65493e3ac4
434 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
e53289c0c5 |
mm: reinstante dropped pmd_trans_splitting() check
The check for a pmd being in the process of being split was dropped by
mistake by commit
|
||
Michal Hocko
|
53a59fc67f |
mm: limit mmu_gather batching to fix soft lockups on !CONFIG_PREEMPT
Since commit
|
||
Andy Shevchenko
|
2fbc57c53a |
mm: use kbasename()
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrew Morton
|
b3dd20709d |
mm/memory.c: suppress warning
gcc-4.4.4 screws this up. mm/memory.c: In function 'do_pmd_numa_page': mm/memory.c:3594: warning: no return statement in function returning non-void Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
3d59eebc5e |
Automatic NUMA Balancing V11
-----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.18 (GNU/Linux) iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb 72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj 3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi Ka0JKgnWvsa6ez6FSzKI =ivQa -----END PGP SIGNATURE----- Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma Pull Automatic NUMA Balancing bare-bones from Mel Gorman: "There are three implementations for NUMA balancing, this tree (balancenuma), numacore which has been developed in tip/master and autonuma which is in aa.git. In almost all respects balancenuma is the dumbest of the three because its main impact is on the VM side with no attempt to be smart about scheduling. In the interest of getting the ball rolling, it would be desirable to see this much merged for 3.8 with the view to building scheduler smarts on top and adapting the VM where required for 3.9. The most recent set of comparisons available from different people are mel: https://lkml.org/lkml/2012/12/9/108 mingo: https://lkml.org/lkml/2012/12/7/331 tglx: https://lkml.org/lkml/2012/12/10/437 srikar: https://lkml.org/lkml/2012/12/10/397 The results are a mixed bag. In my own tests, balancenuma does reasonably well. It's dumb as rocks and does not regress against mainline. On the other hand, Ingo's tests shows that balancenuma is incapable of converging for this workloads driven by perf which is bad but is potentially explained by the lack of scheduler smarts. Thomas' results show balancenuma improves on mainline but falls far short of numacore or autonuma. Srikar's results indicate we all suffer on a large machine with imbalanced node sizes. My own testing showed that recent numacore results have improved dramatically, particularly in the last week but not universally. We've butted heads heavily on system CPU usage and high levels of migration even when it shows that overall performance is better. There are also cases where it regresses. Of interest is that for specjbb in some configurations it will regress for lower numbers of warehouses and show gains for higher numbers which is not reported by the tool by default and sometimes missed in treports. Recently I reported for numacore that the JVM was crashing with NullPointerExceptions but currently it's unclear what the source of this problem is. Initially I thought it was in how numacore batch handles PTEs but I'm no longer think this is the case. It's possible numacore is just able to trigger it due to higher rates of migration. These reports were quite late in the cycle so I/we would like to start with this tree as it contains much of the code we can agree on and has not changed significantly over the last 2-3 weeks." * tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits) mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable mm/rmap: Convert the struct anon_vma::mutex to an rwsem mm: migrate: Account a transhuge page properly when rate limiting mm: numa: Account for failed allocations and isolations as migration failures mm: numa: Add THP migration for the NUMA working set scanning fault case build fix mm: numa: Add THP migration for the NUMA working set scanning fault case. mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG mm: sched: numa: Control enabling and disabling of NUMA balancing mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships mm: numa: migrate: Set last_nid on newly allocated page mm: numa: split_huge_page: Transfer last_nid on tail page mm: numa: Introduce last_nid to the page frame sched: numa: Slowly increase the scanning period as NUMA faults are handled mm: numa: Rate limit setting of pte_numa if node is saturated mm: numa: Rate limit the amount of memory that is migrated between nodes mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting mm: numa: Migrate pages handled during a pmd_numa hinting fault mm: numa: Migrate on reference policy ... |
||
Dominik Dingel
|
66521d5aa6 |
mm/memory.c: remove unused code from do_wp_page()
page_mkwrite is initalized with zero and only set once, from that point exists no way to get to the oom or oom_free_new labels. [akpm@linux-foundation.org: cleanup] Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
816422ad76 |
asm-generic, mm: pgtable: consolidate zero page helpers
We have two different implementation of is_zero_pfn() and my_zero_pfn() helpers: for architectures with and without zero page coloring. Let's consolidate them in <asm-generic/pgtable.h>. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
e180377f1a |
thp: change split_huge_page_pmd() interface
Pass vma instead of mm and add address parameter. In most cases we already have vma on the stack. We provides split_huge_page_pmd_mm() for few cases when we have mm, but not vma. This change is preparation to huge zero pmd splitting implementation. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
93b4796ded |
thp: do_huge_pmd_wp_page(): handle huge zero page
On write access to huge zero page we alloc a new huge page and clear it. If ENOMEM, graceful fallback: we create a new pmd table and set pte around fault address to newly allocated normal (4k) page. All other ptes in the pmd set to normal zero page. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: "H. Peter Anvin" <hpa@linux.intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Will Deacon
|
a1dd450bcb |
mm: thp: set the accessed flag for old pages on access fault
On x86 memory accesses to pages without the ACCESSED flag set result in the ACCESSED flag being set automatically. With the ARM architecture a page access fault is raised instead (and it will continue to be raised until the ACCESSED flag is set for the appropriate PTE/PMD). For normal memory pages, handle_pte_fault will call pte_mkyoung (effectively setting the ACCESSED flag). For transparent huge pages, pmd_mkyoung will only be called for a write fault. This patch ensures that faults on transparent hugepages which do not result in a CoW update the access flags for the faulting pmd. Signed-off-by: Will Deacon <will.deacon@arm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ni zhan Chen <nizhan.chen@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
b8593bfda1 |
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
The PTE scanning rate and fault rates are two of the biggest sources of system CPU overhead with automatic NUMA placement. Ideally a proper policy would detect if a workload was properly placed, schedule and adjust the PTE scanning rate accordingly. We do not track the necessary information to do that but we at least know if we migrated or not. This patch scans slower if a page was not migrated as the result of a NUMA hinting fault up to sysctl_numa_balancing_scan_period_max which is now higher than the previous default. Once every minute it will reset the scanner in case of phase changes. This is hilariously crude and the numbers are arbitrary. Workloads will converge quite slowly in comparison to what a proper policy should be able to do. On the plus side, we will chew up less CPU for workloads that have no need for automatic balancing. Signed-off-by: Mel Gorman <mgorman@suse.de> |
||
Mel Gorman
|
9532fec118 |
mm: numa: Migrate pages handled during a pmd_numa hinting fault
To say that the PMD handling code was incorrectly transferred from autonuma is an understatement. The intention was to handle a PMDs worth of pages in the same fault and effectively batch the taking of the PTL and page migration. The copied version instead has the impact of clearing a number of pte_numa PTE entries and whether any page migration takes place depends on racing. This just happens to work in some cases. This patch handles pte_numa faults in batch when a pmd_numa fault is handled. The pages are migrated if they are currently misplaced. Essentially this is making an assumption that NUMA locality is on a PMD boundary but that could be addressed by only setting pmd_numa if all the pages within that PMD are on the same node if necessary. Signed-off-by: Mel Gorman <mgorman@suse.de> |
||
Mel Gorman
|
03c5a6e163 |
mm: numa: Add pte updates, hinting and migration stats
It is tricky to quantify the basic cost of automatic NUMA placement in a meaningful manner. This patch adds some vmstats that can be used as part of a basic costing model. u = basic unit = sizeof(void *) Ca = cost of struct page access = sizeof(struct page) / u Cpte = Cost PTE access = Ca Cupdate = Cost PTE update = (2 * Cpte) + (2 * Wlock) where Cpte is incurred twice for a read and a write and Wlock is a constant representing the cost of taking or releasing a lock Cnumahint = Cost of a minor page fault = some high constant e.g. 1000 Cpagerw = Cost to read or write a full page = Ca + PAGE_SIZE/u Ci = Cost of page isolation = Ca + Wi where Wi is a constant that should reflect the approximate cost of the locking operation Cpagecopy = Cpagerw + (Cpagerw * Wnuma) + Ci + (Ci * Wnuma) where Wnuma is the approximate NUMA factor. 1 is local. 1.2 would imply that remote accesses are 20% more expensive Balancing cost = Cpte * numa_pte_updates + Cnumahint * numa_hint_faults + Ci * numa_pages_migrated + Cpagecopy * numa_pages_migrated Note that numa_pages_migrated is used as a measure of how many pages were isolated even though it would miss pages that failed to migrate. A vmstat counter could have been added for it but the isolation cost is pretty marginal in comparison to the overall cost so it seemed overkill. The ideal way to measure automatic placement benefit would be to count the number of remote accesses versus local accesses and do something like benefit = (remote_accesses_before - remove_access_after) * Wnuma but the information is not readily available. As a workload converges, the expection would be that the number of remote numa hints would reduce to 0. convergence = numa_hint_faults_local / numa_hint_faults where this is measured for the last N number of numa hints recorded. When the workload is fully converged the value is 1. This can measure if the placement policy is converging and how fast it is doing it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> |
||
Peter Zijlstra
|
cbee9f88ec |
mm: numa: Add fault driven placement and migration
NOTE: This patch is based on "sched, numa, mm: Add fault driven placement and migration policy" but as it throws away all the policy to just leave a basic foundation I had to drop the signed-offs-by. This patch creates a bare-bones method for setting PTEs pte_numa in the context of the scheduler that when faulted later will be faulted onto the node the CPU is running on. In itself this does nothing useful but any placement policy will fundamentally depend on receiving hints on placement from fault context and doing something intelligent about it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> |
||
Mel Gorman
|
4daae3b4b9 |
mm: mempolicy: Use _PAGE_NUMA to migrate pages
Note: Based on "mm/mpol: Use special PROT_NONE to migrate pages" but sufficiently different that the signed-off-bys were dropped Combine our previous _PAGE_NUMA, mpol_misplaced and migrate_misplaced_page() pieces into an effective migrate on fault scheme. Note that (on x86) we rely on PROT_NONE pages being !present and avoid the TLB flush from try_to_unmap(TTU_MIGRATION). This greatly improves the page-migration performance. Based-on-work-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> |
||
Mel Gorman
|
d10e63f294 |
mm: numa: Create basic numa page hinting infrastructure
Note: This patch started as "mm/mpol: Create special PROT_NONE infrastructure" and preserves the basic idea but steals *very* heavily from "autonuma: numa hinting page faults entry points" for the actual fault handlers without the migration parts. The end result is barely recognisable as either patch so all Signed-off and Reviewed-bys are dropped. If Peter, Ingo and Andrea are ok with this version, I will re-add the signed-offs-by to reflect the history. In order to facilitate a lazy -- fault driven -- migration of pages, create a special transient PAGE_NUMA variant, we can then use the 'spurious' protection faults to drive our migrations from. The meaning of PAGE_NUMA depends on the architecture but on x86 it is effectively PROT_NONE. Actual PROT_NONE mappings will not generate these NUMA faults for the reason that the page fault code checks the permission on the VMA (and will throw a segmentation fault on actual PROT_NONE mappings), before it ever calls handle_mm_fault. [dhillf@gmail.com: Fix typo] Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> |
||
Andrea Arcangeli
|
0b9d705297 |
mm: numa: Support NUMA hinting page faults from gup/gup_fast
Introduce FOLL_NUMA to tell follow_page to check pte/pmd_numa. get_user_pages must use FOLL_NUMA, and it's safe to do so because it always invokes handle_mm_fault and retries the follow_page later. KVM secondary MMU page faults will trigger the NUMA hinting page faults through gup_fast -> get_user_pages -> follow_page -> handle_mm_fault. Other follow_page callers like KSM should not use FOLL_NUMA, or they would fail to get the pages if they use follow_page instead of get_user_pages. [ This patch was picked up from the AutoNUMA tree. ] Originally-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> [ ported to this tree. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Rik van Riel <riel@redhat.com> |
||
Mel Gorman
|
4fd017708c |
mm: Check if PTE is already allocated during page fault
With transparent hugepage support, handle_mm_fault() has to be careful that a normal PMD has been established before handling a PTE fault. To achieve this, it used __pte_alloc() directly instead of pte_alloc_map as pte_alloc_map is unsafe to run against a huge PMD. pte_offset_map() is called once it is known the PMD is safe. pte_alloc_map() is smart enough to check if a PTE is already present before calling __pte_alloc but this check was lost. As a consequence, PTEs may be allocated unnecessarily and the page table lock taken. Thi useless PTE does get cleaned up but it's a performance hit which is visible in page_test from aim9. This patch simply re-adds the check normally done by pte_alloc_map to check if the PTE needs to be allocated before taking the page table lock. The effect is noticable in page_test from aim9. AIM9 2.6.38-vanilla 2.6.38-checkptenone creat-clo 446.10 ( 0.00%) 424.47 (-5.10%) page_test 38.10 ( 0.00%) 42.04 ( 9.37%) brk_test 52.45 ( 0.00%) 51.57 (-1.71%) exec_test 382.00 ( 0.00%) 456.90 (16.39%) fork_test 60.11 ( 0.00%) 67.79 (11.34%) MMTests Statistics: duration Total Elapsed Time (seconds) 611.90 612.22 (While this affects 2.6.38, it is a performance rather than a functional bug and normally outside the rules -stable. While the big performance differences are to a microbench, the difference in fork and exec performance may be significant enough that -stable wants to consider the patch) Reported-by: Raz Ben Yehuda <raziebe@gmail.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Rik van Riel <riel@redhat.com> [ Picked this up from the AutoNUMA tree to help it upstream and to allow apples-to-apples performance comparisons. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
David Rientjes
|
1756954c61 |
mm: fix build warning for uninitialized value
do_wp_page() sets mmun_called if mmun_start and mmun_end were initialized and, if so, may call mmu_notifier_invalidate_range_end() with these values. This doesn't prevent gcc from emitting a build warning though: mm/memory.c: In function `do_wp_page': mm/memory.c:2530: warning: `mmun_start' may be used uninitialized in this function mm/memory.c:2531: warning: `mmun_end' may be used uninitialized in this function It's much easier to initialize the variables to impossible values and do a simple comparison to determine if they were initialized to remove the bool entirely. Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
b676b293fb |
mm, thp: fix mapped pages avoiding unevictable list on mlock
When a transparent hugepage is mapped and it is included in an mlock() range, follow_page() incorrectly avoids setting the page's mlock bit and moving it to the unevictable lru. This is evident if you try to mlock(), munlock(), and then mlock() a range again. Currently: #define MAP_SIZE (4 << 30) /* 4GB */ void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); mlock(ptr, MAP_SIZE); $ grep -E "Unevictable|Inactive\(anon" /proc/meminfo Inactive(anon): 6304 kB Unevictable: 4213924 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4186252 kB Unevictable: 19652 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4198556 kB Unevictable: 21684 kB Notice that less than 2MB was added to the unevictable list; this is because these pages in the range are not transparent hugepages since the 4GB range was allocated with mmap() and has no specific alignment. If posix_memalign() were used instead, unevictable would not have grown at all on the second mlock(). The fix is to call mlock_vma_page() so that the mlock bit is set and the page is added to the unevictable list. With this patch: mlock(ptr, MAP_SIZE); Inactive(anon): 4056 kB Unevictable: 4213940 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4198268 kB Unevictable: 19636 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4008 kB Unevictable: 4213940 kB Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Robert P. J. Day
|
c462f179e4 |
mm/memory.c: fix typo in comment
Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Haggai Eran
|
6bdb913f0a |
mm: wrap calls to set_pte_at_notify with invalidate_range_start and invalidate_range_end
In order to allow sleeping during invalidate_page mmu notifier calls, we need to avoid calling when holding the PT lock. In addition to its direct calls, invalidate_page can also be called as a substitute for a change_pte call, in case the notifier client hasn't implemented change_pte. This patch drops the invalidate_page call from change_pte, and instead wraps all calls to change_pte with invalidate_range_start and invalidate_range_end calls. Note that change_pte still cannot sleep after this patch, and that clients implementing change_pte should not take action on it in case the number of outstanding invalidate_range_start calls is larger than one, otherwise they might miss a later invalidation. Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Andrea Arcangeli <andrea@qumranet.com> Cc: Sagi Grimberg <sagig@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sagi Grimberg
|
2ec74c3ef2 |
mm: move all mmu notifier invocations to be done outside the PT lock
In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
e6c509f854 |
mm: use clear_page_mlock() in page_remove_rmap()
We had thought that pages could no longer get freed while still marked as mlocked; but Johannes Weiner posted this program to demonstrate that truncating an mlocked private file mapping containing COWed pages is still mishandled: #include <sys/types.h> #include <sys/mman.h> #include <sys/stat.h> #include <stdlib.h> #include <unistd.h> #include <fcntl.h> #include <stdio.h> int main(void) { char *map; int fd; system("grep mlockfreed /proc/vmstat"); fd = open("chigurh", O_CREAT|O_EXCL|O_RDWR); unlink("chigurh"); ftruncate(fd, 4096); map = mmap(NULL, 4096, PROT_WRITE, MAP_PRIVATE, fd, 0); map[0] = 11; mlock(map, sizeof(fd)); ftruncate(fd, 0); close(fd); munlock(map, sizeof(fd)); munmap(map, 4096); system("grep mlockfreed /proc/vmstat"); return 0; } The anon COWed pages are not caught by truncation's clear_page_mlock() of the pagecache pages; but unmap_mapping_range() unmaps them, so we ought to look out for them there in page_remove_rmap(). Indeed, why should truncation or invalidation be doing the clear_page_mlock() when removing from pagecache? mlock is a property of mapping in userspace, not a property of pagecache: an mlocked unmapped page is nonsensical. Reported-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michel Lespinasse
|
6b2dbba8b6 |
mm: replace vma prio_tree with an interval tree
Implement an interval tree as a replacement for the VMA prio_tree. The algorithms are similar to lib/interval_tree.c; however that code can't be directly reused as the interval endpoints are not explicitly stored in the VMA. So instead, the common algorithm is moved into a template and the details (node type, how to get interval endpoints from the node, etc) are filled in using the C preprocessor. Once the interval tree functions are available, using them as a replacement to the VMA prio tree is a relatively simple, mechanical job. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
314e51b985 |
mm: kill vma flag VM_RESERVED and mm->reserved_vm counter
A long time ago, in v2.4, VM_RESERVED kept swapout process off VMA, currently it lost original meaning but still has some effects: | effect | alternative flags -+------------------------+--------------------------------------------- 1| account as reserved_vm | VM_IO 2| skip in core dump | VM_IO, VM_DONTDUMP 3| do not merge or expand | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP 4| do not mlock | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP This patch removes reserved_vm counter from mm_struct. Seems like nobody cares about it, it does not exported into userspace directly, it only reduces total_vm showed in proc. Thus VM_RESERVED can be replaced with VM_IO or pair VM_DONTEXPAND | VM_DONTDUMP. remap_pfn_range() and io_remap_pfn_range() set VM_IO|VM_DONTEXPAND|VM_DONTDUMP. remap_vmalloc_range() set VM_DONTEXPAND | VM_DONTDUMP. [akpm@linux-foundation.org: drivers/vfio/pci/vfio_pci.c fixup] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
4b6e1e3702 |
mm: kill vma flag VM_INSERTPAGE
Merge VM_INSERTPAGE into VM_MIXEDMAP. VM_MIXEDMAP VMA can mix pure-pfn ptes, special ptes and normal ptes. Now copy_page_range() always copies VM_MIXEDMAP VMA on fork like VM_PFNMAP. If driver populates whole VMA at mmap() it probably not expects page-faults. This patch removes special check from vma_wants_writenotify() which disables pages write tracking for VMA populated via vm_instert_page(). BDI below mapped file should not use dirty-accounting, moreover do_wp_page() can handle this. vm_insert_page() still marks vma after first usage. Usually it is called from f_op->mmap() handler under mm->mmap_sem write-lock, so it able to change vma->vm_flags. Caller must set VM_MIXEDMAP at mmap time if it wants to call this function from other places, for example from page-fault handler. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
b3b9c2932c |
mm, x86, pat: rework linear pfn-mmap tracking
Replace the generic vma-flag VM_PFN_AT_MMAP with x86-only VM_PAT. We can toss mapping address from remap_pfn_range() into track_pfn_vma_new(), and collect all PAT-related logic together in arch/x86/. This patch also restores orignal frustration-free is_cow_mapping() check in remap_pfn_range(), as it was before commit v2.6.28-rc8-88-g3c8bb73 ("x86: PAT: store vm_pgoff for all linear_over_vma_region mappings - v3") is_linear_pfn_mapping() checks can be removed from mm/huge_memory.c, because it already handled by VM_PFNMAP in VM_NO_THP bit-mask. [suresh.b.siddha@intel.com: Reset the VM_PAT flag as part of untrack_pfn_vma()] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Suresh Siddha
|
5180da410d |
x86, pat: separate the pfn attribute tracking for remap_pfn_range and vm_insert_pfn
With PAT enabled, vm_insert_pfn() looks up the existing pfn memory attribute and uses it. Expectation is that the driver reserves the memory attributes for the pfn before calling vm_insert_pfn(). remap_pfn_range() (when called for the whole vma) will setup a new attribute (based on the prot argument) for the specified pfn range. This addresses the legacy usage which typically calls remap_pfn_range() with a desired memory attribute. For ranges smaller than the vma size (which is typically not the case), remap_pfn_range() will use the existing memory attribute for the pfn range. Expose two different API's for these different behaviors. track_pfn_insert() for tracking the pfn attribute set by vm_insert_pfn() and track_pfn_remap() for the remap_pfn_range(). This cleanup also prepares the ground for the track/untrack pfn vma routines to take over the ownership of setting PAT specific vm_flag in the 'vma'. [khlebnikov@openvz.org: Clear checks in track_pfn_remap()] [akpm@linux-foundation.org: tweak a few comments] Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
a0e881b7c1 |
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull second vfs pile from Al Viro: "The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the deadlock reproduced by xfstests 068), symlink and hardlink restriction patches, plus assorted cleanups and fixes. Note that another fsfreeze deadlock (emergency thaw one) is *not* dealt with - the series by Fernando conflicts a lot with Jan's, breaks userland ABI (FIFREEZE semantics gets changed) and trades the deadlock for massive vfsmount leak; this is going to be handled next cycle. There probably will be another pull request, but that stuff won't be in it." Fix up trivial conflicts due to unrelated changes next to each other in drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c} * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits) delousing target_core_file a bit Documentation: Correct s_umount state for freeze_fs/unfreeze_fs fs: Remove old freezing mechanism ext2: Implement freezing btrfs: Convert to new freezing mechanism nilfs2: Convert to new freezing mechanism ntfs: Convert to new freezing mechanism fuse: Convert to new freezing mechanism gfs2: Convert to new freezing mechanism ocfs2: Convert to new freezing mechanism xfs: Convert to new freezing code ext4: Convert to new freezing mechanism fs: Protect write paths by sb_start_write - sb_end_write fs: Skip atime update on frozen filesystem fs: Add freezing handling to mnt_want_write() / mnt_drop_write() fs: Improve filesystem freezing handling switch the protection of percpu_counter list to spinlock nfsd: Push mnt_want_write() outside of i_mutex btrfs: Push mnt_want_write() outside of i_mutex fat: Push mnt_want_write() outside of i_mutex ... |
||
Mel Gorman
|
d833352a43 |
mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables
If a process creates a large hugetlbfs mapping that is eligible for page
table sharing and forks heavily with children some of whom fault and
others which destroy the mapping then it is possible for page tables to
get corrupted. Some teardowns of the mapping encounter a "bad pmd" and
output a message to the kernel log. The final teardown will trigger a
BUG_ON in mm/filemap.c.
This was reproduced in 3.4 but is known to have existed for a long time
and goes back at least as far as 2.6.37. It was probably was introduced
in 2.6.20 by [
|
||
Jeff Liu
|
51a07e50b2 |
mm/memory.c:print_vma_addr(): call up_read(&mm->mmap_sem) directly
Call up_read(&mm->mmap_sem) directly since we have already got mm via current->mm at the beginning of print_vma_addr(). Signed-off-by: Jie Liu <jeff.liu@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
24669e5847 |
hugetlb: use mmu_gather instead of a temporary linked list for accumulating pages
Use a mmu_gather instead of a temporary linked list for accumulating pages when we unmap a hugepage range Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jan Kara
|
41c4d25f78 |
mm: Update file times from fault path only if .page_mkwrite is not set
Filesystems wanting to properly support freezing need to have control when file_update_time() is called. After pushing file_update_time() to all relevant .page_mkwrite implementations we can just stop calling file_update_time() when filesystem implements .page_mkwrite. Tested-by: Kamal Mostafa <kamal@canonical.com> Tested-by: Peter M. Petrakis <peter.petrakis@canonical.com> Tested-by: Dann Frazier <dann.frazier@canonical.com> Tested-by: Massimo Morana <massimo.morana@canonical.com> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Linus Torvalds
|
4cb38750d4 |
Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/mm changes from Peter Anvin: "The big change here is the patchset by Alex Shi to use INVLPG to flush only the affected pages when we only need to flush a small page range. It also removes the special INVALIDATE_TLB_VECTOR interrupts (32 vectors!) and replace it with an ordinary IPI function call." Fix up trivial conflicts in arch/x86/include/asm/apic.h (added code next to changed line) * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/tlb: Fix build warning and crash when building for !SMP x86/tlb: do flush_tlb_kernel_range by 'invlpg' x86/tlb: replace INVALIDATE_TLB_VECTOR by CALL_FUNCTION_VECTOR x86/tlb: enable tlb flush range support for x86 mm/mmu_gather: enable tlb flush range in generic mmu_gather x86/tlb: add tlb_flushall_shift knob into debugfs x86/tlb: add tlb_flushall_shift for specific CPU x86/tlb: fall back to flush all when meet a THP large page x86/flush_tlb: try flush_tlb_single one by one in flush_tlb_range x86/tlb_info: get last level TLB entry number of CPU x86: Add read_mostly declaration/definition to variables from smp.h x86: Define early read-mostly per-cpu macros |
||
Alex Shi
|
597e1c3580 |
mm/mmu_gather: enable tlb flush range in generic mmu_gather
This patch enabled the tlb flush range support in generic mmu layer. Most of arch has self tlb flush range support, like ARM/IA64 etc. X86 arch has no this support in hardware yet. But another instruction 'invlpg' can implement this function in some degree. So, enable this feather in generic layer for x86 now. and maybe useful for other archs in further. Generic mmu_gather struct is protected by micro HAVE_GENERIC_MMU_GATHER. Other archs that has flush range supported own self mmu_gather struct. So, now this change is safe for them. In future we may unify this struct and related functions on multiple archs. Thanks for Peter Zijlstra time and time reminder for multiple architecture code safe! Signed-off-by: Alex Shi <alex.shi@intel.com> Link: http://lkml.kernel.org/r/1340845344-27557-7-git-send-email-alex.shi@intel.com Signed-off-by: H. Peter Anvin <hpa@zytor.com> |
||
Randy Dunlap
|
eb4546bbbd |
mm/memory.c: fix kernel-doc warnings
Fix kernel-doc warnings in mm/memory.c: Warning(mm/memory.c:1377): No description found for parameter 'start' Warning(mm/memory.c:1377): Excess function parameter 'address' description in 'zap_page_range' Signed-off-by: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
e0897d75f0 |
mm, thp: print useful information when mmap_sem is unlocked in zap_pmd_range
Andrea asked for addr, end, vma->vm_start, and vma->vm_end to be emitted when !rwsem_is_locked(&tlb->mm->mmap_sem). Otherwise, debugging the underlying issue is more difficult. Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
1f1d06c34f |
thp, memcg: split hugepage for memcg oom on cow
On COW, a new hugepage is allocated and charged to the memcg. If the system is oom or the charge to the memcg fails, however, the fault handler will return VM_FAULT_OOM which results in an oom kill. Instead, it's possible to fallback to splitting the hugepage so that the COW results only in an order-0 page being allocated and charged to the memcg which has a higher liklihood to succeed. This is expensive because the hugepage must be split in the page fault handler, but it is much better than unnecessarily oom killing a process. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <jweiner@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rik van Riel
|
e709ffd616 |
mm: remove swap token code
The swap token code no longer fits in with the current VM model. It does not play well with cgroups or the better NUMA placement code in development, since we have only one swap token globally. It also has the potential to mess with scalability of the system, by increasing the number of non-reclaimable pages on the active and inactive anon LRU lists. Last but not least, the swap token code has been broken for a year without complaints, as reported by Konstantin Khlebnikov. This suggests we no longer have much use for it. The days of sub-1G memory systems with heavy use of swap are over. If we ever need thrashing reducing code in the future, we will have to implement something that does scale. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hughd@google.com> Acked-by: Bob Picco <bpicco@meloft.net> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
654443e20d |
Merge branch 'perf-uprobes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull user-space probe instrumentation from Ingo Molnar: "The uprobes code originates from SystemTap and has been used for years in Fedora and RHEL kernels. This version is much rewritten, reviews from PeterZ, Oleg and myself shaped the end result. This tree includes uprobes support in 'perf probe' - but SystemTap (and other tools) can take advantage of user probe points as well. Sample usage of uprobes via perf, for example to profile malloc() calls without modifying user-space binaries. First boot a new kernel with CONFIG_UPROBE_EVENT=y enabled. If you don't know which function you want to probe you can pick one from 'perf top' or can get a list all functions that can be probed within libc (binaries can be specified as well): $ perf probe -F -x /lib/libc.so.6 To probe libc's malloc(): $ perf probe -x /lib64/libc.so.6 malloc Added new event: probe_libc:malloc (on 0x7eac0) You can now use it in all perf tools, such as: perf record -e probe_libc:malloc -aR sleep 1 Make use of it to create a call graph (as the flat profile is going to look very boring): $ perf record -e probe_libc:malloc -gR make [ perf record: Woken up 173 times to write data ] [ perf record: Captured and wrote 44.190 MB perf.data (~1930712 $ perf report | less 32.03% git libc-2.15.so [.] malloc | --- malloc 29.49% cc1 libc-2.15.so [.] malloc | --- malloc | |--0.95%-- 0x208eb1000000000 | |--0.63%-- htab_traverse_noresize 11.04% as libc-2.15.so [.] malloc | --- malloc | 7.15% ld libc-2.15.so [.] malloc | --- malloc | 5.07% sh libc-2.15.so [.] malloc | --- malloc | 4.99% python-config libc-2.15.so [.] malloc | --- malloc | 4.54% make libc-2.15.so [.] malloc | --- malloc | |--7.34%-- glob | | | |--93.18%-- 0x41588f | | | --6.82%-- glob | 0x41588f ... Or: $ perf report -g flat | less # Overhead Command Shared Object Symbol # ........ ............. ............. .......... # 32.03% git libc-2.15.so [.] malloc 27.19% malloc 29.49% cc1 libc-2.15.so [.] malloc 24.77% malloc 11.04% as libc-2.15.so [.] malloc 11.02% malloc 7.15% ld libc-2.15.so [.] malloc 6.57% malloc ... The core uprobes design is fairly straightforward: uprobes probe points register themselves at (inode:offset) addresses of libraries/binaries, after which all existing (or new) vmas that map that address will have a software breakpoint injected at that address. vmas are COW-ed to preserve original content. The probe points are kept in an rbtree. If user-space executes the probed inode:offset instruction address then an event is generated which can be recovered from the regular perf event channels and mmap-ed ring-buffer. Multiple probes at the same address are supported, they create a dynamic callback list of event consumers. The basic model is further complicated by the XOL speedup: the original instruction that is probed is copied (in an architecture specific fashion) and executed out of line when the probe triggers. The XOL area is a single vma per process, with a fixed number of entries (which limits probe execution parallelism). The API: uprobes are installed/removed via /sys/kernel/debug/tracing/uprobe_events, the API is integrated to align with the kprobes interface as much as possible, but is separate to it. Injecting a probe point is privileged operation, which can be relaxed by setting perf_paranoid to -1. You can use multiple probes as well and mix them with kprobes and regular PMU events or tracepoints, when instrumenting a task." Fix up trivial conflicts in mm/memory.c due to previous cleanup of unmap_single_vma(). * 'perf-uprobes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits) perf probe: Detect probe target when m/x options are absent perf probe: Provide perf interface for uprobes tracing: Fix kconfig warning due to a typo tracing: Provide trace events interface for uprobes tracing: Extract out common code for kprobes/uprobes trace events tracing: Modify is_delete, is_return from int to bool uprobes/core: Decrement uprobe count before the pages are unmapped uprobes/core: Make background page replacement logic account for rss_stat counters uprobes/core: Optimize probe hits with the help of a counter uprobes/core: Allocate XOL slots for uprobes use uprobes/core: Handle breakpoint and singlestep exceptions uprobes/core: Rename bkpt to swbp uprobes/core: Make order of function parameters consistent across functions uprobes/core: Make macro names consistent uprobes: Update copyright notices uprobes/core: Move insn to arch specific structure uprobes/core: Remove uprobe_opcode_sz uprobes/core: Make instruction tables volatile uprobes: Move to kernel/events/ uprobes/core: Clean up, refactor and improve the code ... |
||
Linus Torvalds
|
4f74d2c8e8 |
vm: remove 'nr_accounted' calculations from the unmap_vmas() interfaces
The VM accounting makes no sense at this level, and half of the callers didn't ever actually use the end result. The only time we want to unaccount the memory is when we actually remove the vma, so do the accounting at that point instead. This simplifies the interfaces (no need to pass down that silly page counter to functions that really don't care), and also makes it much more obvious what is actually going on: we do vm_[un]acct_memory() when adding or removing the vma, not on random page walking. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
7e027b14d5 |
vm: simplify unmap_vmas() calling convention
None of the callers want to pass in 'zap_details', and it doesn't even make sense for the case of actually unmapping vma's. So remove the argument, and clean up the interface. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Srikar Dronamraju
|
cbc91f71b5 |
uprobes/core: Decrement uprobe count before the pages are unmapped
Uprobes has a callback (uprobe_munmap()) in the unmap path to
maintain the uprobes count.
In the exit path this callback gets called in unlink_file_vma().
However by the time unlink_file_vma() is called, the pages would
have been unmapped (in unmap_vmas()) and the task->rss_stat counts
accounted (in zap_pte_range()).
If the exiting process has probepoints, uprobe_munmap() checks if
the breakpoint instruction was around before decrementing the probe
count.
This results in a file backed page being reread by uprobe_munmap()
and hence it does not find the breakpoint.
This patch fixes this problem by moving the callback to
unmap_single_vma(). Since unmap_single_vma() may not unmap the
complete vma, add start and end parameters to uprobe_munmap().
This bug became apparent courtesy of commit
|
||
Jason Baron
|
909af768e8 |
coredump: remove VM_ALWAYSDUMP flag
The motivation for this patchset was that I was looking at a way for a qemu-kvm process, to exclude the guest memory from its core dump, which can be quite large. There are already a number of filter flags in /proc/<pid>/coredump_filter, however, these allow one to specify 'types' of kernel memory, not specific address ranges (which is needed in this case). Since there are no more vma flags available, the first patch eliminates the need for the 'VM_ALWAYSDUMP' flag. The flag is used internally by the kernel to mark vdso and vsyscall pages. However, it is simple enough to check if a vma covers a vdso or vsyscall page without the need for this flag. The second patch then replaces the 'VM_ALWAYSDUMP' flag with a new 'VM_NODUMP' flag, which can be set by userspace using new madvise flags: 'MADV_DONTDUMP', and unset via 'MADV_DODUMP'. The core dump filters continue to work the same as before unless 'MADV_DONTDUMP' is set on the region. The qemu code which implements this features is at: http://people.redhat.com/~jbaron/qemu-dump/qemu-dump.patch In my testing the qemu core dump shrunk from 383MB -> 13MB with this patch. I also believe that the 'MADV_DONTDUMP' flag might be useful for security sensitive apps, which might want to select which areas are dumped. This patch: The VM_ALWAYSDUMP flag is currently used by the coredump code to indicate that a vma is part of a vsyscall or vdso section. However, we can determine if a vma is in one these sections by checking it against the gate_vma and checking for a non-NULL return value from arch_vma_name(). Thus, freeing a valuable vma bit. Signed-off-by: Jason Baron <jbaron@redhat.com> Acked-by: Roland McGrath <roland@hack.frob.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
95211279c5 |
Merge branch 'akpm' (Andrew's patch-bomb)
Merge first batch of patches from Andrew Morton: "A few misc things and all the MM queue" * emailed from Andrew Morton <akpm@linux-foundation.org>: (92 commits) memcg: avoid THP split in task migration thp: add HPAGE_PMD_* definitions for !CONFIG_TRANSPARENT_HUGEPAGE memcg: clean up existing move charge code mm/memcontrol.c: remove unnecessary 'break' in mem_cgroup_read() mm/memcontrol.c: remove redundant BUG_ON() in mem_cgroup_usage_unregister_event() mm/memcontrol.c: s/stealed/stolen/ memcg: fix performance of mem_cgroup_begin_update_page_stat() memcg: remove PCG_FILE_MAPPED memcg: use new logic for page stat accounting memcg: remove PCG_MOVE_LOCK flag from page_cgroup memcg: simplify move_account() check memcg: remove EXPORT_SYMBOL(mem_cgroup_update_page_stat) memcg: kill dead prev_priority stubs memcg: remove PCG_CACHE page_cgroup flag memcg: let css_get_next() rely upon rcu_read_lock() cgroup: revert ss_id_lock to spinlock idr: make idr_get_next() good for rcu_read_lock() memcg: remove unnecessary thp check in page stat accounting memcg: remove redundant returns memcg: enum lru_list lru ... |
||
David Rientjes
|
ea48cf7863 |
mm, counters: fold __sync_task_rss_stat() into sync_mm_rss()
There's no difference between sync_mm_rss() and __sync_task_rss_stat(), so fold the latter into the former. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
05af2e104a |
mm, counters: remove task argument to sync_mm_rss() and __sync_task_rss_stat()
sync_mm_rss() can only be used for current to avoid race conditions in iterating and clearing its per-task counters. Remove the task argument for it and its helper function, __sync_task_rss_stat(), to avoid thinking it can be used safely for anything other than current. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
69c978232a |
mm: make get_mm_counter static-inline
Make get_mm_counter() always static inline, it is simple enough for that. And remove unused set_mm_counter() bloat-o-meter: add/remove: 0/1 grow/shrink: 4/12 up/down: 99/-341 (-242) function old new delta try_to_unmap_one 886 952 +66 sys_remap_file_pages 1214 1230 +16 dup_mm 1684 1700 +16 do_exit 2277 2278 +1 zap_page_range 208 205 -3 unmap_region 304 296 -8 static.oom_kill_process 554 546 -8 try_to_unmap_file 1716 1700 -16 getrusage 925 909 -16 flush_old_exec 1704 1688 -16 static.dump_header 416 390 -26 acct_update_integrals 218 187 -31 do_task_stat 2986 2954 -32 get_mm_counter 34 - -34 xacct_add_tsk 371 334 -37 task_statm 172 118 -54 task_mem 383 323 -60 try_to_unmap_one() grows because update_hiwater_rss() now completely inline. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrea Arcangeli
|
1a5a9906d4 |
mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(¤t->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |