- fix randconfig to generate a sane .config
- rename hostprogs-y / always to hostprogs / always-y, which are
more natual syntax.
- optimize scripts/kallsyms
- fix yes2modconfig and mod2yesconfig
- make multiple directory targets ('make foo/ bar/') work
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAl47NfMVHG1hc2FoaXJv
eUBrZXJuZWwub3JnAAoJED2LAQed4NsGRGwP/3AHO8P0wGEeFKs3ziSMjs2W7/Pj
lN08Kuxm0u3LnyEEcHVUveoi+xBYqvrw0RsGgYf5S8q0Mpep7MPqbfkDUxV/0Zkj
QP2CsvOTbjdBjH7q3ojkwLcDl0Pxu9mg3eZMRXZ2WQeNXuMRw6Bicoh7ElvB1Bv/
HC+j30i2Me3cf/riQGSAsstvlXyIR8RaerR8PfRGESTysiiN76+JcHTatJHhOJL9
O6XKkzo8/CXMYKKVF4Ae4NP+WFg6E96/pAPx0Rf47RbPX9UG35L9rkzTDnk70Ms6
OhKiu3hXsRX7mkqApuoTqjge4+iiQcKZxYmMXU1vGlIRzjwg19/4YFP6pDSCcnIu
kKb8KN4o4N41N7MFS3OLZWwISA8Vw6RbtwDZ3AghDWb7EHb9oNW42mGfcAPr1+wZ
/KH6RHTzaz+5q2MgyMY1NhADFrhIT9CvDM+UJECgbokblnw7PHAnPmbsuVak9ZOH
u9ojO1HpTTuIYO6N6v4K5zQBZF1N+RvkmBnhHd8j6SksppsCoC/G62QxgXhF2YK3
FQMpATCpuyengLxWAmPEjsyyPOlrrdu9UxqNsXVy5ol40+7zpxuHwKcQKCa9urJR
rcpbIwLaBcLhHU4BmvBxUk5aZxxGV2F0O0gXTOAbT2xhd6BipZSMhUmN49SErhQm
NC/coUmQX7McxMXh
=sv4U
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v5.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull more Kbuild updates from Masahiro Yamada:
- fix randconfig to generate a sane .config
- rename hostprogs-y / always to hostprogs / always-y, which are more
natual syntax.
- optimize scripts/kallsyms
- fix yes2modconfig and mod2yesconfig
- make multiple directory targets ('make foo/ bar/') work
* tag 'kbuild-v5.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
kbuild: make multiple directory targets work
kconfig: Invalidate all symbols after changing to y or m.
kallsyms: fix type of kallsyms_token_table[]
scripts/kallsyms: change table to store (strcut sym_entry *)
scripts/kallsyms: rename local variables in read_symbol()
kbuild: rename hostprogs-y/always to hostprogs/always-y
kbuild: fix the document to use extra-y for vmlinux.lds
kconfig: fix broken dependency in randconfig-generated .config
- Ensure that the PIT is set up when the local APIC is disable or
configured in legacy mode. This is caused by an ordering issue
introduced in the recent changes which skip PIT initialization when the
TSC and APIC frequencies are already known.
- Handle malformed SRAT tables during early ACPI parsing which caused an
infinite loop anda boot hang.
- Fix a long standing race in the affinity setting code which affects PCI
devices with non-maskable MSI interrupts. The problem is caused by the
non-atomic writes of the MSI address (destination APIC id) and data
(vector) fields which the device uses to construct the MSI message. The
non-atomic writes are mandated by PCI.
If both fields change and the device raises an interrupt after writing
address and before writing data, then the MSI block constructs a
inconsistent message which causes interrupts to be lost and subsequent
malfunction of the device.
The fix is to redirect the interrupt to the new vector on the current
CPU first and then switch it over to the new target CPU. This allows to
observe an eventually raised interrupt in the transitional stage (old
CPU, new vector) to be observed in the APIC IRR and retriggered on the
new target CPU and the new vector. The potential spurious interrupts
caused by this are harmless and can in the worst case expose a buggy
driver (all handlers have to be able to deal with spurious interrupts as
they can and do happen for various reasons).
- Add the missing suspend/resume mechanism for the HYPERV hypercall page
which prevents resume hibernation on HYPERV guests. This change got
lost before the merge window.
- Mask the IOAPIC before disabling the local APIC to prevent potentially
stale IOAPIC remote IRR bits which cause stale interrupt lines after
resume.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl5AEJwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWY2D/47ur9gsVQGryKzneVAr0SCsq4Un11e
uifX4ldu4gCEBRTYhpgcpiFKeLvY/QJ6uOD+gQUHyy/s+lCf6yzE6UhXEqSCtcT7
LkSxD8jAFf6KhMA6iqYBfyxUsPMXBetLjjHWsyc/kf15O/vbYm7qf05timmNZkDS
S7C+yr3KRqRjLR7G7t4twlgC9aLcNUQihUdsH2qyTvjnlkYHJLDa0/Js7bFYYKVx
9GdUDLvPFB1mZ76g012De4R3kJsWitiyLlQ38DP5VysKulnszUCdiXlgCEFrgxvQ
OQhLafQzOAzvxQmP+1alODR0dmJZA8k0zsDeeTB/vTpRvv6+Pe2qUswLSpauBzuq
TpDsrv8/5pwZh28+91f/Unk+tH8NaVNtGe/Uf+ePxIkn1nbqL84o4NHGplM6R97d
HAWdZQZ1cGRLf6YRRJ+57oM/5xE3vBbF1Wn0+QDTFwdsk2vcxuQ4eB3M/8E1V7Zk
upp8ty50bZ5+rxQ8XTq/eb8epSRnfLoBYpi4ux6MIOWRdmKDl40cDeZCzA2kNP7m
qY1haaRN3ksqvhzc0Yf6cL+CgvC4ur8gRHezfOqmBzVoaLyVEFIVjgjR/ojf0bq8
/v+L9D5+IdIv4jEZruRRs0gOXNDzoBbvf0qKGaO0tUTWiDsv7c5AGixp8aozniHS
HXsv1lIpRuC7WQ==
=WxKD
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-02-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A set of fixes for X86:
- Ensure that the PIT is set up when the local APIC is disable or
configured in legacy mode. This is caused by an ordering issue
introduced in the recent changes which skip PIT initialization when
the TSC and APIC frequencies are already known.
- Handle malformed SRAT tables during early ACPI parsing which caused
an infinite loop anda boot hang.
- Fix a long standing race in the affinity setting code which affects
PCI devices with non-maskable MSI interrupts. The problem is caused
by the non-atomic writes of the MSI address (destination APIC id)
and data (vector) fields which the device uses to construct the MSI
message. The non-atomic writes are mandated by PCI.
If both fields change and the device raises an interrupt after
writing address and before writing data, then the MSI block
constructs a inconsistent message which causes interrupts to be
lost and subsequent malfunction of the device.
The fix is to redirect the interrupt to the new vector on the
current CPU first and then switch it over to the new target CPU.
This allows to observe an eventually raised interrupt in the
transitional stage (old CPU, new vector) to be observed in the APIC
IRR and retriggered on the new target CPU and the new vector.
The potential spurious interrupts caused by this are harmless and
can in the worst case expose a buggy driver (all handlers have to
be able to deal with spurious interrupts as they can and do happen
for various reasons).
- Add the missing suspend/resume mechanism for the HYPERV hypercall
page which prevents resume hibernation on HYPERV guests. This
change got lost before the merge window.
- Mask the IOAPIC before disabling the local APIC to prevent
potentially stale IOAPIC remote IRR bits which cause stale
interrupt lines after resume"
* tag 'x86-urgent-2020-02-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Mask IOAPIC entries when disabling the local APIC
x86/hyperv: Suspend/resume the hypercall page for hibernation
x86/apic/msi: Plug non-maskable MSI affinity race
x86/boot: Handle malformed SRAT tables during early ACPI parsing
x86/timer: Don't skip PIT setup when APIC is disabled or in legacy mode
In old days, the "host-progs" syntax was used for specifying host
programs. It was renamed to the current "hostprogs-y" in 2004.
It is typically useful in scripts/Makefile because it allows Kbuild to
selectively compile host programs based on the kernel configuration.
This commit renames like follows:
always -> always-y
hostprogs-y -> hostprogs
So, scripts/Makefile will look like this:
always-$(CONFIG_BUILD_BIN2C) += ...
always-$(CONFIG_KALLSYMS) += ...
...
hostprogs := $(always-y) $(always-m)
I think this makes more sense because a host program is always a host
program, irrespective of the kernel configuration. We want to specify
which ones to compile by CONFIG options, so always-y will be handier.
The "always", "hostprogs-y", "hostprogs-m" will be kept for backward
compatibility for a while.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Break an infinite loop when early parsing of the SRAT table is caused
by a subtable with zero length. Known to affect the ASUS WS X299 SAGE
motherboard with firmware version 1201 which has a large block of
zeros in its SRAT table. The kernel could boot successfully on this
board/firmware prior to the introduction of early parsing this table or
after a BIOS update.
[ bp: Fixup whitespace damage and commit message. Make it return 0 to
denote that there are no immovable regions because who knows what
else is broken in this BIOS. ]
Fixes: 02a3e3cdb7 ("x86/boot: Parse SRAT table and count immovable memory regions")
Signed-off-by: Steven Clarkson <sc@lambdal.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: linux-acpi@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206343
Link: https://lkml.kernel.org/r/CAHKq8taGzj0u1E_i=poHUam60Bko5BpiJ9jn0fAupFUYexvdUQ@mail.gmail.com
Pull x86 asm updates from Ingo Molnar:
"Misc updates:
- Remove last remaining calls to exception_enter/exception_exit() and
simplify the entry code some more.
- Remove force_iret()
- Add support for "Fast Short Rep Mov", which is available starting
with Ice Lake Intel CPUs - and make the x86 assembly version of
memmove() use REP MOV for all sizes when FSRM is available.
- Micro-optimize/simplify the 32-bit boot code a bit.
- Use a more future-proof SYSRET instruction mnemonic"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Simplify calculation of output address
x86/entry/64: Add instruction suffix to SYSRET
x86: Remove force_iret()
x86/cpufeatures: Add support for fast short REP; MOVSB
x86/context-tracking: Remove exception_enter/exit() from KVM_PV_REASON_PAGE_NOT_PRESENT async page fault
x86/context-tracking: Remove exception_enter/exit() from do_page_fault()
x86_64 EFI systems are unable to boot due to a typo in a recent commit:
EFI config tables not found.
-- System halted
This was probably due to the absense of CONFIG_EFI_MIXED=y in testing.
Fixes: 796eb8d26a ("efi/libstub/x86: Use const attribute for efi_is_64bit()")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: tglx@linutronix.de
Cc: linux-efi@vger.kernel.org
Link: https://lore.kernel.org/r/20200122191430.4888-1-cai@lca.pw
Condense the calculation of decompressed kernel start a little.
Committer notes:
before:
ebp = ebx - (init_size - _end)
after:
eax = (ebx + _end) - init_size
where in both ebx contains the temporary address the kernel is moved to
for in-place decompression.
The before and after difference in register state is %eax and %ebp
but that is immaterial because the compressed image is not built with
-mregparm, i.e., all arguments of the following extract_kernel() call
are passed on the stack.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200107194436.2166846-1-nivedita@alum.mit.edu
The only users of these got removed, so they also need to be
removed to avoid warnings:
arch/x86/boot/compressed/eboot.c: In function 'setup_efi_pci':
arch/x86/boot/compressed/eboot.c:117:16: error: unused variable 'nr_pci' [-Werror=unused-variable]
unsigned long nr_pci;
^~~~~~
arch/x86/boot/compressed/eboot.c: In function 'setup_uga':
arch/x86/boot/compressed/eboot.c:244:16: error: unused variable 'nr_ugas' [-Werror=unused-variable]
unsigned long nr_ugas;
^~~~~~~
Fixes: 2732ea0d5c ("efi/libstub: Use a helper to iterate over a EFI handle array")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200113172245.27925-4-ardb@kernel.org
Reduce the stack frame of the EFI stub's mixed mode thunk routine by
8 bytes, by moving the GDT and return addresses to EBP and EBX, which
we need to preserve anyway, since their top halves will be cleared by
the call into 32-bit firmware code. Doing so results in the UEFI code
being entered with a 16 byte aligned stack, as mandated by the UEFI
spec, fixing the last occurrence in the 64-bit kernel where we violate
this requirement.
Also, move the saved GDT from a global variable to an unused part of the
stack frame, and touch up some other parts of the code.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200113172245.27925-3-ardb@kernel.org
Reshuffle the x86 stub code a bit so that we can tag the efi_is_64bit()
function with the 'const' attribute, which permits the compiler to
optimize away any redundant calls. Since we have two different entry
points for 32 and 64 bit firmware in the startup code, this also
simplifies the C code since we'll enter it with the efi_is64 variable
already set.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200113172245.27925-2-ardb@kernel.org
Introduce the ability to define macros to perform argument translation
for the calls that need it, and define them for the boot services that
we currently use.
When calling 32-bit firmware methods in mixed mode, all output
parameters that are 32-bit according to the firmware, but 64-bit in the
kernel (ie OUT UINTN * or OUT VOID **) must be initialized in the
kernel, or the upper 32 bits may contain garbage. Define macros that
zero out the upper 32 bits of the output before invoking the firmware
method.
When a 32-bit EFI call takes 64-bit arguments, the mixed-mode call must
push the two 32-bit halves as separate arguments onto the stack. This
can be achieved by splitting the argument into its two halves when
calling the assembler thunk. Define a macro to do this for the
free_pages boot service.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-17-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On x86 we need to thunk through assembler stubs to call the EFI services
for mixed mode, and for runtime services in 64-bit mode. The assembler
stubs have limits on how many arguments it handles. Introduce a few
macros to check that we do not try to pass too many arguments to the
stubs.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-16-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit c3710de506 ("efi/libstub/x86: Drop __efi_early() export and
efi_config struct") introduced a reference from C code in eboot.c to
the startup_32 symbol defined in the .S startup code. This results in
a GOT based reference to startup_32, and since GOT entries carry
absolute addresses, they need to be fixed up before they can be used.
On modern toolchains (binutils 2.26 or later), this reference is
relaxed into a R_386_GOTOFF relocation (or the analogous X86_64 one)
which never uses the absolute address in the entry, and so we get
away with not fixing up the GOT table before calling the EFI entry
point. However, GCC 4.6 combined with a binutils of the era (2.24)
will produce a true GOT indirected reference, resulting in a wrong
value to be returned for the address of startup_32() if the boot
code is not running at the address it was linked at.
Fortunately, we can easily override this behavior, and force GCC to
emit the GOTOFF relocations explicitly, by setting the visibility
pragma 'hidden'.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-3-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The mixed mode refactor actually broke mixed mode by failing to
pass the bootparam structure to startup_32(). This went unnoticed
because it apparently has a high tolerance for being passed random
junk, and still boots fine in some cases. So let's fix this by
populating %esi as required when entering via efi32_stub_entry,
and while at it, preserve the arguments themselves instead of their
address in memory (via the stack pointer) since that memory could
be clobbered before we get to it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Matthew Garrett <mjg59@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20200103113953.9571-2-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of storing the return address in a global variable when calling
a 32-bit EFI service from the 64-bit stub, avoid the indirection via
efi_exit32, and take the return address from the stack.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-26-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The macros efi_call_early and efi_call_runtime are used to call EFI
boot services and runtime services, respectively. However, the naming
is confusing, given that the early vs runtime distinction may suggest
that these are used for calling the same set of services either early
or late (== at runtime), while in reality, the sets of services they
can be used with are completely disjoint, and efi_call_runtime is also
only usable in 'early' code.
So do a global sweep to replace all occurrences with efi_bs_call or
efi_rt_call, respectively, where BS and RT match the idiom used by
the UEFI spec to refer to boot time or runtime services.
While at it, use 'func' as the macro parameter name for the function
pointers, which is less likely to collide and cause weird build errors.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-24-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
None of the definitions of the efi_table_attr() still refer to
their 'table' argument so let's get rid of it entirely.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-23-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After refactoring the mixed mode support code, efi_call_proto()
no longer uses its protocol argument in any of its implementation,
so let's remove it altogether.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-22-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mixed mode translates calls from the 64-bit kernel into the 32-bit
firmware by wrapping them in a call to a thunking routine that
pushes a 32-bit word onto the stack for each argument passed to the
function, regardless of the argument type. This works surprisingly
well for most services and protocols, with the exception of ones that
take explicit 64-bit arguments.
efi_free() invokes the FreePages() EFI boot service, which takes
a efi_physical_addr_t as its address argument, and this is one of
those 64-bit types. This means that the 32-bit firmware will
interpret the (addr, size) pair as a single 64-bit quantity, and
since it is guaranteed to have the high word set (as size > 0),
it will always fail due to the fact that EFI memory allocations are
always < 4 GB on 32-bit firmware.
So let's fix this by giving the thunking code a little hand, and
pass two values for the address, and a third one for the size.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-21-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have a helper efi_system_table() that gives us the address of the
EFI system table in memory, so there is no longer point in passing
it around from each function to the next.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-20-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As a first step towards getting rid of the need to pass around a function
parameter 'sys_table_arg' pointing to the EFI system table, remove the
references to it in the printing code, which is represents the majority
of the use cases.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-19-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The various pointers we stash in the efi_config struct which we
retrieve using __efi_early() are simply copies of the ones in
the EFI system table, which we have started accessing directly
in the previous patch. So drop all the __efi_early() related
plumbing, as well as all the assembly code dealing with efi_config,
which allows us to move the PE/COFF entry point to C code as well.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-18-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use a single implementation for efi_char16_printk() across all
architectures.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-17-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The efi_call macros on ARM have a dependency on a variable 'sys_table_arg'
existing in the scope of the macro instantiation. Since this variable
always points to the same data structure, let's create a global getter
for it and use that instead.
Note that the use of a global variable with external linkage is avoided,
given the problems we had in the past with early processing of the GOT
tables.
While at it, drop the redundant casts in the efi_table_attr and
efi_call_proto macros.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-16-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We use special wrapper routines to invoke firmware services in the
native case as well as the mixed mode case. For mixed mode, the need
is obvious, but for the native cases, we can simply rely on the
compiler to generate the indirect call, given that GCC now has
support for the MS calling convention (and has had it for quite some
time now). Note that on i386, the decompressor and the EFI stub are not
built with -mregparm=3 like the rest of the i386 kernel, so we can
safely allow the compiler to emit the indirect calls here as well.
So drop all the wrappers and indirection, and switch to either native
calls, or direct calls into the thunk routine for mixed mode.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-14-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Annotate all the firmware routines (boot services, runtime services and
protocol methods) called in the boot context as __efiapi, and make
it expand to __attribute__((ms_abi)) on 64-bit x86. This allows us
to use the compiler to generate the calls into firmware that use the
MS calling convention instead of the SysV one.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-13-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We will soon remove another level of pointer casting, so let's make
sure all type handling involving firmware calls at boot time is correct.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-12-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we have incorporated the mixed mode protocol definitions
into the native ones using unions, we no longer need the separate
32/64 bit struct definitions, with the exception of the EFI system
table definition and the boot services, runtime services and
configuration table definitions. So drop the unused ones.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-11-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, we support mixed mode by casting all boot time firmware
calls to 64-bit explicitly on native 64-bit systems, and to 32-bit
on 32-bit systems or 64-bit systems running with 32-bit firmware.
Due to this explicit awareness of the bitness in the code, we do a
lot of casting even on generic code that is shared with other
architectures, where mixed mode does not even exist. This casting
leads to loss of coverage of type checking by the compiler, which
we should try to avoid.
So instead of distinguishing between 32-bit vs 64-bit, distinguish
between native vs mixed, and limit all the nasty casting and
pointer mangling to the code that actually deals with mixed mode.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-10-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation of moving to a native vs. mixed mode split rather than a
32 vs. 64 bit split when it comes to invoking EFI firmware services,
update all the native protocol definitions and redefine them as unions
containing an anonymous struct for the native view and a struct called
'mixed_mode' describing the 32-bit view of the protocol when called from
64-bit code.
While at it, flesh out some PCI I/O member definitions that we will be
needing shortly.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-9-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Iterating over a EFI handle array is a bit finicky, since we have
to take mixed mode into account, where handles are only 32-bit
while the native efi_handle_t type is 64-bit.
So introduce a helper, and replace the various occurrences of
this pattern.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Borislav Petkov <bp@alien8.de>
Cc: James Morse <james.morse@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224151025.32482-8-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The EFI mixed mode entry code goes through the ordinary startup_32()
routine before jumping into the kernel's EFI boot code in 64-bit
mode. The 32-bit startup code must be entered with paging disabled,
but this is not documented as a requirement for the EFI handover
protocol, and so we should disable paging explicitly when entering
the kernel from 32-bit EFI firmware.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191224132909.102540-4-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a new READELF variable to top-level Makefile, so the name of
readelf binary can be specified.
Before this change the name of the binary was hardcoded to
"$(CROSS_COMPILE)readelf" which might not be present for every
toolchain.
This allows to build with LLVM Object Reader by using make parameter
READELF=llvm-readelf.
Link: https://github.com/ClangBuiltLinux/linux/issues/771
Signed-off-by: Dmitry Golovin <dima@golovin.in>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
- Update the ACPICA code in the kernel to upstream revision 20191018
including:
* Fixes for Clang warnings (Bob Moore).
* Fix for possible overflow in get_tick_count() (Bob Moore).
* Introduction of acpi_unload_table() (Bob Moore).
* Debugger and utilities updates (Erik Schmauss).
* Fix for unloading tables loaded via configfs (Nikolaus Voss).
- Add support for EFI specific purpose memory to optionally allow
either application-exclusive or core-kernel-mm managed access to
differentiated memory (Dan Williams).
- Fix and clean up processing of the HMAT table (Brice Goglin,
Qian Cai, Tao Xu).
- Update the ACPI EC driver to make it work on systems with
hardware-reduced ACPI (Daniel Drake).
- Always build in support for the Generic Event Device (GED) to
allow one kernel binary to work both on systems with full
hardware ACPI and hardware-reduced ACPI (Arjan van de Ven).
- Fix the table unload mechanism to unregister platform devices
created when the given table was loaded (Andy Shevchenko).
- Rework the lid blacklist handling in the button driver and add
more lid quirks to it (Hans de Goede).
- Improve ACPI-based device enumeration for some platforms based
on Intel BayTrail SoCs (Hans de Goede).
- Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC
and prevent handlers from being registered for unhandled PMIC
OpRegions (Hans de Goede).
- Unify ACPI _HID/_UID matching (Andy Shevchenko).
- Clean up documentation and comments (Cao jin, James Pack, Kacper
Piwiński).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl3dHNkSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRx/NkP/2y6DWjslA6UW4gjZwaRBcjYoyWExMtQ
Z86goiRJtP+/NqOwm09wHFcV6FdZ4kitUno3UgMCDZJjrURapg1D0rxb1lSYtMzs
mGr2FBZlVsJ9erOVSzKj1x2afVhdgl0Rl0fxPzoKgCFt8tCJar6cXy4CVEQKdeLs
eUui2ksXMIEODGhpN/tr/fJqY4O4jlLmPY6gKWfFpSTsv6lnZmzcCxLf5EvUU7JW
O91/jXdWz4Vl6IdP32sce6dGDjkvwnY105c7HeBf5EQWUe9RHFuSex982qhCD8U+
iE+JzlhoYpUb03EktJSXbL++IKUHvoUpTanbhka6unMhazC86x0hDf7ruUtYo2Bk
V8347CFeQ1x2O5IabfJNnUfKaMYhYmOXIoFHJTLKFO5mcCJmP8KOOyDAYilC1psb
RJpl1fDoAhk7NqhMttyBqfxiotP0kMoKuqtAAl8Y0hTF0DwR9IfKntuTtp1yTGds
R4dpJrizUDzw1/o4fCWbc3dFZQR3NFGpL/EAyfPzqjGaeaBBkLoNYstqkal5XHwT
CILmQg2WHoNuQLXZ4NFFDrM2k2G+VUAjQdkYcb/MCOFbw+aTVPu1wyQq37RLtbMo
9UwGeeT6SXW3iA1nyMoM+YvitjmxS7gHPPPl+b9G6kBubAzBPp91Ra0Mj9dPIGRB
Evv5nzOIh8Hi
=7Cqr
-----END PGP SIGNATURE-----
Merge tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These update the ACPICA code in the kernel to upstream revision
20191018, add support for EFI specific purpose memory, update the ACPI
EC driver to make it work on systems with hardware-reduced ACPI,
improve ACPI-based device enumeration for some platforms, rework the
lid blacklist handling in the button driver and add more lid quirks to
it, unify ACPI _HID/_UID matching, fix assorted issues and clean up
the code and documentation.
Specifics:
- Update the ACPICA code in the kernel to upstream revision 20191018
including:
* Fixes for Clang warnings (Bob Moore)
* Fix for possible overflow in get_tick_count() (Bob Moore)
* Introduction of acpi_unload_table() (Bob Moore)
* Debugger and utilities updates (Erik Schmauss)
* Fix for unloading tables loaded via configfs (Nikolaus Voss)
- Add support for EFI specific purpose memory to optionally allow
either application-exclusive or core-kernel-mm managed access to
differentiated memory (Dan Williams)
- Fix and clean up processing of the HMAT table (Brice Goglin, Qian
Cai, Tao Xu)
- Update the ACPI EC driver to make it work on systems with
hardware-reduced ACPI (Daniel Drake)
- Always build in support for the Generic Event Device (GED) to allow
one kernel binary to work both on systems with full hardware ACPI
and hardware-reduced ACPI (Arjan van de Ven)
- Fix the table unload mechanism to unregister platform devices
created when the given table was loaded (Andy Shevchenko)
- Rework the lid blacklist handling in the button driver and add more
lid quirks to it (Hans de Goede)
- Improve ACPI-based device enumeration for some platforms based on
Intel BayTrail SoCs (Hans de Goede)
- Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC and
prevent handlers from being registered for unhandled PMIC OpRegions
(Hans de Goede)
- Unify ACPI _HID/_UID matching (Andy Shevchenko)
- Clean up documentation and comments (Cao jin, James Pack, Kacper
Piwiński)"
* tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits)
ACPI: OSI: Shoot duplicate word
ACPI: HMAT: use %u instead of %d to print u32 values
ACPI: NUMA: HMAT: fix a section mismatch
ACPI: HMAT: don't mix pxm and nid when setting memory target processor_pxm
ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device
ACPI: NUMA: HMAT: Register HMAT at device_initcall level
device-dax: Add a driver for "hmem" devices
dax: Fix alloc_dax_region() compile warning
lib: Uplevel the pmem "region" ida to a global allocator
x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP
arm/efi: EFI soft reservation to memblock
x86/efi: EFI soft reservation to E820 enumeration
efi: Common enable/disable infrastructure for EFI soft reservation
x86/efi: Push EFI_MEMMAP check into leaf routines
efi: Enumerate EFI_MEMORY_SP
ACPI: NUMA: Establish a new drivers/acpi/numa/ directory
ACPICA: Update version to 20191018
ACPICA: debugger: remove leading whitespaces when converting a string to a buffer
ACPICA: acpiexec: initialize all simple types and field units from user input
ACPICA: debugger: add field unit support for acpi_db_get_next_token
...
Pull EFI updates from Ingo Molnar:
"The main changes in this cycle were:
- Wire up the EFI RNG code for x86. This enables an additional source
of entropy during early boot.
- Enable the TPM event log code on ARM platforms.
- Update Ard's email address"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
efi: libstub/tpm: enable tpm eventlog function for ARM platforms
x86: efi/random: Invoke EFI_RNG_PROTOCOL to seed the UEFI RNG table
efi/random: use arch-independent efi_call_proto()
MAINTAINERS: update Ard's email address to @kernel.org
Pull x86 asm updates from Ingo Molnar:
"The main changes in this cycle were:
- Cross-arch changes to move the linker sections for NOTES and
EXCEPTION_TABLE into the RO_DATA area, where they belong on most
architectures. (Kees Cook)
- Switch the x86 linker fill byte from x90 (NOP) to 0xcc (INT3), to
trap jumps into the middle of those padding areas instead of
sliding execution. (Kees Cook)
- A thorough cleanup of symbol definitions within x86 assembler code.
The rather randomly named macros got streamlined around a
(hopefully) straightforward naming scheme:
SYM_START(name, linkage, align...)
SYM_END(name, sym_type)
SYM_FUNC_START(name)
SYM_FUNC_END(name)
SYM_CODE_START(name)
SYM_CODE_END(name)
SYM_DATA_START(name)
SYM_DATA_END(name)
etc - with about three times of these basic primitives with some
label, local symbol or attribute variant, expressed via postfixes.
No change in functionality intended. (Jiri Slaby)
- Misc other changes, cleanups and smaller fixes"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
x86/entry/64: Remove pointless jump in paranoid_exit
x86/entry/32: Remove unused resume_userspace label
x86/build/vdso: Remove meaningless CFLAGS_REMOVE_*.o
m68k: Convert missed RODATA to RO_DATA
x86/vmlinux: Use INT3 instead of NOP for linker fill bytes
x86/mm: Report actual image regions in /proc/iomem
x86/mm: Report which part of kernel image is freed
x86/mm: Remove redundant address-of operators on addresses
xtensa: Move EXCEPTION_TABLE to RO_DATA segment
powerpc: Move EXCEPTION_TABLE to RO_DATA segment
parisc: Move EXCEPTION_TABLE to RO_DATA segment
microblaze: Move EXCEPTION_TABLE to RO_DATA segment
ia64: Move EXCEPTION_TABLE to RO_DATA segment
h8300: Move EXCEPTION_TABLE to RO_DATA segment
c6x: Move EXCEPTION_TABLE to RO_DATA segment
arm64: Move EXCEPTION_TABLE to RO_DATA segment
alpha: Move EXCEPTION_TABLE to RO_DATA segment
x86/vmlinux: Move EXCEPTION_TABLE to RO_DATA segment
x86/vmlinux: Actually use _etext for the end of the text segment
vmlinux.lds.h: Allow EXCEPTION_TABLE to live in RO_DATA
...
Pull x86 boot updates from Ingo Molnar:
"The main changes were:
- Extend the boot protocol to allow future extensions without hitting
the setup_header size limit.
- Add quirk to devicetree systems to disable the RTC unless it's
listed as a supported device.
- Fix ld.lld linker pedantry"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Introduce setup_indirect
x86/boot: Introduce kernel_info.setup_type_max
x86/boot: Introduce kernel_info
x86/init: Allow DT configured systems to disable RTC at boot time
x86/realmode: Explicitly set entry point via ENTRY in linker script
The setup_data is a bit awkward to use for extremely large data objects,
both because the setup_data header has to be adjacent to the data object
and because it has a 32-bit length field. However, it is important that
intermediate stages of the boot process have a way to identify which
chunks of memory are occupied by kernel data. Thus introduce an uniform
way to specify such indirect data as setup_indirect struct and
SETUP_INDIRECT type.
And finally bump setup_header version in arch/x86/boot/header.S.
Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: ard.biesheuvel@linaro.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: dave.hansen@linux.intel.com
Cc: eric.snowberg@oracle.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: kanth.ghatraju@oracle.com
Cc: linux-doc@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: rdunlap@infradead.org
Cc: ross.philipson@oracle.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20191112134640.16035-4-daniel.kiper@oracle.com
This field contains maximal allowed type for setup_data.
Do not bump setup_header version in arch/x86/boot/header.S because it
will be followed by additional changes coming into the Linux/x86 boot
protocol.
Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: ard.biesheuvel@linaro.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: dave.hansen@linux.intel.com
Cc: eric.snowberg@oracle.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: kanth.ghatraju@oracle.com
Cc: linux-doc@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: rdunlap@infradead.org
Cc: ross.philipson@oracle.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20191112134640.16035-3-daniel.kiper@oracle.com
The relationships between the headers are analogous to the various data
sections:
setup_header = .data
boot_params/setup_data = .bss
What is missing from the above list? That's right:
kernel_info = .rodata
We have been (ab)using .data for things that could go into .rodata or .bss for
a long time, for lack of alternatives and -- especially early on -- inertia.
Also, the BIOS stub is responsible for creating boot_params, so it isn't
available to a BIOS-based loader (setup_data is, though).
setup_header is permanently limited to 144 bytes due to the reach of the
2-byte jump field, which doubles as a length field for the structure, combined
with the size of the "hole" in struct boot_params that a protected-mode loader
or the BIOS stub has to copy it into. It is currently 119 bytes long, which
leaves us with 25 very precious bytes. This isn't something that can be fixed
without revising the boot protocol entirely, breaking backwards compatibility.
boot_params proper is limited to 4096 bytes, but can be arbitrarily extended
by adding setup_data entries. It cannot be used to communicate properties of
the kernel image, because it is .bss and has no image-provided content.
kernel_info solves this by providing an extensible place for information about
the kernel image. It is readonly, because the kernel cannot rely on a
bootloader copying its contents anywhere, but that is OK; if it becomes
necessary it can still contain data items that an enabled bootloader would be
expected to copy into a setup_data chunk.
Do not bump setup_header version in arch/x86/boot/header.S because it
will be followed by additional changes coming into the Linux/x86 boot
protocol.
Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: ard.biesheuvel@linaro.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: dave.hansen@linux.intel.com
Cc: eric.snowberg@oracle.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: kanth.ghatraju@oracle.com
Cc: linux-doc@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: rdunlap@infradead.org
Cc: ross.philipson@oracle.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20191112134640.16035-2-daniel.kiper@oracle.com
Given that EFI_MEMORY_SP is platform BIOS policy decision for marking
memory ranges as "reserved for a specific purpose" there will inevitably
be scenarios where the BIOS omits the attribute in situations where it
is desired. Unlike other attributes if the OS wants to reserve this
memory from the kernel the reservation needs to happen early in init. So
early, in fact, that it needs to happen before e820__memblock_setup()
which is a pre-requisite for efi_fake_memmap() that wants to allocate
memory for the updated table.
Introduce an x86 specific efi_fake_memmap_early() that can search for
attempts to set EFI_MEMORY_SP via efi_fake_mem and update the e820 table
accordingly.
The KASLR code that scans the command line looking for user-directed
memory reservations also needs to be updated to consider
"efi_fake_mem=nn@ss:0x40000" requests.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
UEFI 2.8 defines an EFI_MEMORY_SP attribute bit to augment the
interpretation of the EFI Memory Types as "reserved for a specific
purpose".
The proposed Linux behavior for specific purpose memory is that it is
reserved for direct-access (device-dax) by default and not available for
any kernel usage, not even as an OOM fallback. Later, through udev
scripts or another init mechanism, these device-dax claimed ranges can
be reconfigured and hot-added to the available System-RAM with a unique
node identifier. This device-dax management scheme implements "soft" in
the "soft reserved" designation by allowing some or all of the
reservation to be recovered as typical memory. This policy can be
disabled at compile-time with CONFIG_EFI_SOFT_RESERVE=n, or runtime with
efi=nosoftreserve.
This patch introduces 2 new concepts at once given the entanglement
between early boot enumeration relative to memory that can optionally be
reserved from the kernel page allocator by default. The new concepts
are:
- E820_TYPE_SOFT_RESERVED: Upon detecting the EFI_MEMORY_SP
attribute on EFI_CONVENTIONAL memory, update the E820 map with this
new type. Only perform this classification if the
CONFIG_EFI_SOFT_RESERVE=y policy is enabled, otherwise treat it as
typical ram.
- IORES_DESC_SOFT_RESERVED: Add a new I/O resource descriptor for
a device driver to search iomem resources for application specific
memory. Teach the iomem code to identify such ranges as "Soft Reserved".
Note that the comment for do_add_efi_memmap() needed refreshing since it
seemed to imply that the efi map might overflow the e820 table, but that
is not an issue as of commit 7b6e4ba3cb "x86/boot/e820: Clean up the
E820_X_MAX definition" that removed the 128 entry limit for
e820__range_add().
A follow-on change integrates parsing of the ACPI HMAT to identify the
node and sub-range boundaries of EFI_MEMORY_SP designated memory. For
now, just identify and reserve memory of this type.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reported-by: kbuild test robot <lkp@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Invoke the EFI_RNG_PROTOCOL protocol in the context of the x86 EFI stub,
same as is done on arm/arm64 since commit 568bc4e870 ("efi/arm*/libstub:
Invoke EFI_RNG_PROTOCOL to seed the UEFI RNG table"). Within the stub,
a Linux-specific RNG seed UEFI config table will be seeded. The EFI routines
in the core kernel will pick that up later, yet still early during boot,
to seed the kernel entropy pool. If CONFIG_RANDOM_TRUST_BOOTLOADER, entropy
is credited for this seed.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Currently, kernel fails to boot on some HyperV VMs when using EFI.
And it's a potential issue on all x86 platforms.
It's caused by broken kernel relocation on EFI systems, when below three
conditions are met:
1. Kernel image is not loaded to the default address (LOAD_PHYSICAL_ADDR)
by the loader.
2. There isn't enough room to contain the kernel, starting from the
default load address (eg. something else occupied part the region).
3. In the memmap provided by EFI firmware, there is a memory region
starts below LOAD_PHYSICAL_ADDR, and suitable for containing the
kernel.
EFI stub will perform a kernel relocation when condition 1 is met. But
due to condition 2, EFI stub can't relocate kernel to the preferred
address, so it fallback to ask EFI firmware to alloc lowest usable memory
region, got the low region mentioned in condition 3, and relocated
kernel there.
It's incorrect to relocate the kernel below LOAD_PHYSICAL_ADDR. This
is the lowest acceptable kernel relocation address.
The first thing goes wrong is in arch/x86/boot/compressed/head_64.S.
Kernel decompression will force use LOAD_PHYSICAL_ADDR as the output
address if kernel is located below it. Then the relocation before
decompression, which move kernel to the end of the decompression buffer,
will overwrite other memory region, as there is no enough memory there.
To fix it, just don't let EFI stub relocate the kernel to any address
lower than lowest acceptable address.
[ ardb: introduce efi_low_alloc_above() to reduce the scope of the change ]
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: https://lkml.kernel.org/r/20191029173755.27149-6-ardb@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When building with "EXTRA_CFLAGS=-Wall" gcc warns:
arch/x86/boot/compressed/acpi.c:29:30: warning: get_cmdline_acpi_rsdp defined but not used [-Wunused-function]
get_cmdline_acpi_rsdp() is only used when CONFIG_RANDOMIZE_BASE and
CONFIG_MEMORY_HOTREMOVE are both enabled, so any build where one of these
config options is disabled has this issue.
Move the function under the same ifdef guard as the call site.
[ tglx: Add context to the changelog so it becomes useful ]
Fixes: 41fa1ee9c6 ("acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1569719633-32164-1-git-send-email-zhenzhong.duan@oracle.com
These are all functions which are invoked from elsewhere, so annotate
them as global using the new SYM_FUNC_START and their ENDPROC's by
SYM_FUNC_END.
Now, ENTRY/ENDPROC can be forced to be undefined on X86, so do so.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Allison Randal <allison@lohutok.net>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Shevchenko <andy@infradead.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Bill Metzenthen <billm@melbpc.org.au>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-crypto@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: platform-driver-x86@vger.kernel.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191011115108.12392-28-jslaby@suse.cz
These are all functions which are invoked from elsewhere, so annotate
them as global using the new SYM_FUNC_START and their ENDPROC's by
SYM_FUNC_END.
Make sure ENTRY/ENDPROC is not defined on X86_64, given these were the
last users.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [hibernate]
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen bits]
Acked-by: Herbert Xu <herbert@gondor.apana.org.au> [crypto]
Cc: Allison Randal <allison@lohutok.net>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Shevchenko <andy@infradead.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Armijn Hemel <armijn@tjaldur.nl>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Enrico Weigelt <info@metux.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-crypto@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: platform-driver-x86@vger.kernel.org
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Wei Huang <wei@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Cc: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Link: https://lkml.kernel.org/r/20191011115108.12392-25-jslaby@suse.cz
All these are functions which are invoked from elsewhere but they are
not typical C functions. So annotate them using the new SYM_CODE_START.
All these were not balanced with any END, so mark their ends by
SYM_CODE_END appropriately too.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen bits]
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [power mgmt]
Cc: Andy Shevchenko <andy@infradead.org>
Cc: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: platform-driver-x86@vger.kernel.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Huang <wei@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Cc: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Link: https://lkml.kernel.org/r/20191011115108.12392-23-jslaby@suse.cz
There are a couple of assembly functions which are invoked only locally
in the file they are defined. In C, they are marked "static". In
assembly, annotate them using SYM_{FUNC,CODE}_START_LOCAL (and switch
their ENDPROC to SYM_{FUNC,CODE}_END too). Whether FUNC or CODE is used,
depends on whether ENDPROC or END was used for a particular function
before.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Shevchenko <andy@infradead.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: linux-efi@vger.kernel.org
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: platform-driver-x86@vger.kernel.org
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20191011115108.12392-21-jslaby@suse.cz