Volatile objects are marked as DONTNEED while pinned, therefore once
unpinned the backing store can be discarded. This is limited to kernel
internal objects.
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Signed-off-by: CQ Tang <cq.tang@intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Abdiel Janulgue <abdiel.janulgue@linux.intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191008160116.18379-4-matthew.auld@intel.com
Some kernel internal objects may need to be allocated as a contiguous
block, also thinking ahead the various kernel io_mapping interfaces seem
to expect it, although this is purely a limitation in the kernel
API...so perhaps something to be improved.
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Abdiel Janulgue <abdiel.janulgue@linux.intel.com>
Cc: Michael J Ruhl <michael.j.ruhl@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191008160116.18379-3-matthew.auld@intel.com
Support memory regions, as defined by a given (start, end), and allow
creating GEM objects which are backed by said region. The immediate goal
here is to have something to represent our device memory, but later on
we also want to represent every memory domain with a region, so stolen,
shmem, and of course device. At some point we are probably going to want
use a common struct here, such that we are better aligned with say TTM.
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Signed-off-by: Abdiel Janulgue <abdiel.janulgue@linux.intel.com>
Signed-off-by: Niranjana Vishwanathapura <niranjana.vishwanathapura@intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191008160116.18379-2-matthew.auld@intel.com
Keep track of the GEM contexts underneath i915->gem.contexts and assign
them their own lock for the purposes of list management.
v2: Focus on lock tracking; ctx->vm is protected by ctx->mutex
v3: Correct split with removal of logical HW ID
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-15-chris@chris-wilson.co.uk
Replace the struct_mutex requirement for pinning the i915_vma with the
local vm->mutex instead. Note that the vm->mutex is tainted by the
shrinker (we require unbinding from inside fs-reclaim) and so we cannot
allocate while holding that mutex. Instead we have to preallocate
workers to do allocate and apply the PTE updates after we have we
reserved their slot in the drm_mm (using fences to order the PTE writes
with the GPU work and with later unbind).
In adding the asynchronous vma binding, one subtle requirement is to
avoid coupling the binding fence into the backing object->resv. That is
the asynchronous binding only applies to the vma timeline itself and not
to the pages as that is a more global timeline (the binding of one vma
does not need to be ordered with another vma, nor does the implicit GEM
fencing depend on a vma, only on writes to the backing store). Keeping
the vma binding distinct from the backing store timelines is verified by
a number of async gem_exec_fence and gem_exec_schedule tests. The way we
do this is quite simple, we keep the fence for the vma binding separate
and only wait on it as required, and never add it to the obj->resv
itself.
Another consequence in reducing the locking around the vma is the
destruction of the vma is no longer globally serialised by struct_mutex.
A natural solution would be to add a kref to i915_vma, but that requires
decoupling the reference cycles, possibly by introducing a new
i915_mm_pages object that is own by both obj->mm and vma->pages.
However, we have not taken that route due to the overshadowing lmem/ttm
discussions, and instead play a series of complicated games with
trylocks to (hopefully) ensure that only one destruction path is called!
v2: Add some commentary, and some helpers to reduce patch churn.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-4-chris@chris-wilson.co.uk
Avoid having to pass around (ctx, engine) everywhere by passing the
actual intel_context we intend to use. Today we preach this lesson to
igt_gpu_fill_dw and its callers' callers.
The immediate benefit for the GEM selftests is that we aim to use the
GEM context as the control, the source of the engines on which to test
the GEM context.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190823235141.31799-1-chris@chris-wilson.co.uk
Using the gpu to write to some dword over a number of pages is rather
useful, and we already have two copies of such a thing, and we don't
want a third so move it to utils. There is probably some other stuff
also...
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190810105008.14320-1-chris@chris-wilson.co.uk
Having taken the first step in encapsulating the functionality by moving
the related files under gt/, the next step is to start encapsulating by
passing around the relevant structs rather than the global
drm_i915_private. In this step, we pass intel_gt to intel_reset.c
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Reviewed-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190712192953.9187-1-chris@chris-wilson.co.uk
When using MI operations, we do not care which engine we use, so use
them all where possible, and where inconvenient double check we have the
engine we selected at random.
v2: Drop the local copy of engine->sseu to avoid an unchecked deref
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190704212343.6820-1-chris@chris-wilson.co.uk
For gt related operations it makes more logical sense to stay in the realm
of gt instead of dereferencing via driver i915.
This patch handles a few of the easy ones with work requiring more
refactoring still outstanding.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190621070811.7006-30-tvrtko.ursulin@linux.intel.com
The functions where internally already only using the structure, so we
need to just flip the interface.
v2: rebase
Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Imre Deak <imre.deak@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Imre Deak <imre.deak@intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190613232156.34940-7-daniele.ceraolospurio@intel.com
An old optimisation to reduce the number of atomics per batch sadly
relies on struct_mutex for coordination. In order to remove struct_mutex
from serialising object/context closing, always taking and releasing an
active reference on first use / last use greatly simplifies the locking.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190528092956.14910-15-chris@chris-wilson.co.uk
Use the per-object local lock to control the cache domain of the
individual GEM objects, not struct_mutex. This is a huge leap forward
for us in terms of object-level synchronisation; execbuffers are
coordinated using the ww_mutex and pread/pwrite is finally fully
serialised again.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190528092956.14910-10-chris@chris-wilson.co.uk