There are no users outside of the memory controller itself. The rest
of the kernel cares either about node or lruvec stats.
Link: https://lkml.kernel.org/r/20210209163304.77088-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No need to encapsulate a simple struct member access.
Link: https://lkml.kernel.org/r/20210209163304.77088-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: memcontrol: switch to rstat", v3.
This series converts memcg stats tracking to the streamlined rstat
infrastructure provided by the cgroup core code. rstat is already used by
the CPU controller and the IO controller. This change is motivated by
recent accuracy problems in memcg's custom stats code, as well as the
benefits of sharing common infra with other controllers.
The current memcg implementation does batched tree aggregation on the
write side: local stat changes are cached in per-cpu counters, which are
then propagated upward in batches when a threshold (32 pages) is exceeded.
This is cheap, but the error introduced by the lazy upward propagation
adds up: 32 pages times CPUs times cgroups in the subtree. We've had
complaints from service owners that the stats do not reliably track and
react to allocation behavior as expected, sometimes swallowing the results
of entire test applications.
The original memcg stat implementation used to do tree aggregation
exclusively on the read side: local stats would only ever be tracked in
per-cpu counters, and a memory.stat read would iterate the entire subtree
and sum those counters up. This didn't keep up with the times:
- Cgroup trees are much bigger now. We switched to lazily-freed
cgroups, where deleted groups would hang around until their remaining
page cache has been reclaimed. This can result in large subtrees that
are expensive to walk, while most of the groups are idle and their
statistics don't change much anymore.
- Automated monitoring increased. With the proliferation of userspace
oom killing, proactive reclaim, and higher-resolution logging of
workload trends in general, top-level stat files are polled at least
once a second in many deployments.
- The lifetime of cgroups got shorter. Where most cgroup setups in the
past would have a few large policy-oriented cgroups for everything
running on the system, newer cgroup deployments tend to create one
group per application - which gets deleted again as the processes
exit. An aggregation scheme that doesn't retain child data inside the
parents loses event history of the subtree.
Rstat addresses all three of those concerns through intelligent,
persistent read-side aggregation. As statistics change at the local
level, rstat tracks - on a per-cpu basis - only those parts of a subtree
that have changes pending and require aggregation. The actual
aggregation occurs on the colder read side - which can now skip over
(potentially large) numbers of recently idle cgroups.
===
The test_kmem cgroup selftest is currently failing due to excessive
cumulative vmstat drift from 100 subgroups:
ok 1 test_kmem_basic
memory.current = 8810496
slab + anon + file + kernel_stack = 17074568
slab = 6101384
anon = 946176
file = 0
kernel_stack = 10027008
not ok 2 test_kmem_memcg_deletion
ok 3 test_kmem_proc_kpagecgroup
ok 4 test_kmem_kernel_stacks
ok 5 test_kmem_dead_cgroups
ok 6 test_percpu_basic
As you can see, memory.stat items far exceed memory.current. The kernel
stack alone is bigger than all of charged memory. That's because the
memory of the test has been uncharged from memory.current, but the
negative vmstat deltas are still sitting in the percpu caches.
The test at this time isn't even counting percpu, pagetables etc. yet,
which would further contribute to the error. The last patch in the series
updates the test to include them - as well as reduces the vmstat
tolerances in general to only expect page_counter batching.
With all patches applied, the (now more stringent) test succeeds:
ok 1 test_kmem_basic
ok 2 test_kmem_memcg_deletion
ok 3 test_kmem_proc_kpagecgroup
ok 4 test_kmem_kernel_stacks
ok 5 test_kmem_dead_cgroups
ok 6 test_percpu_basic
===
A kernel build test confirms that overhead is comparable. Two kernels are
built simultaneously in a nested tree with several idle siblings:
root - kernelbuild - one - two - three - four - build-a (defconfig, make -j16)
`- build-b (defconfig, make -j16)
`- idle-1
`- ...
`- idle-9
During the builds, kernelbuild/memory.stat is read once a second.
A perf diff shows that the changes in cycle distribution is
minimal. Top 10 kernel symbols:
0.09% +0.08% [kernel.kallsyms] [k] __mod_memcg_lruvec_state
0.00% +0.06% [kernel.kallsyms] [k] cgroup_rstat_updated
0.08% -0.05% [kernel.kallsyms] [k] __mod_memcg_state.part.0
0.16% -0.04% [kernel.kallsyms] [k] release_pages
0.00% +0.03% [kernel.kallsyms] [k] __count_memcg_events
0.01% +0.03% [kernel.kallsyms] [k] mem_cgroup_charge_statistics.constprop.0
0.10% -0.02% [kernel.kallsyms] [k] get_mem_cgroup_from_mm
0.05% -0.02% [kernel.kallsyms] [k] mem_cgroup_update_lru_size
0.57% +0.01% [kernel.kallsyms] [k] asm_exc_page_fault
===
The on-demand aggregated stats are now fully accurate:
$ grep -e nr_inactive_file /proc/vmstat | awk '{print($1,$2*4096)}'; \
grep -e inactive_file /sys/fs/cgroup/memory.stat
vanilla: patched:
nr_inactive_file 1574105088 nr_inactive_file 1027801088
inactive_file 1577410560 inactive_file 1027801088
===
This patch (of 8):
The memcg hotunplug callback erroneously flushes counts on the local CPU,
not the counts of the CPU going away; those counts will be lost.
Flush the CPU that is actually going away.
Also simplify the code a bit by using mod_memcg_state() and
count_memcg_events() instead of open-coding the upward flush - this is
comparable to how vmstat.c handles hotunplug flushing.
Link: https://lkml.kernel.org/r/20210209163304.77088-1-hannes@cmpxchg.org
Link: https://lkml.kernel.org/r/20210209163304.77088-2-hannes@cmpxchg.org
Fixes: a983b5ebee ("mm: memcontrol: fix excessive complexity in memory.stat reporting")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the era of async memcg oom-killer, the commit a0d8b00a33 ("mm: memcg:
do not declare OOM from __GFP_NOFAIL allocations") added the code to skip
memcg oom-killer for __GFP_NOFAIL allocations. The reason was that the
__GFP_NOFAIL callers will not enter aync oom synchronization path and will
keep the task marked as in memcg oom. At that time the tasks marked in
memcg oom can bypass the memcg limits and the oom synchronization would
have happened later in the later userspace triggered page fault. Thus
letting the task marked as under memcg oom bypass the memcg limit for
arbitrary time.
With the synchronous memcg oom-killer (commit 29ef680ae7 ("memcg, oom:
move out_of_memory back to the charge path")) and not letting the task
marked under memcg oom to bypass the memcg limits (commit 1f14c1ac19
("mm: memcg: do not allow task about to OOM kill to bypass the limit")),
we can again allow __GFP_NOFAIL allocations to trigger memcg oom-kill.
This will make memcg oom behavior closer to page allocator oom behavior.
Link: https://lkml.kernel.org/r/20210223204337.2785120-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the implicit checking of root memcg with explicit root memcg
checking i.e. !css->parent with mem_cgroup_is_root().
Link: https://lkml.kernel.org/r/20210223205625.2792891-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For simplification commit 991e767385 ("mm: memcontrol: account kernel
stack per node") changed the per zone vmalloc backed stack pages
accounting to per node.
By doing that we have lost a certain precision because those pages might
live in different NUMA nodes. In the end NR_KERNEL_STACK_KB exported to
the userspace might be over estimated on some nodes while underestimated
on others. But this is not a real world problem, just a problem found
by reading the code. So there is no actual data to showing how much
impact it has on users.
This doesn't impose any real problem to correctnes of the kernel
behavior as the counter is not used for any internal processing but it
can cause some confusion to the userspace.
Address the problem by accounting each vmalloc backing page to its own
node.
Link: https://lkml.kernel.org/r/20210303151843.81156-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 5a52c9df62 ("uprobe: use FOLL_SPLIT_PMD instead of
FOLL_SPLIT") and commit ba925fa350 ("s390/gmap: improve THP splitting")
FOLL_SPLIT has not been used anymore. Remove the dead code.
Link: https://lkml.kernel.org/r/20210330203900.9222-1-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the newly added unpin_user_page_range_dirty_lock() for more quickly
unpinning a consecutive range of pages represented as compound pages.
This will also calculate number of pages to unpin (for the tail pages
which matching head page) and thus batch the refcount update.
Running a test program which calls memory range reg/unreg on a region 1G
in size and measures cost of both operations together (in a guest using
rxe) with THP and hugetlbfs:
Before:
590 rounds in 5.003 sec: 8480.335 usec / round
6898 rounds in 60.001 sec: 8698.367 usec / round
After:
2688 rounds in 5.002 sec: 1860.786 usec / round
32517 rounds in 60.001 sec: 1845.225 usec / round
Link: https://lkml.kernel.org/r/20210212130843.13865-5-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Acked-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an unpin_user_page_range_dirty_lock() API which takes a starting page
and how many consecutive pages we want to unpin and optionally dirty.
To that end, define another iterator for_each_compound_range() that
operates in page ranges as opposed to page array.
For users (like RDMA mr_dereg) where each sg represents a contiguous set
of pages, we're able to more efficiently unpin pages without having to
supply an array of pages much of what happens today with
unpin_user_pages().
Link: https://lkml.kernel.org/r/20210212130843.13865-4-joao.m.martins@oracle.com
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rather than decrementing the head page refcount one by one, we walk the
page array and checking which belong to the same compound_head. Later on
we decrement the calculated amount of references in a single write to the
head page. To that end switch to for_each_compound_head() does most of
the work.
set_page_dirty() needs no adjustment as it's a nop for non-dirty head
pages and it doesn't operate on tail pages.
This considerably improves unpinning of pages with THP and hugetlbfs:
- THP
gup_test -t -m 16384 -r 10 [-L|-a] -S -n 512 -w
PIN_LONGTERM_BENCHMARK (put values): ~87.6k us -> ~23.2k us
- 16G with 1G huge page size
gup_test -f /mnt/huge/file -m 16384 -r 10 [-L|-a] -S -n 512 -w
PIN_LONGTERM_BENCHMARK: (put values): ~87.6k us -> ~27.5k us
Link: https://lkml.kernel.org/r/20210212130843.13865-3-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/gup: page unpining improvements", v4.
This series improves page unpinning, with an eye on improving MR
deregistration for big swaths of memory (which is bound by the page
unpining), particularly:
1) Decrement the head page by @ntails and thus reducing a lot the
number of atomic operations per compound page. This is done by
comparing individual tail pages heads, and counting number of
consecutive tails on which they match heads and based on that update
head page refcount. Should have a visible improvement in all page
(un)pinners which use compound pages
2) Introducing a new API for unpinning page ranges (to avoid the trick
in the previous item and be based on math), and use that in RDMA
ib_mem_release (used for mr deregistration).
Performance improvements: unpin_user_pages() for hugetlbfs and THP
improves ~3x (through gup_test) and RDMA MR dereg improves ~4.5x with the
new API. See patches 2 and 4 for those.
This patch (of 4):
Add a helper that iterates over head pages in a list of pages. It
essentially counts the tails until the next page to process has a
different head that the current. This is going to be used by
unpin_user_pages() family of functions, to batch the head page refcount
updates once for all passed consecutive tail pages.
Link: https://lkml.kernel.org/r/20210212130843.13865-1-joao.m.martins@oracle.com
Link: https://lkml.kernel.org/r/20210212130843.13865-2-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If an unmapped region was found and the flag is MS_ASYNC (without
MS_INVALIDATE) there is nothing to do and the result would be always
-ENOMEM, so return immediately.
Link: https://lkml.kernel.org/r/20201025092901.56399-1-sh1r4s3@mail.si-head.nl
Signed-off-by: Nikita Ermakov <sh1r4s3@mail.si-head.nl>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a6de4b4873 ("mm: convert find_get_entry to return the head page")
uses @index instead of @offset, but the comment is stale, update it.
Link: https://lkml.kernel.org/r/1617948260-50724-1-git-send-email-zhangshaokun@hisilicon.com
Signed-off-by: Rui Sun <sunrui26@huawei.com>
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_mapping_file() is only used by some architectures, and then it
is usually only used in one place. Make it a static inline function
so other architectures don't have to carry this dead code.
Link: https://lkml.kernel.org/r/20210317123011.350118-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page writeback doesn't hold a page reference, which allows truncate to
free a page the second PageWriteback is cleared. This used to require
special attention in test_clear_page_writeback(), where we had to be
careful not to rely on the unstable page->memcg binding and look up all
the necessary information before clearing the writeback flag.
Since commit 073861ed77 ("mm: fix VM_BUG_ON(PageTail) and
BUG_ON(PageWriteback)") test_clear_page_writeback() is called with an
explicit reference on the page, and this dance is no longer needed.
Use unlock_page_memcg() and dec_lruvec_page_state() directly.
This removes the last user of the lock_page_memcg() return value, change
it to void. Touch up the comments in there as well. This also removes
the last extern user of __unlock_page_memcg(), make it static. Further,
it removes the last user of dec_lruvec_state(), delete it, along with a
few other unused helpers.
Link: https://lkml.kernel.org/r/YCQbYAWg4nvBFL6h@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the I/O completed successfully, the page will remain Uptodate, even
if it is subsequently truncated. If the I/O completed with an error,
this check would cause us to retry the I/O if the page were truncated
before we woke up. There is no need to retry the I/O; the I/O to fill
the page failed, so we can legitimately just return -EIO.
This code was originally added by commit 56f0d5fe6851 ("[PATCH]
readpage-vs-invalidate fix") in 2005 (this commit ID is from the
linux-fullhistory tree; it is also commit ba1f08f14b52 in tglx-history).
At the time, truncate_complete_page() called ClearPageUptodate(), and so
this was fixing a real bug. In 2008, commit 84209e02de ("mm: dont clear
PG_uptodate on truncate/invalidate") removed the call to
ClearPageUptodate, and this check has been unnecessary ever since.
It doesn't do any real harm, but there's no need to keep it.
Link: https://lkml.kernel.org/r/20210303222547.1056428-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After splitting generic_file_buffered_read() into smaller parts, it turns
out we can reuse one of the parts in filemap_fault(). This fixes an
oversight -- waiting for the I/O to complete is now interruptible by a
fatal signal. And it saves us a few bytes of text in an unlikely path.
$ ./scripts/bloat-o-meter before.o after.o
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-207 (-207)
Function old new delta
filemap_fault 2187 1980 -207
Total: Before=37491, After=37284, chg -0.55%
Link: https://lkml.kernel.org/r/20210226140011.2883498-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For reads, use the better variant of checking for the need to call
filemap_write_and_wait_range() when doing O_DIRECT. This avoids falling
back to the slow path for IOCB_NOWAIT, if there are no pages to wait for
(or write out).
Link: https://lkml.kernel.org/r/20210224164455.1096727-4-axboe@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For the generic page cache read helper, use the better variant of checking
for the need to call filemap_write_and_wait_range() when doing O_DIRECT
reads. This avoids falling back to the slow path for IOCB_NOWAIT, if
there are no pages to wait for (or write out).
Link: https://lkml.kernel.org/r/20210224164455.1096727-3-axboe@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Improve IOCB_NOWAIT O_DIRECT reads", v3.
An internal workload complained because it was using too much CPU, and
when I took a look, we had a lot of io_uring workers going to town.
For an async buffered read like workload, I am normally expecting _zero_
offloads to a worker thread, but this one had tons of them. I'd drop
caches and things would look good again, but then a minute later we'd
regress back to using workers. Turns out that every minute something
was reading parts of the device, which would add page cache for that
inode. I put patches like these in for our kernel, and the problem was
solved.
Don't -EAGAIN IOCB_NOWAIT dio reads just because we have page cache
entries for the given range. This causes unnecessary work from the
callers side, when the IO could have been issued totally fine without
blocking on writeback when there is none.
This patch (of 3):
For O_DIRECT reads/writes, we check if we need to issue a call to
filemap_write_and_wait_range() to issue and/or wait for writeback for any
page in the given range. The existing mechanism just checks for a page in
the range, which is suboptimal for IOCB_NOWAIT as we'll fallback to the
slow path (and needing retry) if there's just a clean page cache page in
the range.
Provide filemap_range_needs_writeback() which tries a little harder to
check if we actually need to issue and/or wait for writeback in the range.
Link: https://lkml.kernel.org/r/20210224164455.1096727-1-axboe@kernel.dk
Link: https://lkml.kernel.org/r/20210224164455.1096727-2-axboe@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
early_memtest() does not get called from all architectures. Hence
enabling CONFIG_MEMTEST and providing a valid memtest=[1..N] kernel
command line option might not trigger the memory pattern tests as would be
expected in normal circumstances. This situation is misleading.
The change here prevents the above mentioned problem after introducing a
new config option ARCH_USE_MEMTEST that should be subscribed on platforms
that call early_memtest(), in order to enable the config CONFIG_MEMTEST.
Conversely CONFIG_MEMTEST cannot be enabled on platforms where it would
not be tested anyway.
Link: https://lkml.kernel.org/r/1617269193-22294-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> (arm64)
Reviewed-by: Max Filippov <jcmvbkbc@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When page_poison detects page corruption it's useful to see who freed a
page recently to have a guess where write-after-free corruption happens.
After this change corruption report has extra page data.
Example report from real corruption (includes only page_pwner part):
pagealloc: memory corruption
e00000014cd61d10: 11 00 00 00 00 00 00 00 30 1d d2 ff ff 0f 00 60 ........0......`
e00000014cd61d20: b0 1d d2 ff ff 0f 00 60 90 fe 1c 00 08 00 00 20 .......`.......
...
CPU: 1 PID: 220402 Comm: cc1plus Not tainted 5.12.0-rc5-00107-g9720c6f59ecf #245
Hardware name: hp server rx3600, BIOS 04.03 04/08/2008
...
Call Trace:
[<a000000100015210>] show_stack+0x90/0xc0
[<a000000101163390>] dump_stack+0x150/0x1c0
[<a0000001003f1e90>] __kernel_unpoison_pages+0x410/0x440
[<a0000001003c2460>] get_page_from_freelist+0x1460/0x2ca0
[<a0000001003c6be0>] __alloc_pages_nodemask+0x3c0/0x660
[<a0000001003ed690>] alloc_pages_vma+0xb0/0x500
[<a00000010037deb0>] __handle_mm_fault+0x1230/0x1fe0
[<a00000010037ef70>] handle_mm_fault+0x310/0x4e0
[<a00000010005dc70>] ia64_do_page_fault+0x1f0/0xb80
[<a00000010000ca00>] ia64_leave_kernel+0x0/0x270
page_owner tracks the page as freed
page allocated via order 0, migratetype Movable,
gfp_mask 0x100dca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), pid 37, ts 8173444098740
__reset_page_owner+0x40/0x200
free_pcp_prepare+0x4d0/0x600
free_unref_page+0x20/0x1c0
__put_page+0x110/0x1a0
migrate_pages+0x16d0/0x1dc0
compact_zone+0xfc0/0x1aa0
proactive_compact_node+0xd0/0x1e0
kcompactd+0x550/0x600
kthread+0x2c0/0x2e0
call_payload+0x50/0x80
Here we can see that page was freed by page migration but something
managed to write to it afterwards.
[slyfox@gentoo.org: s/dump_page_owner/dump_page/, per Vlastimil]
Link: https://lkml.kernel.org/r/20210407230800.1086854-1-slyfox@gentoo.org
Link: https://lkml.kernel.org/r/20210404141735.2152984-1-slyfox@gentoo.org
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before the change page_owner recursion was detected via fetching
backtrace and inspecting it for current instruction pointer.
It has a few problems:
- it is slightly slow as it requires extra backtrace and a linear stack
scan of the result
- it is too late to check if backtrace fetching required memory
allocation itself (ia64's unwinder requires it).
To simplify recursion tracking let's use page_owner recursion flag in
'struct task_struct'.
The change make page_owner=on work on ia64 by avoiding infinite
recursion in:
kmalloc()
-> __set_page_owner()
-> save_stack()
-> unwind() [ia64-specific]
-> build_script()
-> kmalloc()
-> __set_page_owner() [we short-circuit here]
-> save_stack()
-> unwind() [recursion]
Link: https://lkml.kernel.org/r/20210402115342.1463781-1-slyfox@gentoo.org
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I tried to use page_owner=1 for a while noticed too late it had no effect
as opposed to similar init_on_alloc=1 (these work).
Let's make them consistent.
The change decreses binary size slightly:
text data bss dec hex filename
12408 321 17 12746 31ca mm/page_owner.o.before
12320 321 17 12658 3172 mm/page_owner.o.after
Link: https://lkml.kernel.org/r/20210401210909.3532086-1-slyfox@gentoo.org
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Very minor optimization.
Link: https://lkml.kernel.org/r/20210401212445.3534721-1-slyfox@gentoo.org
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 5556cfe8d9 ("mm, page_owner: fix off-by-one error in
__set_page_owner_handle()") introduced, the parameter 'page' will not
used, hence it need to be removed.
Link: https://lkml.kernel.org/r/1616602022-43545-1-git-send-email-zhongjiang-ali@linux.alibaba.com
Signed-off-by: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Collect the time when each allocation is freed, to help with memory
analysis with kdump/ramdump. Add the timestamp also in the page_owner
debugfs file and print it in dump_page().
Having another timestamp when we free the page helps for debugging page
migration issues. For example both alloc and free timestamps being the
same can gave hints that there is an issue with migrating memory, as
opposed to a page just being dropped during migration.
Link: https://lkml.kernel.org/r/20210203175905.12267-1-georgi.djakov@linaro.org
Signed-off-by: Georgi Djakov <georgi.djakov@linaro.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ca0cab65ea ("mm, slub: introduce static key for slub_debug()")
introduced a static key to optimize the case where no debugging is
enabled for any cache. The static key is enabled when slub_debug boot
parameter is passed, or CONFIG_SLUB_DEBUG_ON enabled.
However, some caches might be created with one or more debugging flags
explicitly passed to kmem_cache_create(), and the commit missed this.
Thus the debugging functionality would not be actually performed for
these caches unless the static key gets enabled by boot param or config.
This patch fixes it by checking for debugging flags passed to
kmem_cache_create() and enabling the static key accordingly.
Note such explicit debugging flags should not be used outside of
debugging and testing as they will now enable the static key globally.
btrfs_init_cachep() creates a cache with SLAB_RED_ZONE but that's a
mistake that's being corrected [1]. rcu_torture_stats() creates a cache
with SLAB_STORE_USER, but that is a testing module so it's OK and will
start working as intended after this patch.
Also note that in case of backports to kernels before v5.12 that don't
have 59450bbc12 ("mm, slab, slub: stop taking cpu hotplug lock"),
static_branch_enable_cpuslocked() should be used.
[1] https://lore.kernel.org/linux-btrfs/20210315141824.26099-1-dsterba@suse.com/
Link: https://lkml.kernel.org/r/20210315153415.24404-1-vbabka@suse.cz
Fixes: ca0cab65ea ("mm, slub: introduce static key for slub_debug()")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Oliver Glitta <glittao@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a minor addition to the allocator setup options to provide a
simple way to on demand enable back cache merging for builds that by
default run with CONFIG_SLAB_MERGE_DEFAULT not set.
Link: https://lkml.kernel.org/r/20210319194506.200159-1-aquini@redhat.com
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit d6ad3e286d ("softlockup: Add sched_clock_tick() to avoid kernel
warning on kgdb resume") introduced touch_softlockup_watchdog_sync().
It solved a problem when the watchdog was touched in an atomic context,
the timer callback was proceed right after releasing interrupts, and the
local clock has not been updated yet. In this case, sched_clock_tick()
was called in watchdog_timer_fn() before updating the timer.
So far so good.
Later commit 5d1c0f4a80 ("watchdog: add check for suspended vm in
softlockup detector") added two kvm_check_and_clear_guest_paused()
calls. They touch the watchdog when the guest has been sleeping.
The code makes my head spin around.
Scenario 1:
+ guest did sleep:
+ PVCLOCK_GUEST_STOPPED is set
+ 1st watchdog_timer_fn() invocation:
+ the watchdog is not touched yet
+ is_softlockup() returns too big delay
+ kvm_check_and_clear_guest_paused():
+ clear PVCLOCK_GUEST_STOPPED
+ call touch_softlockup_watchdog_sync()
+ set SOFTLOCKUP_DELAY_REPORT
+ set softlockup_touch_sync
+ return from the timer callback
+ 2nd watchdog_timer_fn() invocation:
+ call sched_clock_tick() even though it is not needed.
The timer callback was invoked again only because the clock
has already been updated in the meantime.
+ call kvm_check_and_clear_guest_paused() that does nothing
because PVCLOCK_GUEST_STOPPED has been cleared already.
+ call update_report_ts() and return. This is fine. Except
that sched_clock_tick() might allow to set it already
during the 1st invocation.
Scenario 2:
+ guest did sleep
+ 1st watchdog_timer_fn() invocation
+ same as in 1st scenario
+ guest did sleep again:
+ set PVCLOCK_GUEST_STOPPED again
+ 2nd watchdog_timer_fn() invocation
+ SOFTLOCKUP_DELAY_REPORT is set from 1st invocation
+ call sched_clock_tick()
+ call kvm_check_and_clear_guest_paused()
+ clear PVCLOCK_GUEST_STOPPED
+ call touch_softlockup_watchdog_sync()
+ set SOFTLOCKUP_DELAY_REPORT
+ set softlockup_touch_sync
+ call update_report_ts() (set real timestamp immediately)
+ return from the timer callback
+ 3rd watchdog_timer_fn() invocation
+ timestamp is set from 2nd invocation
+ softlockup_touch_sync is set but not checked because
the real timestamp is already set
Make the code more straightforward:
1. Always call kvm_check_and_clear_guest_paused() at the very
beginning to handle PVCLOCK_GUEST_STOPPED. It touches the watchdog
when the quest did sleep.
2. Handle the situation when the watchdog has been touched
(SOFTLOCKUP_DELAY_REPORT is set).
Call sched_clock_tick() when touch_*sync() variant was used. It makes
sure that the timestamp will be up to date even when it has been
touched in atomic context or quest did sleep.
As a result, kvm_check_and_clear_guest_paused() is called on a single
location. And the right timestamp is always set when returning from the
timer callback.
Link: https://lkml.kernel.org/r/20210311122130.6788-7-pmladek@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Laurence Oberman <loberman@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Any parallel softlockup reports are skipped when one CPU is already
printing backtraces from all CPUs.
The exclusive rights are synchronized using one bit in
soft_lockup_nmi_warn. There is also one memory barrier that does not make
much sense.
Use two barriers on the right location to prevent mixing two reports.
[pmladek@suse.com: use bit lock operations to prevent multiple soft-lockup reports]
Link: https://lkml.kernel.org/r/YFSVsLGVWMXTvlbk@alley
Link: https://lkml.kernel.org/r/20210311122130.6788-6-pmladek@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Laurence Oberman <loberman@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The softlockup detector does some gymnastic with the variable
soft_watchdog_warn. It was added by the commit 58687acba5
("lockup_detector: Combine nmi_watchdog and softlockup detector").
The purpose is not completely clear. There are the following clues. They
describe the situation how it looked after the above mentioned commit:
1. The variable was checked with a comment "only warn once".
2. The variable was set when softlockup was reported. It was cleared
only when the CPU was not longer in the softlockup state.
3. watchdog_touch_ts was not explicitly updated when the softlockup
was reported. Without this variable, the report would normally
be printed again during every following watchdog_timer_fn()
invocation.
The logic has got even more tangled up by the commit ed235875e2
("kernel/watchdog.c: print traces for all cpus on lockup detection").
After this commit, soft_watchdog_warn is set only when
softlockup_all_cpu_backtrace is enabled. But multiple reports from all
CPUs are prevented by a new variable soft_lockup_nmi_warn.
Conclusion:
The variable probably never worked as intended. In each case, it has not
worked last many years because the softlockup was reported repeatedly
after the full period defined by watchdog_thresh.
The reason is that watchdog gets touched in many known slow paths, for
example, in printk_stack_address(). This code is called also when
printing the softlockup report. It means that the watchdog timestamp gets
updated after each report.
Solution:
Simply remove the logic. People want the periodic report anyway.
Link: https://lkml.kernel.org/r/20210311122130.6788-5-pmladek@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Laurence Oberman <loberman@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The softlockup detector currently shows the time spent since the last
report. As a result it is not clear whether a CPU is infinitely hogged by
a single task or if it is a repeated event.
The situation can be simulated with a simply busy loop:
while (true)
cpu_relax();
The softlockup detector produces:
[ 168.277520] watchdog: BUG: soft lockup - CPU#1 stuck for 22s! [cat:4865]
[ 196.277604] watchdog: BUG: soft lockup - CPU#1 stuck for 22s! [cat:4865]
[ 236.277522] watchdog: BUG: soft lockup - CPU#1 stuck for 23s! [cat:4865]
But it should be, something like:
[ 480.372418] watchdog: BUG: soft lockup - CPU#2 stuck for 26s! [cat:4943]
[ 508.372359] watchdog: BUG: soft lockup - CPU#2 stuck for 52s! [cat:4943]
[ 548.372359] watchdog: BUG: soft lockup - CPU#2 stuck for 89s! [cat:4943]
[ 576.372351] watchdog: BUG: soft lockup - CPU#2 stuck for 115s! [cat:4943]
For the better output, add an additional timestamp of the last report.
Only this timestamp is reset when the watchdog is intentionally touched
from slow code paths or when printing the report.
Link: https://lkml.kernel.org/r/20210311122130.6788-4-pmladek@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Laurence Oberman <loberman@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The softlockup situation might stay for a long time or even forever. When
it happens, the softlockup debug messages are printed in regular intervals
defined by get_softlockup_thresh().
There is a mystery. The repeated message is printed after the full
interval that is defined by get_softlockup_thresh(). But the timer
callback is called more often as defined by sample_period. The code looks
like the soflockup should get reported in every sample_period when it was
once behind the thresh.
It works only by chance. The watchdog is touched when printing the stall
report, for example, in printk_stack_address().
Make the behavior clear and predictable by explicitly updating the
timestamp in watchdog_timer_fn() when the report gets printed.
Link: https://lkml.kernel.org/r/20210311122130.6788-3-pmladek@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Laurence Oberman <loberman@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "watchdog/softlockup: Report overall time and some cleanup", v2.
I dug deep into the softlockup watchdog history when time permitted this
year. And reworked the patchset that fixed timestamps and cleaned up the
code[2].
I split it into very small steps and did even more code clean up. The
result looks quite strightforward and I am pretty confident with the
changes.
[1] v2: https://lore.kernel.org/r/20201210160038.31441-1-pmladek@suse.com
[2] v1: https://lore.kernel.org/r/20191024114928.15377-1-pmladek@suse.com
This patch (of 6):
There are many touch_*watchdog() functions. They are called in situations
where the watchdog could report false positives or create unnecessary
noise. For example, when CPU is entering idle mode, a virtual machine is
stopped, or a lot of messages are printed in the atomic context.
These functions set SOFTLOCKUP_RESET instead of a real timestamp. It
allows to call them even in a context where jiffies might be outdated.
For example, in an atomic context.
The real timestamp is set by __touch_watchdog() that is called from the
watchdog timer callback.
Rename this callback to update_touch_ts(). It better describes the effect
and clearly distinguish is from the other touch_*watchdog() functions.
Another motivation is that two timestamps are going to be used. One will
be used for the total softlockup time. The other will be used to measure
time since the last report. The new function name will help to
distinguish which timestamp is being updated.
Link: https://lkml.kernel.org/r/20210311122130.6788-1-pmladek@suse.com
Link: https://lkml.kernel.org/r/20210311122130.6788-2-pmladek@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Laurence Oberman <loberman@redhat.com>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix kernel-doc notation function arguments to eliminate two kernel-doc
warnings:
fs_parser.c:322: warning: Excess function parameter 'name' description in 'validate_constant_table'
fs_parser.c:367: warning: Function parameter or member 'name' not described in 'fs_validate_description'
Link: https://lkml.kernel.org/r/20210407033743.9701-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The intent with this code was to return negative error codes but instead
it returns positives.
The problem is how type promotion works with ternary operations. These
functions return long, "ret" is an int and "copied" is a u32. The
negative error code is first cast to u32 so it becomes a high positive and
then cast to long where it's still a positive.
We could fix this by declaring "ret" as a ssize_t but let's just get rid
of the ternaries instead.
Link: https://lkml.kernel.org/r/YIE+/cK1tBzSuQPU@mwanda
Fixes: 5bf2b19320 ("kfifo: add example files to the kernel sample directory")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Stefani Seibold <stefani@seibold.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following clang warning:
fs/ocfs2/dlm/dlmrecovery.c:129:20: warning: unused function 'dlm_reset_recovery' [-Wunused-function].
Link: https://lkml.kernel.org/r/1618382761-5784-1-git-send-email-jiapeng.chong@linux.alibaba.com
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Reviewed-by: Wengang Wang <wen.gang.wang@oracle.com>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use macro map_flag() is tricky and coccicheck outputs the following
warning:
fs/ocfs2/stack_o2cb.c:69:5-16: Unneeded variable: "o2dlm_flags"
So map flags directly in flags_to_o2dlm() to make coccicheck happy.
And remove BUG_ON() here as well to simplify code since it runs well
a long time.
Link: https://lkml.kernel.org/r/1616138664-35935-1-git-send-email-joseph.qi@linux.alibaba.com
Signed-off-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: Wengang Wang <wen.gang.wang@oracle.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following coccicheck warning:
fs/ocfs2/blockcheck.c:232:0-23: WARNING: blockcheck_fops should be defined with DEFINE_DEBUGFS_ATTRIBUTE
Link: https://lkml.kernel.org/r/1614155230-57292-1-git-send-email-yang.lee@linux.alibaba.com
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
checkdeclares: find struct declared more than once. Inspired by
checkincludes.pl.
This script checks for duplicate struct declares. Note that this will not
take into consideration macros, so you should run this only if you know
you do have real dups and do not have them under #ifdef's. You could also
just review the results.
[akpm@linux-foundation.org: fix usage message, grammar]
Link: https://lkml.kernel.org/r/20210401110943.1010796-1-wanjiabing@vivo.com
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sparse can do constant folding of __builtin_bswap*() since 2017. Also, a
much recent version of Sparse is needed anyway, see commit 6ec4476ac8
("Raise gcc version requirement to 4.9").
So, remove the comment about sparse not being yet able to constant fold
__builtin_bswap*() and remove the corresponding test of __CHECKER__.
Link: https://lkml.kernel.org/r/20210226092236.99369-1-luc.vanoostenryck@gmail.com
Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Noticed failure as a crash on ia64 when tried to symbolize all backtraces
collected by page_owner=on:
$ cat /sys/kernel/debug/page_owner
<oops>
CPU: 1 PID: 2074 Comm: cat Not tainted 5.12.0-rc4 #226
Hardware name: hp server rx3600, BIOS 04.03 04/08/2008
ip is at dereference_module_function_descriptor+0x41/0x100
Crash happens at dereference_module_function_descriptor() due to
use-after-free when dereferencing ".opd" section header.
All section headers are already freed after module is laoded successfully.
To keep symbolizer working the change stores ".opd" address and size after
module is relocated to a new place and before section headers are
discarded.
To make similar errors less obscure module_finalize() now zeroes out all
variables relevant to module loading only.
Link: https://lkml.kernel.org/r/20210403074803.3309096-1-slyfox@gentoo.org
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DISCONTIGMEM was marked BROKEN in 5.11. Let's remove it.
Booted SPARSEMEM successfully on rx3600.
Link: https://lkml.kernel.org/r/20210404193440.2615358-1-slyfox@gentoo.org
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>