Commit Graph

4428 Commits

Author SHA1 Message Date
Tianyu Lan
37b95951c5 KVM/x86: Fix wrong macro references of X86_CR0_PG_BIT and X86_CR4_PAE_BIT in kvm_valid_sregs()
kvm_valid_sregs() should use X86_CR0_PG and X86_CR4_PAE to check bit
status rather than X86_CR0_PG_BIT and X86_CR4_PAE_BIT. This patch is
to fix it.

Fixes: f29810335965a(KVM/x86: Check input paging mode when cs.l is set)
Reported-by: Jeremi Piotrowski <jeremi.piotrowski@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-17 15:01:11 +01:00
Linus Torvalds
40548c6b6c Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti updates from Thomas Gleixner:
 "This contains:

   - a PTI bugfix to avoid setting reserved CR3 bits when PCID is
     disabled. This seems to cause issues on a virtual machine at least
     and is incorrect according to the AMD manual.

   - a PTI bugfix which disables the perf BTS facility if PTI is
     enabled. The BTS AUX buffer is not globally visible and causes the
     CPU to fault when the mapping disappears on switching CR3 to user
     space. A full fix which restores BTS on PTI is non trivial and will
     be worked on.

   - PTI bugfixes for EFI and trusted boot which make sure that the user
     space visible page table entries have the NX bit cleared

   - removal of dead code in the PTI pagetable setup functions

   - add PTI documentation

   - add a selftest for vsyscall to verify that the kernel actually
     implements what it advertises.

   - a sysfs interface to expose vulnerability and mitigation
     information so there is a coherent way for users to retrieve the
     status.

   - the initial spectre_v2 mitigations, aka retpoline:

      + The necessary ASM thunk and compiler support

      + The ASM variants of retpoline and the conversion of affected ASM
        code

      + Make LFENCE serializing on AMD so it can be used as speculation
        trap

      + The RSB fill after vmexit

   - initial objtool support for retpoline

  As I said in the status mail this is the most of the set of patches
  which should go into 4.15 except two straight forward patches still on
  hold:

   - the retpoline add on of LFENCE which waits for ACKs

   - the RSB fill after context switch

  Both should be ready to go early next week and with that we'll have
  covered the major holes of spectre_v2 and go back to normality"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
  x86,perf: Disable intel_bts when PTI
  security/Kconfig: Correct the Documentation reference for PTI
  x86/pti: Fix !PCID and sanitize defines
  selftests/x86: Add test_vsyscall
  x86/retpoline: Fill return stack buffer on vmexit
  x86/retpoline/irq32: Convert assembler indirect jumps
  x86/retpoline/checksum32: Convert assembler indirect jumps
  x86/retpoline/xen: Convert Xen hypercall indirect jumps
  x86/retpoline/hyperv: Convert assembler indirect jumps
  x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
  x86/retpoline/entry: Convert entry assembler indirect jumps
  x86/retpoline/crypto: Convert crypto assembler indirect jumps
  x86/spectre: Add boot time option to select Spectre v2 mitigation
  x86/retpoline: Add initial retpoline support
  objtool: Allow alternatives to be ignored
  objtool: Detect jumps to retpoline thunks
  x86/pti: Make unpoison of pgd for trusted boot work for real
  x86/alternatives: Fix optimize_nops() checking
  sysfs/cpu: Fix typos in vulnerability documentation
  x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
  ...
2018-01-14 09:51:25 -08:00
David Woodhouse
117cc7a908 x86/retpoline: Fill return stack buffer on vmexit
In accordance with the Intel and AMD documentation, we need to overwrite
all entries in the RSB on exiting a guest, to prevent malicious branch
target predictions from affecting the host kernel. This is needed both
for retpoline and for IBRS.

[ak: numbers again for the RSB stuffing labels]

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515755487-8524-1-git-send-email-dwmw@amazon.co.uk
2018-01-12 12:33:37 +01:00
Paolo Bonzini
2aad9b3e07 Merge branch 'kvm-insert-lfence' into kvm-master
Topic branch for CVE-2017-5753, avoiding conflicts in the next merge window.
2018-01-11 18:20:48 +01:00
Andrew Honig
75f139aaf8 KVM: x86: Add memory barrier on vmcs field lookup
This adds a memory barrier when performing a lookup into
the vmcs_field_to_offset_table.  This is related to
CVE-2017-5753.

Signed-off-by: Andrew Honig <ahonig@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-11 18:20:31 +01:00
Paolo Bonzini
bd89525a82 KVM: x86: emulate #UD while in guest mode
This reverts commits ae1f576707
and ac9b305caa.

If the hardware doesn't support MOVBE, but L0 sets CPUID.01H:ECX.MOVBE
in L1's emulated CPUID information, then L1 is likely to pass that
CPUID bit through to L2. L2 will expect MOVBE to work, but if L1
doesn't intercept #UD, then any MOVBE instruction executed in L2 will
raise #UD, and the exception will be delivered in L2.

Commit ac9b305caa is a better and more
complete version of ae1f576707 ("KVM: nVMX: Do not emulate #UD while
in guest mode"); however, neither considers the above case.

Suggested-by: Jim Mattson <jmattson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-11 16:55:24 +01:00
Arnd Bergmann
ab271bd4df x86: kvm: propagate register_shrinker return code
Patch "mm,vmscan: mark register_shrinker() as __must_check" is
queued for 4.16 in linux-mm and adds a warning about the unchecked
call to register_shrinker:

arch/x86/kvm/mmu.c:5485:2: warning: ignoring return value of 'register_shrinker', declared with attribute warn_unused_result [-Wunused-result]

This changes the kvm_mmu_module_init() function to fail itself
when the call to register_shrinker fails.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-11 16:53:13 +01:00
Haozhong Zhang
2a266f2355 KVM MMU: check pending exception before injecting APF
For example, when two APF's for page ready happen after one exit and
the first one becomes pending, the second one will result in #DF.
Instead, just handle the second page fault synchronously.

Reported-by: Ross Zwisler <zwisler@gmail.com>
Message-ID: <CAOxpaSUBf8QoOZQ1p4KfUp0jq76OKfGY4Uxs-Gg8ngReD99xww@mail.gmail.com>
Reported-by: Alec Blayne <ab@tevsa.net>
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-11 14:05:19 +01:00
Linus Torvalds
5b6c02f383 KVM fixes for v4.15-rc7
s390:
 * Two fixes for potential bitmap overruns in the cmma migration code
 
 x86:
 * Clear guest provided GPRs to defeat the Project Zero PoC for CVE
   2017-5715
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJaUTJ4AAoJEED/6hsPKofohk0IAJAFlMG66u5MxC0kSM61U4Zf
 1vkzRwAkBbcN82LpGQKbqabVyTq0F3aLipyOn6WO5SN0K5m+OI2OV/aAroPyX8bI
 F7nWIqTXLhJ9X6KXINFvyavHMprvWl8PA72tR/B/7GhhfShrZ2wGgqhl0vv/kCUK
 /8q+5e693yJqw8ceemin9a6kPJrLpmjeH+Oy24KIlGbvJWV4UrIE86pRHnAnBtg8
 L7Vbxn5+ezKmakvBh+zF8NKcD1zHDcmQZHoYFPsQT0vX5GPoYqT2bcO6gsh1Grmp
 8ti6KkrnP+j2A/OEna4LBWfwKI/1xHXneB22BYrAxvNjHt+R4JrjaPpx82SEB4Y=
 =URMR
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Radim Krčmář:
 "s390:
   - Two fixes for potential bitmap overruns in the cmma migration code

  x86:
   - Clear guest provided GPRs to defeat the Project Zero PoC for CVE
     2017-5715"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  kvm: vmx: Scrub hardware GPRs at VM-exit
  KVM: s390: prevent buffer overrun on memory hotplug during migration
  KVM: s390: fix cmma migration for multiple memory slots
2018-01-06 17:05:05 -08:00
Jim Mattson
0cb5b30698 kvm: vmx: Scrub hardware GPRs at VM-exit
Guest GPR values are live in the hardware GPRs at VM-exit.  Do not
leave any guest values in hardware GPRs after the guest GPR values are
saved to the vcpu_vmx structure.

This is a partial mitigation for CVE 2017-5715 and CVE 2017-5753.
Specifically, it defeats the Project Zero PoC for CVE 2017-5715.

Suggested-by: Eric Northup <digitaleric@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Eric Northup <digitaleric@google.com>
Reviewed-by: Benjamin Serebrin <serebrin@google.com>
Reviewed-by: Andrew Honig <ahonig@google.com>
[Paolo: Add AMD bits, Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-05 16:48:40 +01:00
Linus Torvalds
409232a450 ARM fixes:
- A bug in handling of SPE state for non-vhe systems
 - A fix for a crash on system shutdown
 - Three timer fixes, introduced by the timer optimizations for v4.15
 
 x86 fixes:
 - fix for a WARN that was introduced in 4.15
 - fix for SMM when guest uses PCID
 - fixes for several bugs found by syzkaller
 
 ... and a dozen papercut fixes for the kvm_stat tool.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJaO6N9AAoJEL/70l94x66DC1wH/Rf+u0Cj6ZQil6LK6Nf8bfPd
 3TqrwrxUDeXwi8GzsvK14izBr1mDzidSHIO0Q4XINFRSRdaf43h3R2im/SJqvNhP
 xktCmJI2CxN96oaC7kIExgwf3YKhFdLIADfbT8oR9p3xZG/+c97dkr3b4XtmVCDb
 ZXdUEOcKnoW4zwpfJN30FLlq4OwYvuYVz02AEfPivZRDfhhus/TYSnuSdxH8CLNf
 75ymuKyXoo/RELbimwbMk8Cm9+ey7PjlUGOgbnbXIFtmgznXhLzAOeES2B+46J5b
 sMBPlmiJrn6N//lM18CC5yOBzBLGsYOoXggtw4aU/5nM4GVcFebWedpcoD4D8Jw=
 =Bt8w
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Paolo Bonzini:
 "ARM fixes:
   - A bug in handling of SPE state for non-vhe systems
   - A fix for a crash on system shutdown
   - Three timer fixes, introduced by the timer optimizations for v4.15

  x86 fixes:
   - fix for a WARN that was introduced in 4.15
   - fix for SMM when guest uses PCID
   - fixes for several bugs found by syzkaller

  ... and a dozen papercut fixes for the kvm_stat tool"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits)
  tools/kvm_stat: sort '-f help' output
  kvm: x86: fix RSM when PCID is non-zero
  KVM: Fix stack-out-of-bounds read in write_mmio
  KVM: arm/arm64: Fix timer enable flow
  KVM: arm/arm64: Properly handle arch-timer IRQs after vtimer_save_state
  KVM: arm/arm64: timer: Don't set irq as forwarded if no usable GIC
  KVM: arm/arm64: Fix HYP unmapping going off limits
  arm64: kvm: Prevent restoring stale PMSCR_EL1 for vcpu
  KVM/x86: Check input paging mode when cs.l is set
  tools/kvm_stat: add line for totals
  tools/kvm_stat: stop ignoring unhandled arguments
  tools/kvm_stat: suppress usage information on command line errors
  tools/kvm_stat: handle invalid regular expressions
  tools/kvm_stat: add hint on '-f help' to man page
  tools/kvm_stat: fix child trace events accounting
  tools/kvm_stat: fix extra handling of 'help' with fields filter
  tools/kvm_stat: fix missing field update after filter change
  tools/kvm_stat: fix drilldown in events-by-guests mode
  tools/kvm_stat: fix command line option '-g'
  kvm: x86: fix WARN due to uninitialized guest FPU state
  ...
2017-12-21 10:44:13 -08:00
Paolo Bonzini
fae1a3e775 kvm: x86: fix RSM when PCID is non-zero
rsm_load_state_64() and rsm_enter_protected_mode() load CR3, then
CR4 & ~PCIDE, then CR0, then CR4.

However, setting CR4.PCIDE fails if CR3[11:0] != 0.  It's probably easier
in the long run to replace rsm_enter_protected_mode() with an emulator
callback that sets all the special registers (like KVM_SET_SREGS would
do).  For now, set the PCID field of CR3 only after CR4.PCIDE is 1.

Reported-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
Fixes: 660a5d517a
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-21 12:59:54 +01:00
Linus Torvalds
64a48099b3 Merge branch 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 syscall entry code changes for PTI from Ingo Molnar:
 "The main changes here are Andy Lutomirski's changes to switch the
  x86-64 entry code to use the 'per CPU entry trampoline stack'. This,
  besides helping fix KASLR leaks (the pending Page Table Isolation
  (PTI) work), also robustifies the x86 entry code"

* 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
  x86/cpufeatures: Make CPU bugs sticky
  x86/paravirt: Provide a way to check for hypervisors
  x86/paravirt: Dont patch flush_tlb_single
  x86/entry/64: Make cpu_entry_area.tss read-only
  x86/entry: Clean up the SYSENTER_stack code
  x86/entry/64: Remove the SYSENTER stack canary
  x86/entry/64: Move the IST stacks into struct cpu_entry_area
  x86/entry/64: Create a per-CPU SYSCALL entry trampoline
  x86/entry/64: Return to userspace from the trampoline stack
  x86/entry/64: Use a per-CPU trampoline stack for IDT entries
  x86/espfix/64: Stop assuming that pt_regs is on the entry stack
  x86/entry/64: Separate cpu_current_top_of_stack from TSS.sp0
  x86/entry: Remap the TSS into the CPU entry area
  x86/entry: Move SYSENTER_stack to the beginning of struct tss_struct
  x86/dumpstack: Handle stack overflow on all stacks
  x86/entry: Fix assumptions that the HW TSS is at the beginning of cpu_tss
  x86/kasan/64: Teach KASAN about the cpu_entry_area
  x86/mm/fixmap: Generalize the GDT fixmap mechanism, introduce struct cpu_entry_area
  x86/entry/gdt: Put per-CPU GDT remaps in ascending order
  x86/dumpstack: Add get_stack_info() support for the SYSENTER stack
  ...
2017-12-18 08:59:15 -08:00
Wanpeng Li
e39d200fa5 KVM: Fix stack-out-of-bounds read in write_mmio
Reported by syzkaller:

  BUG: KASAN: stack-out-of-bounds in write_mmio+0x11e/0x270 [kvm]
  Read of size 8 at addr ffff8803259df7f8 by task syz-executor/32298

  CPU: 6 PID: 32298 Comm: syz-executor Tainted: G           OE    4.15.0-rc2+ #18
  Hardware name: LENOVO ThinkCentre M8500t-N000/SHARKBAY, BIOS FBKTC1AUS 02/16/2016
  Call Trace:
   dump_stack+0xab/0xe1
   print_address_description+0x6b/0x290
   kasan_report+0x28a/0x370
   write_mmio+0x11e/0x270 [kvm]
   emulator_read_write_onepage+0x311/0x600 [kvm]
   emulator_read_write+0xef/0x240 [kvm]
   emulator_fix_hypercall+0x105/0x150 [kvm]
   em_hypercall+0x2b/0x80 [kvm]
   x86_emulate_insn+0x2b1/0x1640 [kvm]
   x86_emulate_instruction+0x39a/0xb90 [kvm]
   handle_exception+0x1b4/0x4d0 [kvm_intel]
   vcpu_enter_guest+0x15a0/0x2640 [kvm]
   kvm_arch_vcpu_ioctl_run+0x549/0x7d0 [kvm]
   kvm_vcpu_ioctl+0x479/0x880 [kvm]
   do_vfs_ioctl+0x142/0x9a0
   SyS_ioctl+0x74/0x80
   entry_SYSCALL_64_fastpath+0x23/0x9a

The path of patched vmmcall will patch 3 bytes opcode 0F 01 C1(vmcall)
to the guest memory, however, write_mmio tracepoint always prints 8 bytes
through *(u64 *)val since kvm splits the mmio access into 8 bytes. This
leaks 5 bytes from the kernel stack (CVE-2017-17741).  This patch fixes
it by just accessing the bytes which we operate on.

Before patch:

syz-executor-5567  [007] .... 51370.561696: kvm_mmio: mmio write len 3 gpa 0x10 val 0x1ffff10077c1010f

After patch:

syz-executor-13416 [002] .... 51302.299573: kvm_mmio: mmio write len 3 gpa 0x10 val 0xc1010f

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-18 12:57:01 +01:00
Andy Lutomirski
72f5e08dbb x86/entry: Remap the TSS into the CPU entry area
This has a secondary purpose: it puts the entry stack into a region
with a well-controlled layout.  A subsequent patch will take
advantage of this to streamline the SYSCALL entry code to be able to
find it more easily.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.962042855@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 13:59:56 +01:00
Andy Lutomirski
7fb983b4dd x86/entry: Fix assumptions that the HW TSS is at the beginning of cpu_tss
A future patch will move SYSENTER_stack to the beginning of cpu_tss
to help detect overflow.  Before this can happen, fix several code
paths that hardcode assumptions about the old layout.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.722425540@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 13:59:55 +01:00
Lan Tianyu
f298103359 KVM/x86: Check input paging mode when cs.l is set
Reported by syzkaller:
    WARNING: CPU: 0 PID: 27962 at arch/x86/kvm/emulate.c:5631 x86_emulate_insn+0x557/0x15f0 [kvm]
    Modules linked in: kvm_intel kvm [last unloaded: kvm]
    CPU: 0 PID: 27962 Comm: syz-executor Tainted: G    B   W        4.15.0-rc2-next-20171208+ #32
    Hardware name: Intel Corporation S1200SP/S1200SP, BIOS S1200SP.86B.01.03.0006.040720161253 04/07/2016
    RIP: 0010:x86_emulate_insn+0x557/0x15f0 [kvm]
    RSP: 0018:ffff8807234476d0 EFLAGS: 00010282
    RAX: 0000000000000000 RBX: ffff88072d0237a0 RCX: ffffffffa0065c4d
    RDX: 1ffff100e5a046f9 RSI: 0000000000000003 RDI: ffff88072d0237c8
    RBP: ffff880723447728 R08: ffff88072d020000 R09: ffffffffa008d240
    R10: 0000000000000002 R11: ffffed00e7d87db3 R12: ffff88072d0237c8
    R13: ffff88072d023870 R14: ffff88072d0238c2 R15: ffffffffa008d080
    FS:  00007f8a68666700(0000) GS:ffff880802200000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: 000000002009506c CR3: 000000071fec4005 CR4: 00000000003626f0
    Call Trace:
     x86_emulate_instruction+0x3bc/0xb70 [kvm]
     ? reexecute_instruction.part.162+0x130/0x130 [kvm]
     vmx_handle_exit+0x46d/0x14f0 [kvm_intel]
     ? trace_event_raw_event_kvm_entry+0xe7/0x150 [kvm]
     ? handle_vmfunc+0x2f0/0x2f0 [kvm_intel]
     ? wait_lapic_expire+0x25/0x270 [kvm]
     vcpu_enter_guest+0x720/0x1ef0 [kvm]
     ...

When CS.L is set, vcpu should run in the 64 bit paging mode.
Current kvm set_sregs function doesn't have such check when
userspace inputs sreg values. This will lead unexpected behavior.
This patch is to add checks for CS.L, EFER.LME, EFER.LMA and
CR4.PAE when get SREG inputs from userspace in order to avoid
unexpected behavior.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Tianyu Lan <tianyu.lan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-15 10:01:46 +01:00
Peter Xu
5663d8f9bb kvm: x86: fix WARN due to uninitialized guest FPU state
------------[ cut here ]------------
 Bad FPU state detected at kvm_put_guest_fpu+0xd8/0x2d0 [kvm], reinitializing FPU registers.
 WARNING: CPU: 1 PID: 4594 at arch/x86/mm/extable.c:103 ex_handler_fprestore+0x88/0x90
 CPU: 1 PID: 4594 Comm: qemu-system-x86 Tainted: G    B      OE    4.15.0-rc2+ #10
 RIP: 0010:ex_handler_fprestore+0x88/0x90
 Call Trace:
  fixup_exception+0x4e/0x60
  do_general_protection+0xff/0x270
  general_protection+0x22/0x30
 RIP: 0010:kvm_put_guest_fpu+0xd8/0x2d0 [kvm]
 RSP: 0018:ffff8803d5627810 EFLAGS: 00010246
  kvm_vcpu_reset+0x3b4/0x3c0 [kvm]
  kvm_apic_accept_events+0x1c0/0x240 [kvm]
  kvm_arch_vcpu_ioctl_run+0x1658/0x2fb0 [kvm]
  kvm_vcpu_ioctl+0x479/0x880 [kvm]
  do_vfs_ioctl+0x142/0x9a0
  SyS_ioctl+0x74/0x80
  do_syscall_64+0x15f/0x600

where kvm_put_guest_fpu is called without a prior kvm_load_guest_fpu.
To fix it, move kvm_load_guest_fpu to the very beginning of
kvm_arch_vcpu_ioctl_run.

Cc: stable@vger.kernel.org
Fixes: f775b13eed
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:24:35 +01:00
Wanpeng Li
d73235d17b KVM: X86: Fix load RFLAGS w/o the fixed bit
*** Guest State ***
 CR0: actual=0x0000000000000030, shadow=0x0000000060000010, gh_mask=fffffffffffffff7
 CR4: actual=0x0000000000002050, shadow=0x0000000000000000, gh_mask=ffffffffffffe871
 CR3 = 0x00000000fffbc000
 RSP = 0x0000000000000000  RIP = 0x0000000000000000
 RFLAGS=0x00000000         DR7 = 0x0000000000000400
        ^^^^^^^^^^

The failed vmentry is triggered by the following testcase when ept=Y:

    #include <unistd.h>
    #include <sys/syscall.h>
    #include <string.h>
    #include <stdint.h>
    #include <linux/kvm.h>
    #include <fcntl.h>
    #include <sys/ioctl.h>

    long r[5];
    int main()
    {
    	r[2] = open("/dev/kvm", O_RDONLY);
    	r[3] = ioctl(r[2], KVM_CREATE_VM, 0);
    	r[4] = ioctl(r[3], KVM_CREATE_VCPU, 7);
    	struct kvm_regs regs = {
    		.rflags = 0,
    	};
    	ioctl(r[4], KVM_SET_REGS, &regs);
    	ioctl(r[4], KVM_RUN, 0);
    }

X86 RFLAGS bit 1 is fixed set, userspace can simply clearing bit 1
of RFLAGS with KVM_SET_REGS ioctl which results in vmentry fails.
This patch fixes it by oring X86_EFLAGS_FIXED during ioctl.

Cc: stable@vger.kernel.org
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Quan Xu <quan.xu0@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:24:26 +01:00
Wanpeng Li
ed52870f46 KVM: MMU: Fix infinite loop when there is no available mmu page
The below test case can cause infinite loop in kvm when ept=0.

    #include <unistd.h>
    #include <sys/syscall.h>
    #include <string.h>
    #include <stdint.h>
    #include <linux/kvm.h>
    #include <fcntl.h>
    #include <sys/ioctl.h>

    long r[5];
    int main()
    {
    	r[2] = open("/dev/kvm", O_RDONLY);
    	r[3] = ioctl(r[2], KVM_CREATE_VM, 0);
    	r[4] = ioctl(r[3], KVM_CREATE_VCPU, 7);
    	ioctl(r[4], KVM_RUN, 0);
    }

It doesn't setup the memory regions, mmu_alloc_shadow/direct_roots() in
kvm return 1 when kvm fails to allocate root page table which can result
in beblow infinite loop:

    vcpu_run() {
    	for (;;) {
	    	r = vcpu_enter_guest()::kvm_mmu_reload() returns 1
	    	if (r <= 0)
	    		break;
	    	if (need_resched())
	    		cond_resched();
      }
    }

This patch fixes it by returning -ENOSPC when there is no available kvm mmu
page for root page table.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 26eeb53cf0 (KVM: MMU: Bail out immediately if there is no available mmu page)
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:24:14 +01:00
Radim Krčmář
b1394e745b KVM: x86: fix APIC page invalidation
Implementation of the unpinned APIC page didn't update the VMCS address
cache when invalidation was done through range mmu notifiers.
This became a problem when the page notifier was removed.

Re-introduce the arch-specific helper and call it from ...range_start.

Reported-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Fixes: 38b9917350 ("kvm: vmx: Implement set_apic_access_page_addr")
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Cc: <stable@vger.kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Tested-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-06 16:10:34 +01:00
Jim Mattson
2895db67b0 KVM: VMX: fix page leak in hardware_setup()
vmx_io_bitmap_b should not be allocated twice.

Fixes: 2361133293 ("KVM: VMX: refactor setup of global page-sized bitmaps")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-05 22:34:49 +01:00
Andrew Honig
d59d51f088 KVM: VMX: remove I/O port 0x80 bypass on Intel hosts
This fixes CVE-2017-1000407.

KVM allows guests to directly access I/O port 0x80 on Intel hosts.  If
the guest floods this port with writes it generates exceptions and
instability in the host kernel, leading to a crash.  With this change
guest writes to port 0x80 on Intel will behave the same as they
currently behave on AMD systems.

Prevent the flooding by removing the code that sets port 0x80 as a
passthrough port.  This is essentially the same as upstream patch
99f85a28a7, except that patch was
for AMD chipsets and this patch is for Intel.

Signed-off-by: Andrew Honig <ahonig@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Fixes: fdef3ad1b3 ("KVM: VMX: Enable io bitmaps to avoid IO port 0x80 VMEXITs")
Cc: <stable@vger.kernel.org>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-05 22:32:51 +01:00
Rik van Riel
6ab0b9feb8 x86,kvm: remove KVM emulator get_fpu / put_fpu
Now that get_fpu and put_fpu do nothing, because the scheduler will
automatically load and restore the guest FPU context for us while we
are in this code (deep inside the vcpu_run main loop), we can get rid
of the get_fpu and put_fpu hooks.

Signed-off-by: Rik van Riel <riel@redhat.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-05 21:20:24 +01:00
Rik van Riel
f775b13eed x86,kvm: move qemu/guest FPU switching out to vcpu_run
Currently, every time a VCPU is scheduled out, the host kernel will
first save the guest FPU/xstate context, then load the qemu userspace
FPU context, only to then immediately save the qemu userspace FPU
context back to memory. When scheduling in a VCPU, the same extraneous
FPU loads and saves are done.

This could be avoided by moving from a model where the guest FPU is
loaded and stored with preemption disabled, to a model where the
qemu userspace FPU is swapped out for the guest FPU context for
the duration of the KVM_RUN ioctl.

This is done under the VCPU mutex, which is also taken when other
tasks inspect the VCPU FPU context, so the code should already be
safe for this change. That should come as no surprise, given that
s390 already has this optimization.

This can fix a bug where KVM calls get_user_pages while owning the
FPU, and the file system ends up requesting the FPU again:

    [258270.527947]  __warn+0xcb/0xf0
    [258270.527948]  warn_slowpath_null+0x1d/0x20
    [258270.527951]  kernel_fpu_disable+0x3f/0x50
    [258270.527953]  __kernel_fpu_begin+0x49/0x100
    [258270.527955]  kernel_fpu_begin+0xe/0x10
    [258270.527958]  crc32c_pcl_intel_update+0x84/0xb0
    [258270.527961]  crypto_shash_update+0x3f/0x110
    [258270.527968]  crc32c+0x63/0x8a [libcrc32c]
    [258270.527975]  dm_bm_checksum+0x1b/0x20 [dm_persistent_data]
    [258270.527978]  node_prepare_for_write+0x44/0x70 [dm_persistent_data]
    [258270.527985]  dm_block_manager_write_callback+0x41/0x50 [dm_persistent_data]
    [258270.527988]  submit_io+0x170/0x1b0 [dm_bufio]
    [258270.527992]  __write_dirty_buffer+0x89/0x90 [dm_bufio]
    [258270.527994]  __make_buffer_clean+0x4f/0x80 [dm_bufio]
    [258270.527996]  __try_evict_buffer+0x42/0x60 [dm_bufio]
    [258270.527998]  dm_bufio_shrink_scan+0xc0/0x130 [dm_bufio]
    [258270.528002]  shrink_slab.part.40+0x1f5/0x420
    [258270.528004]  shrink_node+0x22c/0x320
    [258270.528006]  do_try_to_free_pages+0xf5/0x330
    [258270.528008]  try_to_free_pages+0xe9/0x190
    [258270.528009]  __alloc_pages_slowpath+0x40f/0xba0
    [258270.528011]  __alloc_pages_nodemask+0x209/0x260
    [258270.528014]  alloc_pages_vma+0x1f1/0x250
    [258270.528017]  do_huge_pmd_anonymous_page+0x123/0x660
    [258270.528021]  handle_mm_fault+0xfd3/0x1330
    [258270.528025]  __get_user_pages+0x113/0x640
    [258270.528027]  get_user_pages+0x4f/0x60
    [258270.528063]  __gfn_to_pfn_memslot+0x120/0x3f0 [kvm]
    [258270.528108]  try_async_pf+0x66/0x230 [kvm]
    [258270.528135]  tdp_page_fault+0x130/0x280 [kvm]
    [258270.528149]  kvm_mmu_page_fault+0x60/0x120 [kvm]
    [258270.528158]  handle_ept_violation+0x91/0x170 [kvm_intel]
    [258270.528162]  vmx_handle_exit+0x1ca/0x1400 [kvm_intel]

No performance changes were detected in quick ping-pong tests on
my 4 socket system, which is expected since an FPU+xstate load is
on the order of 0.1us, while ping-ponging between CPUs is on the
order of 20us, and somewhat noisy.

Cc: stable@vger.kernel.org
Signed-off-by: Rik van Riel <riel@redhat.com>
Suggested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Fixed a bug where reset_vcpu called put_fpu without preceding load_fpu,
 which happened inside from KVM_CREATE_VCPU ioctl. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-05 21:16:43 +01:00
Jan H. Schönherr
20b7035c66 KVM: Let KVM_SET_SIGNAL_MASK work as advertised
KVM API says for the signal mask you set via KVM_SET_SIGNAL_MASK, that
"any unblocked signal received [...] will cause KVM_RUN to return with
-EINTR" and that "the signal will only be delivered if not blocked by
the original signal mask".

This, however, is only true, when the calling task has a signal handler
registered for a signal. If not, signal evaluation is short-circuited for
SIG_IGN and SIG_DFL, and the signal is either ignored without KVM_RUN
returning or the whole process is terminated.

Make KVM_SET_SIGNAL_MASK behave as advertised by utilizing logic similar
to that in do_sigtimedwait() to avoid short-circuiting of signals.

Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:53:47 +01:00
Wanpeng Li
b74558259c KVM: VMX: Fix vmx->nested freeing when no SMI handler
Reported by syzkaller:

   ------------[ cut here ]------------
   WARNING: CPU: 5 PID: 2939 at arch/x86/kvm/vmx.c:3844 free_loaded_vmcs+0x77/0x80 [kvm_intel]
   CPU: 5 PID: 2939 Comm: repro Not tainted 4.14.0+ #26
   RIP: 0010:free_loaded_vmcs+0x77/0x80 [kvm_intel]
   Call Trace:
    vmx_free_vcpu+0xda/0x130 [kvm_intel]
    kvm_arch_destroy_vm+0x192/0x290 [kvm]
    kvm_put_kvm+0x262/0x560 [kvm]
    kvm_vm_release+0x2c/0x30 [kvm]
    __fput+0x190/0x370
    task_work_run+0xa1/0xd0
    do_exit+0x4d2/0x13e0
    do_group_exit+0x89/0x140
    get_signal+0x318/0xb80
    do_signal+0x8c/0xb40
    exit_to_usermode_loop+0xe4/0x140
    syscall_return_slowpath+0x206/0x230
    entry_SYSCALL_64_fastpath+0x98/0x9a

The syzkaller testcase will execute VMXON/VMLAUCH instructions, so the
vmx->nested stuff is populated, it will also issue KVM_SMI ioctl. However,
the testcase is just a simple c program and not be lauched by something
like seabios which implements smi_handler. Commit 05cade71cf (KVM: nSVM:
fix SMI injection in guest mode) gets out of guest mode and set nested.vmxon
to false for the duration of SMM according to SDM 34.14.1 "leave VMX
operation" upon entering SMM. We can't alloc/free the vmx->nested stuff
each time when entering/exiting SMM since it will induce more overhead. So
the function vmx_pre_enter_smm() marks nested.vmxon false even if vmx->nested
stuff is still populated. What it expected is em_rsm() can mark nested.vmxon
to be true again. However, the smi_handler/rsm will not execute since there
is no something like seabios in this scenario. The function free_nested()
fails to free the vmx->nested stuff since the vmx->nested.vmxon is false
which results in the above warning.

This patch fixes it by also considering the no SMI handler case, luckily
vmx->nested.smm.vmxon is marked according to the value of vmx->nested.vmxon
in vmx_pre_enter_smm(), we can take advantage of it and free vmx->nested
stuff when L1 goes down.

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Fixes: 05cade71cf (KVM: nSVM: fix SMI injection in guest mode)
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:37:55 +01:00
Wanpeng Li
c37c28730b KVM: VMX: Fix rflags cache during vCPU reset
Reported by syzkaller:

   *** Guest State ***
   CR0: actual=0x0000000080010031, shadow=0x0000000060000010, gh_mask=fffffffffffffff7
   CR4: actual=0x0000000000002061, shadow=0x0000000000000000, gh_mask=ffffffffffffe8f1
   CR3 = 0x000000002081e000
   RSP = 0x000000000000fffa  RIP = 0x0000000000000000
   RFLAGS=0x00023000         DR7 = 0x00000000000000
          ^^^^^^^^^^
   ------------[ cut here ]------------
   WARNING: CPU: 6 PID: 24431 at /home/kernel/linux/arch/x86/kvm//x86.c:7302 kvm_arch_vcpu_ioctl_run+0x651/0x2ea0 [kvm]
   CPU: 6 PID: 24431 Comm: reprotest Tainted: G        W  OE   4.14.0+ #26
   RIP: 0010:kvm_arch_vcpu_ioctl_run+0x651/0x2ea0 [kvm]
   RSP: 0018:ffff880291d179e0 EFLAGS: 00010202
   Call Trace:
    kvm_vcpu_ioctl+0x479/0x880 [kvm]
    do_vfs_ioctl+0x142/0x9a0
    SyS_ioctl+0x74/0x80
    entry_SYSCALL_64_fastpath+0x23/0x9a

The failed vmentry is triggered by the following beautified testcase:

    #include <unistd.h>
    #include <sys/syscall.h>
    #include <string.h>
    #include <stdint.h>
    #include <linux/kvm.h>
    #include <fcntl.h>
    #include <sys/ioctl.h>

    long r[5];
    int main()
    {
        struct kvm_debugregs dr = { 0 };

        r[2] = open("/dev/kvm", O_RDONLY);
        r[3] = ioctl(r[2], KVM_CREATE_VM, 0);
        r[4] = ioctl(r[3], KVM_CREATE_VCPU, 7);
        struct kvm_guest_debug debug = {
                .control = 0xf0403,
                .arch = {
                        .debugreg[6] = 0x2,
                        .debugreg[7] = 0x2
                }
        };
        ioctl(r[4], KVM_SET_GUEST_DEBUG, &debug);
        ioctl(r[4], KVM_RUN, 0);
    }

which testcase tries to setup the processor specific debug
registers and configure vCPU for handling guest debug events through
KVM_SET_GUEST_DEBUG.  The KVM_SET_GUEST_DEBUG ioctl will get and set
rflags in order to set TF bit if single step is needed. All regs' caches
are reset to avail and GUEST_RFLAGS vmcs field is reset to 0x2 during vCPU
reset. However, the cache of rflags is not reset during vCPU reset. The
function vmx_get_rflags() returns an unreset rflags cache value since
the cache is marked avail, it is 0 after boot. Vmentry fails if the
rflags reserved bit 1 is 0.

This patch fixes it by resetting both the GUEST_RFLAGS vmcs field and
its cache to 0x2 during vCPU reset.

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:37:46 +01:00
Wanpeng Li
e70b57a6ce KVM: X86: Fix softlockup when get the current kvmclock
watchdog: BUG: soft lockup - CPU#6 stuck for 22s! [qemu-system-x86:10185]
 CPU: 6 PID: 10185 Comm: qemu-system-x86 Tainted: G           OE   4.14.0-rc4+ #4
 RIP: 0010:kvm_get_time_scale+0x4e/0xa0 [kvm]
 Call Trace:
  get_time_ref_counter+0x5a/0x80 [kvm]
  kvm_hv_process_stimers+0x120/0x5f0 [kvm]
  kvm_arch_vcpu_ioctl_run+0x4b4/0x1690 [kvm]
  kvm_vcpu_ioctl+0x33a/0x620 [kvm]
  do_vfs_ioctl+0xa1/0x5d0
  SyS_ioctl+0x79/0x90
  entry_SYSCALL_64_fastpath+0x1e/0xa9

This can be reproduced when running kvm-unit-tests/hyperv_stimer.flat and
cpu-hotplug stress simultaneously. __this_cpu_read(cpu_tsc_khz) returns 0
(set in kvmclock_cpu_down_prep()) when the pCPU is unhotplug which results
in kvm_get_time_scale() gets into an infinite loop.

This patch fixes it by treating the unhotplug pCPU as not using master clock.

Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:32:53 +01:00
Dr. David Alan Gilbert
12806ba937 KVM: lapic: Fixup LDR on load in x2apic
In x2apic mode the LDR is fixed based on the ID rather
than separately loadable like it was before x2.
When kvm_apic_set_state is called, the base is set, and if
it has the X2APIC_ENABLE flag set then the LDR is calculated;
however that value gets overwritten by the memcpy a few lines
below overwriting it with the value that came from userland.

The symptom is a lack of EOI after loading the state
(e.g. after a QEMU migration) and is due to the EOI bitmap
being wrong due to the incorrect LDR.  This was seen with
a Win2016 guest under Qemu with irqchip=split whose USB mouse
didn't work after a VM migration.

This corresponds to RH bug:
  https://bugzilla.redhat.com/show_bug.cgi?id=1502591

Reported-by: Yiqian Wei <yiwei@redhat.com>
Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: stable@vger.kernel.org
[Applied fixup from Liran Alon. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:32:53 +01:00
Dr. David Alan Gilbert
e872fa9466 KVM: lapic: Split out x2apic ldr calculation
Split out the ldr calculation from kvm_apic_set_x2apic_id
since we're about to reuse it in the following patch.

Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:32:52 +01:00
Paolo Bonzini
c4ad77e0d4 KVM: vmx: use X86_CR4_UMIP and X86_FEATURE_UMIP
These bits were not defined until now in common code, but they are
now that the kernel supports UMIP too.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-17 13:20:23 +01:00
Janakarajan Natarajan
50a671d4d1 KVM: x86: Fix CPUID function for word 6 (80000001_ECX)
The function for CPUID 80000001 ECX is set to 0xc0000001. Set it to
0x80000001.

Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Fixes: d6321d4933 ("KVM: x86: generalize guest_cpuid_has_ helpers")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:22 +01:00
Liran Alon
917dc6068b KVM: nVMX: Fix vmx_check_nested_events() return value in case an event was reinjected to L2
vmx_check_nested_events() should return -EBUSY only in case there is a
pending L1 event which requires a VMExit from L2 to L1 but such a
VMExit is currently blocked. Such VMExits are blocked either
because nested_run_pending=1 or an event was reinjected to L2.
vmx_check_nested_events() should return 0 in case there are no
pending L1 events which requires a VMExit from L2 to L1 or if
a VMExit from L2 to L1 was done internally.

However, upstream commit which introduced blocking in case an event was
reinjected to L2 (commit acc9ab6013 ("KVM: nVMX: Fix pending events
injection")) contains a bug: It returns -EBUSY even if there are no
pending L1 events which requires VMExit from L2 to L1.

This commit fix this issue.

Fixes: acc9ab6013 ("KVM: nVMX: Fix pending events injection")

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:21 +01:00
Nikita Leshenko
b200dded0a KVM: x86: ioapic: Preserve read-only values in the redirection table
According to 82093AA (IOAPIC) manual, Remote IRR and Delivery Status are
read-only. QEMU implements the bits as RO in commit 479c2a1cb7fb
("ioapic: keep RO bits for IOAPIC entry").

Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:21 +01:00
Nikita Leshenko
a8bfec2930 KVM: x86: ioapic: Clear Remote IRR when entry is switched to edge-triggered
Some OSes (Linux, Xen) use this behavior to clear the Remote IRR bit for
IOAPICs without an EOI register. They simulate the EOI message manually
by changing the trigger mode to edge and then back to level, with the
entry being masked during this.

QEMU implements this feature in commit ed1263c363c9
("ioapic: clear remote irr bit for edge-triggered interrupts")

As a side effect, this commit removes an incorrect behavior where Remote
IRR was cleared when the redirection table entry was rewritten. This is not
consistent with the manual and also opens an opportunity for a strange
behavior when a redirection table entry is modified from an interrupt
handler that handles the same entry: The modification will clear the
Remote IRR bit even though the interrupt handler is still running.

Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:20 +01:00
Nikita Leshenko
7d2253684d KVM: x86: ioapic: Remove redundant check for Remote IRR in ioapic_set_irq
Remote IRR for level-triggered interrupts was previously checked in
ioapic_set_irq, but since we now have a check in ioapic_service we
can remove the redundant check from ioapic_set_irq.

This commit doesn't change semantics.

Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:19 +01:00
Nikita Leshenko
da3fe7bdfa KVM: x86: ioapic: Don't fire level irq when Remote IRR set
Avoid firing a level-triggered interrupt that has the Remote IRR bit set,
because that means that some CPU is already processing it. The Remote
IRR bit will be cleared after an EOI and the interrupt will refire
if the irq line is still asserted.

This behavior is aligned with QEMU's IOAPIC implementation that was
introduced by commit f99b86b94987
("x86: ioapic: ignore level irq during processing") in QEMU.

Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:18 +01:00
Nikita Leshenko
0fc5a36dd6 KVM: x86: ioapic: Fix level-triggered EOI and IOAPIC reconfigure race
KVM uses ioapic_handled_vectors to track vectors that need to notify the
IOAPIC on EOI. The problem is that IOAPIC can be reconfigured while an
interrupt with old configuration is pending or running and
ioapic_handled_vectors only remembers the newest configuration;
thus EOI from the old interrupt is not delievered to the IOAPIC.

A previous commit db2bdcbbbd
("KVM: x86: fix edge EOI and IOAPIC reconfig race")
addressed this issue by adding pending edge-triggered interrupts to
ioapic_handled_vectors, fixing this race for edge-triggered interrupts.
The commit explicitly ignored level-triggered interrupts,
but this race applies to them as well:

1) IOAPIC sends a level triggered interrupt vector to VCPU0
2) VCPU0's handler deasserts the irq line and reconfigures the IOAPIC
   to route the vector to VCPU1. The reconfiguration rewrites only the
   upper 32 bits of the IOREDTBLn register. (Causes KVM to update
   ioapic_handled_vectors for VCPU0 and it no longer includes the vector.)
3) VCPU0 sends EOI for the vector, but it's not delievered to the
   IOAPIC because the ioapic_handled_vectors doesn't include the vector.
4) New interrupts are not delievered to VCPU1 because remote_irr bit
   is set forever.

Therefore, the correct behavior is to add all pending and running
interrupts to ioapic_handled_vectors.

This commit introduces a slight performance hit similar to
commit db2bdcbbbd ("KVM: x86: fix edge EOI and IOAPIC reconfig race")
for the rare case that the vector is reused by a non-IOAPIC source on
VCPU0. We prefer to keep solution simple and not handle this case just
as the original commit does.

Fixes: db2bdcbbbd ("KVM: x86: fix edge EOI and IOAPIC reconfig race")

Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:17 +01:00
Paolo Bonzini
6ea6e84309 KVM: x86: inject exceptions produced by x86_decode_insn
Sometimes, a processor might execute an instruction while another
processor is updating the page tables for that instruction's code page,
but before the TLB shootdown completes.  The interesting case happens
if the page is in the TLB.

In general, the processor will succeed in executing the instruction and
nothing bad happens.  However, what if the instruction is an MMIO access?
If *that* happens, KVM invokes the emulator, and the emulator gets the
updated page tables.  If the update side had marked the code page as non
present, the page table walk then will fail and so will x86_decode_insn.

Unfortunately, even though kvm_fetch_guest_virt is correctly returning
X86EMUL_PROPAGATE_FAULT, x86_decode_insn's caller treats the failure as
a fatal error if the instruction cannot simply be reexecuted (as is the
case for MMIO).  And this in fact happened sometimes when rebooting
Windows 2012r2 guests.  Just checking ctxt->have_exception and injecting
the exception if true is enough to fix the case.

Thanks to Eduardo Habkost for helping in the debugging of this issue.

Reported-by: Yanan Fu <yfu@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:16 +01:00
Eyal Moscovici
fab0aa3b77 KVM: x86: Allow suppressing prints on RDMSR/WRMSR of unhandled MSRs
Some guests use these unhandled MSRs very frequently.
This cause dmesg to be populated with lots of aggregated messages on
usage of ignored MSRs. As ignore_msrs=true means that the user is
well-aware his guest use ignored MSRs, allow to also disable the
prints on their usage.

An example of such guest is ESXi which tends to access a lot to MSR
0x34 (MSR_SMI_COUNT) very frequently.

In addition, we have observed this to cause unnecessary delays to
guest execution. Such an example is ESXi which experience networking
delays in it's guests (L2 guests) because of these prints (even when
prints are rate-limited). This can easily be reproduced by pinging
from one L2 guest to another.  Once in a while, a peak in ping RTT
will be observed. Removing these unhandled MSR prints solves the
issue.

Because these prints can help diagnose issues with guests,
this commit only suppress them by a module parameter instead of
removing them from code entirely.

Signed-off-by: Eyal Moscovici <eyal.moscovici@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[Changed suppress_ignore_msrs_prints to report_ignored_msrs - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:16 +01:00
David Hildenbrand
4d772cb85f KVM: x86: fix em_fxstor() sleeping while in atomic
Commit 9d643f6312 ("KVM: x86: avoid large stack allocations in
em_fxrstor") optimize the stack size, but introduced a guest memory access
which might sleep while in atomic.

Fix it by introducing, again, a second fxregs_state. Try to avoid
large stacks by using noinline. Add some helpful comments.

Reported by syzbot:

in_atomic(): 1, irqs_disabled(): 0, pid: 2909, name: syzkaller879109
2 locks held by syzkaller879109/2909:
  #0:  (&vcpu->mutex){+.+.}, at: [<ffffffff8106222c>] vcpu_load+0x1c/0x70
arch/x86/kvm/../../../virt/kvm/kvm_main.c:154
  #1:  (&kvm->srcu){....}, at: [<ffffffff810dd162>] vcpu_enter_guest
arch/x86/kvm/x86.c:6983 [inline]
  #1:  (&kvm->srcu){....}, at: [<ffffffff810dd162>] vcpu_run
arch/x86/kvm/x86.c:7061 [inline]
  #1:  (&kvm->srcu){....}, at: [<ffffffff810dd162>]
kvm_arch_vcpu_ioctl_run+0x1bc2/0x58b0 arch/x86/kvm/x86.c:7222
CPU: 1 PID: 2909 Comm: syzkaller879109 Not tainted 4.13.0-rc4-next-20170811
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Call Trace:
  __dump_stack lib/dump_stack.c:16 [inline]
  dump_stack+0x194/0x257 lib/dump_stack.c:52
  ___might_sleep+0x2b2/0x470 kernel/sched/core.c:6014
  __might_sleep+0x95/0x190 kernel/sched/core.c:5967
  __might_fault+0xab/0x1d0 mm/memory.c:4383
  __copy_from_user include/linux/uaccess.h:71 [inline]
  __kvm_read_guest_page+0x58/0xa0
arch/x86/kvm/../../../virt/kvm/kvm_main.c:1771
  kvm_vcpu_read_guest_page+0x44/0x60
arch/x86/kvm/../../../virt/kvm/kvm_main.c:1791
  kvm_read_guest_virt_helper+0x76/0x140 arch/x86/kvm/x86.c:4407
  kvm_read_guest_virt_system+0x3c/0x50 arch/x86/kvm/x86.c:4466
  segmented_read_std+0x10c/0x180 arch/x86/kvm/emulate.c:819
  em_fxrstor+0x27b/0x410 arch/x86/kvm/emulate.c:4022
  x86_emulate_insn+0x55d/0x3c50 arch/x86/kvm/emulate.c:5471
  x86_emulate_instruction+0x411/0x1ca0 arch/x86/kvm/x86.c:5698
  kvm_mmu_page_fault+0x18b/0x2c0 arch/x86/kvm/mmu.c:4854
  handle_ept_violation+0x1fc/0x5e0 arch/x86/kvm/vmx.c:6400
  vmx_handle_exit+0x281/0x1ab0 arch/x86/kvm/vmx.c:8718
  vcpu_enter_guest arch/x86/kvm/x86.c:6999 [inline]
  vcpu_run arch/x86/kvm/x86.c:7061 [inline]
  kvm_arch_vcpu_ioctl_run+0x1cee/0x58b0 arch/x86/kvm/x86.c:7222
  kvm_vcpu_ioctl+0x64c/0x1010 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2591
  vfs_ioctl fs/ioctl.c:45 [inline]
  do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:685
  SYSC_ioctl fs/ioctl.c:700 [inline]
  SyS_ioctl+0x8f/0xc0 fs/ioctl.c:691
  entry_SYSCALL_64_fastpath+0x1f/0xbe
RIP: 0033:0x437fc9
RSP: 002b:00007ffc7b4d5ab8 EFLAGS: 00000206 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00000000004002b0 RCX: 0000000000437fc9
RDX: 0000000000000000 RSI: 000000000000ae80 RDI: 0000000000000005
RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000020ae8000
R10: 0000000000009120 R11: 0000000000000206 R12: 0000000000000000
R13: 0000000000000004 R14: 0000000000000004 R15: 0000000020077000

Fixes: 9d643f6312 ("KVM: x86: avoid large stack allocations in em_fxrstor")
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:15 +01:00
Wanpeng Li
5af4157388 KVM: nVMX: Fix mmu context after VMLAUNCH/VMRESUME failure
Commit 4f350c6dbc (kvm: nVMX: Handle deferred early VMLAUNCH/VMRESUME failure
properly) can result in L1(run kvm-unit-tests/run_tests.sh vmx_controls in L1)
null pointer deference and also L0 calltrace when EPT=0 on both L0 and L1.

In L1:

BUG: unable to handle kernel paging request at ffffffffc015bf8f
 IP: vmx_vcpu_run+0x202/0x510 [kvm_intel]
 PGD 146e13067 P4D 146e13067 PUD 146e15067 PMD 3d2686067 PTE 3d4af9161
 Oops: 0003 [#1] PREEMPT SMP
 CPU: 2 PID: 1798 Comm: qemu-system-x86 Not tainted 4.14.0-rc4+ #6
 RIP: 0010:vmx_vcpu_run+0x202/0x510 [kvm_intel]
 Call Trace:
 WARNING: kernel stack frame pointer at ffffb86f4988bc18 in qemu-system-x86:1798 has bad value 0000000000000002

In L0:

-----------[ cut here ]------------
 WARNING: CPU: 6 PID: 4460 at /home/kernel/linux/arch/x86/kvm//vmx.c:9845 vmx_inject_page_fault_nested+0x130/0x140 [kvm_intel]
 CPU: 6 PID: 4460 Comm: qemu-system-x86 Tainted: G           OE   4.14.0-rc7+ #25
 RIP: 0010:vmx_inject_page_fault_nested+0x130/0x140 [kvm_intel]
 Call Trace:
  paging64_page_fault+0x500/0xde0 [kvm]
  ? paging32_gva_to_gpa_nested+0x120/0x120 [kvm]
  ? nonpaging_page_fault+0x3b0/0x3b0 [kvm]
  ? __asan_storeN+0x12/0x20
  ? paging64_gva_to_gpa+0xb0/0x120 [kvm]
  ? paging64_walk_addr_generic+0x11a0/0x11a0 [kvm]
  ? lock_acquire+0x2c0/0x2c0
  ? vmx_read_guest_seg_ar+0x97/0x100 [kvm_intel]
  ? vmx_get_segment+0x2a6/0x310 [kvm_intel]
  ? sched_clock+0x1f/0x30
  ? check_chain_key+0x137/0x1e0
  ? __lock_acquire+0x83c/0x2420
  ? kvm_multiple_exception+0xf2/0x220 [kvm]
  ? debug_check_no_locks_freed+0x240/0x240
  ? debug_smp_processor_id+0x17/0x20
  ? __lock_is_held+0x9e/0x100
  kvm_mmu_page_fault+0x90/0x180 [kvm]
  kvm_handle_page_fault+0x15c/0x310 [kvm]
  ? __lock_is_held+0x9e/0x100
  handle_exception+0x3c7/0x4d0 [kvm_intel]
  vmx_handle_exit+0x103/0x1010 [kvm_intel]
  ? kvm_arch_vcpu_ioctl_run+0x1628/0x2e20 [kvm]

The commit avoids to load host state of vmcs12 as vmcs01's guest state
since vmcs12 is not modified (except for the VM-instruction error field)
if the checking of vmcs control area fails. However, the mmu context is
switched to nested mmu in prepare_vmcs02() and it will not be reloaded
since load_vmcs12_host_state() is skipped when nested VMLAUNCH/VMRESUME
fails. This patch fixes it by reloading mmu context when nested
VMLAUNCH/VMRESUME fails.

Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:14 +01:00
Wanpeng Li
f1b026a331 KVM: nVMX: Validate the IA32_BNDCFGS on nested VM-entry
According to the SDM, if the "load IA32_BNDCFGS" VM-entry controls is 1, the
following checks are performed on the field for the IA32_BNDCFGS MSR:
 - Bits reserved in the IA32_BNDCFGS MSR must be 0.
 - The linear address in bits 63:12 must be canonical.

Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:13 +01:00
Wanpeng Li
3853be2603 KVM: X86: Fix operand/address-size during instruction decoding
Pedro reported:
  During tests that we conducted on KVM, we noticed that executing a "PUSH %ES"
  instruction under KVM produces different results on both memory and the SP
  register depending on whether EPT support is enabled. With EPT the SP is
  reduced by 4 bytes (and the written value is 0-padded) but without EPT support
  it is only reduced by 2 bytes. The difference can be observed when the CS.DB
  field is 1 (32-bit) but not when it's 0 (16-bit).

The internal segment descriptor cache exist even in real/vm8096 mode. The CS.D
also should be respected instead of just default operand/address-size/66H
prefix/67H prefix during instruction decoding. This patch fixes it by also
adjusting operand/address-size according to CS.D.

Reported-by: Pedro Fonseca <pfonseca@cs.washington.edu>
Tested-by: Pedro Fonseca <pfonseca@cs.washington.edu>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Pedro Fonseca <pfonseca@cs.washington.edu>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:12 +01:00
Liran Alon
9b8ae63798 KVM: x86: Don't re-execute instruction when not passing CR2 value
In case of instruction-decode failure or emulation failure,
x86_emulate_instruction() will call reexecute_instruction() which will
attempt to use the cr2 value passed to x86_emulate_instruction().
However, when x86_emulate_instruction() is called from
emulate_instruction(), cr2 is not passed (passed as 0) and therefore
it doesn't make sense to execute reexecute_instruction() logic at all.

Fixes: 51d8b66199 ("KVM: cleanup emulate_instruction")

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:12 +01:00
Liran Alon
1f4dcb3b21 KVM: x86: emulator: Return to user-mode on L1 CPL=0 emulation failure
On this case, handle_emulation_failure() fills kvm_run with
internal-error information which it expects to be delivered
to user-mode for further processing.
However, the code reports a wrong return-value which makes KVM to never
return to user-mode on this scenario.

Fixes: 6d77dbfc88 ("KVM: inject #UD if instruction emulation fails and exit to
userspace")

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:11 +01:00
Liran Alon
61cb57c9ed KVM: x86: Exit to user-mode on #UD intercept when emulator requires
Instruction emulation after trapping a #UD exception can result in an
MMIO access, for example when emulating a MOVBE on a processor that
doesn't support the instruction.  In this case, the #UD vmexit handler
must exit to user mode, but there wasn't any code to do so.  Add it for
both VMX and SVM.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:10 +01:00
Liran Alon
ac9b305caa KVM: nVMX/nSVM: Don't intercept #UD when running L2
When running L2, #UD should be intercepted by L1 or just forwarded
directly to L2. It should not reach L0 x86 emulator.
Therefore, set intercept for #UD only based on L1 exception-bitmap.

Also add WARN_ON_ONCE() on L0 #UD intercept handlers to make sure
it is never reached while running L2.

This improves commit ae1f576707 ("KVM: nVMX: Do not emulate #UD while
in guest mode") by removing an unnecessary exit from L2 to L0 on #UD
when L1 doesn't intercept it.

In addition, SVM L0 #UD intercept handler doesn't handle correctly the
case it is raised from L2. In this case, it should forward the #UD to
guest instead of x86 emulator. As done in VMX #UD intercept handler.
This commit fixes this issue as-well.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:09 +01:00
Liran Alon
51c4b8bba6 KVM: x86: pvclock: Handle first-time write to pvclock-page contains random junk
When guest passes KVM it's pvclock-page GPA via WRMSR to
MSR_KVM_SYSTEM_TIME / MSR_KVM_SYSTEM_TIME_NEW, KVM don't initialize
pvclock-page to some start-values. It just requests a clock-update which
will happen before entering to guest.

The clock-update logic will call kvm_setup_pvclock_page() to update the
pvclock-page with info. However, kvm_setup_pvclock_page() *wrongly*
assumes that the version-field is initialized to an even number. This is
wrong because at first-time write, field could be any-value.

Fix simply makes sure that if first-time version-field is odd, increment
it once more to make it even and only then start standard logic.
This follows same logic as done in other pvclock shared-pages (See
kvm_write_wall_clock() and record_steal_time()).

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:08 +01:00