>
Cc: Michael Rubin <mrubin@google.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reorganize the code so that dirty pages are handled closer to the place
that makes them dirty (handling write fault into shared, writable VMAs).
No behavior changes.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Theodore Tso <tytso@google.com>
Cc: Michael Rubin <mrubin@google.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mlocking a shared, writable vma currently causes the corresponding pages
to be marked as dirty and queued for writeback. This seems rather
unnecessary given that the pages are not being actually modified during
mlock. It is understood that for non-shared mappings (file or anon) we
want to use a write fault in order to break COW, but there is just no such
need for shared mappings.
The first two patches in this series do not introduce any behavior change.
The intent there is to make it obvious that dirtying file pages is only
done in the (writable, shared) case. I think this clarifies the code, but
I wouldn't mind dropping these two patches if there is no consensus about
them.
The last patch is where we actually avoid dirtying shared mappings during
mlock. Note that as a side effect of this, we won't call page_mkwrite()
for the mappings that define it, and won't be pre-allocating data blocks
at the FS level if the mapped file was sparsely allocated. My
understanding is that mlock does not need to provide such guarantee, as
evidenced by the fact that it never did for the filesystems that don't
define page_mkwrite() - including some common ones like ext3. However, I
would like to gather feedback on this from filesystem people as a
precaution. If this turns out to be a showstopper, maybe block
preallocation can be added back on using a different interface.
Large shared mlocks are getting significantly (>2x) faster in my tests, as
the disk can be fully used for reading the file instead of having to share
between this and writeback.
This patch:
Reorganize the code to remove the 'reuse' flag. No behavior changes.
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Theodore Tso <tytso@google.com>
Cc: Michael Rubin <mrubin@google.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Temporary IO failures, eg. due to loss of both multipath paths, can
permanently leave the PageError bit set on a page, resulting in msync or
fsync returning -EIO over and over again, even if IO is now getting to the
disk correctly.
We already clear the AS_ENOSPC and AS_IO bits in mapping->flags in the
filemap_fdatawait_range function. Also clearing the PageError bit on the
page allows subsequent msync or fsync calls on this file to return without
an error, if the subsequent IO succeeds.
Unfortunately data written out in the msync or fsync call that returned
-EIO can still get lost, because the page dirty bit appears to not get
restored on IO error. However, the alternative could be potentially all
of memory filling up with uncleanable dirty pages, hanging the system, so
there is no nice choice here...
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Valerie Aurora <vaurora@redhat.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Four architectures (arm, mips, sparc, x86) use __vmalloc_area() for
module_init(). Much of the code is duplicated and can be generalized in a
globally accessible function, __vmalloc_node_range().
__vmalloc_node() now calls into __vmalloc_node_range() with a range of
[VMALLOC_START, VMALLOC_END) for functionally equivalent behavior.
Each architecture may then use __vmalloc_node_range() directly to remove
the duplication of code.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pcpu_get_vm_areas() only uses GFP_KERNEL allocations, so remove the gfp_t
formal and use the mask internally.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_vm_area_node() is unused in the kernel and can thus be removed.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With compaction being used instead of lumpy reclaim, the name lumpy_mode
and associated variables is a bit misleading. Rename lumpy_mode to
reclaim_mode which is a better fit. There is no functional change.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
try_to_compact_pages() is initially called to only migrate pages
asychronously and kswapd always compacts asynchronously. Both are being
optimistic so it is important to complete the work as quickly as possible
to minimise stalls.
This patch alters the scanner when asynchronous to only consider
MIGRATE_MOVABLE pageblocks as migration candidates. This reduces stalls
when allocating huge pages while not impairing allocation success rates as
a full scan will be performed if necessary after direct reclaim.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the introduction of the boolean sync parameter, the API looks a
little inconsistent as offlining is still an int. Convert offlining to a
bool for the sake of being tidy.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migration synchronously waits for writeback if the initial passes fails.
Callers of memory compaction do not necessarily want this behaviour if the
caller is latency sensitive or expects that synchronous migration is not
going to have a significantly better success rate.
This patch adds a sync parameter to migrate_pages() allowing the caller to
indicate if wait_on_page_writeback() is allowed within migration or not.
For reclaim/compaction, try_to_compact_pages() is first called
asynchronously, direct reclaim runs and then try_to_compact_pages() is
called synchronously as there is a greater expectation that it'll succeed.
[akpm@linux-foundation.org: build/merge fix]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lumpy reclaim is disruptive. It reclaims a large number of pages and
ignores the age of the pages it reclaims. This can incur significant
stalls and potentially increase the number of major faults.
Compaction has reached the point where it is considered reasonably stable
(meaning it has passed a lot of testing) and is a potential candidate for
displacing lumpy reclaim. This patch introduces an alternative to lumpy
reclaim whe compaction is available called reclaim/compaction. The basic
operation is very simple - instead of selecting a contiguous range of
pages to reclaim, a number of order-0 pages are reclaimed and then
compaction is later by either kswapd (compact_zone_order()) or direct
compaction (__alloc_pages_direct_compact()).
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: use conventional task_struct naming]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently lumpy_mode is an enum and determines if lumpy reclaim is off,
syncronous or asyncronous. In preparation for using compaction instead of
lumpy reclaim, this patch converts the flags into a bitmap.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for a patches promoting the use of memory compaction over
lumpy reclaim, this patch adds trace points for memory compaction
activity. Using them, we can monitor the scanning activity of the
migration and free page scanners as well as the number and success rates
of pages passed to page migration.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Testing ->mapping and ->index without a ref is not stable as the page
may have been reused at this point.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, kswapd() has deep nesting and is slightly hard to read. Clean
this up.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__set_page_dirty_no_writeback() should return true if it actually
transitioned the page from a clean to dirty state although it seems nobody
uses its return value at present.
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
reduce_pgdat_percpu_threshold() and restore_pgdat_percpu_threshold() exist
to adjust the per-cpu vmstat thresholds while kswapd is awake to avoid
errors due to counter drift. The functions duplicate some code so this
patch replaces them with a single set_pgdat_percpu_threshold() that takes
a callback function to calculate the desired threshold as a parameter.
[akpm@linux-foundation.org: readability tweak]
[kosaki.motohiro@jp.fujitsu.com: set_pgdat_percpu_threshold(): don't use for_each_online_cpu]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit aa45484 ("calculate a better estimate of NR_FREE_PAGES when memory
is low") noted that watermarks were based on the vmstat NR_FREE_PAGES. To
avoid synchronization overhead, these counters are maintained on a per-cpu
basis and drained both periodically and when a threshold is above a
threshold. On large CPU systems, the difference between the estimate and
real value of NR_FREE_PAGES can be very high. The system can get into a
case where pages are allocated far below the min watermark potentially
causing livelock issues. The commit solved the problem by taking a better
reading of NR_FREE_PAGES when memory was low.
Unfortately, as reported by Shaohua Li this accurate reading can consume a
large amount of CPU time on systems with many sockets due to cache line
bouncing. This patch takes a different approach. For large machines
where counter drift might be unsafe and while kswapd is awake, the per-cpu
thresholds for the target pgdat are reduced to limit the level of drift to
what should be a safe level. This incurs a performance penalty in heavy
memory pressure by a factor that depends on the workload and the machine
but the machine should function correctly without accidentally exhausting
all memory on a node. There is an additional cost when kswapd wakes and
sleeps but the event is not expected to be frequent - in Shaohua's test
case, there was one recorded sleep and wake event at least.
To ensure that kswapd wakes up, a safe version of zone_watermark_ok() is
introduced that takes a more accurate reading of NR_FREE_PAGES when called
from wakeup_kswapd, when deciding whether it is really safe to go back to
sleep in sleeping_prematurely() and when deciding if a zone is really
balanced or not in balance_pgdat(). We are still using an expensive
function but limiting how often it is called.
When the test case is reproduced, the time spent in the watermark
functions is reduced. The following report is on the percentage of time
spent cumulatively spent in the functions zone_nr_free_pages(),
zone_watermark_ok(), __zone_watermark_ok(), zone_watermark_ok_safe(),
zone_page_state_snapshot(), zone_page_state().
vanilla 11.6615%
disable-threshold 0.2584%
David said:
: We had to pull aa454840 "mm: page allocator: calculate a better estimate
: of NR_FREE_PAGES when memory is low and kswapd is awake" from 2.6.36
: internally because tests showed that it would cause the machine to stall
: as the result of heavy kswapd activity. I merged it back with this fix as
: it is pending in the -mm tree and it solves the issue we were seeing, so I
: definitely think this should be pushed to -stable (and I would seriously
: consider it for 2.6.37 inclusion even at this late date).
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Nicolas Bareil <nico@chdir.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: <stable@kernel.org> [2.6.37.1, 2.6.36.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-2.6.38/core' of git://git.kernel.dk/linux-2.6-block: (43 commits)
block: ensure that completion error gets properly traced
blktrace: add missing probe argument to block_bio_complete
block cfq: don't use atomic_t for cfq_group
block cfq: don't use atomic_t for cfq_queue
block: trace event block fix unassigned field
block: add internal hd part table references
block: fix accounting bug on cross partition merges
kref: add kref_test_and_get
bio-integrity: mark kintegrityd_wq highpri and CPU intensive
block: make kblockd_workqueue smarter
Revert "sd: implement sd_check_events()"
block: Clean up exit_io_context() source code.
Fix compile warnings due to missing removal of a 'ret' variable
fs/block: type signature of major_to_index(int) to major_to_index(unsigned)
block: convert !IS_ERR(p) && p to !IS_ERR_NOR_NULL(p)
cfq-iosched: don't check cfqg in choose_service_tree()
fs/splice: Pull buf->ops->confirm() from splice_from_pipe actors
cdrom: export cdrom_check_events()
sd: implement sd_check_events()
sr: implement sr_check_events()
...
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
This patch adds POLL/IRQ/NMI notification types support.
Because the memory area used to transfer hardware error information
from BIOS to Linux can be determined only in NMI, IRQ or timer
handler, but general ioremap can not be used in atomic context, so a
special version of atomic ioremap is implemented for that.
Known issue:
- Error information can not be printed for recoverable errors notified
via NMI, because printk is not NMI-safe. Will fix this via delay
printing to IRQ context via irq_work or make printk NMI-safe.
v2:
- adjust printk format per comments.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The purpose of the locking is to prevent removal and additions
of nodes when statistics are gathered for a slab cache. So we
need to avoid racing with memory hotplug functionality.
It is enough to take the memory hotplug locks there instead
of the slub_lock.
online_pages() currently does not acquire the memory_hotplug
lock. Another patch will be submitted by the memory hotplug
authors to take the memory hotplug lock and describe the
uses of the memory hotplug lock to protect against
adding and removal of nodes from non hotplug data structures.
Cc: <stable@kernel.org> # 2.6.37
Reported-and-tested-by: Bart Van Assche <bvanassche@acm.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Now, memory_hotplug_(un)lock() is used for add/remove/offline pages
for avoiding races with hibernation. But this should be held in
online_pages(), too. It seems asymmetric.
There are cases where one has to avoid a race with memory hotplug
notifier and his own local code, and hotplug v.s. hotplug.
This will add a generic solution for avoiding races. In other view,
having lock here has no big impacts. online pages is tend to be
done by udev script at el against each memory section one by one.
Then, it's better to have lock here, too.
Cc: <stable@kernel.org> # 2.6.37
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
slub: Fix a crash during slabinfo -v
tracing/slab: Move kmalloc tracepoint out of inline code
slub: Fix slub_lock down/up imbalance
slub: Fix build breakage in Documentation/vm
slub tracing: move trace calls out of always inlined functions to reduce kernel code size
slub: move slabinfo.c to tools/slub/slabinfo.c
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits)
gameport: use this_cpu_read instead of lookup
x86: udelay: Use this_cpu_read to avoid address calculation
x86: Use this_cpu_inc_return for nmi counter
x86: Replace uses of current_cpu_data with this_cpu ops
x86: Use this_cpu_ops to optimize code
vmstat: User per cpu atomics to avoid interrupt disable / enable
irq_work: Use per cpu atomics instead of regular atomics
cpuops: Use cmpxchg for xchg to avoid lock semantics
x86: this_cpu_cmpxchg and this_cpu_xchg operations
percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support
percpu,x86: relocate this_cpu_add_return() and friends
connector: Use this_cpu operations
xen: Use this_cpu_inc_return
taskstats: Use this_cpu_ops
random: Use this_cpu_inc_return
fs: Use this_cpu_inc_return in buffer.c
highmem: Use this_cpu_xx_return() operations
vmstat: Use this_cpu_inc_return for vm statistics
x86: Support for this_cpu_add, sub, dec, inc_return
percpu: Generic support for this_cpu_add, sub, dec, inc_return
...
Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c}
as per Tejun.
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (33 commits)
usb: don't use flush_scheduled_work()
speedtch: don't abuse struct delayed_work
media/video: don't use flush_scheduled_work()
media/video: explicitly flush request_module work
ioc4: use static work_struct for ioc4_load_modules()
init: don't call flush_scheduled_work() from do_initcalls()
s390: don't use flush_scheduled_work()
rtc: don't use flush_scheduled_work()
mmc: update workqueue usages
mfd: update workqueue usages
dvb: don't use flush_scheduled_work()
leds-wm8350: don't use flush_scheduled_work()
mISDN: don't use flush_scheduled_work()
macintosh/ams: don't use flush_scheduled_work()
vmwgfx: don't use flush_scheduled_work()
tpm: don't use flush_scheduled_work()
sonypi: don't use flush_scheduled_work()
hvsi: don't use flush_scheduled_work()
xen: don't use flush_scheduled_work()
gdrom: don't use flush_scheduled_work()
...
Fixed up trivial conflict in drivers/media/video/bt8xx/bttv-input.c
as per Tejun.
RCU free the struct inode. This will allow:
- Subsequent store-free path walking patch. The inode must be consulted for
permissions when walking, so an RCU inode reference is a must.
- sb_inode_list_lock to be moved inside i_lock because sb list walkers who want
to take i_lock no longer need to take sb_inode_list_lock to walk the list in
the first place. This will simplify and optimize locking.
- Could remove some nested trylock loops in dcache code
- Could potentially simplify things a bit in VM land. Do not need to take the
page lock to follow page->mapping.
The downsides of this is the performance cost of using RCU. In a simple
creat/unlink microbenchmark, performance drops by about 10% due to inability to
reuse cache-hot slab objects. As iterations increase and RCU freeing starts
kicking over, this increases to about 20%.
In cases where inode lifetimes are longer (ie. many inodes may be allocated
during the average life span of a single inode), a lot of this cache reuse is
not applicable, so the regression caused by this patch is smaller.
The cache-hot regression could largely be avoided by using SLAB_DESTROY_BY_RCU,
however this adds some complexity to list walking and store-free path walking,
so I prefer to implement this at a later date, if it is shown to be a win in
real situations. I haven't found a regression in any non-micro benchmark so I
doubt it will be a problem.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
At __mem_cgroup_try_charge(), VM_BUG_ON(!mm->owner) is checked.
But as commented in mem_cgroup_from_task(), mm->owner can be NULL
in some racy case. This check of VM_BUG_ON() is bad.
A possible story to hit this is at swapoff()->try_to_unuse(). It passes
mm_struct to mem_cgroup_try_charge_swapin() while mm->owner is NULL. If we
can't get proper mem_cgroup from swap_cgroup information, mm->owner is used
as charge target and we see NULL.
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reported-by: Hugh Dickins <hughd@google.com>
Reported-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
That is used for find ram in node or bootmem type.
We should make it top-down so it will be consistent to memblock_find,
and to avoid allocating potentially valuable low memory before we
actually need it.
Suggested-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4D0C075B.3040501@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* 'nommu-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/lethal/nommu-2.6:
nommu: Provide stubbed alloc/free_vm_area() implementation.
nommu: Fix up vmalloc_node() symbol export regression.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: print out alloc information with KERN_DEBUG instead of KERN_INFO
kthread_work: make lockdep happy
Now that these have been introduced in to the vmalloc API, sync up the
nommu side of things. At present we don't deal with VMAs as such, so for
the time being these will simply BUG() out. In the future it should be
possible to support this interface by layering on top of the vm_regions.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
GCC complained about update_mmu_cache() not being defined in migrate.c.
Including <asm/tlbflush.h> seems to solve the problem.
Signed-off-by: Michal Nazarewicz <m.nazarewicz@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using TASK_INTERRUPTIBLE in balance_dirty_pages() seems wrong. If it's
going to do that then it must break out if signal_pending(), otherwise
it's pretty much guaranteed to degenerate into a busywait loop. Plus we
*do* want these processes to appear in D state and to contribute to load
average.
So it should be TASK_UNINTERRUPTIBLE. -- Andrew Morton
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
del_page_from_lru_list() already called mem_cgroup_del_lru(). So we must
not call it again. It adds unnecessary overhead.
It was not a runtime bug because the TestClearPageCgroupAcctLRU() early in
mem_cgroup_del_lru_list() will prevent any double-deletion, etc.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Conflicts:
MAINTAINERS
arch/arm/mach-omap2/pm24xx.c
drivers/scsi/bfa/bfa_fcpim.c
Needed to update to apply fixes for which the old branch was too
outdated.
Now that percpu allocator is mostly stable, there is no reason to
print alloc information with KERN_INFO and clutter the boot messages.
Switch it to KERN_DEBUG.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Mike Travis <travis@sgi.com>
Currently the operations to increment vm counters must disable interrupts
in order to not mess up their housekeeping of counters.
So use this_cpu_cmpxchg() to avoid the overhead. Since we can no longer
count on preremption being disabled we still have some minor issues.
The fetching of the counter thresholds is racy.
A threshold from another cpu may be applied if we happen to be
rescheduled on another cpu. However, the following vmstat operation
will then bring the counter again under the threshold limit.
The operations for __xxx_zone_state are not changed since the caller
has taken care of the synchronization needs (and therefore the cycle
count is even less than the optimized version for the irq disable case
provided here).
The optimization using this_cpu_cmpxchg will only be used if the arch
supports efficient this_cpu_ops (must have CONFIG_CMPXCHG_LOCAL set!)
The use of this_cpu_cmpxchg reduces the cycle count for the counter
operations by %80 (inc_zone_page_state goes from 170 cycles to 32).
Signed-off-by: Christoph Lameter <cl@linux.com>
this_cpu_inc_return() saves us a memory access there. Code
size does not change.
V1->V2:
- Fixed the location of the __per_cpu pointer attributes
- Sparse checked
V2->V3:
- Move fixes to __percpu attribute usage to earlier patch
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
__get_cpu_var() can be replaced with this_cpu_read and will then use a
single read instruction with implied address calculation to access the
correct per cpu instance.
However, the address of a per cpu variable passed to __this_cpu_read()
cannot be determined (since it's an implied address conversion through
segment prefixes). Therefore apply this only to uses of __get_cpu_var
where the address of the variable is not used.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hughd@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
this cpu operations can be used to slightly optimize the function. The
changes will avoid some address calculations and replace them with the
use of the percpu segment register.
If one would have this_cpu_inc_return and this_cpu_dec_return then it
would be possible to optimize inc_zone_page_state and
dec_zone_page_state even more.
V1->V2:
- Fix __dec_zone_state overflow handling
- Use s8 variables for temporary storage.
V2->V3:
- Put __percpu annotations in correct places.
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The install_special_mapping routine (used, for example, to setup the
vdso) skips the security check before insert_vm_struct, allowing a local
attacker to bypass the mmap_min_addr security restriction by limiting
the available pages for special mappings.
bprm_mm_init() also skips the check, and although I don't think this can
be used to bypass any restrictions, I don't see any reason not to have
the security check.
$ uname -m
x86_64
$ cat /proc/sys/vm/mmap_min_addr
65536
$ cat install_special_mapping.s
section .bss
resb BSS_SIZE
section .text
global _start
_start:
mov eax, __NR_pause
int 0x80
$ nasm -D__NR_pause=29 -DBSS_SIZE=0xfffed000 -f elf -o install_special_mapping.o install_special_mapping.s
$ ld -m elf_i386 -Ttext=0x10000 -Tbss=0x11000 -o install_special_mapping install_special_mapping.o
$ ./install_special_mapping &
[1] 14303
$ cat /proc/14303/maps
0000f000-00010000 r-xp 00000000 00:00 0 [vdso]
00010000-00011000 r-xp 00001000 00:19 2453665 /home/taviso/install_special_mapping
00011000-ffffe000 rwxp 00000000 00:00 0 [stack]
It's worth noting that Red Hat are shipping with mmap_min_addr set to
4096.
Signed-off-by: Tavis Ormandy <taviso@google.com>
Acked-by: Kees Cook <kees@ubuntu.com>
Acked-by: Robert Swiecki <swiecki@google.com>
[ Changed to not drop the error code - akpm ]
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cancel_rearming_delayed_work[queue]() has been superceded by
cancel_delayed_work_sync() quite some time ago. Convert all the
in-kernel users. The conversions are completely equivalent and
trivial.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: Evgeniy Polyakov <zbr@ioremap.net>
Cc: Jeff Garzik <jgarzik@pobox.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Mauro Carvalho Chehab <mchehab@infradead.org>
Cc: netdev@vger.kernel.org
Cc: Anton Vorontsov <cbou@mail.ru>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Neil Brown <neilb@suse.de>
Cc: Alex Elder <aelder@sgi.com>
Cc: xfs-masters@oss.sgi.com
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: netfilter-devel@vger.kernel.org
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: linux-nfs@vger.kernel.org
* 'bugfixes' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6:
NFS: Fix panic after nfs_umount()
nfs: remove extraneous and problematic calls to nfs_clear_request
nfs: kernel should return EPROTONOSUPPORT when not support NFSv4
NFS: Fix fcntl F_GETLK not reporting some conflicts
nfs: Discard ACL cache on mode update
NFS: Readdir cleanups
NFS: nfs_readdir_search_for_cookie() don't mark as eof if cookie not found
NFS: Fix a memory leak in nfs_readdir
Call the filesystem back whenever a page is removed from the page cache
NFS: Ensure we use the correct cookie in nfs_readdir_xdr_filler
* 'pm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/suspend-2.6:
PM / Hibernate: Fix memory corruption related to swap
PM / Hibernate: Use async I/O when reading compressed hibernation image
There is a problem that swap pages allocated before the creation of
a hibernation image can be released and used for storing the contents
of different memory pages while the image is being saved. Since the
kernel stored in the image doesn't know of that, it causes memory
corruption to occur after resume from hibernation, especially on
systems with relatively small RAM that need to swap often.
This issue can be addressed by keeping the GFP_IOFS bits clear
in gfp_allowed_mask during the entire hibernation, including the
saving of the image, until the system is finally turned off or
the hibernation is aborted. Unfortunately, for this purpose
it's necessary to rework the way in which the hibernate and
suspend code manipulates gfp_allowed_mask.
This change is based on an earlier patch from Hugh Dickins.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reported-by: Ondrej Zary <linux@rainbow-software.org>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: stable@kernel.org
Commit f7cb193362 ("SLUB: Pass active
and inactive redzone flags instead of boolean to debug functions")
missed two instances of check_object(). This caused a lot of warnings
during 'slabinfo -v' finally leading to a crash:
BUG ext4_xattr: Freepointer corrupt
...
BUG buffer_head: Freepointer corrupt
...
BUG ext4_alloc_context: Freepointer corrupt
...
...
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
IP: [<ffffffff810a291f>] file_sb_list_del+0x1c/0x35
PGD 79d78067 PUD 79e67067 PMD 0
Oops: 0002 [#1] SMP
last sysfs file: /sys/kernel/slab/:t-0000192/validate
This patch fixes the problem by converting the two missed instances.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tero Roponen <tero.roponen@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Commit f7cb193362 ("SLUB: Pass active
and inactive redzone flags instead of boolean to debug functions")
missed two instances of check_object(). This caused a lot of warnings
during 'slabinfo -v' finally leading to a crash:
BUG ext4_xattr: Freepointer corrupt
...
BUG buffer_head: Freepointer corrupt
...
BUG ext4_alloc_context: Freepointer corrupt
...
...
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
IP: [<ffffffff810a291f>] file_sb_list_del+0x1c/0x35
PGD 79d78067 PUD 79e67067 PMD 0
Oops: 0002 [#1] SMP
last sysfs file: /sys/kernel/slab/:t-0000192/validate
This patch fixes the problem by converting the two missed instances.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tero Roponen <tero.roponen@gmail.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Presently hwpoison is using lock_system_sleep() to prevent a race with
memory hotplug. However lock_system_sleep() is a no-op if
CONFIG_HIBERNATION=n. Therefore we need a new lock.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Suggested-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On stock 2.6.37-rc4, running:
# mount lilith:/export /mnt/lilith
# find /mnt/lilith/ -type f -print0 | xargs -0 file
crashes the machine fairly quickly under Xen. Often it results in oops
messages, but the couple of times I tried just now, it just hung quietly
and made Xen print some rude messages:
(XEN) mm.c:2389:d80 Bad type (saw 7400000000000001 != exp
3000000000000000) for mfn 1d7058 (pfn 18fa7)
(XEN) mm.c:964:d80 Attempt to create linear p.t. with write perms
(XEN) mm.c:2389:d80 Bad type (saw 7400000000000010 != exp
1000000000000000) for mfn 1d2e04 (pfn 1d1fb)
(XEN) mm.c:2965:d80 Error while pinning mfn 1d2e04
Which means the domain tried to map a pagetable page RW, which would
allow it to map arbitrary memory, so Xen stopped it. This is because
vm_unmap_ram() left some pages mapped in the vmalloc area after NFS had
finished with them, and those pages got recycled as pagetable pages
while still having these RW aliases.
Removing those mappings immediately removes the Xen-visible aliases, and
so it has no problem with those pages being reused as pagetable pages.
Deferring the TLB flush doesn't upset Xen because it can flush the TLB
itself as needed to maintain its invariants.
When unmapping a region in the vmalloc space, clear the ptes
immediately. There's no point in deferring this because there's no
amortization benefit.
The TLBs are left dirty, and they are flushed lazily to amortize the
cost of the IPIs.
This specific motivation for this patch is an oops-causing regression
since 2.6.36 when using NFS under Xen, triggered by the NFS client's use
of vm_map_ram() introduced in 56e4ebf877 ("NFS: readdir with vmapped
pages") . XFS also uses vm_map_ram() and could cause similar problems.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Bryan Schumaker <bjschuma@netapp.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Alex Elder <aelder@sgi.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The nr_dirty_[background_]threshold fields are misplaced before the
numa_* fields, and users will read strange values.
This is the right order. Before patch, nr_dirty_background_threshold
will read as 0 (the value from numa_miss).
numa_hit 128501
numa_miss 0
numa_foreign 0
numa_interleave 7388
numa_local 128501
numa_other 0
nr_dirty_threshold 144291
nr_dirty_background_threshold 72145
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Michael Rubin <mrubin@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Have hugetlb_fault() call unlock_page(page) only if it had previously
called lock_page(page).
Setting CONFIG_DEBUG_VM=y and then running the libhugetlbfs test suite,
resulted in the tripping of VM_BUG_ON(!PageLocked(page)) in
unlock_page() having been called by hugetlb_fault() when page ==
pagecache_page. This patch remedied the problem.
Signed-off-by: Dean Nelson <dnelson@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NFS needs to be able to release objects that are stored in the page
cache once the page itself is no longer visible from the page cache.
This patch adds a callback to the address space operations that allows
filesystems to perform page cleanups once the page has been removed
from the page cache.
Original patch by: Linus Torvalds <torvalds@linux-foundation.org>
[trondmy: cover the cases of invalidate_inode_pages2() and
truncate_inode_pages()]
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
These warnings are spewed during a build of a 'allnoconfig' kernel
(especially the ones from u64_stats_sync.h show up a lot) when building
with -Wextra (which I often do)..
They are
a) annoying
b) easy to get rid of.
This patch kills them off.
include/linux/u64_stats_sync.h:70:1: warning: ‘inline’ is not at beginning of declaration
include/linux/u64_stats_sync.h:77:1: warning: ‘inline’ is not at beginning of declaration
include/linux/u64_stats_sync.h:84:1: warning: ‘inline’ is not at beginning of declaration
include/linux/u64_stats_sync.h:96:1: warning: ‘inline’ is not at beginning of declaration
include/linux/u64_stats_sync.h:115:1: warning: ‘inline’ is not at beginning of declaration
include/linux/u64_stats_sync.h:127:1: warning: ‘inline’ is not at beginning of declaration
kernel/time.c:241:1: warning: ‘inline’ is not at beginning of declaration
kernel/time.c:257:1: warning: ‘inline’ is not at beginning of declaration
kernel/perf_event.c:4513:1: warning: ‘inline’ is not at beginning of declaration
mm/page_alloc.c:4012:1: warning: ‘inline’ is not at beginning of declaration
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The tracepoint for kmalloc is in the slab inlined code which causes
every instance of kmalloc to have the tracepoint.
This patch moves the tracepoint out of the inline code to the
slab C file, which removes a large number of inlined trace
points.
objdump -dr vmlinux.slab| grep 'jmpq.*<trace_kmalloc' |wc -l
213
objdump -dr vmlinux.slab.patched| grep 'jmpq.*<trace_kmalloc' |wc -l
1
This also has a nice impact on size.
text data bss dec hex filename
7023060 2121564 2482432 11627056 b16a30 vmlinux.slab
6970579 2109772 2482432 11562783 b06f1f vmlinux.slab.patched
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Commit d33b9f45 ("mm: hugetlb: fix hugepage memory leak in
walk_page_range()") introduces a check if a vma is a hugetlbfs one and
later in 5dc37642 ("mm hugetlb: add hugepage support to pagemap") it is
moved under #ifdef CONFIG_HUGETLB_PAGE but a needless find_vma call is
left behind and its result is not used anywhere else in the function.
The side-effect of caching vma for @addr inside walk->mm is neither
utilized in walk_page_range() nor in called functions.
Signed-off-by: David Sterba <dsterba@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Matt Mackall <mpm@selenic.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During memory hotplug, build_allzonelists() may be called under
stop_machine_run(). In this function, setup_zone_pageset() is called.
But it's bug because it will do page allocation under stop_machine_run().
Here is a report from Alok Kataria.
BUG: sleeping function called from invalid context at kernel/mutex.c:94
in_atomic(): 0, irqs_disabled(): 1, pid: 4, name: migration/0
Pid: 4, comm: migration/0 Not tainted 2.6.35.6-45.fc14.x86_64 #1
Call Trace:
[<ffffffff8103d12b>] __might_sleep+0xeb/0xf0
[<ffffffff81468245>] mutex_lock+0x24/0x50
[<ffffffff8110eaa6>] pcpu_alloc+0x6d/0x7ee
[<ffffffff81048888>] ? load_balance+0xbe/0x60e
[<ffffffff8103a1b3>] ? rt_se_boosted+0x21/0x2f
[<ffffffff8103e1cf>] ? dequeue_rt_stack+0x18b/0x1ed
[<ffffffff8110f237>] __alloc_percpu+0x10/0x12
[<ffffffff81465e22>] setup_zone_pageset+0x38/0xbe
[<ffffffff810d6d81>] ? build_zonelists_node.clone.58+0x79/0x8c
[<ffffffff81452539>] __build_all_zonelists+0x419/0x46c
[<ffffffff8108ef01>] ? cpu_stopper_thread+0xb2/0x198
[<ffffffff8108f075>] stop_machine_cpu_stop+0x8e/0xc5
[<ffffffff8108efe7>] ? stop_machine_cpu_stop+0x0/0xc5
[<ffffffff8108ef57>] cpu_stopper_thread+0x108/0x198
[<ffffffff81467a37>] ? schedule+0x5b2/0x5cc
[<ffffffff8108ee4f>] ? cpu_stopper_thread+0x0/0x198
[<ffffffff81065f29>] kthread+0x7f/0x87
[<ffffffff8100aae4>] kernel_thread_helper+0x4/0x10
[<ffffffff81065eaa>] ? kthread+0x0/0x87
[<ffffffff8100aae0>] ? kernel_thread_helper+0x0/0x10
Built 5 zonelists in Node order, mobility grouping on. Total pages: 289456
Policy zone: Normal
This patch tries to fix the issue by moving setup_zone_pageset() out from
stop_machine_run(). It's obviously not necessary to be called under
stop_machine_run().
[akpm@linux-foundation.org: remove unneeded local]
Reported-by: Alok Kataria <akataria@vmware.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Petr Vandrovec <petr@vmware.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swap accounting can be configured by CONFIG_CGROUP_MEM_RES_CTLR_SWAP
configuration option and then it is turned on by default. There is a boot
option (noswapaccount) which can disable this feature.
This makes it hard for distributors to enable the configuration option as
this feature leads to a bigger memory consumption and this is a no-go for
general purpose distribution kernel. On the other hand swap accounting
may be very usuful for some workloads.
This patch adds a new configuration option which controls the default
behavior (CGROUP_MEM_RES_CTLR_SWAP_ENABLED). If the option is selected
then the feature is turned on by default.
It also adds a new boot parameter swapaccount[=1|0] which enhances the
original noswapaccount parameter semantic by means of enable/disable logic
(defaults to 1 if no value is provided to be still consistent with
noswapaccount).
The default behavior is unchanged (if CONFIG_CGROUP_MEM_RES_CTLR_SWAP is
enabled then CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED is enabled as well)
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__mem_cgroup_try_charge() can be called under down_write(&mmap_sem)(e.g.
mlock does it). This means it can cause deadlock if it races with move charge:
Ex.1)
move charge | try charge
--------------------------------------+------------------------------
mem_cgroup_can_attach() | down_write(&mmap_sem)
mc.moving_task = current | ..
mem_cgroup_precharge_mc() | __mem_cgroup_try_charge()
mem_cgroup_count_precharge() | prepare_to_wait()
down_read(&mmap_sem) | if (mc.moving_task)
-> cannot aquire the lock | -> true
| schedule()
Ex.2)
move charge | try charge
--------------------------------------+------------------------------
mem_cgroup_can_attach() |
mc.moving_task = current |
mem_cgroup_precharge_mc() |
mem_cgroup_count_precharge() |
down_read(&mmap_sem) |
.. |
up_read(&mmap_sem) |
| down_write(&mmap_sem)
mem_cgroup_move_task() | ..
mem_cgroup_move_charge() | __mem_cgroup_try_charge()
down_read(&mmap_sem) | prepare_to_wait()
-> cannot aquire the lock | if (mc.moving_task)
| -> true
| schedule()
To avoid this deadlock, we do all the move charge works (both can_attach() and
attach()) under one mmap_sem section.
And after this patch, we set/clear mc.moving_task outside mc.lock, because we
use the lock only to check mc.from/to.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Depending on processor speed, page size, and the amount of memory a
process is allowed to amass, cleanup of a large VM may freeze the system
for many seconds. This can result in a watchdog timeout.
Make sure other tasks receive some service when cleaning up large VMs.
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Cc: Greg Ungerer <gerg@snapgear.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two places, that do not release the slub_lock.
Respective bugs were introduced by sysfs changes ab4d5ed5 (slub: Enable
sysfs support for !CONFIG_SLUB_DEBUG) and 2bce6485 ( slub: Allow removal
of slab caches during boot).
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Over time, block layer has accumulated a set of APIs dealing with bdev
open, close, claim and release.
* blkdev_get/put() are the primary open and close functions.
* bd_claim/release() deal with exclusive open.
* open/close_bdev_exclusive() are combination of open and claim and
the other way around, respectively.
* bd_link/unlink_disk_holder() to create and remove holder/slave
symlinks.
* open_by_devnum() wraps bdget() + blkdev_get().
The interface is a bit confusing and the decoupling of open and claim
makes it impossible to properly guarantee exclusive access as
in-kernel open + claim sequence can disturb the existing exclusive
open even before the block layer knows the current open if for another
exclusive access. Reorganize the interface such that,
* blkdev_get() is extended to include exclusive access management.
@holder argument is added and, if is @FMODE_EXCL specified, it will
gain exclusive access atomically w.r.t. other exclusive accesses.
* blkdev_put() is similarly extended. It now takes @mode argument and
if @FMODE_EXCL is set, it releases an exclusive access. Also, when
the last exclusive claim is released, the holder/slave symlinks are
removed automatically.
* bd_claim/release() and close_bdev_exclusive() are no longer
necessary and either made static or removed.
* bd_link_disk_holder() remains the same but bd_unlink_disk_holder()
is no longer necessary and removed.
* open_bdev_exclusive() becomes a simple wrapper around lookup_bdev()
and blkdev_get(). It also has an unexpected extra bdev_read_only()
test which probably should be moved into blkdev_get().
* open_by_devnum() is modified to take @holder argument and pass it to
blkdev_get().
Most of bdev open/close operations are unified into blkdev_get/put()
and most exclusive accesses are tested atomically at the open time (as
it should). This cleans up code and removes some, both valid and
invalid, but unnecessary all the same, corner cases.
open_bdev_exclusive() and open_by_devnum() can use further cleanup -
rename to blkdev_get_by_path() and blkdev_get_by_devt() and drop
special features. Well, let's leave them for another day.
Most conversions are straight-forward. drbd conversion is a bit more
involved as there was some reordering, but the logic should stay the
same.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Brown <neilb@suse.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Peter Osterlund <petero2@telia.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <joel.becker@oracle.com>
Cc: Alex Elder <aelder@sgi.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: dm-devel@redhat.com
Cc: drbd-dev@lists.linbit.com
Cc: Leo Chen <leochen@broadcom.com>
Cc: Scott Branden <sbranden@broadcom.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Cc: Joern Engel <joern@logfs.org>
Cc: reiserfs-devel@vger.kernel.org
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Salman Qazi describes the following radix-tree bug:
In the following case, we get can get a deadlock:
0. The radix tree contains two items, one has the index 0.
1. The reader (in this case find_get_pages) takes the rcu_read_lock.
2. The reader acquires slot(s) for item(s) including the index 0 item.
3. The non-zero index item is deleted, and as a consequence the other item is
moved to the root of the tree. The place where it used to be is queued for
deletion after the readers finish.
3b. The zero item is deleted, removing it from the direct slot, it remains in
the rcu-delayed indirect node.
4. The reader looks at the index 0 slot, and finds that the page has 0 ref
count
5. The reader looks at it again, hoping that the item will either be freed or
the ref count will increase. This never happens, as the slot it is looking
at will never be updated. Also, this slot can never be reclaimed because
the reader is holding rcu_read_lock and is in an infinite loop.
The fix is to re-use the same "indirect" pointer case that requires a slot
lookup retry into a general "retry the lookup" bit.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Reported-by: Salman Qazi <sqazi@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
nr_dirty and nr_congested are increased only when the page is dirty. So
if all pages are clean, both them will be zero. In this case, we should
not mark the zone congested.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
70 hours into some stress tests of a 2.6.32-based enterprise kernel, we
ran into a NULL dereference in here:
int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
unsigned long from)
{
----> struct inode *inode = page->mapping->host;
It looks like page->mapping was the culprit. (xmon trace is below).
After closer examination, I realized that do_generic_file_read() does a
find_get_page(), and eventually locks the page before calling
block_is_partially_uptodate(). However, it doesn't revalidate the
page->mapping after the page is locked. So, there's a small window
between the find_get_page() and ->is_partially_uptodate() where the page
could get truncated and page->mapping cleared.
We _have_ a reference, so it can't get reclaimed, but it certainly
can be truncated.
I think the correct thing is to check page->mapping after the
trylock_page(), and jump out if it got truncated. This patch has been
running in the test environment for a month or so now, and we have not
seen this bug pop up again.
xmon info:
1f:mon> e
cpu 0x1f: Vector: 300 (Data Access) at [c0000002ae36f770]
pc: c0000000001e7a6c: .block_is_partially_uptodate+0xc/0x100
lr: c000000000142944: .generic_file_aio_read+0x1e4/0x770
sp: c0000002ae36f9f0
msr: 8000000000009032
dar: 0
dsisr: 40000000
current = 0xc000000378f99e30
paca = 0xc000000000f66300
pid = 21946, comm = bash
1f:mon> r
R00 = 0025c0500000006d R16 = 0000000000000000
R01 = c0000002ae36f9f0 R17 = c000000362cd3af0
R02 = c000000000e8cd80 R18 = ffffffffffffffff
R03 = c0000000031d0f88 R19 = 0000000000000001
R04 = c0000002ae36fa68 R20 = c0000003bb97b8a0
R05 = 0000000000000000 R21 = c0000002ae36fa68
R06 = 0000000000000000 R22 = 0000000000000000
R07 = 0000000000000001 R23 = c0000002ae36fbb0
R08 = 0000000000000002 R24 = 0000000000000000
R09 = 0000000000000000 R25 = c000000362cd3a80
R10 = 0000000000000000 R26 = 0000000000000002
R11 = c0000000001e7b60 R27 = 0000000000000000
R12 = 0000000042000484 R28 = 0000000000000001
R13 = c000000000f66300 R29 = c0000003bb97b9b8
R14 = 0000000000000001 R30 = c000000000e28a08
R15 = 000000000000ffff R31 = c0000000031d0f88
pc = c0000000001e7a6c .block_is_partially_uptodate+0xc/0x100
lr = c000000000142944 .generic_file_aio_read+0x1e4/0x770
msr = 8000000000009032 cr = 22000488
ctr = c0000000001e7a60 xer = 0000000020000000 trap = 300
dar = 0000000000000000 dsisr = 40000000
1f:mon> t
[link register ] c000000000142944 .generic_file_aio_read+0x1e4/0x770
[c0000002ae36f9f0] c000000000142a14 .generic_file_aio_read+0x2b4/0x770 (unreliable)
[c0000002ae36fb40] c0000000001b03e4 .do_sync_read+0xd4/0x160
[c0000002ae36fce0] c0000000001b153c .vfs_read+0xec/0x1f0
[c0000002ae36fd80] c0000000001b1768 .SyS_read+0x58/0xb0
[c0000002ae36fe30] c00000000000852c syscall_exit+0x0/0x40
--- Exception: c00 (System Call) at 00000080a840bc54
SP (fffca15df30) is in userspace
1f:mon> di c0000000001e7a6c
c0000000001e7a6c e9290000 ld r9,0(r9)
c0000000001e7a70 418200c0 beq c0000000001e7b30 # .block_is_partially_uptodate+0xd0/0x100
c0000000001e7a74 e9440008 ld r10,8(r4)
c0000000001e7a78 78a80020 clrldi r8,r5,32
c0000000001e7a7c 3c000001 lis r0,1
c0000000001e7a80 812900a8 lwz r9,168(r9)
c0000000001e7a84 39600001 li r11,1
c0000000001e7a88 7c080050 subf r0,r8,r0
c0000000001e7a8c 7f805040 cmplw cr7,r0,r10
c0000000001e7a90 7d6b4830 slw r11,r11,r9
c0000000001e7a94 796b0020 clrldi r11,r11,32
c0000000001e7a98 419d00a8 bgt cr7,c0000000001e7b40 # .block_is_partially_uptodate+0xe0/0x100
c0000000001e7a9c 7fa55840 cmpld cr7,r5,r11
c0000000001e7aa0 7d004214 add r8,r0,r8
c0000000001e7aa4 79080020 clrldi r8,r8,32
c0000000001e7aa8 419c0078 blt cr7,c0000000001e7b20 # .block_is_partially_uptodate+0xc0/0x100
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <arunabal@in.ibm.com>
Cc: <sbest@us.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The original code had a null dereference if alloc_percpu() failed. This
was introduced in commit 711d3d2c9b ("memcg: cpu hotplug aware percpu
count updates")
Signed-off-by: Dan Carpenter <error27@gmail.com>
Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As pointed out by Linus, commit dab5855 ("perf_counter: Add mmap event hooks to
mprotect()") is fundamentally wrong as mprotect_fixup() can free 'vma' due to
merging. Fix the problem by moving perf_event_mmap() hook to
mprotect_fixup().
Note: there's another successful return path from mprotect_fixup() if old
flags equal to new flags. We don't, however, need to call
perf_event_mmap() there because 'perf' already knows the VMA is
executable.
Reported-by: Dave Jones <davej@redhat.com>
Analyzed-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two places, that do not release the slub_lock.
Respective bugs were introduced by sysfs changes ab4d5ed5 (slub: Enable
sysfs support for !CONFIG_SLUB_DEBUG) and 2bce6485 ( slub: Allow removal
of slab caches during boot).
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Having the trace calls defined in the always inlined kmalloc functions
in include/linux/slub_def.h causes a lot of code duplication as the
trace functions get instantiated for each kamalloc call site. This can
simply be removed by pushing the trace calls down into the functions in
slub.c.
On my x86_64 built this patch shrinks the code size of the kernel by
approx 36K and also shrinks the code size of many modules -- too many to
list here ;)
size vmlinux (2.6.36) reports
text data bss dec hex filename
5410611 743172 828928 6982711 6a8c37 vmlinux
5373738 744244 828928 6946910 6a005e vmlinux + patch
The resulting kernel has had some testing & kmalloc trace still seems to
work.
This patch
- moves trace_kmalloc out of the inlined kmalloc() and pushes it down
into kmem_cache_alloc_trace() so this it only get instantiated once.
- rename kmem_cache_alloc_notrace() to kmem_cache_alloc_trace() to
indicate that now is does have tracing. (maybe this would better being
called something like kmalloc_kmem_cache ?)
- adds a new function kmalloc_order() to handle allocation and tracing
of large allocations of page order.
- removes tracing from the inlined kmalloc_large() replacing them with a
call to kmalloc_order();
- move tracing out of inlined kmalloc_node() and pushing it down into
kmem_cache_alloc_node_trace
- rename kmem_cache_alloc_node_notrace() to
kmem_cache_alloc_node_trace()
- removes the include of trace/events/kmem.h from slub_def.h.
v2
- keep kmalloc_order_trace inline when !CONFIG_TRACE
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Pekka Enberg <penberg@kernel.org>