setup_per_zone_lowmem_reserve() iterates through each zone setting
zone->lowmem_reserve[j] = 0 (where j is the zone's index) then iterates
backwards through all preceding zones, setting
lower_zone->lowmem_reserve[j] = sum(managed pages of higher zones) /
lowmem_reserve_ratio[idx] for each (where idx is the lower zone's index).
If the lower zone has no managed pages or its ratio is 0 then all of its
lowmem_reserve[] entries are effectively zeroed.
As these arrays are only assigned here and all lowmem_reserve[] entries
for index < this zone's index are implicitly assumed to be 0 (as these are
specifically output in show_free_areas() and zoneinfo_show_print() for
example) there is no need to additionally zero index == this zone's index
too. This patch avoids zeroing unnecessarily.
Rather than iterating through zones and setting lowmem_reserve[j] for each
lower zone this patch reverse the process and populates each zone's
lowmem_reserve[] values in ascending order.
This clarifies what is going on especially in the case of zero managed
pages or ratio which is now explicitly shown to clear these values.
Link: https://lkml.kernel.org/r/20201129162758.115907-1-lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the booting phase if CONFIG_DEFERRED_STRUCT_PAGE_INIT is set,
we have following callchain:
start_kernel
...
mm_init
mem_init
memblock_free_all
reset_all_zones_managed_pages
free_low_memory_core_early
...
buffer_init
nr_free_buffer_pages
zone->managed_pages
...
rest_init
kernel_init
kernel_init_freeable
page_alloc_init_late
kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
wait_for_completion(&pgdat_init_all_done_comp);
...
files_maxfiles_init
It's clear that buffer_init depends on zone->managed_pages, but it's reset
in reset_all_zones_managed_pages after that pages are readded into
zone->managed_pages, but when buffer_init runs this process is half done
and most of them will finally be added till deferred_init_memmap done. In
large memory couting of nr_free_buffer_pages drifts too much, also
drifting from kernels to kernels on same hardware.
Fix is simple, it delays buffer_init run till deferred_init_memmap all
done.
But as corrected by this patch, max_buffer_heads becomes very large, the
value is roughly as many as 4 times of totalram_pages, formula:
max_buffer_heads = nrpages * (10%) * (PAGE_SIZE / sizeof(struct
buffer_head));
Say in a 64GB memory box we have 16777216 pages, then max_buffer_heads
turns out to be roughly 67,108,864. In common cases, should a buffer_head
be mapped to one page/block(4KB)? So max_buffer_heads never exceeds
totalram_pages. IMO it's likely to make buffer_heads_over_limit bool
value alwasy false, then make codes 'if (buffer_heads_over_limit)' test in
vmscan unnecessary.
So this patch will change the original behavior related to
buffer_heads_over_limit in vmscan since we used a half done value of
zone->managed_pages before, or should we use a smaller factor(<10%) in
previous formula.
akpm: I think this is OK - the max_buffer_heads code is only needed on
highmem machines, to prevent ZONE_NORMAL from being consumed by large
amounts of buffer_heads attached to highmem pagecache. This problem will
not occur on 64-bit machines, so this feature's non-functionality on such
machines is a feature, not a bug.
Link: https://lkml.kernel.org/r/20201123110500.103523-1-linf@wangsu.com
Signed-off-by: Lin Feng <linf@wangsu.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 6471384af2 ("mm: security: introduce init_on_alloc=1 and
init_on_free=1 boot options") resulted with init_on_alloc=1 in all pages
leaving the buddy via alloc_pages() and friends to be
initialized/cleared/zeroed on allocation.
However, the same logic is currently not applied to alloc_contig_pages():
allocated pages leaving the buddy aren't cleared with init_on_alloc=1 and
init_on_free=0. Let's also properly clear pages on that allocation path.
To achieve that, let's move clearing into post_alloc_hook(). This will
not only affect alloc_contig_pages() allocations but also any pages used
as migration target in compaction code via compaction_alloc().
While this sounds sub-optimal, it's the very same handling as when
allocating migration targets via alloc_migration_target() - pages will get
properly cleared with init_on_free=1. In case we ever want to optimize
migration in that regard, we should tackle all such migration users - if
we believe migration code can be fully trusted.
With this change, we will see double clearing of pages in some cases. One
example are gigantic pages (either allocated via CMA, or allocated
dynamically via alloc_contig_pages()) - which is the right thing to do
(and to be optimized outside of the buddy in the callers) as discussed in:
https://lkml.kernel.org/r/20201019182853.7467-1-gpiccoli@canonical.com
This change implies that with init_on_alloc=1
- All CMA allocations will be cleared
- Gigantic pages allocated via alloc_contig_pages() will be cleared
- virtio-mem memory to be unplugged will be cleared. While this is
suboptimal, it's similar to memory balloon drivers handling, where
all pages to be inflated will get cleared as well.
- Pages isolated for compaction will be cleared
Link: https://lkml.kernel.org/r/20201120180452.19071-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following sparse warnings:
mm/page_alloc.c:3040:6: warning: symbol '__drain_all_pages' was not declared. Should it be static?
mm/page_alloc.c:6349:6: warning: symbol '__zone_set_pageset_high_and_batch' was not declared. Should it be static?
Link: https://lkml.kernel.org/r/1605517365-65858-1-git-send-email-zou_wei@huawei.com
Signed-off-by: Zou Wei <zou_wei@huawei.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide some guidance towards when this might not be the right interface
to use.
Link: https://lkml.kernel.org/r/20201027025523.3235-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory offlining relies on page isolation to guarantee a forward progress
because pages cannot be reused while they are isolated. But the page
isolation itself doesn't prevent from races while freed pages are stored
on pcp lists and thus can be reused. This can be worked around by
repeated draining of pcplists, as done by commit 9683182612
("mm/memory_hotplug: drain per-cpu pages again during memory offline").
David and Michal would prefer that this race was closed in a way that
callers of page isolation who need stronger guarantees don't need to
repeatedly drain. David suggested disabling pcplists usage completely
during page isolation, instead of repeatedly draining them.
To achieve this without adding special cases in alloc/free fastpath, we
can use the same approach as boot pagesets - when pcp->high is 0, any
pcplist addition will be immediately flushed.
The race can thus be closed by setting pcp->high to 0 and draining
pcplists once, before calling start_isolate_page_range(). The draining
will serialize after processes that already disabled interrupts and read
the old value of pcp->high in free_unref_page_commit(), and processes that
have not yet disabled interrupts, will observe pcp->high == 0 when they
are rescheduled, and skip pcplists. This guarantees no stray pages on
pcplists in zones where isolation happens.
This patch thus adds zone_pcp_disable() and zone_pcp_enable() functions
that page isolation users can call before start_isolate_page_range() and
after unisolating (or offlining) the isolated pages.
Also, drain_all_pages() is optimized to only execute on cpus where
pcplists are not empty. The check can however race with a free to pcplist
that has not yet increased the pcp->count from 0 to 1. Thus make the
drain optionally skip the racy check and drain on all cpus, and use this
option in zone_pcp_disable().
As we have to avoid external updates to high and batch while pcplists are
disabled, we take pcp_batch_high_lock in zone_pcp_disable() and release it
in zone_pcp_enable(). This also synchronizes multiple users of
zone_pcp_disable()/enable().
Currently the only user of this functionality is offline_pages().
[vbabka@suse.cz: add comment, per David]
Link: https://lkml.kernel.org/r/527480ef-ed72-e1c1-52a0-1c5b0113df45@suse.cz
Link: https://lkml.kernel.org/r/20201111092812.11329-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, pcplists are drained during set_migratetype_isolate() which
means once per pageblock processed start_isolate_page_range(). This is
somewhat wasteful. Moreover, the callers might need different guarantees,
and the draining is currently prone to races and does not guarantee that
no page from isolated pageblock will end up on the pcplist after the
drain.
Better guarantees are added by later patches and require explicit actions
by page isolation users that need them. Thus it makes sense to move the
current imperfect draining to the callers also as a preparation step.
Link: https://lkml.kernel.org/r/20201111092812.11329-7-vbabka@suse.cz
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All per-cpu pagesets for a zone use the same high and batch values, that
are duplicated there just for performance (locality) reasons. This patch
adds the same variables also to struct zone as a shared copy.
This will be useful later for making possible to disable pcplists
temporarily by setting high value to 0, while remembering the values for
restoring them later. But we can also immediately benefit from not
updating pagesets of all possible cpus in case the newly recalculated
values (after sysctl change or memory online/offline) are actually
unchanged from the previous ones.
Link: https://lkml.kernel.org/r/20201111092812.11329-6-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pageset_update() attempts to update pcplist's high and batch values in a
way that readers don't observe batch > high. It uses smp_wmb() to order
the updates in a way to achieve this. However, without proper pairing
read barriers in readers this guarantee doesn't hold, and there are no
such barriers in e.g. free_unref_page_commit().
Commit 88e8ac11d2 ("mm, page_alloc: fix core hung in
free_pcppages_bulk()") already showed this is problematic, and solved this
by ultimately only trusing pcp->count of the current cpu with interrupts
disabled.
The update dance with unpaired write barriers thus makes no sense.
Replace them with plain WRITE_ONCE to prevent store tearing, and document
that the values can change asynchronously and should not be trusted for
correctness.
All current readers appear to be OK after 88e8ac11d2. Convert them to
READ_ONCE to prevent unnecessary read tearing, but mainly to alert anybody
making future changes to the code that special care is needed.
Link: https://lkml.kernel.org/r/20201111092812.11329-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We initialize boot-time pagesets with setup_pageset(), which sets high and
batch values that effectively disable pcplists.
We can remove this wrapper if we just set these values for all pagesets in
pageset_init(). Non-boot pagesets then subsequently update them to the
proper values.
No functional change.
Link: https://lkml.kernel.org/r/20201111092812.11329-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We currently call pageset_set_high_and_batch() for each possible cpu,
which repeats the same calculations of high and batch values.
Instead call the function just once per zone, and make it apply the
calculated values to all per-cpu pagesets of the zone.
This also allows removing the zone_pageset_init() and __zone_pcp_update()
wrappers.
No functional change.
Link: https://lkml.kernel.org/r/20201111092812.11329-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "disable pcplists during memory offline", v3.
As per the discussions [1] [2] this is an attempt to implement David's
suggestion that page isolation should disable pcplists to avoid races with
page freeing in progress. This is done without extra checks in fast
paths, as explained in Patch 9. The repeated draining done by [2] is then
no longer needed. Previous version (RFC) is at [3].
The RFC tried to hide pcplists disabling/enabling into page isolation, but
it wasn't completely possible, as memory offline does not unisolation.
Michal suggested an explicit API in [4] so that's the current
implementation and it seems indeed nicer.
Once we accept that page isolation users need to do explicit actions
around it depending on the needed guarantees, we can also IMHO accept that
the current pcplist draining can be also done by the callers, which is
more effective. After all, there are only two users of page isolation.
So patch 6 does effectively the same thing as Pavel proposed in [5], and
patch 7 implement stronger guarantees only for memory offline. If CMA
decides to opt-in to the stronger guarantee, it can be added later.
Patches 1-5 are preparatory cleanups for pcplist disabling.
Patchset was briefly tested in QEMU so that memory online/offline works,
but I haven't done a stress test that would prove the race fixed by [2] is
eliminated.
Note that patch 7 could be avoided if we instead adjusted page freeing in
shown in [6], but I believe the current implementation of disabling
pcplists is not too much complex, so I would prefer this instead of adding
new checks and longer irq-disabled section into page freeing hotpaths.
[1] https://lore.kernel.org/linux-mm/20200901124615.137200-1-pasha.tatashin@soleen.com/
[2] https://lore.kernel.org/linux-mm/20200903140032.380431-1-pasha.tatashin@soleen.com/
[3] https://lore.kernel.org/linux-mm/20200907163628.26495-1-vbabka@suse.cz/
[4] https://lore.kernel.org/linux-mm/20200909113647.GG7348@dhcp22.suse.cz/
[5] https://lore.kernel.org/linux-mm/20200904151448.100489-3-pasha.tatashin@soleen.com/
[6] https://lore.kernel.org/linux-mm/3d3b53db-aeaa-ff24-260b-36427fac9b1c@suse.cz/
[7] https://lore.kernel.org/linux-mm/20200922143712.12048-1-vbabka@suse.cz/
[8] https://lore.kernel.org/linux-mm/20201008114201.18824-1-vbabka@suse.cz/
This patch (of 7):
The updates to pcplists' high and batch values are handled by multiple
functions that make the calculations hard to follow. Consolidate
everything to pageset_set_high_and_batch() and remove pageset_set_batch()
and pageset_set_high() wrappers.
The only special case using one of the removed wrappers was:
build_all_zonelists_init()
setup_pageset()
pageset_set_batch()
which was hardcoding batch as 0, so we can just open-code a call to
pageset_update() with constant parameters instead.
No functional change.
Link: https://lkml.kernel.org/r/20201111092812.11329-1-vbabka@suse.cz
Link: https://lkml.kernel.org/r/20201111092812.11329-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "arch, mm: improve robustness of direct map manipulation", v7.
During recent discussion about KVM protected memory, David raised a
concern about usage of __kernel_map_pages() outside of DEBUG_PAGEALLOC
scope [1].
Indeed, for architectures that define CONFIG_ARCH_HAS_SET_DIRECT_MAP it is
possible that __kernel_map_pages() would fail, but since this function is
void, the failure will go unnoticed.
Moreover, there's lack of consistency of __kernel_map_pages() semantics
across architectures as some guard this function with #ifdef
DEBUG_PAGEALLOC, some refuse to update the direct map if page allocation
debugging is disabled at run time and some allow modifying the direct map
regardless of DEBUG_PAGEALLOC settings.
This set straightens this out by restoring dependency of
__kernel_map_pages() on DEBUG_PAGEALLOC and updating the call sites
accordingly.
Since currently the only user of __kernel_map_pages() outside
DEBUG_PAGEALLOC is hibernation, it is updated to make direct map accesses
there more explicit.
[1] https://lore.kernel.org/lkml/2759b4bf-e1e3-d006-7d86-78a40348269d@redhat.com
This patch (of 4):
When CONFIG_DEBUG_PAGEALLOC is enabled, it unmaps pages from the kernel
direct mapping after free_pages(). The pages than need to be mapped back
before they could be used. Theese mapping operations use
__kernel_map_pages() guarded with with debug_pagealloc_enabled().
The only place that calls __kernel_map_pages() without checking whether
DEBUG_PAGEALLOC is enabled is the hibernation code that presumes
availability of this function when ARCH_HAS_SET_DIRECT_MAP is set. Still,
on arm64, __kernel_map_pages() will bail out when DEBUG_PAGEALLOC is not
enabled but set_direct_map_invalid_noflush() may render some pages not
present in the direct map and hibernation code won't be able to save such
pages.
To make page allocation debugging and hibernation interaction more robust,
the dependency on DEBUG_PAGEALLOC or ARCH_HAS_SET_DIRECT_MAP has to be
made more explicit.
Start with combining the guard condition and the call to
__kernel_map_pages() into debug_pagealloc_map_pages() and
debug_pagealloc_unmap_pages() functions to emphasize that
__kernel_map_pages() should not be called without DEBUG_PAGEALLOC and use
these new functions to map/unmap pages when page allocation debugging is
enabled.
Link: https://lkml.kernel.org/r/20201109192128.960-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20201109192128.960-2-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARM and ARM64 free unused parts of the memory map just before the
initialization of the page allocator. To allow holes in the memory map both
architectures overload pfn_valid() and define HAVE_ARCH_PFN_VALID.
Allowing holes in the memory map for FLATMEM may be useful for small
machines, such as ARC and m68k and will enable those architectures to cease
using DISCONTIGMEM and still support more than one memory bank.
Move the functions that free unused memory map to generic mm and enable
them in case HAVE_ARCH_PFN_VALID=y.
Link: https://lkml.kernel.org/r/20201101170454.9567-10-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Meelis Roos <mroos@linux.ee>
Cc: Michael Schmitz <schmitzmic@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARM is the only architecture that defines CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
which in turn enables memmap_valid_within() function that is intended to
verify existence of struct page associated with a pfn when there are holes
in the memory map.
However, the ARCH_HAS_HOLES_MEMORYMODEL also enables HAVE_ARCH_PFN_VALID
and arch-specific pfn_valid() implementation that also deals with the holes
in the memory map.
The only two users of memmap_valid_within() call this function after
a call to pfn_valid() so the memmap_valid_within() check becomes redundant.
Remove CONFIG_ARCH_HAS_HOLES_MEMORYMODEL and memmap_valid_within() and rely
entirely on ARM's implementation of pfn_valid() that is now enabled
unconditionally.
Link: https://lkml.kernel.org/r/20201101170454.9567-9-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Meelis Roos <mroos@linux.ee>
Cc: Michael Schmitz <schmitzmic@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The ia64 implementation of __early_pfn_to_nid() essentially relies on the
same data as the generic implementation.
The correspondence between memory ranges and nodes is set in memblock
during early memory initialization in register_active_ranges() function.
The initialization of sparsemem that requires early_pfn_to_nid() happens
later and it can use the memblock information like the other architectures.
Link: https://lkml.kernel.org/r/20201101170454.9567-3-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Meelis Roos <mroos@linux.ee>
Cc: Michael Schmitz <schmitzmic@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The aux_stack[2] is reused to record the call_rcu() call stack and
enqueuing work call stacks. So that we need to change the auxiliary stack
title for common title, print them in KASAN report.
Link: https://lkml.kernel.org/r/20201203022715.30635-1-walter-zh.wu@mediatek.com
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Suggested-by: Marco Elver <elver@google.com>
Acked-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The size of vm area can be affected by the presence or not of the guard
page. In particular when VM_NO_GUARD is present, the actual accessible
size has to be considered like the real size minus the guard page.
Currently kasan does not keep into account this information during the
poison operation and in particular tries to poison the guard page as well.
This approach, even if incorrect, does not cause an issue because the tags
for the guard page are written in the shadow memory. With the future
introduction of the Tag-Based KASAN, being the guard page inaccessible by
nature, the write tag operation on this page triggers a fault.
Fix kasan shadow poisoning size invoking get_vm_area_size() instead of
accessing directly the field in the data structure to detect the correct
value.
Link: https://lkml.kernel.org/r/20201027160213.32904-1-vincenzo.frascino@arm.com
Fixes: d98c9e83b5 ("kasan: fix crashes on access to memory mapped by vm_map_ram()")
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When multiple locks are acquired, they should be released in reverse
order. For s_start() and s_stop() in mm/vmalloc.c, that is not the
case.
s_start: mutex_lock(&vmap_purge_lock); spin_lock(&vmap_area_lock);
s_stop : mutex_unlock(&vmap_purge_lock); spin_unlock(&vmap_area_lock);
This unlock sequence, though allowed, is not optimal. If a waiter is
present, mutex_unlock() will need to go through the slowpath of waking
up the waiter with preemption disabled. Fix that by releasing the
spinlock first before the mutex.
Link: https://lkml.kernel.org/r/20201213180843.16938-1-longman@redhat.com
Fixes: e36176be1c ("mm/vmalloc: rework vmap_area_lock")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kernel-doc markup has a issue on pvm_determine_end_from_reverse:
mm/vmalloc.c:3145: warning: Function parameter or member 'align' not described in 'pvm_determine_end_from_reverse'
Add a explanation for it to remove the warning.
Link: https://lkml.kernel.org/r/1605605088-30668-3-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A current "lazy drain" model suffers from at least two issues.
First one is related to the unsorted list of vmap areas, thus in order to
identify the [min:max] range of areas to be drained, it requires a full
list scan. What is a time consuming if the list is too long.
Second one and as a next step is about merging all fragments with a free
space. What is also a time consuming because it has to iterate over
entire list which holds outstanding lazy areas.
See below the "preemptirqsoff" tracer that illustrates a high latency. It
is ~24676us. Our workloads like audio and video are effected by such long
latency:
<snip>
tracer: preemptirqsoff
preemptirqsoff latency trace v1.1.5 on 4.9.186-perf+
--------------------------------------------------------------------
latency: 24676 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 P:8)
-----------------
| task: crtc_commit:112-261 (uid:0 nice:0 policy:1 rt_prio:16)
-----------------
=> started at: __purge_vmap_area_lazy
=> ended at: __purge_vmap_area_lazy
_------=> CPU#
/ _-----=> irqs-off
| / _----=> need-resched
|| / _---=> hardirq/softirq
||| / _--=> preempt-depth
|||| / delay
cmd pid ||||| time | caller
\ / ||||| \ | /
crtc_com-261 1...1 1us*: _raw_spin_lock <-__purge_vmap_area_lazy
[...]
crtc_com-261 1...1 24675us : _raw_spin_unlock <-__purge_vmap_area_lazy
crtc_com-261 1...1 24677us : trace_preempt_on <-__purge_vmap_area_lazy
crtc_com-261 1...1 24683us : <stack trace>
=> free_vmap_area_noflush
=> remove_vm_area
=> __vunmap
=> vfree
=> drm_property_free_blob
=> drm_mode_object_unreference
=> drm_property_unreference_blob
=> __drm_atomic_helper_crtc_destroy_state
=> sde_crtc_destroy_state
=> drm_atomic_state_default_clear
=> drm_atomic_state_clear
=> drm_atomic_state_free
=> complete_commit
=> _msm_drm_commit_work_cb
=> kthread_worker_fn
=> kthread
=> ret_from_fork
<snip>
To address those two issues we can redesign a purging of the outstanding
lazy areas. Instead of queuing vmap areas to the list, we replace it by
the separate rb-tree. In hat case an area is located in the tree/list in
ascending order. It will give us below advantages:
a) Outstanding vmap areas are merged creating bigger coalesced blocks,
thus it becomes less fragmented.
b) It is possible to calculate a flush range [min:max] without scanning
all elements. It is O(1) access time or complexity;
c) The final merge of areas with the rb-tree that represents a free
space is faster because of (a). As a result the lock contention is
also reduced.
Link: https://lkml.kernel.org/r/20201116220033.1837-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: huang ying <huang.ying.caritas@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a dedicated and separate function that finds and removes a
continuous kernel virtual area. As a final step it also releases the
"area", a descriptor of corresponding vm_struct.
Use free_vmap_area() in the __vmalloc_node_range() instead of open coded
steps which are exactly the same, to perform a cleanup.
Link: https://lkml.kernel.org/r/20201116220033.1837-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With a machine with 3 TB (more than 2 TB memory). If you use vmalloc to
allocate > 2 TB memory, the array_size below will be overflowed.
The array_size is an unsigned int and can only be used to allocate less
than 2 TB memory. If you pass 2*1028*1028*1024*1024 = 2 * 2^40 in the
argument of vmalloc. The array_size will become 2*2^31 = 2^32. The 2^32
cannot be store with a 32 bit integer.
The fix is to change the type of array_size to unsigned long.
[akpm@linux-foundation.org: rework for current mainline]
Link: https://bugzilla.kernel.org/show_bug.cgi?id=210023
Reported-by: <hsinhuiwu@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Extracted from slab.h, which seems to have the most complete version
including the correct might_sleep() check. Roll it out to slob.c.
Motivated by a discussion with Paul about possibly changing call_rcu
behaviour to allocate memory, but only roughly every 500th call.
There are a lot fewer places in the kernel that care about whether
allocating memory is allowed or not (due to deadlocks with reclaim code)
than places that care whether sleeping is allowed. But debugging these
also tends to be a lot harder, so nice descriptive checks could come in
handy. I might have some use eventually for annotations in drivers/gpu.
Note that unlike fs_reclaim_acquire/release gfpflags_allow_blocking does
not consult the PF_MEMALLOC flags. But there is no flag equivalent for
GFP_NOWAIT, hence this check can't go wrong due to
memalloc_no*_save/restore contexts. Willy is working on a patch series
which might change this:
https://lore.kernel.org/linux-mm/20200625113122.7540-7-willy@infradead.org/
I think best would be if that updates gfpflags_allow_blocking(), since
there's a ton of callers all over the place for that already.
Link: https://lkml.kernel.org/r/20201125162532.1299794-3-daniel.vetter@ffwll.ch
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Michel Lespinasse <walken@google.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Waiman Long <longman@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Qian Cai <cai@lca.pw>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Christian König <christian.koenig@amd.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Thomas Hellström (Intel) <thomas_os@shipmail.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fs_reclaim_acquire/release nicely catch recursion issues when allocating
GFP_KERNEL memory against shrinkers (which gpu drivers tend to use to keep
the excessive caches in check). For mmu notifier recursions we do have
lockdep annotations since 23b68395c7 ("mm/mmu_notifiers: add a lockdep
map for invalidate_range_start/end").
But these only fire if a path actually results in some pte invalidation -
for most small allocations that's very rarely the case. The other trouble
is that pte invalidation can happen any time when __GFP_RECLAIM is set.
Which means only really GFP_ATOMIC is a safe choice, GFP_NOIO isn't good
enough to avoid potential mmu notifier recursion.
I was pondering whether we should just do the general annotation, but
there's always the risk for false positives. Plus I'm assuming that the
core fs and io code is a lot better reviewed and tested than random mmu
notifier code in drivers. Hence why I decide to only annotate for that
specific case.
Furthermore even if we'd create a lockdep map for direct reclaim, we'd
still need to explicit pull in the mmu notifier map - there's a lot more
places that do pte invalidation than just direct reclaim, these two
contexts arent the same.
Note that the mmu notifiers needing their own independent lockdep map is
also the reason we can't hold them from fs_reclaim_acquire to
fs_reclaim_release - it would nest with the acquistion in the pte
invalidation code, causing a lockdep splat. And we can't remove the
annotations from pte invalidation and all the other places since they're
called from many other places than page reclaim. Hence we can only do the
equivalent of might_lock, but on the raw lockdep map.
With this we can also remove the lockdep priming added in 66204f1d2d
("mm/mmu_notifiers: prime lockdep") since the new annotations are strictly
more powerful.
Link: https://lkml.kernel.org/r/20201125162532.1299794-2-daniel.vetter@ffwll.ch
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Hellström (Intel) <thomas_os@shipmail.org>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Don't allow splitting of vm_special_mapping's. It affects vdso/vvar
areas. Uprobes have only one page in xol_area so they aren't affected.
Those restrictions were enforced by checks in .mremap() callbacks.
Restrict resizing with generic .split() callback.
Link: https://lkml.kernel.org/r/20201013013416.390574-7-dima@arista.com
Signed-off-by: Dmitry Safonov <dima@arista.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If original VMA can't be split at the desired address, do_munmap() will
fail and leave both new-copied VMA and old VMA. De-facto it's
MREMAP_DONTUNMAP behaviour, which is unexpected.
Currently, it may fail such way for hugetlbfs and dax device mappings.
Minimize such unpleasant situations to OOM by checking .may_split() before
attempting to create a VMA copy.
Link: https://lkml.kernel.org/r/20201013013416.390574-6-dima@arista.com
Signed-off-by: Dmitry Safonov <dima@arista.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename the callback to reflect that it's not called *on* or *after* split,
but rather some time before the splitting to check if it's possible.
Link: https://lkml.kernel.org/r/20201013013416.390574-5-dima@arista.com
Signed-off-by: Dmitry Safonov <dima@arista.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As kernel expect to see only one of such mappings, any further operations
on the VMA-copy may be unexpected by the kernel. Maybe it's being on the
safe side, but there doesn't seem to be any expected use-case for this, so
restrict it now.
Link: https://lkml.kernel.org/r/20201013013416.390574-4-dima@arista.com
Fixes: commit e346b38130 ("mm/mremap: add MREMAP_DONTUNMAP to mremap()")
Signed-off-by: Dmitry Safonov <dima@arista.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently memory is accounted post-mremap() with MREMAP_DONTUNMAP, which
may break overcommit policy. So, check if there's enough memory before
doing actual VMA copy.
Don't unset VM_ACCOUNT on MREMAP_DONTUNMAP. By semantics, such mremap()
is actually a memory allocation. That also simplifies the error-path a
little.
Also, as it's memory allocation on success don't reset hiwater_vm value.
Link: https://lkml.kernel.org/r/20201013013416.390574-3-dima@arista.com
Fixes: commit e346b38130 ("mm/mremap: add MREMAP_DONTUNMAP to mremap()")
Signed-off-by: Dmitry Safonov <dima@arista.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mremap: move_vma() fixes".
This patch (of 6):
move_vma() copies VMA without adding it to account, then unmaps old part
of VMA. On failure it unmaps the new VMA. With hacks accounting in
munmap is disabled as it's a copy of existing VMA.
Account the memory on munmap() failure which was previously copied into
a new VMA.
Link: https://lkml.kernel.org/r/20201013013416.390574-1-dima@arista.com
Link: https://lkml.kernel.org/r/20201013013416.390574-2-dima@arista.com
Fixes: commit e2ea83742133 ("[PATCH] mremap: move_vma fixes and cleanup")
Signed-off-by: Dmitry Safonov <dima@arista.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Code outside mm/ should not be calling free_unref_page(). Also move
free_unref_page_list().
Link: https://lkml.kernel.org/r/20201125034655.27687-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The goal of these tracepoints is to be able to debug lock contention
issues. This lock is acquired on most (all?) mmap / munmap / page fault
operations, so a multi-threaded process which does a lot of these can
experience significant contention.
We trace just before we start acquisition, when the acquisition returns
(whether it succeeded or not), and when the lock is released (or
downgraded). The events are broken out by lock type (read / write).
The events are also broken out by memcg path. For container-based
workloads, users often think of several processes in a memcg as a single
logical "task", so collecting statistics at this level is useful.
The end goal is to get latency information. This isn't directly included
in the trace events. Instead, users are expected to compute the time
between "start locking" and "acquire returned", using e.g. synthetic
events or BPF. The benefit we get from this is simpler code.
Because we use tracepoint_enabled() to decide whether or not to trace,
this patch has effectively no overhead unless tracepoints are enabled at
runtime. If tracepoints are enabled, there is a performance impact, but
how much depends on exactly what e.g. the BPF program does.
[axelrasmussen@google.com: fix use-after-free race and css ref leak in tracepoints]
Link: https://lkml.kernel.org/r/20201130233504.3725241-1-axelrasmussen@google.com
[axelrasmussen@google.com: v3]
Link: https://lkml.kernel.org/r/20201207213358.573750-1-axelrasmussen@google.com
[rostedt@goodmis.org: in-depth examples of tracepoint_enabled() usage, and per-cpu-per-context buffer design]
Link: https://lkml.kernel.org/r/20201105211739.568279-2-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Jann Horn <jannh@google.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
check_pte() needs a correct colon for kernel-doc markup, otherwise, gcc
has the following warning for W=1, mm/page_vma_mapped.c:86: warning:
Function parameter or member 'pvmw' not described in 'check_pte'
Link: https://lkml.kernel.org/r/1605597167-25145-1-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add and change parameter explanation for wp_pte and clean_record_pte, to
avoid W1 warning:
mm/mapping_dirty_helpers.c:34: warning: Function parameter or member 'end' not described in 'wp_pte'
mm/mapping_dirty_helpers.c:88: warning: Function parameter or member 'end' not described in 'clean_record_pte'
Link: https://lkml.kernel.org/r/1605605088-30668-2-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Despite a comment that said that page fault accounting would be charged to
whatever task_struct* was passed into __access_remote_vm(), the tsk
argument was actually unused.
Making page fault accounting actually use this task struct is quite a
project, so there is no point in keeping the tsk argument.
Delete both the comment, and the argument.
[rppt@linux.ibm.com: changelog addition]
Link: https://lkml.kernel.org/r/20201026074137.4147787-1-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Android needs to move large memory regions for garbage collection. The GC
requires moving physical pages of multi-gigabyte heap using mremap.
During this move, the application threads have to be paused for
correctness. It is critical to keep this pause as short as possible to
avoid jitters during user interaction.
Optimize mremap for >= 1GB-sized regions by moving at the PUD/PGD level if
the source and destination addresses are PUD-aligned. For
CONFIG_PGTABLE_LEVELS == 3, moving at the PUD level in effect moves PGD
entries, since the PUD entry is “folded back” onto the PGD entry. Add
HAVE_MOVE_PUD so that architectures where moving at the PUD level isn't
supported/tested can turn this off by not selecting the config.
Link: https://lkml.kernel.org/r/20201014005320.2233162-4-kaleshsingh@google.com
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Gavin Shan <gshan@redhat.com>
Cc: Hassan Naveed <hnaveed@wavecomp.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jia He <justin.he@arm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For many workloads, pagetable consumption is significant and it makes
sense to expose it in the memory.stat for the memory cgroups. However at
the moment, the pagetables are accounted per-zone. Converting them to
per-node and using the right interface will correctly account for the
memory cgroups as well.
[akpm@linux-foundation.org: export __mod_lruvec_page_state to modules for arch/mips/kvm/]
Link: https://lkml.kernel.org/r/20201130212541.2781790-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memcg: add pagetable comsumption to memory.stat", v2.
Many workloads consumes significant amount of memory in pagetables. One
specific use-case is the user space network driver which mmaps the
application memory to provide zero copy transfer. This driver can consume
a large amount memory in page tables. This patch series exposes the
pagetable comsumption for each memory cgroup.
This patch (of 2):
This does not change any functionality and only move the functions which
update the lruvec stats to vmstat.h from memcontrol.h. The main reason
for this patch is to be able to use these functions in the page table
contructor function which is defined in mm.h and we can not include the
memcontrol.h in that file. Also this is a better place for this interface
in general. The lruvec abstraction, while invented for memcg, isn't
specific to memcg at all.
Link: https://lkml.kernel.org/r/20201130212541.2781790-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swapcache readahead pages are charged before being used, so it is unlikely
that they will be migrated before charging. Remove the incorrect comment.
Link: https://lkml.kernel.org/r/1605864930-49405-1-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The *_lruvec_slab_state is also suitable for pages allocated from buddy,
not just for the slab objects. But the function name seems to tell us
that only slab object is applicable. So we can rename the keyword of slab
to kmem.
Link: https://lkml.kernel.org/r/20201117085249.24319-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 2ef1bf118c40 ("mm: memcg: deprecate the non-hierarchical mode")
removed the only use of memcg_has_children() in
mem_cgroup_hierarchy_write() as part of the feature deprecation.
Hence, since then, make CC=clang W=1 warns:
mm/memcontrol.c:3421:20: warning: unused function 'memcg_has_children' [-Wunused-function]
Simply remove this obsolete unused function.
Link: https://lkml.kernel.org/r/20201116055043.20886-1-lukas.bulwahn@gmail.com
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: memcg: deprecate cgroup v1 non-hierarchical mode", v1.
The non-hierarchical cgroup v1 mode is a legacy of early days
of the memory controller and doesn't bring any value today.
However, it complicates the code and creates many edge cases
all over the memory controller code.
It's a good time to deprecate it completely. This patchset removes
the internal logic, adjusts the user interface and updates
the documentation. The alt patch removes some bits of the cgroup
core code, which become obsolete.
Michal Hocko said:
"All that we know today is that we have a warning in place to complain
loudly when somebody relies on use_hierarchy=0 with a deeper
hierarchy. For all those years we have seen _zero_ reports that would
describe a sensible usecase.
Moreover we (SUSE) have backported this warning into old distribution
kernels (since 3.0 based kernels) to extend the coverage and didn't
hear even for users who adopt new kernels only very slowly. The only
report we have seen so far was a LTP test suite which doesn't really
reflect any real life usecase"
This patch (of 3):
The non-hierarchical cgroup v1 mode is a legacy of early days of the
memory controller and doesn't bring any value today. However, it
complicates the code and creates many edge cases all over the memory
controller code.
It's a good time to deprecate it completely.
Functionally this patch enabled is by default for all cgroups and forbids
switching it off. Nothing changes if cgroup v2 is used: hierarchical mode
was enforced from scratch.
To protect the ABI memory.use_hierarchy interface is preserved with a
limited functionality: reading always returns "1", writing of "1" passes
silently, writing of any other value fails with -EINVAL and a warning to
dmesg (on the first occasion).
Link: https://lkml.kernel.org/r/20201110220800.929549-1-guro@fb.com
Link: https://lkml.kernel.org/r/20201110220800.929549-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes/removes some obsolete comments in the code related
to the kernel memory accounting:
- kmem_cache->memcg_params.memcg_caches has been removed by commit
9855609bde ("mm: memcg/slab: use a single set of kmem_caches for
all accounted allocations")
- memcg->kmemcg_id is not used as a gate for kmem accounting since
commit 0b8f73e104 ("mm: memcontrol: clean up alloc, online,
offline, free functions")
Link: https://lkml.kernel.org/r/20201110184615.311974-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page->mem_cgroup member is replaced by memcg_data, and add a helper
page_memcg() for it. Need to update comments to avoid confusing.
Link: https://lkml.kernel.org/r/1491c150-1cc0-6062-08ea-9c891548a3bc@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 369ea8242c ("mm/rmap: update to new mmu_notifier semantic
v2"), the code to check the secondary MMU's page table access bit is
broken for !(TTU_IGNORE_ACCESS) because the page is unmapped from the
secondary MMU's page table before the check. More specifically for those
secondary MMUs which unmap the memory in
mmu_notifier_invalidate_range_start() like kvm.
However memory reclaim is the only user of !(TTU_IGNORE_ACCESS) or the
absence of TTU_IGNORE_ACCESS and it explicitly performs the page table
access check before trying to unmap the page. So, at worst the reclaim
will miss accesses in a very short window if we remove page table access
check in unmapping code.
There is an unintented consequence of !(TTU_IGNORE_ACCESS) for the memcg
reclaim. From memcg reclaim the page_referenced() only account the
accesses from the processes which are in the same memcg of the target page
but the unmapping code is considering accesses from all the processes, so,
decreasing the effectiveness of memcg reclaim.
The simplest solution is to always assume TTU_IGNORE_ACCESS in unmapping
code.
Link: https://lkml.kernel.org/r/20201104231928.1494083-1-shakeelb@google.com
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The rcu_read_lock/unlock only can guarantee that the memcg will not be
freed, but it cannot guarantee the success of css_get to memcg.
If the whole process of a cgroup offlining is completed between reading a
objcg->memcg pointer and bumping the css reference on another CPU, and
there are exactly 0 external references to this memory cgroup (how we get
to the obj_cgroup_charge() then?), css_get() can change the ref counter
from 0 back to 1.
Link: https://lkml.kernel.org/r/20201028035013.99711-2-songmuchun@bytedance.com
Fixes: bf4f059954 ("mm: memcg/slab: obj_cgroup API")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Consider the following memcg hierarchy.
root
/ \
A B
If we failed to get the reference on objcg of memcg A, the
get_obj_cgroup_from_current can return the wrong objcg for the root
memcg.
Link: https://lkml.kernel.org/r/20201029164429.58703-1-songmuchun@bytedance.com
Fixes: bf4f059954 ("mm: memcg/slab: obj_cgroup API")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Eugene Syromiatnikov <esyr@redhat.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Adrian Reber <areber@redhat.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mz->usage_in_excess >= mz_node->usage_in_excess check is exactly the
else case of mz->usage_in_excess < mz_node->usage_in_excess. So we could
replace else if (mz->usage_in_excess >= mz_node->usage_in_excess) with
else equally. Also drop the comment which doesn't really explain much.
Link: https://lkml.kernel.org/r/20201012131607.10656-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 991e767385 ("mm: memcontrol: account kernel stack per
node") there is no user of the mod_memcg_obj_state(). So just remove
it.
Also rework type of the idx parameter of the mod_objcg_state() from int
to enum node_stat_item.
Link: https://lkml.kernel.org/r/20201013153504.92602-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As huge page usage in the page cache and for shmem files proliferates in
our production environment, the performance monitoring team has asked for
per-cgroup stats on those pages.
We already track and export anon_thp per cgroup. We already track file
THP and shmem THP per node, so making them per-cgroup is only a matter of
switching from node to lruvec counters. All callsites are in places where
the pages are charged and locked, so page->memcg is stable.
[hannes@cmpxchg.org: add documentation]
Link: https://lkml.kernel.org/r/20201026174029.GC548555@cmpxchg.org
Link: https://lkml.kernel.org/r/20201022151844.489337-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
shmem_mapping() isn't worth an out-of-line call from any callsite.
So make it inline by
- make shmem_aops global
- export shmem_aops
- inline the shmem_mapping()
and replace the direct call 'shmem_aops' with shmem_mapping()
in shmem.c.
Link: https://lkml.kernel.org/r/20201115165207.GA265355@rlk
Signed-off-by: Hui Su <sh_def@163.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the merge of commit 2e16929660 ("ceph: have ceph_writepages_start
call pagevec_lookup_range_tag"), nothing calls this anymore.
Link: https://lkml.kernel.org/r/20201021193926.101474-1-jlayton@kernel.org
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We could use helper memset to fill the swap_map with SWAP_HAS_CACHE instead
of a direct loop here to simplify the code. Also we can remove the local
variable i and map this way.
Link: https://lkml.kernel.org/r/20200921122224.7139-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the code went to the out label, it must have p == NULL. So what out
label really does is redundant if check and return err. We should Remove
this unnecessary out label because it does not handle resource free and so
on.
Link: https://lkml.kernel.org/r/20201009130337.29698-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
swap_ra_info() may leave ra_info untouched in non_swap_entry() case as
page table lock is not held. In this case, we have ra_info.nr_pte == 0
and it is meaningless to continue with swap cache readahead. Skip such
ops by init ra_info.win = 1.
[akpm@linux-foundation.org: clean up struct init]
Link: https://lkml.kernel.org/r/20201009133059.58407-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 570a335b8e ("swap_info: swap count continuations") introduced the
func add_swap_count_continuation() but forgot to use the helper function
swap_count() introduced by commit 355cfa73dd ("mm: modify swap_map and
add SWAP_HAS_CACHE flag").
Link: https://lkml.kernel.org/r/20201009134306.18033-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
release_pages() is an optimized, inlined version of __put_pages() except
that zone device struct pages that are not page_is_devmap_managed() (i.e.,
memory_type MEMORY_DEVICE_GENERIC and MEMORY_DEVICE_PCI_P2PDMA), fall
through to the code that could return the zone device page to the page
allocator instead of adjusting the pgmap reference count.
Clearly these type of pages are not having the reference count decremented
to zero via release_pages() or page allocation problems would be seen.
Just to be safe, handle the 1 to zero case in release_pages() like
__put_page() does.
Link: https://lkml.kernel.org/r/20201021194733.11530-1-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These functions accomplish the same thing but have different
implementations.
unpin_user_page() has a bug where it calls mod_node_page_state() after
calling put_page() which creates a risk that the page could have been
hot-uplugged from the system.
Fix this by using put_compound_head() as the only implementation.
__unpin_devmap_managed_user_page() and related can be deleted as well in
favour of the simpler, but slower, version in put_compound_head() that has
an extra atomic page_ref_sub, but always calls put_page() which internally
contains the special devmap code.
Move put_compound_head() to be directly after try_grab_compound_head() so
people can find it in future.
Link: https://lkml.kernel.org/r/0-v1-6730d4ee0d32+40e6-gup_combine_put_jgg@nvidia.com
Fixes: 1970dc6f52 ("mm/gup: /proc/vmstat: pin_user_pages (FOLL_PIN) reporting")
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
CC: Joao Martins <joao.m.martins@oracle.com>
CC: Jonathan Corbet <corbet@lwn.net>
CC: Dan Williams <dan.j.williams@intel.com>
CC: Dave Chinner <david@fromorbit.com>
CC: Christoph Hellwig <hch@infradead.org>
CC: Jane Chu <jane.chu@oracle.com>
CC: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
CC: Michal Hocko <mhocko@suse.com>
CC: Mike Kravetz <mike.kravetz@oracle.com>
CC: Shuah Khan <shuah@kernel.org>
CC: Muchun Song <songmuchun@bytedance.com>
CC: Vlastimil Babka <vbabka@suse.cz>
CC: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Long ago there wasn't a FOLL_LONGTERM flag so this DAX check was done by
post-processing the VMA list.
These days it is trivial to just check each VMA to see if it is DAX before
processing it inside __get_user_pages() and return failure if a DAX VMA is
encountered with FOLL_LONGTERM.
Removing the allocation of the VMA list is a significant speed up for many
call sites.
Add an IS_ENABLED to vma_is_fsdax so that code generation is unchanged
when DAX is compiled out.
Remove the dummy version of __gup_longterm_locked() as !CONFIG_CMA already
makes memalloc_nocma_save(), check_and_migrate_cma_pages(), and
memalloc_nocma_restore() into a NOP.
Link: https://lkml.kernel.org/r/0-v1-5551df3ed12e+b8-gup_dax_speedup_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 70e806e4e6 ("mm: Do early cow for pinned pages during
fork() for ptes") pages under a FOLL_PIN will not be write protected
during COW for fork. This means that pages returned from
pin_user_pages(FOLL_WRITE) should not become write protected while the pin
is active.
However, there is a small race where get_user_pages_fast(FOLL_PIN) can
establish a FOLL_PIN at the same time copy_present_page() is write
protecting it:
CPU 0 CPU 1
get_user_pages_fast()
internal_get_user_pages_fast()
copy_page_range()
pte_alloc_map_lock()
copy_present_page()
atomic_read(has_pinned) == 0
page_maybe_dma_pinned() == false
atomic_set(has_pinned, 1);
gup_pgd_range()
gup_pte_range()
pte_t pte = gup_get_pte(ptep)
pte_access_permitted(pte)
try_grab_compound_head()
pte = pte_wrprotect(pte)
set_pte_at();
pte_unmap_unlock()
// GUP now returns with a write protected page
The first attempt to resolve this by using the write protect caused
problems (and was missing a barrrier), see commit f3c64eda3e ("mm: avoid
early COW write protect games during fork()")
Instead wrap copy_p4d_range() with the write side of a seqcount and check
the read side around gup_pgd_range(). If there is a collision then
get_user_pages_fast() fails and falls back to slow GUP.
Slow GUP is safe against this race because copy_page_range() is only
called while holding the exclusive side of the mmap_lock on the src
mm_struct.
[akpm@linux-foundation.org: coding style fixes]
Link: https://lore.kernel.org/r/CAHk-=wi=iCnYCARbPGjkVJu9eyYeZ13N64tZYLdOB8CP5Q_PLw@mail.gmail.com
Link: https://lkml.kernel.org/r/2-v4-908497cf359a+4782-gup_fork_jgg@nvidia.com
Fixes: f3c64eda3e ("mm: avoid early COW write protect games during fork()")
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Peter Xu <peterx@redhat.com>
Acked-by: "Ahmed S. Darwish" <a.darwish@linutronix.de> [seqcount_t parts]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Leon Romanovsky <leonro@nvidia.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Add a seqcount between gup_fast and copy_page_range()", v4.
As discussed and suggested by Linus use a seqcount to close the small race
between gup_fast and copy_page_range().
Ahmed confirms that raw_write_seqcount_begin() is the correct API to use
in this case and it doesn't trigger any lockdeps.
I was able to test it using two threads, one forking and the other using
ibv_reg_mr() to trigger GUP fast. Modifying copy_page_range() to sleep
made the window large enough to reliably hit to test the logic.
This patch (of 2):
The next patch in this series makes the lockless flow a little more
complex, so move the entire block into a new function and remove a level
of indention. Tidy a bit of cruft:
- addr is always the same as start, so use start
- Use the modern check_add_overflow() for computing end = start + len
- nr_pinned/pages << PAGE_SHIFT needs the LHS to be unsigned long to
avoid shift overflow, make the variables unsigned long to avoid coding
casts in both places. nr_pinned was missing its cast
- The handling of ret and nr_pinned can be streamlined a bit
No functional change.
Link: https://lkml.kernel.org/r/0-v4-908497cf359a+4782-gup_fork_jgg@nvidia.com
Link: https://lkml.kernel.org/r/1-v4-908497cf359a+4782-gup_fork_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Without DEBUG_FS, all the code in gup_benchmark becomes meaningless.
For sure kernel provides debugfs stub while DEBUG_FS is disabled, but
the point here is that GUP_TEST can do nothing without DEBUG_FS.
[song.bao.hua@hisilicon.com: add comment as a prompt to users as commented by John and Randy]
Link: https://lkml.kernel.org/r/20201108083732.15336-1-song.bao.hua@hisilicon.com
Link: https://lkml.kernel.org/r/20201104100552.20156-1-song.bao.hua@hisilicon.com
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Suggested-by: John Garry <john.garry@huawei.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
gup_test_init() is only called during initialization, mark it as __init to
save some memory.
Link: https://lkml.kernel.org/r/20201103081016.16532-1-song.bao.hua@hisilicon.com
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For quite a while, I was doing a quick hack to gup_test.c (previously,
gup_benchmark.c) whenever I wanted to try out my changes to dump_page().
This makes that hack unnecessary, and instead allows anyone to easily get
the same coverage from a user space program. That saves a lot of time
because you don't have to change the kernel, in order to test different
pages and options.
The new sub-test takes advantage of the existing gup_test infrastructure,
which already provides a simple user space program, some allocated user
space pages, an ioctl call, pinning of those pages (via either
get_user_pages or pin_user_pages) and a corresponding kernel-side test
invocation. There's not much more required, mainly just a couple of
inputs from the user.
In fact, the new test re-uses the existing command line options in order
to get various helpful combinations (THP or normal, _fast or slow gup, gup
vs. pup, and more).
New command line options are: which pages to dump, and what type of
"get/pin" to use.
In order to figure out which pages to dump, the logic is:
* If the user doesn't specify anything, the page 0 (the first page in
the address range that the program sets up for testing) is dumped.
* Or, the user can type up to 8 page indices anywhere on the command
line. If you type more than 8, then it uses the first 8 and ignores the
remaining items.
For example:
./gup_test -ct -F 1 0 19 0x1000
Meaning:
-c: dump pages sub-test
-t: use THP pages
-F 1: use pin_user_pages() instead of get_user_pages()
0 19 0x1000: dump pages 0, 19, and 4096
Link: https://lkml.kernel.org/r/20201026064021.3545418-7-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Therefore, some minor cleanup and improvements are in order:
1. Rename the other items appropriately.
2. Stop reporting timing information on the non-benchmark items. It's
still being recorded and is available, but there's no point in
cluttering up the report with data that no one reasonably needs to
check.
3. Don't do iterations, for non-benchmark items.
4. Print out a shorter, more appropriate report for the non-benchmark
tests.
5. Add the command that was run, to the report. This really helps, as
there are quite a lot of options now.
6. Use a larger integer type for cmd, now that it's being compared
Otherwise it doesn't work, because in this case cmd is about 3 billion,
which is the perfect size for problems with signed vs unsigned int.
Link: https://lkml.kernel.org/r/20201026064021.3545418-6-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Avoid the need to copy-paste the gup_test ioctl commands and the struct
gup_test definition, between the kernel and the user space application, by
providing a new header file for these. This allows easier and safer
adding of new ioctl calls, as well as reducing the overall line count.
Details: The header file has to be able to compile independently, because
of the arguably unfortunate way that the Makefile is written: the Makefile
tries to build all of its prerequisites, when really it should be only
building the .c files, and leaving the other prerequisites (LOCAL_HDRS) as
pure dependencies.
That Makefile limitation is probably not worth fixing, but it explains why
one of the includes had to be moved into the new header file.
Also: simplify the ioctl struct (struct gup_test), by deleting the unused
__expansion[10] field. This sort of thing is what you might see in a
stable ABI, but this low-level, kernel-developer-oriented selftests/vm
system is very much not subject to ABI stability. So "expansion" and
"reserved" fields are unnecessary here.
Link: https://lkml.kernel.org/r/20201026064021.3545418-3-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "selftests/vm: gup_test, hmm-tests, assorted improvements", v3.
Summary: This series provides two main things, and a number of smaller
supporting goodies. The two main points are:
1) Add a new sub-test to gup_test, which in turn is a renamed version
of gup_benchmark. This sub-test allows nicer testing of dump_pages(),
at least on user-space pages.
For quite a while, I was doing a quick hack to gup_test.c whenever I
wanted to try out changes to dump_page(). Then Matthew Wilcox asked me
what I meant when I said "I used my dump_page() unit test", and I
realized that it might be nice to check in a polished up version of
that.
Details about how it works and how to use it are in the commit
description for patch #6 ("selftests/vm: gup_test: introduce the
dump_pages() sub-test").
2) Fixes a limitation of hmm-tests: these tests are incredibly useful,
but only if people actually build and run them. And it turns out that
libhugetlbfs is a little too effective at throwing a wrench in the
works, there. So I've added a little configuration check that removes
just two of the 21 hmm-tests, if libhugetlbfs is not available.
Further details in the commit description of patch #8
("selftests/vm: hmm-tests: remove the libhugetlbfs dependency").
Other smaller things that this series does:
a) Remove code duplication by creating gup_test.h.
b) Clear up the sub-test organization, and their invocation within
run_vmtests.sh.
c) Other minor assorted improvements.
[1] v2 is here:
https://lore.kernel.org/linux-doc/20200929212747.251804-1-jhubbard@nvidia.com/
[2] https://lore.kernel.org/r/CAHk-=wgh-TMPHLY3jueHX7Y2fWh3D+nMBqVS__AZm6-oorquWA@mail.gmail.com
This patch (of 9):
Rename nearly every "gup_benchmark" reference and file name to "gup_test".
The one exception is for the actual gup benchmark test itself.
The current code already does a *little* bit more than benchmarking, and
definitely covers more than get_user_pages_fast(). More importantly,
however, subsequent patches are about to add some functionality that is
non-benchmark related.
Closely related changes:
* Kconfig: in addition to renaming the options from GUP_BENCHMARK to
GUP_TEST, update the help text to reflect that it's no longer a
benchmark-only test.
Link: https://lkml.kernel.org/r/20201026064021.3545418-1-jhubbard@nvidia.com
Link: https://lkml.kernel.org/r/20201026064021.3545418-2-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The `else' is not useful after a `return' in __lock_page_or_retry().
[akpm@linux-foundation.org: coding style fixes]
Link: https://lkml.kernel.org/r/20201202154720.115162-1-carver4lio@163.com
Signed-off-by: Hailong Liu<liu.hailong6@zte.com.cn>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To fix a kernel-doc markups issue:
mm/truncate.c:646: warning: Function parameter or member 'mapping' not described in 'invalidate_mapping_pagevec'
mm/truncate.c:646: warning: Function parameter or member 'start' not described in 'invalidate_mapping_pagevec'
mm/truncate.c:646: warning: Function parameter or member 'end' not described in 'invalidate_mapping_pagevec'
mm/truncate.c:646: warning: Function parameter or member 'nr_pagevec' not described in 'invalidate_mapping_pagevec'
Link: https://lkml.kernel.org/r/1605605088-30668-1-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert generic_file_buffered_read() to get pages to read from in batches,
and then copy data to userspace from many pages at once - in particular,
we now don't touch any cachelines that might be contended while we're in
the loop to copy data to userspace.
This is is a performance improvement on workloads that do buffered reads
with large blocksizes, and a very large performance improvement if that
file is also being accessed concurrently by different threads.
On smaller reads (512 bytes), there's a very small performance improvement
(1%, within the margin of error).
akpm: kernel test robot found a 32% speedup on one test:
https://lkml.kernel.org/r/20201030081456.GY31092@shao2-debian
Link: https://lkml.kernel.org/r/20201025212949.602194-3-kent.overstreet@gmail.com
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "generic_file_buffered_read() improvements", v2.
generic_file_buffered_read() has turned into a real monstrosity to work
with. And it's a major performance improvement, for both small random and
large sequential reads. On my test box, 4k buffered random reads go from
~150k to ~250k iops, and the improvements to big sequential reads are even
bigger.
This incorporates the fix for IOCB_WAITQ handling that Jens just posted as
well, also factors out lock_page_for_iocb() to improve handling of the
various iocb flags.
This patch (of 2):
This is prep work for changing generic_file_buffered_read() to use
find_get_pages_contig() to batch up all the pagecache lookups.
This patch should be functionally identical to the existing code and
changes as little as of the flow control as possible. More refactoring
could be done, this patch is intended to be relatively minimal.
Link: https://lkml.kernel.org/r/20201025212949.602194-1-kent.overstreet@gmail.com
Link: https://lkml.kernel.org/r/20201025212949.602194-2-kent.overstreet@gmail.com
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Collect the time for each allocation recorded in page owner so that
allocation "surges" can be measured.
Record the pid for each allocation recorded in page owner so that the
source of allocation "surges" can be better identified.
The above is very useful when doing memory analysis. On a crash for
example, we can get this information from kdump (or ramdump) and parse it
to figure out memory allocation problems.
Please note that on x86_64 this increases the size of struct page_owner
from 16 bytes to 32.
Vlastimil: it's not a functionality intended for production, so unless
somebody says they need to enable page_owner for debugging and this
increase prevents them from fitting into available memory, let's not
complicate things with making this optional.
[lmark@codeaurora.org: v3]
Link: https://lkml.kernel.org/r/20201210160357.27779-1-georgi.djakov@linaro.org
Link: https://lkml.kernel.org/r/20201209125153.10533-1-georgi.djakov@linaro.org
Signed-off-by: Liam Mark <lmark@codeaurora.org>
Signed-off-by: Georgi Djakov <georgi.djakov@linaro.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page owner of pages used by page owner itself used is missing on arm32
targets. The reason is dummy_handle and failure_handle is not initialized
correctly. Buddy allocator is used to initialize these two handles.
However, buddy allocator is not ready when page owner calls it. This
change fixed that by initializing page owner after buddy initialization.
The working flow before and after this change are:
original logic:
1. allocated memory for page_ext(using memblock).
2. invoke the init callback of page_ext_ops like page_owner(using buddy
allocator).
3. initialize buddy.
after this change:
1. allocated memory for page_ext(using memblock).
2. initialize buddy.
3. invoke the init callback of page_ext_ops like page_owner(using buddy
allocator).
with the change, failure/dummy_handle can get its correct value and page
owner output for example has the one for page owner itself:
Page allocated via order 2, mask 0x6202c0(GFP_USER|__GFP_NOWARN), pid 1006, ts 67278156558 ns
PFN 543776 type Unmovable Block 531 type Unmovable Flags 0x0()
init_page_owner+0x28/0x2f8
invoke_init_callbacks_flatmem+0x24/0x34
start_kernel+0x33c/0x5d8
Link: https://lkml.kernel.org/r/1603104925-5888-1-git-send-email-zhenhuah@codeaurora.org
Signed-off-by: Zhenhua Huang <zhenhuah@codeaurora.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page order of the slab that gets chosen for a given slab cache depends
on the number of objects that can be fit in the slab while meeting other
requirements. We start with a value of minimum objects based on
nr_cpu_ids that is driven by possible number of CPUs and hence could be
higher than the actual number of CPUs present in the system. This leads
to calculate_order() chosing a page order that is on the higher side
leading to increased slab memory consumption on systems that have bigger
page sizes.
Hence rely on the number of online CPUs when determining the mininum
objects, thereby increasing the chances of chosing a lower conservative
page order for the slab.
Vlastimil said:
"Ideally, we would react to hotplug events and update existing caches
accordingly. But for that, recalculation of order for existing caches
would have to be made safe, while not affecting hot paths. We have
removed the sysfs interface with 32a6f409b6 ("mm, slub: remove
runtime allocation order changes") as it didn't seem easy and worth
the trouble.
In case somebody wants to start with a large order right from the
boot because they know they will hotplug lots of cpus later, they can
use slub_min_objects= boot param to override this heuristic. So in
case this change regresses somebody's performance, there's a way
around it and thus the risk is low IMHO"
Link: https://lkml.kernel.org/r/20201118082759.1413056-1-bharata@linux.ibm.com
Signed-off-by: Bharata B Rao <bharata@linux.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 9cf7a11183 ("mm/slub: make add_full() condition more explicit")
replaced an unnecessarily generic kmem_cache_debug(s) check with an
explicit check of SLAB_STORE_USER and #ifdef CONFIG_SLUB_DEBUG.
We can achieve the same specific check with the recently added
kmem_cache_debug_flags() which removes the #ifdef and restores the
no-branch-overhead benefit of static key check when slub debugging is not
enabled.
Link: https://lkml.kernel.org/r/3ef24214-38c7-1238-8296-88caf7f48ab6@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Abel Wu <wuyun.wu@huawei.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Liu Xiang <liu.xiang6@zte.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently in CONFIG_SLAB init_on_free happens too late, and heap objects
go to the heap quarantine not being erased.
Lets move init_on_free clearing before calling kasan_slab_free(). In that
case heap quarantine will store erased objects, similarly to CONFIG_SLUB=y
behavior.
Link: https://lkml.kernel.org/r/20201210183729.1261524-1-alex.popov@linux.com
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page allocator expects that page->mapping is NULL for a page being
freed. SLAB and SLUB use the slab_cache field which is in union with
mapping, but before freeing the page, the field is referenced with the
"mapping" name when set to NULL.
It's IMHO more correct (albeit functionally the same) to use the
slab_cache name as that's the field we use in SL*B, and document why we
clear it in a comment (we don't clear fields such as s_mem or freelist, as
page allocator doesn't care about those). While using the 'mapping' name
would automagically keep the code correct if the unions in struct page
changed, such changes should be done consciously and needed changes
evaluated - the comment should help with that.
Link: https://lkml.kernel.org/r/20201210160020.21562-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "slab: provide and use krealloc_array()", v3.
Andy brought to my attention the fact that users allocating an array of
equally sized elements should check if the size multiplication doesn't
overflow. This is why we have helpers like kmalloc_array().
However we don't have krealloc_array() equivalent and there are many users
who do their own multiplication when calling krealloc() for arrays.
This series provides krealloc_array() and uses it in a couple places.
A separate series will follow adding devm_krealloc_array() which is needed
in the xilinx adc driver.
This patch (of 9):
__GFP_ZERO is ignored by krealloc() (unless we fall-back to kmalloc()
path, in which case it's honored). Point that out in the kerneldoc.
Link: https://lkml.kernel.org/r/20201109110654.12547-1-brgl@bgdev.pl
Link: https://lkml.kernel.org/r/20201109110654.12547-2-brgl@bgdev.pl
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Gustavo Padovan <gustavo@padovan.org>
Cc: Christian Knig <christian.koenig@amd.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: James Morse <james.morse@arm.com>
Cc: Robert Richter <rric@kernel.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: David Airlie <airlied@linux.ie>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: "Michael S . Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dump_unreclaimable_slab() acquires the slab_mutex first, and it won't
remove any slab_caches list entry when itering the slab_caches lists.
Thus we do not need list_for_each_entry_safe here, which is against
removal of list entry.
Link: https://lkml.kernel.org/r/20200926043440.GA180545@rlk
Signed-off-by: Hui Su <sh_def@163.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Consolidate all kmap_atomic() internals into a generic implementation
which builds the base for the kmap_local() API and make the
kmap_atomic() interface wrappers which handle the disabling/enabling of
preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a mapping
is established. It has to disable migration instead to guarantee that
the virtual address of the mapped slot is the same accross preemption.
- Provide better debug facilities: guard pages and enforced utilization
of the mapping mechanics on 64bit systems when the architecture allows
it.
- Provide the new kmap_local() API which can now be used to cleanup the
kmap_atomic() usage sites all over the place. Most of the usage sites
do not require the implicit disabling of preemption and pagefaults so
the penalty on 64bit and 32bit non-highmem systems is removed and quite
some of the code can be simplified. A wholesale conversion is not
possible because some usage depends on the implicit side effects and
some need to be cleaned up because they work around these side effects.
The migrate disable side effect is only effective on highmem systems
and when enforced debugging is enabled. On 64bit and 32bit non-highmem
systems the overhead is completely avoided.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XyQwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUolD/9+R+BX96fGir+I8rG9dc3cbLw5meSi
0I/Nq3PToZMs2Iqv50DsoaPYHHz/M6fcAO9LRIgsE9jRbnY93GnsBM0wU9Y8yQaT
4wUzOG5WHaLDfqIkx/CN9coUl458oEiwOEbn79A2FmPXFzr7IpkufnV3ybGDwzwP
p73bjMJMPPFrsa9ig87YiYfV/5IAZHi82PN8Cq1v4yNzgXRP3Tg6QoAuCO84ZnWF
RYlrfKjcJ2xPdn+RuYyXolPtxr1hJQ0bOUpe4xu/UfeZjxZ7i1wtwLN9kWZe8CKH
+x4Lz8HZZ5QMTQ9sCHOLtKzu2MceMcpISzoQH4/aFQCNMgLn1zLbS790XkYiQCuR
ne9Cua+IqgYfGMG8cq8+bkU9HCNKaXqIBgPEKE/iHYVmqzCOqhW5Cogu4KFekf6V
Wi7pyyUdX2en8BAWpk5NHc8de9cGcc+HXMq2NIcgXjVWvPaqRP6DeITERTZLJOmz
XPxq5oPLGl7wdm7z+ICIaNApy8zuxpzb6sPLNcn7l5OeorViORlUu08AN8587wAj
FiVjp6ZYomg+gyMkiNkDqFOGDH5TMENpOFoB0hNNEyJwwS0xh6CgWuwZcv+N8aPO
HuS/P+tNANbD8ggT4UparXYce7YCtgOf3IG4GA3JJYvYmJ6pU+AZOWRoDScWq4o+
+jlfoJhMbtx5Gg==
=n71I
-----END PGP SIGNATURE-----
Merge tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull kmap updates from Thomas Gleixner:
"The new preemtible kmap_local() implementation:
- Consolidate all kmap_atomic() internals into a generic
implementation which builds the base for the kmap_local() API and
make the kmap_atomic() interface wrappers which handle the
disabling/enabling of preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a
mapping is established. It has to disable migration instead to
guarantee that the virtual address of the mapped slot is the same
across preemption.
- Provide better debug facilities: guard pages and enforced
utilization of the mapping mechanics on 64bit systems when the
architecture allows it.
- Provide the new kmap_local() API which can now be used to cleanup
the kmap_atomic() usage sites all over the place. Most of the usage
sites do not require the implicit disabling of preemption and
pagefaults so the penalty on 64bit and 32bit non-highmem systems is
removed and quite some of the code can be simplified. A wholesale
conversion is not possible because some usage depends on the
implicit side effects and some need to be cleaned up because they
work around these side effects.
The migrate disable side effect is only effective on highmem
systems and when enforced debugging is enabled. On 64bit and 32bit
non-highmem systems the overhead is completely avoided"
* tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
ARM: highmem: Fix cache_is_vivt() reference
x86/crashdump/32: Simplify copy_oldmem_page()
io-mapping: Provide iomap_local variant
mm/highmem: Provide kmap_local*
sched: highmem: Store local kmaps in task struct
x86: Support kmap_local() forced debugging
mm/highmem: Provide CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP
mm/highmem: Provide and use CONFIG_DEBUG_KMAP_LOCAL
microblaze/mm/highmem: Add dropped #ifdef back
xtensa/mm/highmem: Make generic kmap_atomic() work correctly
mm/highmem: Take kmap_high_get() properly into account
highmem: High implementation details and document API
Documentation/io-mapping: Remove outdated blurb
io-mapping: Cleanup atomic iomap
mm/highmem: Remove the old kmap_atomic cruft
highmem: Get rid of kmap_types.h
xtensa/mm/highmem: Switch to generic kmap atomic
sparc/mm/highmem: Switch to generic kmap atomic
powerpc/mm/highmem: Switch to generic kmap atomic
nds32/mm/highmem: Switch to generic kmap atomic
...
Core:
- Better handling of page table leaves on archictectures which have
architectures have non-pagetable aligned huge/large pages. For such
architectures a leaf can actually be part of a larger entry.
- Prevent a deadlock vs. exec_update_mutex
Architectures:
- The related updates for page size calculation of leaf entries
- The usual churn to support new CPUs
- Small fixes and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XvgATHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUrdEACatdr93wv75vnm5tCZM4EsFvB2PzVJ
ck4K4+hHiMVV4802qf+kW5plF+rckAU4TAai/L7wkTntKHvjD/0/o1epoIStb+dS
SCpVkQMCLT/8xT242iHPOfgsQpVpJnIiBwVRjn8HXu82nXdgMJhKnBjTe634UfxW
o2OCFiyJzpRi5l86gVp67ueqgvl34NPI2JaSLc0g80QfZ8akzdePPpED35CzYjZh
41k+7ssvt6qch3vMUySHAhkX4gQl0nc80YAaF/XZbCfvdyY7D03PtfBjfvphTSK0
l54z9aWh0ciK9P1aPfvkHDXBJUR2VtUAx2GiURK+XU3jNk3KMrz9CcBl1D/exIAg
07IsiYVoB38YAUOZoR9K8p+p+5EuwYRRUMAgfQfBALCuaLQV477Cne82b2KmNCus
1izUQvcDDf0s74OyYTHWFXRGla95COJvNLzkrZ1oU3mX4HgdKdOAUbf/2XTLWeKO
3HOIS+jsg5cp82tRe4X5r51h73pONYlo9lLo/CjQXz25vMcXKtE/MZGq2gkRff4p
N4k88eQ5LOsRqUaU46GcHozXRCfcpW7SPI9AaN5I/fKGIZvHP7uMdMb+g5DV8yHI
dNZ8u5uLPHwdg80C3fJ3Pnp7VsVNHliPXMwv0vib7BCp7aUVZWeFnOntw3PdYFRk
XKEbfl36IuAadg==
=rZ99
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Thomas Gleixner:
"Core:
- Better handling of page table leaves on archictectures which have
architectures have non-pagetable aligned huge/large pages. For such
architectures a leaf can actually be part of a larger entry.
- Prevent a deadlock vs exec_update_mutex
Architectures:
- The related updates for page size calculation of leaf entries
- The usual churn to support new CPUs
- Small fixes and improvements all over the place"
* tag 'perf-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
perf/x86/intel: Add Tremont Topdown support
uprobes/x86: Fix fall-through warnings for Clang
perf/x86: Fix fall-through warnings for Clang
kprobes/x86: Fix fall-through warnings for Clang
perf/x86/intel/lbr: Fix the return type of get_lbr_cycles()
perf/x86/intel: Fix rtm_abort_event encoding on Ice Lake
x86/kprobes: Restore BTF if the single-stepping is cancelled
perf: Break deadlock involving exec_update_mutex
sparc64/mm: Implement pXX_leaf_size() support
powerpc/8xx: Implement pXX_leaf_size() support
arm64/mm: Implement pXX_leaf_size() support
perf/core: Fix arch_perf_get_page_size()
mm: Introduce pXX_leaf_size()
mm/gup: Provide gup_get_pte() more generic
perf/x86/intel: Add event constraint for CYCLE_ACTIVITY.STALLS_MEM_ANY
perf/x86/intel/uncore: Add Rocket Lake support
perf/x86/msr: Add Rocket Lake CPU support
perf/x86/cstate: Add Rocket Lake CPU support
perf/x86/intel: Add Rocket Lake CPU support
perf,mm: Handle non-page-table-aligned hugetlbfs
...
applications to populate protected regions of user code and data called
enclaves. Once activated, the new hardware protects enclave code and
data from outside access and modification.
Enclaves provide a place to store secrets and process data with those
secrets. SGX has been used, for example, to decrypt video without
exposing the decryption keys to nosy debuggers that might be used to
subvert DRM. Software has generally been rewritten specifically to
run in enclaves, but there are also projects that try to run limited
unmodified software in enclaves."
Most of the functionality is concentrated into arch/x86/kernel/cpu/sgx/
except the addition of a new mprotect() hook to control enclave page
permissions and support for vDSO exceptions fixup which will is used by
SGX enclaves.
All this work by Sean Christopherson, Jarkko Sakkinen and many others.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl/XTtMACgkQEsHwGGHe
VUqxFw/+NZGf2b3CWPcrvwXCpkvSpIrqh1jQwyvkZyJ1gen7Vy8dkvf99h8+zQPI
4wSArEyjhYJKAAmBNefLKi/Cs/bdkGzLlZyDGqtM641XRjf0xXIpQkOBb6UBa+Pv
to8veQmVH2bBTM49qnd+H1wM6FzYvhTYCD8xr4HlLXtIfpP2CK2GvCb8s/4LifgD
fTucZX9TFwLgVkWOHWHN0n8XMR2Fjb2YCrwjFMKyr/M2W+pPoOCTIt4PWDuXiOeG
rFP7R4DT9jDg8ht5j2dHQT/Bo8TvTCB4Oj98MrX1TTgkSjLJySSMfyQg5EwNfSIa
HC0lg/6qwAxnhWX7cCCBETNZ4aYDmz/dxcCSsLbomGP9nMaUgUy7qn5nNuNbJilb
oCBsr8LDMzu1LJzmkduM8Uw6OINh+J8ICoVXaR5pS7gSZz/+vqIP/rK691AiqhJL
QeMkI9gQ83jEXpr/AV7ABCjGCAeqELOkgravUyTDev24eEc0LyU0qENpgxqWSTca
OvwSWSwNuhCKd2IyKZBnOmjXGwvncwX0gp1KxL9WuLkR6O8XldLAYmVCwVAOrIh7
snRot8+3qNjELa65Nh5DapwLJrU24TRoKLHLgfWK8dlqrMejNtXKucQ574Np0feR
p2hrNisOrtCwxAt7OAgWygw8agN6cJiY18onIsr4wSBm5H7Syb0=
=k7tj
-----END PGP SIGNATURE-----
Merge tag 'x86_sgx_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SGC support from Borislav Petkov:
"Intel Software Guard eXtensions enablement. This has been long in the
making, we were one revision number short of 42. :)
Intel SGX is new hardware functionality that can be used by
applications to populate protected regions of user code and data
called enclaves. Once activated, the new hardware protects enclave
code and data from outside access and modification.
Enclaves provide a place to store secrets and process data with those
secrets. SGX has been used, for example, to decrypt video without
exposing the decryption keys to nosy debuggers that might be used to
subvert DRM. Software has generally been rewritten specifically to run
in enclaves, but there are also projects that try to run limited
unmodified software in enclaves.
Most of the functionality is concentrated into arch/x86/kernel/cpu/sgx/
except the addition of a new mprotect() hook to control enclave page
permissions and support for vDSO exceptions fixup which will is used
by SGX enclaves.
All this work by Sean Christopherson, Jarkko Sakkinen and many others"
* tag 'x86_sgx_for_v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (30 commits)
x86/sgx: Return -EINVAL on a zero length buffer in sgx_ioc_enclave_add_pages()
x86/sgx: Fix a typo in kernel-doc markup
x86/sgx: Fix sgx_ioc_enclave_provision() kernel-doc comment
x86/sgx: Return -ERESTARTSYS in sgx_ioc_enclave_add_pages()
selftests/sgx: Use a statically generated 3072-bit RSA key
x86/sgx: Clarify 'laundry_list' locking
x86/sgx: Update MAINTAINERS
Documentation/x86: Document SGX kernel architecture
x86/sgx: Add ptrace() support for the SGX driver
x86/sgx: Add a page reclaimer
selftests/x86: Add a selftest for SGX
x86/vdso: Implement a vDSO for Intel SGX enclave call
x86/traps: Attempt to fixup exceptions in vDSO before signaling
x86/fault: Add a helper function to sanitize error code
x86/vdso: Add support for exception fixup in vDSO functions
x86/sgx: Add SGX_IOC_ENCLAVE_PROVISION
x86/sgx: Add SGX_IOC_ENCLAVE_INIT
x86/sgx: Add SGX_IOC_ENCLAVE_ADD_PAGES
x86/sgx: Add SGX_IOC_ENCLAVE_CREATE
x86/sgx: Add an SGX misc driver interface
...
xdp_return_frame_bulk() needs to pass a xdp_buff
to __xdp_return().
strlcpy got converted to strscpy but here it makes no
functional difference, so just keep the right code.
Conflicts:
net/netfilter/nf_tables_api.c
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Commit 1378a5ee45 ("mm: store compound_nr as well as compound_order")
added compound_nr counter to first tail struct page, overlaying with
page->mapping. The overlay itself is fine, but while freeing gigantic
hugepages via free_contig_range(), a "bad page" check will trigger for
non-NULL page->mapping on the first tail page:
BUG: Bad page state in process bash pfn:380001
page:00000000c35f0856 refcount:0 mapcount:0 mapping:00000000126b68aa index:0x0 pfn:0x380001
aops:0x0
flags: 0x3ffff00000000000()
raw: 3ffff00000000000 0000000000000100 0000000000000122 0000000100000000
raw: 0000000000000000 0000000000000000 ffffffff00000000 0000000000000000
page dumped because: non-NULL mapping
Modules linked in:
CPU: 6 PID: 616 Comm: bash Not tainted 5.10.0-rc7-next-20201208 #1
Hardware name: IBM 3906 M03 703 (LPAR)
Call Trace:
show_stack+0x6e/0xe8
dump_stack+0x90/0xc8
bad_page+0xd6/0x130
free_pcppages_bulk+0x26a/0x800
free_unref_page+0x6e/0x90
free_contig_range+0x94/0xe8
update_and_free_page+0x1c4/0x2c8
free_pool_huge_page+0x11e/0x138
set_max_huge_pages+0x228/0x300
nr_hugepages_store_common+0xb8/0x130
kernfs_fop_write+0xd2/0x218
vfs_write+0xb0/0x2b8
ksys_write+0xac/0xe0
system_call+0xe6/0x288
Disabling lock debugging due to kernel taint
This is because only the compound_order is cleared in
destroy_compound_gigantic_page(), and compound_nr is set to
1U << order == 1 for order 0 in set_compound_order(page, 0).
Fix this by explicitly clearing compound_nr for first tail page after
calling set_compound_order(page, 0).
Link: https://lkml.kernel.org/r/20201208182813.66391-2-gerald.schaefer@linux.ibm.com
Fixes: 1378a5ee45 ("mm: store compound_nr as well as compound_order")
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: <stable@vger.kernel.org> [5.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We hit this issue in our internal test. When enabling generic kasan, a
kfree()'d object is put into per-cpu quarantine first. If the cpu goes
offline, object still remains in the per-cpu quarantine. If we call
kmem_cache_destroy() now, slub will report "Objects remaining" error.
=============================================================================
BUG test_module_slab (Not tainted): Objects remaining in test_module_slab on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
Disabling lock debugging due to kernel taint
INFO: Slab 0x(____ptrval____) objects=34 used=1 fp=0x(____ptrval____) flags=0x2ffff00000010200
CPU: 3 PID: 176 Comm: cat Tainted: G B 5.10.0-rc1-00007-g4525c8781ec0-dirty #10
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2b0
show_stack+0x18/0x68
dump_stack+0xfc/0x168
slab_err+0xac/0xd4
__kmem_cache_shutdown+0x1e4/0x3c8
kmem_cache_destroy+0x68/0x130
test_version_show+0x84/0xf0
module_attr_show+0x40/0x60
sysfs_kf_seq_show+0x128/0x1c0
kernfs_seq_show+0xa0/0xb8
seq_read+0x1f0/0x7e8
kernfs_fop_read+0x70/0x338
vfs_read+0xe4/0x250
ksys_read+0xc8/0x180
__arm64_sys_read+0x44/0x58
el0_svc_common.constprop.0+0xac/0x228
do_el0_svc+0x38/0xa0
el0_sync_handler+0x170/0x178
el0_sync+0x174/0x180
INFO: Object 0x(____ptrval____) @offset=15848
INFO: Allocated in test_version_show+0x98/0xf0 age=8188 cpu=6 pid=172
stack_trace_save+0x9c/0xd0
set_track+0x64/0xf0
alloc_debug_processing+0x104/0x1a0
___slab_alloc+0x628/0x648
__slab_alloc.isra.0+0x2c/0x58
kmem_cache_alloc+0x560/0x588
test_version_show+0x98/0xf0
module_attr_show+0x40/0x60
sysfs_kf_seq_show+0x128/0x1c0
kernfs_seq_show+0xa0/0xb8
seq_read+0x1f0/0x7e8
kernfs_fop_read+0x70/0x338
vfs_read+0xe4/0x250
ksys_read+0xc8/0x180
__arm64_sys_read+0x44/0x58
el0_svc_common.constprop.0+0xac/0x228
kmem_cache_destroy test_module_slab: Slab cache still has objects
Register a cpu hotplug function to remove all objects in the offline
per-cpu quarantine when cpu is going offline. Set a per-cpu variable to
indicate this cpu is offline.
[qiang.zhang@windriver.com: fix slab double free when cpu-hotplug]
Link: https://lkml.kernel.org/r/20201204102206.20237-1-qiang.zhang@windriver.com
Link: https://lkml.kernel.org/r/1606895585-17382-2-git-send-email-Kuan-Ying.Lee@mediatek.com
Signed-off-by: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com>
Signed-off-by: Zqiang <qiang.zhang@windriver.com>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: Guangye Yang <guangye.yang@mediatek.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Nicholas Tang <nicholas.tang@mediatek.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Qian Cai <qcai@redhat.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Revert commit 3351b16af4 ("mm/filemap: add static for function
__add_to_page_cache_locked") due to incompatibility with
ALLOW_ERROR_INJECTION which result in build errors.
Link: https://lkml.kernel.org/r/CAADnVQJ6tmzBXvtroBuEH6QA0H+q7yaSKxrVvVxhqr3KBZdEXg@mail.gmail.com
Tested-by: Justin Forbes <jmforbes@linuxtx.org>
Tested-by: Greg Thelen <gthelen@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Michal Kubecek <mkubecek@suse.cz>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Tony Luck <tony.luck@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jann spotted the security hole due to race of mm ownership check.
If the task is sharing the mm_struct but goes through execve() before
mm_access(), it could skip process_madvise_behavior_valid check. That
makes *any advice hint* to reach into the remote process.
This patch removes the mm ownership check. With it, it will lose the
ability that local process could give *any* advice hint with vector
interface for some reason (e.g., performance). Since there is no
concrete example in upstream yet, it would be better to remove the
abiliity at this moment and need to review when such new advice comes
up.
Fixes: ecb8ac8b1f ("mm/madvise: introduce process_madvise() syscall: an external memory hinting API")
Reported-by: Jann Horn <jannh@google.com>
Suggested-by: Jann Horn <jannh@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On success, mmap should return the begin address of newly mapped area,
but patch "mm: mmap: merge vma after call_mmap() if possible" set
vm_start of newly merged vma to return value addr. Users of mmap will
get wrong address if vma is merged after call_mmap(). We fix this by
moving the assignment to addr before merging vma.
We have a driver which changes vm_flags, and this bug is found by our
testcases.
Fixes: d70cec8983 ("mm: mmap: merge vma after call_mmap() if possible")
Signed-off-by: Liu Zixian <liuzixian4@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hongxiang Lou <louhongxiang@huawei.com>
Cc: Hu Shiyuan <hushiyuan@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Link: https://lkml.kernel.org/r/20201203085350.22624-1-liuzixian4@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adrian Moreno was ruuning a kubernetes 1.19 + containerd/docker workload
using hugetlbfs. In this environment the issue is reproduced by:
- Start a simple pod that uses the recently added HugePages medium
feature (pod yaml attached)
- Start a DPDK app. It doesn't need to run successfully (as in transfer
packets) nor interact with real hardware. It seems just initializing
the EAL layer (which handles hugepage reservation and locking) is
enough to trigger the issue
- Delete the Pod (or let it "Complete").
This would result in a kworker thread going into a tight loop (top output):
1425 root 20 0 0 0 0 R 99.7 0.0 5:22.45 kworker/28:7+cgroup_destroy
'perf top -g' reports:
- 63.28% 0.01% [kernel] [k] worker_thread
- 49.97% worker_thread
- 52.64% process_one_work
- 62.08% css_killed_work_fn
- hugetlb_cgroup_css_offline
41.52% _raw_spin_lock
- 2.82% _cond_resched
rcu_all_qs
2.66% PageHuge
- 0.57% schedule
- 0.57% __schedule
We are spinning in the do-while loop in hugetlb_cgroup_css_offline.
Worse yet, we are holding the master cgroup lock (cgroup_mutex) while
infinitely spinning. Little else can be done on the system as the
cgroup_mutex can not be acquired.
Do note that the issue can be reproduced by simply offlining a hugetlb
cgroup containing pages with reservation counts.
The loop in hugetlb_cgroup_css_offline is moving page counts from the
cgroup being offlined to the parent cgroup. This is done for each
hstate, and is repeated until hugetlb_cgroup_have_usage returns false.
The routine moving counts (hugetlb_cgroup_move_parent) is only moving
'usage' counts. The routine hugetlb_cgroup_have_usage is checking for
both 'usage' and 'reservation' counts. Discussion about what to do with
reservation counts when reparenting was discussed here:
https://lore.kernel.org/linux-kselftest/CAHS8izMFAYTgxym-Hzb_JmkTK1N_S9tGN71uS6MFV+R7swYu5A@mail.gmail.com/
The decision was made to leave a zombie cgroup for with reservation
counts. Unfortunately, the code checking reservation counts was
incorrectly added to hugetlb_cgroup_have_usage.
To fix the issue, simply remove the check for reservation counts. While
fixing this issue, a related bug in hugetlb_cgroup_css_offline was
noticed. The hstate index is not reinitialized each time through the
do-while loop. Fix this as well.
Fixes: 1adc4d419a ("hugetlb_cgroup: add interface for charge/uncharge hugetlb reservations")
Reported-by: Adrian Moreno <amorenoz@redhat.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Adrian Moreno <amorenoz@redhat.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201203220242.158165-1-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can't call kvfree() with a spin lock held, so defer it. Fixes a
might_sleep() runtime warning.
Fixes: 873d7bcfd0 ("mm/swapfile.c: use kvzalloc for swap_info_struct allocation")
Signed-off-by: Qian Cai <qcai@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201202151549.10350-1-qcai@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While I was doing zram testing, I found sometimes decompression failed
since the compression buffer was corrupted. With investigation, I found
below commit calls cond_resched unconditionally so it could make a
problem in atomic context if the task is reschedule.
BUG: sleeping function called from invalid context at mm/vmalloc.c:108
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 946, name: memhog
3 locks held by memhog/946:
#0: ffff9d01d4b193e8 (&mm->mmap_lock#2){++++}-{4:4}, at: __mm_populate+0x103/0x160
#1: ffffffffa3d53de0 (fs_reclaim){+.+.}-{0:0}, at: __alloc_pages_slowpath.constprop.0+0xa98/0x1160
#2: ffff9d01d56b8110 (&zspage->lock){.+.+}-{3:3}, at: zs_map_object+0x8e/0x1f0
CPU: 0 PID: 946 Comm: memhog Not tainted 5.9.3-00011-gc5bfc0287345-dirty #316
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1 04/01/2014
Call Trace:
unmap_kernel_range_noflush+0x2eb/0x350
unmap_kernel_range+0x14/0x30
zs_unmap_object+0xd5/0xe0
zram_bvec_rw.isra.0+0x38c/0x8e0
zram_rw_page+0x90/0x101
bdev_write_page+0x92/0xe0
__swap_writepage+0x94/0x4a0
pageout+0xe3/0x3a0
shrink_page_list+0xb94/0xd60
shrink_inactive_list+0x158/0x460
We can fix this by removing the ZSMALLOC_PGTABLE_MAPPING feature (which
contains the offending calling code) from zsmalloc.
Even though this option showed some amount improvement(e.g., 30%) in
some arm32 platforms, it has been headache to maintain since it have
abused APIs[1](e.g., unmap_kernel_range in atomic context).
Since we are approaching to deprecate 32bit machines and already made
the config option available for only builtin build since v5.8, lastly it
has been not default option in zsmalloc, it's time to drop the option
for better maintenance.
[1] http://lore.kernel.org/linux-mm/20201105170249.387069-1-minchan@kernel.org
Fixes: e47110e905 ("mm/vunmap: add cond_resched() in vunmap_pmd_range")
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Harish Sriram <harish@linux.ibm.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201117202916.GA3856507@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When investigating a slab cache bloat problem, significant amount of
negative dentry cache was seen, but confusingly they neither got shrunk
by reclaimer (the host has very tight memory) nor be shrunk by dropping
cache. The vmcore shows there are over 14M negative dentry objects on
lru, but tracing result shows they were even not scanned at all.
Further investigation shows the memcg's vfs shrinker_map bit is not set.
So the reclaimer or dropping cache just skip calling vfs shrinker. So
we have to reboot the hosts to get the memory back.
I didn't manage to come up with a reproducer in test environment, and
the problem can't be reproduced after rebooting. But it seems there is
race between shrinker map bit clear and reparenting by code inspection.
The hypothesis is elaborated as below.
The memcg hierarchy on our production environment looks like:
root
/ \
system user
The main workloads are running under user slice's children, and it
creates and removes memcg frequently. So reparenting happens very often
under user slice, but no task is under user slice directly.
So with the frequent reparenting and tight memory pressure, the below
hypothetical race condition may happen:
CPU A CPU B
reparent
dst->nr_items == 0
shrinker:
total_objects == 0
add src->nr_items to dst
set_bit
return SHRINK_EMPTY
clear_bit
child memcg offline
replace child's kmemcg_id with
parent's (in memcg_offline_kmem())
list_lru_del() between shrinker runs
see parent's kmemcg_id
dec dst->nr_items
reparent again
dst->nr_items may go negative
due to concurrent list_lru_del()
The second run of shrinker:
read nr_items without any
synchronization, so it may
see intermediate negative
nr_items then total_objects
may return 0 coincidently
keep the bit cleared
dst->nr_items != 0
skip set_bit
add scr->nr_item to dst
After this point dst->nr_item may never go zero, so reparenting will not
set shrinker_map bit anymore. And since there is no task under user
slice directly, so no new object will be added to its lru to set the
shrinker map bit either. That bit is kept cleared forever.
How does list_lru_del() race with reparenting? It is because reparenting
replaces children's kmemcg_id to parent's without protecting from
nlru->lock, so list_lru_del() may see parent's kmemcg_id but actually
deleting items from child's lru, but dec'ing parent's nr_items, so the
parent's nr_items may go negative as commit 2788cf0c40 ("memcg:
reparent list_lrus and free kmemcg_id on css offline") says.
Since it is impossible that dst->nr_items goes negative and
src->nr_items goes zero at the same time, so it seems we could set the
shrinker map bit iff src->nr_items != 0. We could synchronize
list_lru_count_one() and reparenting with nlru->lock, but it seems
checking src->nr_items in reparenting is the simplest and avoids lock
contention.
Fixes: fae91d6d8b ("mm/list_lru.c: set bit in memcg shrinker bitmap on first list_lru item appearance")
Suggested-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org> [4.19]
Link: https://lkml.kernel.org/r/20201202171749.264354-1-shy828301@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 10befea91b ("mm: memcg/slab: use a single set of kmem_caches
for all allocations") introduced a regression into the handling of the
obj_cgroup_charge() return value. If a non-zero value is returned
(indicating of exceeding one of memory.max limits), the allocation
should fail, instead of falling back to non-accounted mode.
To make the code more readable, move memcg_slab_pre_alloc_hook() and
memcg_slab_post_alloc_hook() calling conditions into bodies of these
hooks.
Fixes: 10befea91b ("mm: memcg/slab: use a single set of kmem_caches for all allocations")
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201127161828.GD840171@carbon.dhcp.thefacebook.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2020-12-03
The main changes are:
1) Support BTF in kernel modules, from Andrii.
2) Introduce preferred busy-polling, from Björn.
3) bpf_ima_inode_hash() and bpf_bprm_opts_set() helpers, from KP Singh.
4) Memcg-based memory accounting for bpf objects, from Roman.
5) Allow bpf_{s,g}etsockopt from cgroup bind{4,6} hooks, from Stanislav.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (118 commits)
selftests/bpf: Fix invalid use of strncat in test_sockmap
libbpf: Use memcpy instead of strncpy to please GCC
selftests/bpf: Add fentry/fexit/fmod_ret selftest for kernel module
selftests/bpf: Add tp_btf CO-RE reloc test for modules
libbpf: Support attachment of BPF tracing programs to kernel modules
libbpf: Factor out low-level BPF program loading helper
bpf: Allow to specify kernel module BTFs when attaching BPF programs
bpf: Remove hard-coded btf_vmlinux assumption from BPF verifier
selftests/bpf: Add CO-RE relocs selftest relying on kernel module BTF
selftests/bpf: Add support for marking sub-tests as skipped
selftests/bpf: Add bpf_testmod kernel module for testing
libbpf: Add kernel module BTF support for CO-RE relocations
libbpf: Refactor CO-RE relocs to not assume a single BTF object
libbpf: Add internal helper to load BTF data by FD
bpf: Keep module's btf_data_size intact after load
bpf: Fix bpf_put_raw_tracepoint()'s use of __module_address()
selftests/bpf: Add Userspace tests for TCP_WINDOW_CLAMP
bpf: Adds support for setting window clamp
samples/bpf: Fix spelling mistake "recieving" -> "receiving"
bpf: Fix cold build of test_progs-no_alu32
...
====================
Link: https://lore.kernel.org/r/20201204021936.85653-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
In order to write another lockless page-table walker, we need
gup_get_pte() exposed. While doing that, rename it to
ptep_get_lockless() to match the existing ptep_get() naming.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201126121121.036370527@infradead.org
PageKmemcg flag is currently defined as a page type (like buddy, offline,
table and guard). Semantically it means that the page was accounted as a
kernel memory by the page allocator and has to be uncharged on the
release.
As a side effect of defining the flag as a page type, the accounted page
can't be mapped to userspace (look at page_has_type() and comments above).
In particular, this blocks the accounting of vmalloc-backed memory used
by some bpf maps, because these maps do map the memory to userspace.
One option is to fix it by complicating the access to page->mapcount,
which provides some free bits for page->page_type.
But it's way better to move this flag into page->memcg_data flags.
Indeed, the flag makes no sense without enabled memory cgroups and memory
cgroup pointer set in particular.
This commit replaces PageKmemcg() and __SetPageKmemcg() with
PageMemcgKmem() and an open-coded OR operation setting the memcg pointer
with the MEMCG_DATA_KMEM bit. __ClearPageKmemcg() can be simple deleted,
as the whole memcg_data is zeroed at once.
As a bonus, on !CONFIG_MEMCG build the PageMemcgKmem() check will be
compiled out.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/20201027001657.3398190-5-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-5-guro@fb.com
To gather all direct accesses to struct page's memcg_data field in one
place, let's introduce 3 new helpers to use in the slab accounting code:
struct obj_cgroup **page_objcgs(struct page *page);
struct obj_cgroup **page_objcgs_check(struct page *page);
bool set_page_objcgs(struct page *page, struct obj_cgroup **objcgs);
They are similar to the corresponding API for generic pages, except that
the setter can return false, indicating that the value has been already
set from a different thread.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20201027001657.3398190-3-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-3-guro@fb.com
Patch series "mm: allow mapping accounted kernel pages to userspace", v6.
Currently a non-slab kernel page which has been charged to a memory cgroup
can't be mapped to userspace. The underlying reason is simple: PageKmemcg
flag is defined as a page type (like buddy, offline, etc), so it takes a
bit from a page->mapped counter. Pages with a type set can't be mapped to
userspace.
But in general the kmemcg flag has nothing to do with mapping to
userspace. It only means that the page has been accounted by the page
allocator, so it has to be properly uncharged on release.
Some bpf maps are mapping the vmalloc-based memory to userspace, and their
memory can't be accounted because of this implementation detail.
This patchset removes this limitation by moving the PageKmemcg flag into
one of the free bits of the page->mem_cgroup pointer. Also it formalizes
accesses to the page->mem_cgroup and page->obj_cgroups using new helpers,
adds several checks and removes a couple of obsolete functions. As the
result the code became more robust with fewer open-coded bit tricks.
This patch (of 4):
Currently there are many open-coded reads of the page->mem_cgroup pointer,
as well as a couple of read helpers, which are barely used.
It creates an obstacle on a way to reuse some bits of the pointer for
storing additional bits of information. In fact, we already do this for
slab pages, where the last bit indicates that a pointer has an attached
vector of objcg pointers instead of a regular memcg pointer.
This commits uses 2 existing helpers and introduces a new helper to
converts all read sides to calls of these helpers:
struct mem_cgroup *page_memcg(struct page *page);
struct mem_cgroup *page_memcg_rcu(struct page *page);
struct mem_cgroup *page_memcg_check(struct page *page);
page_memcg_check() is intended to be used in cases when the page can be a
slab page and have a memcg pointer pointing at objcg vector. It does
check the lowest bit, and if set, returns NULL. page_memcg() contains a
VM_BUG_ON_PAGE() check for the page not being a slab page.
To make sure nobody uses a direct access, struct page's
mem_cgroup/obj_cgroups is converted to unsigned long memcg_data.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/20201027001657.3398190-1-guro@fb.com
Link: https://lkml.kernel.org/r/20201027001657.3398190-2-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-2-guro@fb.com
Use file->f_mapping in all remaining places that have a struct file
available to properly handle the case where inode->i_mapping !=
file_inode(file)->i_mapping.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Twice now, when exercising ext4 looped on shmem huge pages, I have crashed
on the PF_ONLY_HEAD check inside PageWaiters(): ext4_finish_bio() calling
end_page_writeback() calling wake_up_page() on tail of a shmem huge page,
no longer an ext4 page at all.
The problem is that PageWriteback is not accompanied by a page reference
(as the NOTE at the end of test_clear_page_writeback() acknowledges): as
soon as TestClearPageWriteback has been done, that page could be removed
from page cache, freed, and reused for something else by the time that
wake_up_page() is reached.
https://lore.kernel.org/linux-mm/20200827122019.GC14765@casper.infradead.org/
Matthew Wilcox suggested avoiding or weakening the PageWaiters() tail
check; but I'm paranoid about even looking at an unreferenced struct page,
lest its memory might itself have already been reused or hotremoved (and
wake_up_page_bit() may modify that memory with its ClearPageWaiters()).
Then on crashing a second time, realized there's a stronger reason against
that approach. If my testing just occasionally crashes on that check,
when the page is reused for part of a compound page, wouldn't it be much
more common for the page to get reused as an order-0 page before reaching
wake_up_page()? And on rare occasions, might that reused page already be
marked PageWriteback by its new user, and already be waited upon? What
would that look like?
It would look like BUG_ON(PageWriteback) after wait_on_page_writeback()
in write_cache_pages() (though I have never seen that crash myself).
Matthew Wilcox explaining this to himself:
"page is allocated, added to page cache, dirtied, writeback starts,
--- thread A ---
filesystem calls end_page_writeback()
test_clear_page_writeback()
--- context switch to thread B ---
truncate_inode_pages_range() finds the page, it doesn't have writeback set,
we delete it from the page cache. Page gets reallocated, dirtied, writeback
starts again. Then we call write_cache_pages(), see
PageWriteback() set, call wait_on_page_writeback()
--- context switch back to thread A ---
wake_up_page(page, PG_writeback);
... thread B is woken, but because the wakeup was for the old use of
the page, PageWriteback is still set.
Devious"
And prior to 2a9127fcf2 ("mm: rewrite wait_on_page_bit_common() logic")
this would have been much less likely: before that, wake_page_function()'s
non-exclusive case would stop walking and not wake if it found Writeback
already set again; whereas now the non-exclusive case proceeds to wake.
I have not thought of a fix that does not add a little overhead: the
simplest fix is for end_page_writeback() to get_page() before calling
test_clear_page_writeback(), then put_page() after wake_up_page().
Was there a chance of missed wakeups before, since a page freed before
reaching wake_up_page() would have PageWaiters cleared? I think not,
because each waiter does hold a reference on the page. This bug comes
when the old use of the page, the one we do TestClearPageWriteback on,
had *no* waiters, so no additional page reference beyond the page cache
(and whoever racily freed it). The reuse of the page has a waiter
holding a reference, and its own PageWriteback set; but the belated
wake_up_page() has woken the reuse to hit that BUG_ON(PageWriteback).
Reported-by: syzbot+3622cea378100f45d59f@syzkaller.appspotmail.com
Reported-by: Qian Cai <cai@lca.pw>
Fixes: 2a9127fcf2 ("mm: rewrite wait_on_page_bit_common() logic")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org # v5.8+
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the kmap atomic index is stored in task struct provide a
preemptible variant. On context switch the maps of an outgoing task are
removed and the map of the incoming task are restored. That's obviously
slow, but highmem is slow anyway.
The kmap_local.*() functions can be invoked from both preemptible and
atomic context. kmap local sections disable migration to keep the resulting
virtual mapping address correct, but disable neither pagefaults nor
preemption.
A wholesale conversion of kmap_atomic to be fully preemptible is not
possible because some of the usage sites might rely on the preemption
disable for serialization or on the implicit pagefault disable. Needs to be
done on a case by case basis.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.468533059@linutronix.de
Instead of storing the map per CPU provide and use per task storage. That
prepares for local kmaps which are preemptible.
The context switch code is preparatory and not yet in use because
kmap_atomic() runs with preemption disabled. Will be made usable in the
next step.
The context switch logic is safe even when an interrupt happens after
clearing or before restoring the kmaps. The kmap index in task struct is
not modified so any nesting kmap in an interrupt will use unused indices
and on return the counter is the same as before.
Also add an assert into the return to user space code. Going back to user
space with an active kmap local is a nono.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.372935758@linutronix.de
CONFIG_DEBUG_KMAP_LOCAL, which is selected by CONFIG_DEBUG_HIGHMEM is only
providing guard pages, but does not provide a mechanism to enforce the
usage of the kmap_local() infrastructure.
Provide CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP which forces the temporary
mapping even for lowmem pages. This needs to be a seperate config switch
because this only works on architectures which do not have cache aliasing
problems.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.028261233@linutronix.de
CONFIG_KMAP_LOCAL can be enabled by x86/32bit even if CONFIG_HIGHMEM is not
enabled for temporary MMIO space mappings.
Provide it as a seperate config option which depends on CONFIG_KMAP_LOCAL
and let CONFIG_DEBUG_HIGHMEM select it.
This won't increase the debug coverage of this significantly but it paves
the way to do so.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204006.869487226@linutronix.de
The calculation of the end page index was incorrect, leading to a
regression of 70% when running stress-ng.
With this fix, we instead see a performance improvement of 3%.
Fixes: e6e88712e4 ("mm: optimise madvise WILLNEED")
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: "Chen, Rong A" <rong.a.chen@intel.com>
Link: https://lkml.kernel.org/r/20201109134851.29692-1-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Alexander reported a syzkaller / KASAN finding on s390, see below for
complete output.
In do_huge_pmd_anonymous_page(), the pre-allocated pagetable will be
freed in some cases. In the case of userfaultfd_missing(), this will
happen after calling handle_userfault(), which might have released the
mmap_lock. Therefore, the following pte_free(vma->vm_mm, pgtable) will
access an unstable vma->vm_mm, which could have been freed or re-used
already.
For all architectures other than s390 this will go w/o any negative
impact, because pte_free() simply frees the page and ignores the
passed-in mm. The implementation for SPARC32 would also access
mm->page_table_lock for pte_free(), but there is no THP support in
SPARC32, so the buggy code path will not be used there.
For s390, the mm->context.pgtable_list is being used to maintain the 2K
pagetable fragments, and operating on an already freed or even re-used
mm could result in various more or less subtle bugs due to list /
pagetable corruption.
Fix this by calling pte_free() before handle_userfault(), similar to how
it is already done in __do_huge_pmd_anonymous_page() for the WRITE /
non-huge_zero_page case.
Commit 6b251fc96c ("userfaultfd: call handle_userfault() for
userfaultfd_missing() faults") actually introduced both, the
do_huge_pmd_anonymous_page() and also __do_huge_pmd_anonymous_page()
changes wrt to calling handle_userfault(), but only in the latter case
it put the pte_free() before calling handle_userfault().
BUG: KASAN: use-after-free in do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744
Read of size 8 at addr 00000000962d6988 by task syz-executor.0/9334
CPU: 1 PID: 9334 Comm: syz-executor.0 Not tainted 5.10.0-rc1-syzkaller-07083-g4c9720875573 #0
Hardware name: IBM 3906 M04 701 (KVM/Linux)
Call Trace:
do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744
create_huge_pmd mm/memory.c:4256 [inline]
__handle_mm_fault+0xe6e/0x1068 mm/memory.c:4480
handle_mm_fault+0x288/0x748 mm/memory.c:4607
do_exception+0x394/0xae0 arch/s390/mm/fault.c:479
do_dat_exception+0x34/0x80 arch/s390/mm/fault.c:567
pgm_check_handler+0x1da/0x22c arch/s390/kernel/entry.S:706
copy_from_user_mvcos arch/s390/lib/uaccess.c:111 [inline]
raw_copy_from_user+0x3a/0x88 arch/s390/lib/uaccess.c:174
_copy_from_user+0x48/0xa8 lib/usercopy.c:16
copy_from_user include/linux/uaccess.h:192 [inline]
__do_sys_sigaltstack kernel/signal.c:4064 [inline]
__s390x_sys_sigaltstack+0xc8/0x240 kernel/signal.c:4060
system_call+0xe0/0x28c arch/s390/kernel/entry.S:415
Allocated by task 9334:
slab_alloc_node mm/slub.c:2891 [inline]
slab_alloc mm/slub.c:2899 [inline]
kmem_cache_alloc+0x118/0x348 mm/slub.c:2904
vm_area_dup+0x9c/0x2b8 kernel/fork.c:356
__split_vma+0xba/0x560 mm/mmap.c:2742
split_vma+0xca/0x108 mm/mmap.c:2800
mlock_fixup+0x4ae/0x600 mm/mlock.c:550
apply_vma_lock_flags+0x2c6/0x398 mm/mlock.c:619
do_mlock+0x1aa/0x718 mm/mlock.c:711
__do_sys_mlock2 mm/mlock.c:738 [inline]
__s390x_sys_mlock2+0x86/0xa8 mm/mlock.c:728
system_call+0xe0/0x28c arch/s390/kernel/entry.S:415
Freed by task 9333:
slab_free mm/slub.c:3142 [inline]
kmem_cache_free+0x7c/0x4b8 mm/slub.c:3158
__vma_adjust+0x7b2/0x2508 mm/mmap.c:960
vma_merge+0x87e/0xce0 mm/mmap.c:1209
userfaultfd_release+0x412/0x6b8 fs/userfaultfd.c:868
__fput+0x22c/0x7a8 fs/file_table.c:281
task_work_run+0x200/0x320 kernel/task_work.c:151
tracehook_notify_resume include/linux/tracehook.h:188 [inline]
do_notify_resume+0x100/0x148 arch/s390/kernel/signal.c:538
system_call+0xe6/0x28c arch/s390/kernel/entry.S:416
The buggy address belongs to the object at 00000000962d6948 which belongs to the cache vm_area_struct of size 200
The buggy address is located 64 bytes inside of 200-byte region [00000000962d6948, 00000000962d6a10)
The buggy address belongs to the page: page:00000000313a09fe refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x962d6 flags: 0x3ffff00000000200(slab)
raw: 3ffff00000000200 000040000257e080 0000000c0000000c 000000008020ba00
raw: 0000000000000000 000f001e00000000 ffffffff00000001 0000000096959501
page dumped because: kasan: bad access detected
page->mem_cgroup:0000000096959501
Memory state around the buggy address:
00000000962d6880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000000962d6900: 00 fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb
>00000000962d6980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
00000000962d6a00: fb fb fc fc fc fc fc fc fc fc 00 00 00 00 00 00
00000000962d6a80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
==================================================================
Fixes: 6b251fc96c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults")
Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: <stable@vger.kernel.org> [4.3+]
Link: https://lkml.kernel.org/r/20201110190329.11920-1-gerald.schaefer@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we reparent the slab objects to the root memcg, when we free the slab
object, we need to update the per-memcg vmstats to keep it correct for
the root memcg. Now this at least affects the vmstat of
NR_KERNEL_STACK_KB for !CONFIG_VMAP_STACK when the thread stack size is
smaller than the PAGE_SIZE.
David said:
"I assume that without this fix that the root memcg's vmstat would
always be inflated if we reparented"
Fixes: ec9f02384f ("mm: workingset: fix vmstat counters for shadow nodes")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: <stable@vger.kernel.org> [5.3+]
Link: https://lkml.kernel.org/r/20201110031015.15715-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The core-mm has a default __weak implementation of phys_to_target_node()
to mirror the weak definition of memory_add_physaddr_to_nid(). That
symbol is exported for modules. However, while the export in
mm/memory_hotplug.c exported the symbol in the configuration cases of:
CONFIG_NUMA_KEEP_MEMINFO=y
CONFIG_MEMORY_HOTPLUG=y
...and:
CONFIG_NUMA_KEEP_MEMINFO=n
CONFIG_MEMORY_HOTPLUG=y
...it failed to export the symbol in the case of:
CONFIG_NUMA_KEEP_MEMINFO=y
CONFIG_MEMORY_HOTPLUG=n
Not only is that broken, but Christoph points out that the kernel should
not be exporting any __weak symbol, which means that
memory_add_physaddr_to_nid() example that phys_to_target_node() copied
is broken too.
Rework the definition of phys_to_target_node() and
memory_add_physaddr_to_nid() to not require weak symbols. Move to the
common arch override design-pattern of an asm header defining a symbol
to replace the default implementation.
The only common header that all memory_add_physaddr_to_nid() producing
architectures implement is asm/sparsemem.h. In fact, powerpc already
defines its memory_add_physaddr_to_nid() helper in sparsemem.h.
Double-down on that observation and define phys_to_target_node() where
necessary in asm/sparsemem.h. An alternate consideration that was
discarded was to put this override in asm/numa.h, but that entangles
with the definition of MAX_NUMNODES relative to the inclusion of
linux/nodemask.h, and requires powerpc to grow a new header.
The dependency on NUMA_KEEP_MEMINFO for DEV_DAX_HMEM_DEVICES is invalid
now that the symbol is properly exported / stubbed in all combinations
of CONFIG_NUMA_KEEP_MEMINFO and CONFIG_MEMORY_HOTPLUG.
[dan.j.williams@intel.com: v4]
Link: https://lkml.kernel.org/r/160461461867.1505359.5301571728749534585.stgit@dwillia2-desk3.amr.corp.intel.com
[dan.j.williams@intel.com: powerpc: fix create_section_mapping compile warning]
Link: https://lkml.kernel.org/r/160558386174.2948926.2740149041249041764.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: a035b6bf86 ("mm/memory_hotplug: introduce default phys_to_target_node() implementation")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: https://lkml.kernel.org/r/160447639846.1133764.7044090803980177548.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The early return in process_madvise() will produce a memory leak.
Fix it.
Fixes: ecb8ac8b1f ("mm/madvise: introduce process_madvise() syscall: an external memory hinting API")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20201116155132.GA3805951@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl+4DAwQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgphdOD/9xOEnYPuekvVH9G9nyNd//Q9fPArG2+j6V
/MCnze07GNtDt7z15oR+T07hKXmf+Ejh4nu3JJ6MUNfe/47hhJqHSxRHU6+PJCjk
hPrsaTsDedxxLEDiLmvhXnUPzfVzJtefxVAAaKikWOb3SBqLdh7xTFSlor1HbRBl
Zk4d343cjBDYfvSSt/zMWDzwwvramdz7rJnnPMKXITu64ITL5314vuK2YVZmBOet
YujSah7J8FL1jKhiG1Iw5rayd2Q3smnHWIEQ+lvW6WiTvMJMLOxif2xNF4/VEZs1
CBGJUQt42LI6QGEzRBHohcefZFuPGoxnduSzHCOIhh7d6+k+y9mZfsPGohr3g9Ov
NotXpVonnA7GbRqzo1+IfBRve7iRONdZ3/LBwyRmqav4I4jX68wXBNH5IDpVR0Sn
c31avxa/ZL7iLIBx32enp0/r3mqNTQotEleSLUdyJQXAZTyG2INRhjLLXTqSQ5BX
oVp0fZzKCwsr6HCPZpXZ/f2G7dhzuF0ghoceC02GsOVooni22gdVnQj+AWNus398
e+wcimT4MX6AHNFxO2aUtJow0KWWZRzC1p5Mxu/9W3YiMtJiC0YOGePfSqiTqX0g
Uk0H5dOAgBUQrAsusf7bKr0K6W25yEk/JipxhWqi0rC71x42mLTsCT1wxSCvLwqs
WxhdtVKroQ==
=7PAe
-----END PGP SIGNATURE-----
Merge tag 'io_uring-5.10-2020-11-20' of git://git.kernel.dk/linux-block
Pull io_uring fixes from Jens Axboe:
"Mostly regression or stable fodder:
- Disallow async path resolution of /proc/self
- Tighten constraints for segmented async buffered reads
- Fix double completion for a retry error case
- Fix for fixed file life times (Pavel)"
* tag 'io_uring-5.10-2020-11-20' of git://git.kernel.dk/linux-block:
io_uring: order refnode recycling
io_uring: get an active ref_node from files_data
io_uring: don't double complete failed reissue request
mm: never attempt async page lock if we've transferred data already
io_uring: handle -EOPNOTSUPP on path resolution
proc: don't allow async path resolution of /proc/self components
can and bpf (including the strncpy_from_user fix).
Current release - regressions:
- mac80211: fix memory leak of filtered powersave frames
- mac80211: free sta in sta_info_insert_finish() on errors to avoid
sleeping in atomic context
- netlabel: fix an uninitialized variable warning added in -rc4
Previous release - regressions:
- vsock: forward all packets to the host when no H2G is registered,
un-breaking AWS Nitro Enclaves
- net: Exempt multicast addresses from five-second neighbor lifetime
requirement, decreasing the chances neighbor tables fill up
- net/tls: fix corrupted data in recvmsg
- qed: fix ILT configuration of SRC block
- can: m_can: process interrupt only when not runtime suspended
Previous release - always broken:
- page_frag: Recover from memory pressure by not recycling pages
allocating from the reserves
- strncpy_from_user: Mask out bytes after NUL terminator
- ip_tunnels: Set tunnel option flag only when tunnel metadata is
present, always setting it confuses Open vSwitch
- bpf, sockmap:
- Fix partial copy_page_to_iter so progress can still be made
- Fix socket memory accounting and obeying SO_RCVBUF
- net: Have netpoll bring-up DSA management interface
- net: bridge: add missing counters to ndo_get_stats64 callback
- tcp: brr: only postpone PROBE_RTT if RTT is < current min_rtt
- enetc: Workaround MDIO register access HW bug
- net/ncsi: move netlink family registration to a subsystem init,
instead of tying it to driver probe
- net: ftgmac100: unregister NC-SI when removing driver to avoid crash
- lan743x: prevent interrupt storm on open
- lan743x: fix freeing skbs in the wrong context
- net/mlx5e: Fix socket refcount leak on kTLS RX resync
- net: dsa: mv88e6xxx: Avoid VLAN database corruption on 6097
- fix 21 unset return codes and other mistakes on error paths,
mostly detected by the Hulk Robot
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAl+226AACgkQMUZtbf5S
IruE1w/+JX3CqJwGIqyzyhwVshNaKxmX9gAOMJzkckjEohn8932zPaNq7kbmNYqt
5QsJoou3cXjFeoIEAkQA5fqR4stTZpZMnLO+7JnxxQ0vb2YBN+tIGQRNCnmd1Q0h
u9gb5+5AdORdlmk3E7oC8v50dzQRfboJXLEEZTo2uGJwUgLlEAiqTSV2w4YDHMhL
JtgtWA/fraL0CUc2WMoxuimg9NirbRuMijsU6+d/yExzznDpdoho/qsxL+Odu1NF
hSdaKirA8B8ml0pOd/b4mj+fm4+lKyXZBfSyLx4Ki1TqluEMLzDp7gQPRnU6yyJm
AOu4zsKxx6qitOX2qLQCNlEpkQp6LA2N2Zb1orliUV3Bsq2DJRhU35FgLcghtdRP
GTRSdKHr2BvMScOZ7dQo8l4TqVc3e/khSZDRGdvpsM275Dt0JyS/l7yAWxunPqMb
+/483/s75OuBRO57ULLJ/hR02TG37g/Jv5sI0sG/7oDpGfnulinQX+fxy9izyTEM
KYl0mAPSqhb6RcjE0YXWG0rhJN6FSvc/lwPQHjq8wPSkwEdD/FTb6/eYqbXDi1ld
UTYhFpkh1PQrwct14eSScMeJqTsNKvG0VV39/uZLZCzcqa3yOY5+oTzwaCFlMsy3
a5yGGxqoh7/FTM8t1ml21is9uZ31LAQEnNTMPv69pZPwAv5G5yE=
=SRwI
-----END PGP SIGNATURE-----
Merge tag 'net-5.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Jakub Kicinski:
"Networking fixes for 5.10-rc5, including fixes from the WiFi
(mac80211), can and bpf (including the strncpy_from_user fix).
Current release - regressions:
- mac80211: fix memory leak of filtered powersave frames
- mac80211: free sta in sta_info_insert_finish() on errors to avoid
sleeping in atomic context
- netlabel: fix an uninitialized variable warning added in -rc4
Previous release - regressions:
- vsock: forward all packets to the host when no H2G is registered,
un-breaking AWS Nitro Enclaves
- net: Exempt multicast addresses from five-second neighbor lifetime
requirement, decreasing the chances neighbor tables fill up
- net/tls: fix corrupted data in recvmsg
- qed: fix ILT configuration of SRC block
- can: m_can: process interrupt only when not runtime suspended
Previous release - always broken:
- page_frag: Recover from memory pressure by not recycling pages
allocating from the reserves
- strncpy_from_user: Mask out bytes after NUL terminator
- ip_tunnels: Set tunnel option flag only when tunnel metadata is
present, always setting it confuses Open vSwitch
- bpf, sockmap:
- Fix partial copy_page_to_iter so progress can still be made
- Fix socket memory accounting and obeying SO_RCVBUF
- net: Have netpoll bring-up DSA management interface
- net: bridge: add missing counters to ndo_get_stats64 callback
- tcp: brr: only postpone PROBE_RTT if RTT is < current min_rtt
- enetc: Workaround MDIO register access HW bug
- net/ncsi: move netlink family registration to a subsystem init,
instead of tying it to driver probe
- net: ftgmac100: unregister NC-SI when removing driver to avoid
crash
- lan743x:
- prevent interrupt storm on open
- fix freeing skbs in the wrong context
- net/mlx5e: Fix socket refcount leak on kTLS RX resync
- net: dsa: mv88e6xxx: Avoid VLAN database corruption on 6097
- fix 21 unset return codes and other mistakes on error paths, mostly
detected by the Hulk Robot"
* tag 'net-5.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (115 commits)
fail_function: Remove a redundant mutex unlock
selftest/bpf: Test bpf_probe_read_user_str() strips trailing bytes after NUL
lib/strncpy_from_user.c: Mask out bytes after NUL terminator.
net/smc: fix direct access to ib_gid_addr->ndev in smc_ib_determine_gid()
net/smc: fix matching of existing link groups
ipv6: Remove dependency of ipv6_frag_thdr_truncated on ipv6 module
libbpf: Fix VERSIONED_SYM_COUNT number parsing
net/mlx4_core: Fix init_hca fields offset
atm: nicstar: Unmap DMA on send error
page_frag: Recover from memory pressure
net: dsa: mv88e6xxx: Wait for EEPROM done after HW reset
mlxsw: core: Use variable timeout for EMAD retries
mlxsw: Fix firmware flashing
net: Have netpoll bring-up DSA management interface
atl1e: fix error return code in atl1e_probe()
atl1c: fix error return code in atl1c_probe()
ah6: fix error return code in ah6_input()
net: usb: qmi_wwan: Set DTR quirk for MR400
can: m_can: process interrupt only when not runtime suspended
can: flexcan: flexcan_chip_start(): fix erroneous flexcan_transceiver_enable() during bus-off recovery
...
Add the new vma_set_file() function to allow changing
vma->vm_file with the necessary refcount dance.
v2: add more users of this.
v3: add missing EXPORT_SYMBOL, rebase on mmap cleanup,
add comments why we drop the reference on two occasions.
v4: make it clear that changing an anonymous vma is illegal.
v5: move vma_set_file to mm/util.c
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> (v2)
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://patchwork.freedesktop.org/patch/399360/
Patch "495c10cc1c0c CHROMIUM: dma-buf: restore args..."
adds a workaround for a bug in mmap_region.
As the comment states ->mmap() callback can change
vma->vm_file and so we might call fput() on the wrong file.
Revert the workaround and proper fix this in mmap_region.
v2: drop the extra if in dma_buf_mmap as well
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://patchwork.freedesktop.org/patch/399359/
The ethernet driver may allocate skb (and skb->data) via napi_alloc_skb().
This ends up to page_frag_alloc() to allocate skb->data from
page_frag_cache->va.
During the memory pressure, page_frag_cache->va may be allocated as
pfmemalloc page. As a result, the skb->pfmemalloc is always true as
skb->data is from page_frag_cache->va. The skb will be dropped if the
sock (receiver) does not have SOCK_MEMALLOC. This is expected behaviour
under memory pressure.
However, once kernel is not under memory pressure any longer (suppose large
amount of memory pages are just reclaimed), the page_frag_alloc() may still
re-use the prior pfmemalloc page_frag_cache->va to allocate skb->data. As a
result, the skb->pfmemalloc is always true unless page_frag_cache->va is
re-allocated, even if the kernel is not under memory pressure any longer.
Here is how kernel runs into issue.
1. The kernel is under memory pressure and allocation of
PAGE_FRAG_CACHE_MAX_ORDER in __page_frag_cache_refill() will fail. Instead,
the pfmemalloc page is allocated for page_frag_cache->va.
2: All skb->data from page_frag_cache->va (pfmemalloc) will have
skb->pfmemalloc=true. The skb will always be dropped by sock without
SOCK_MEMALLOC. This is an expected behaviour.
3. Suppose a large amount of pages are reclaimed and kernel is not under
memory pressure any longer. We expect skb->pfmemalloc drop will not happen.
4. Unfortunately, page_frag_alloc() does not proactively re-allocate
page_frag_alloc->va and will always re-use the prior pfmemalloc page. The
skb->pfmemalloc is always true even kernel is not under memory pressure any
longer.
Fix this by freeing and re-allocating the page instead of recycling it.
References: https://lore.kernel.org/lkml/20201103193239.1807-1-dongli.zhang@oracle.com/
References: https://lore.kernel.org/linux-mm/20201105042140.5253-1-willy@infradead.org/
Suggested-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Cc: Bert Barbe <bert.barbe@oracle.com>
Cc: Rama Nichanamatlu <rama.nichanamatlu@oracle.com>
Cc: Venkat Venkatsubra <venkat.x.venkatsubra@oracle.com>
Cc: Manjunath Patil <manjunath.b.patil@oracle.com>
Cc: Joe Jin <joe.jin@oracle.com>
Cc: SRINIVAS <srinivas.eeda@oracle.com>
Fixes: 79930f5892 ("net: do not deplete pfmemalloc reserve")
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20201115201029.11903-1-dongli.zhang@oracle.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Background
==========
1. SGX enclave pages are populated with data by copying from normal memory
via ioctl() (SGX_IOC_ENCLAVE_ADD_PAGES), which will be added later in
this series.
2. It is desirable to be able to restrict those normal memory data sources.
For instance, to ensure that the source data is executable before
copying data to an executable enclave page.
3. Enclave page permissions are dynamic (just like normal permissions) and
can be adjusted at runtime with mprotect().
This creates a problem because the original data source may have long since
vanished at the time when enclave page permissions are established (mmap()
or mprotect()).
The solution (elsewhere in this series) is to force enclave creators to
declare their paging permission *intent* up front to the ioctl(). This
intent can be immediately compared to the source data’s mapping and
rejected if necessary.
The “intent” is also stashed off for later comparison with enclave
PTEs. This ensures that any future mmap()/mprotect() operations
performed by the enclave creator or done on behalf of the enclave
can be compared with the earlier declared permissions.
Problem
=======
There is an existing mmap() hook which allows SGX to perform this
permission comparison at mmap() time. However, there is no corresponding
->mprotect() hook.
Solution
========
Add a vm_ops->mprotect() hook so that mprotect() operations which are
inconsistent with any page's stashed intent can be rejected by the driver.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hdanton@sina.com>
Cc: linux-mm@kvack.org
Link: https://lkml.kernel.org/r/20201112220135.165028-11-jarkko@kernel.org
We catch the case where we enter generic_file_buffered_read() with data
already transferred, but we also need to be careful not to allow an async
page lock if we're looping transferring data. If not, we could be
returning -EIOCBQUEUED instead of the transferred amount, and it could
result in double waitqueue additions as well.
Cc: stable@vger.kernel.org # v5.9
Fixes: 1a0a7853b9 ("mm: support async buffered reads in generic_file_buffered_read()")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
It is useful to know the exact caller of memblock_phys_alloc_range() to
track early memory reservations during development.
Currently, when memblock debugging is enabled, the allocations done with
memblock_phys_alloc_range() are only reported at memblock_reserve():
[ 0.000000] memblock_reserve: [0x000000023fc6b000-0x000000023fc6bfff] memblock_alloc_range_nid+0xc0/0x188
Add memblock_dbg() to memblock_phys_alloc_range() to get details about
its usage.
For example:
[ 0.000000] memblock_phys_alloc_range: 4096 bytes align=0x1000 from=0x0000000000000000 max_addr=0x0000000000000000 early_pgtable_alloc+0x24/0x178
[ 0.000000] memblock_reserve: [0x000000023fc6b000-0x000000023fc6bfff] memblock_alloc_range_nid+0xc0/0x188
Signed-off-by: Faiyaz Mohammed <faiyazm@codeaurora.org>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Pull percpu fix and cleanup from Dennis Zhou:
"A fix for a Wshadow warning in the asm-generic percpu macros came in
and then I tacked on the removal of flexible array initializers in the
percpu allocator"
* 'for-5.10-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu: convert flexible array initializers to use struct_size()
asm-generic: percpu: avoid Wshadow warning
Qian Cai reported the following BUG in [1]
LTP: starting move_pages12
BUG: unable to handle page fault for address: ffffffffffffffe0
...
RIP: 0010:anon_vma_interval_tree_iter_first+0xa2/0x170 avc_start_pgoff at mm/interval_tree.c:63
Call Trace:
rmap_walk_anon+0x141/0xa30 rmap_walk_anon at mm/rmap.c:1864
try_to_unmap+0x209/0x2d0 try_to_unmap at mm/rmap.c:1763
migrate_pages+0x1005/0x1fb0
move_pages_and_store_status.isra.47+0xd7/0x1a0
__x64_sys_move_pages+0xa5c/0x1100
do_syscall_64+0x5f/0x310
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Hugh Dickins diagnosed this as a migration bug caused by code introduced
to use i_mmap_rwsem for pmd sharing synchronization. Specifically, the
routine unmap_and_move_huge_page() is always passing the TTU_RMAP_LOCKED
flag to try_to_unmap() while holding i_mmap_rwsem. This is wrong for
anon pages as the anon_vma_lock should be held in this case. Further
analysis suggested that i_mmap_rwsem was not required to he held at all
when calling try_to_unmap for anon pages as an anon page could never be
part of a shared pmd mapping.
Discussion also revealed that the hack in hugetlb_page_mapping_lock_write
to drop page lock and acquire i_mmap_rwsem is wrong. There is no way to
keep mapping valid while dropping page lock.
This patch does the following:
- Do not take i_mmap_rwsem and set TTU_RMAP_LOCKED for anon pages when
calling try_to_unmap.
- Remove the hacky code in hugetlb_page_mapping_lock_write. The routine
will now simply do a 'trylock' while still holding the page lock. If
the trylock fails, it will return NULL. This could impact the
callers:
- migration calling code will receive -EAGAIN and retry up to the
hard coded limit (10).
- memory error code will treat the page as BUSY. This will force
killing (SIGKILL) instead of SIGBUS any mapping tasks.
Do note that this change in behavior only happens when there is a
race. None of the standard kernel testing suites actually hit this
race, but it is possible.
[1] https://lore.kernel.org/lkml/20200708012044.GC992@lca.pw/
[2] https://lore.kernel.org/linux-mm/alpine.LSU.2.11.2010071833100.2214@eggly.anvils/
Fixes: c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization")
Reported-by: Qian Cai <cai@lca.pw>
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201105195058.78401-1-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When FOLL_PIN is passed to __get_user_pages() the page list must be put
back using unpin_user_pages() otherwise the page pin reference persists
in a corrupted state.
There are two places in the unwind of __gup_longterm_locked() that put
the pages back without checking. Normally on error this function would
return the partial page list making this the caller's responsibility,
but in these two cases the caller is not allowed to see these pages at
all.
Fixes: 3faa52c03f ("mm/gup: track FOLL_PIN pages")
Reported-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/0-v2-3ae7d9d162e2+2a7-gup_cma_fix_jgg@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While doing memory hot-unplug operation on a PowerPC VM running 1024 CPUs
with 11TB of ram, I hit the following panic:
BUG: Kernel NULL pointer dereference on read at 0x00000007
Faulting instruction address: 0xc000000000456048
Oops: Kernel access of bad area, sig: 11 [#2]
LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS= 2048 NUMA pSeries
Modules linked in: rpadlpar_io rpaphp
CPU: 160 PID: 1 Comm: systemd Tainted: G D 5.9.0 #1
NIP: c000000000456048 LR: c000000000455fd4 CTR: c00000000047b350
REGS: c00006028d1b77a0 TRAP: 0300 Tainted: G D (5.9.0)
MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 24004228 XER: 00000000
CFAR: c00000000000f1b0 DAR: 0000000000000007 DSISR: 40000000 IRQMASK: 0
GPR00: c000000000455fd4 c00006028d1b7a30 c000000001bec800 0000000000000000
GPR04: 0000000000000dc0 0000000000000000 00000000000374ef c00007c53df99320
GPR08: 000007c53c980000 0000000000000000 000007c53c980000 0000000000000000
GPR12: 0000000000004400 c00000001e8e4400 0000000000000000 0000000000000f6a
GPR16: 0000000000000000 c000000001c25930 c000000001d62528 00000000000000c1
GPR20: c000000001d62538 c00006be469e9000 0000000fffffffe0 c0000000003c0ff8
GPR24: 0000000000000018 0000000000000000 0000000000000dc0 0000000000000000
GPR28: c00007c513755700 c000000001c236a4 c00007bc4001f800 0000000000000001
NIP [c000000000456048] __kmalloc_node+0x108/0x790
LR [c000000000455fd4] __kmalloc_node+0x94/0x790
Call Trace:
kvmalloc_node+0x58/0x110
mem_cgroup_css_online+0x10c/0x270
online_css+0x48/0xd0
cgroup_apply_control_enable+0x2c4/0x470
cgroup_mkdir+0x408/0x5f0
kernfs_iop_mkdir+0x90/0x100
vfs_mkdir+0x138/0x250
do_mkdirat+0x154/0x1c0
system_call_exception+0xf8/0x200
system_call_common+0xf0/0x27c
Instruction dump:
e93e0000 e90d0030 39290008 7cc9402a e94d0030 e93e0000 7ce95214 7f89502a
2fbc0000 419e0018 41920230 e9270010 <89290007> 7f994800 419e0220 7ee6bb78
This pointing to the following code:
mm/slub.c:2851
if (unlikely(!object || !node_match(page, node))) {
c000000000456038: 00 00 bc 2f cmpdi cr7,r28,0
c00000000045603c: 18 00 9e 41 beq cr7,c000000000456054 <__kmalloc_node+0x114>
node_match():
mm/slub.c:2491
if (node != NUMA_NO_NODE && page_to_nid(page) != node)
c000000000456040: 30 02 92 41 beq cr4,c000000000456270 <__kmalloc_node+0x330>
page_to_nid():
include/linux/mm.h:1294
c000000000456044: 10 00 27 e9 ld r9,16(r7)
c000000000456048: 07 00 29 89 lbz r9,7(r9) <<<< r9 = NULL
node_match():
mm/slub.c:2491
c00000000045604c: 00 48 99 7f cmpw cr7,r25,r9
c000000000456050: 20 02 9e 41 beq cr7,c000000000456270 <__kmalloc_node+0x330>
The panic occurred in slab_alloc_node() when checking for the page's node:
object = c->freelist;
page = c->page;
if (unlikely(!object || !node_match(page, node))) {
object = __slab_alloc(s, gfpflags, node, addr, c);
stat(s, ALLOC_SLOWPATH);
The issue is that object is not NULL while page is NULL which is odd but
may happen if the cache flush happened after loading object but before
loading page. Thus checking for the page pointer is required too.
The cache flush is done through an inter processor interrupt when a
piece of memory is off-lined. That interrupt is triggered when a memory
hot-unplug operation is initiated and offline_pages() is calling the
slub's MEM_GOING_OFFLINE callback slab_mem_going_offline_callback()
which is calling flush_cpu_slab(). If that interrupt is caught between
the reading of c->freelist and the reading of c->page, this could lead
to such a situation. That situation is expected and the later call to
this_cpu_cmpxchg_double() will detect the change to c->freelist and redo
the whole operation.
In commit 6159d0f5c0 ("mm/slub.c: page is always non-NULL in
node_match()") check on the page pointer has been removed assuming that
page is always valid when it is called. It happens that this is not
true in that particular case, so check for page before calling
node_match() here.
Fixes: 6159d0f5c0 ("mm/slub.c: page is always non-NULL in node_match()")
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201027190406.33283-1-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously the negated unsigned long would be cast back to signed long
which would have the correct negative value. After commit 730ec8c01a
("mm/vmscan.c: change prototype for shrink_page_list"), the large
unsigned int converts to a large positive signed long.
Symptoms include CMA allocations hanging forever holding the cma_mutex
due to alloc_contig_range->...->isolate_migratepages_block waiting
forever in "while (unlikely(too_many_isolated(pgdat)))".
[akpm@linux-foundation.org: fix -stat.nr_lazyfree_fail as well, per Michal]
Fixes: 730ec8c01a ("mm/vmscan.c: change prototype for shrink_page_list")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vaneet Narang <v.narang@samsung.com>
Cc: Maninder Singh <maninder1.s@samsung.com>
Cc: Amit Sahrawat <a.sahrawat@samsung.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201029032320.1448441-1-npiggin@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In isolate_migratepages_block, if we have too many isolated pages and
nr_migratepages is not zero, we should try to migrate what we have
without wasting time on isolating.
In theory it's possible that multiple parallel compactions will cause
too_many_isolated() to become true even if each has isolated less than
COMPACT_CLUSTER_MAX, and loop forever in the while loop. Bailing
immediately prevents that.
[vbabka@suse.cz: changelog addition]
Fixes: 1da2f328fa (“mm,thp,compaction,cma: allow THP migration for CMA allocations”)
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@vger.kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Yang Shi <shy828301@gmail.com>
Link: https://lkml.kernel.org/r/20201030183809.3616803-2-zi.yan@sent.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In isolate_migratepages_block, when cc->alloc_contig is true, we are
able to isolate compound pages. But nr_migratepages and nr_isolated did
not count compound pages correctly, causing us to isolate more pages
than we thought.
So count compound pages as the number of base pages they contain.
Otherwise, we might be trapped in too_many_isolated while loop, since
the actual isolated pages can go up to COMPACT_CLUSTER_MAX*512=16384,
where COMPACT_CLUSTER_MAX is 32, since we stop isolation after
cc->nr_migratepages reaches to COMPACT_CLUSTER_MAX.
In addition, after we fix the issue above, cc->nr_migratepages could
never be equal to COMPACT_CLUSTER_MAX if compound pages are isolated,
thus page isolation could not stop as we intended. Change the isolation
stop condition to '>='.
The issue can be triggered as follows:
In a system with 16GB memory and an 8GB CMA region reserved by
hugetlb_cma, if we first allocate 10GB THPs and mlock them (so some THPs
are allocated in the CMA region and mlocked), reserving 6 1GB hugetlb
pages via /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages will
get stuck (looping in too_many_isolated function) until we kill either
task. With the patch applied, oom will kill the application with 10GB
THPs and let hugetlb page reservation finish.
[ziy@nvidia.com: v3]
Link: https://lkml.kernel.org/r/20201030183809.3616803-1-zi.yan@sent.com
Fixes: 1da2f328fa ("cmm,thp,compaction,cma: allow THP migration for CMA allocations")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201029200435.3386066-1-zi.yan@sent.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kunmap_local() warns when the virtual address to unmap is below
PAGE_OFFSET. This is correct except for the case that the mapping was
obtained via kmap_high_get() because the PKMAP addresses are right below
PAGE_OFFSET.
Cure it by skipping the WARN_ON() when the unmap was handled by
kunmap_high().
Fixes: 298fa1ad55 ("highmem: Provide generic variant of kmap_atomic*")
Reported-by: vtolkm@googlemail.com
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/r/87y2j6n8mj.fsf@nanos.tec.linutronix.de
On parisc we need to initialize the memory layout for the user stack at
process start time to a fixed size, which up until now was limited to
the size as given by CONFIG_MAX_STACK_SIZE_MB at compile time.
This hard limit was too small and showed problems when compiling
ruby2.7, qmlcachegen and some Qt packages.
This patch changes two things:
a) It increases the default maximum stack size to 100MB.
b) Users can modify the stack hard limit size with ulimit and then newly
forked processes will use the given stack size which can even be bigger
than the default 100MB.
Reported-by: John David Anglin <dave.anglin@bell.net>
Signed-off-by: Helge Deller <deller@gmx.de>
Move the gory details of kmap & al into a private header and only document
the interfaces which are usable by drivers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/r/20201103095858.827582066@linutronix.de
For some obscure reason when CONFIG_DEBUG_HIGHMEM is enabled the stack
depth is increased from 20 to 41. But the only thing DEBUG_HIGHMEM does is
to enable a few BUG_ON()'s in the mapping code.
That's a leftover from the historical mapping code which had fixed entries
for various purposes. DEBUG_HIGHMEM inserted guard mappings between the map
types. But that got all ditched when kmap_atomic() switched to a stack
based map management. Though the WITH_KM_FENCE magic survived without being
functional. All the thing does today is to increase the stack depth.
Add a working implementation to the generic kmap_local* implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/r/20201103095857.268258322@linutronix.de
The kmap_atomic* interfaces in all architectures are pretty much the same
except for post map operations (flush) and pre- and post unmap operations.
Provide a generic variant for that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/r/20201103095857.175939340@linutronix.de
Fix the following sparse warning:
mm/truncate.c:531:15: warning: symbol '__invalidate_mapping_pages' was not declared. Should it be static?
Fixes: eb1d7a65f0 ("mm, fadvise: improve the expensive remote LRU cache draining after FADV_DONTNEED")
Signed-off-by: Jason Yan <yanaijie@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20201015054808.2445904-1-yanaijie@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When flags in queue_pages_pte_range don't have MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL bits, code breaks and passing origin pte - 1 to
pte_unmap_unlock seems like not a good idea.
queue_pages_pte_range can run in MPOL_MF_MOVE_ALL mode which doesn't
migrate misplaced pages but returns with EIO when encountering such a
page. Since commit a7f40cfe3b ("mm: mempolicy: make mbind() return
-EIO when MPOL_MF_STRICT is specified") and early break on the first pte
in the range results in pte_unmap_unlock on an underflow pte. This can
lead to lockups later on when somebody tries to lock the pte resp.
page_table_lock again..
Fixes: a7f40cfe3b ("mm: mempolicy: make mbind() return -EIO when MPOL_MF_STRICT is specified")
Signed-off-by: Shijie Luo <luoshijie1@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Feilong Lin <linfeilong@huawei.com>
Cc: Shijie Luo <luoshijie1@huawei.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201019074853.50856-1-luoshijie1@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Richard reported a warning which can be reproduced by running the LTP
madvise6 test (cgroup v1 in the non-hierarchical mode should be used):
WARNING: CPU: 0 PID: 12 at mm/page_counter.c:57 page_counter_uncharge (mm/page_counter.c:57 mm/page_counter.c:50 mm/page_counter.c:156)
Modules linked in:
CPU: 0 PID: 12 Comm: kworker/0:1 Not tainted 5.9.0-rc7-22-default #77
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-48-gd9c812d-rebuilt.opensuse.org 04/01/2014
Workqueue: events drain_local_stock
RIP: 0010:page_counter_uncharge (mm/page_counter.c:57 mm/page_counter.c:50 mm/page_counter.c:156)
Call Trace:
__memcg_kmem_uncharge (mm/memcontrol.c:3022)
drain_obj_stock (./include/linux/rcupdate.h:689 mm/memcontrol.c:3114)
drain_local_stock (mm/memcontrol.c:2255)
process_one_work (./arch/x86/include/asm/jump_label.h:25 ./include/linux/jump_label.h:200 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2274)
worker_thread (./include/linux/list.h:282 kernel/workqueue.c:2416)
kthread (kernel/kthread.c:292)
ret_from_fork (arch/x86/entry/entry_64.S:300)
The problem occurs because in the non-hierarchical mode non-root page
counters are not linked to root page counters, so the charge is not
propagated to the root memory cgroup.
After the removal of the original memory cgroup and reparenting of the
object cgroup, the root cgroup might be uncharged by draining a objcg
stock, for example. It leads to an eventual underflow of the charge and
triggers a warning.
Fix it by linking all page counters to corresponding root page counters
in the non-hierarchical mode.
Please note, that in the non-hierarchical mode all objcgs are always
reparented to the root memory cgroup, even if the hierarchy has more
than 1 level. This patch doesn't change it.
The patch also doesn't affect how the hierarchical mode is working,
which is the only sane and truly supported mode now.
Thanks to Richard for reporting, debugging and providing an alternative
version of the fix!
Fixes: bf4f059954 ("mm: memcg/slab: obj_cgroup API")
Reported-by: <ltp@lists.linux.it>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201026231326.3212225-1-guro@fb.com
Debugged-by: Richard Palethorpe <rpalethorpe@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg_page_state will get the specified number in hierarchical memcg, It
should multiply by HPAGE_PMD_NR rather than an page if the item is
NR_ANON_THPS.
[akpm@linux-foundation.org: fix printk warning]
[akpm@linux-foundation.org: use u64 cast, per Michal]
Fixes: 468c398233 ("mm: memcontrol: switch to native NR_ANON_THPS counter")
Signed-off-by: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/1603722395-72443-1-git-send-email-zhongjiang-ali@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Privoznik was using "free page reporting" in QEMU/virtio-balloon
with hugetlbfs and hit the warning below. QEMU with free page hinting
uses fallocate(FALLOC_FL_PUNCH_HOLE) to discard pages that are reported
as free by a VM. The reporting granularity is in pageblock granularity.
So when the guest reports 2M chunks, we fallocate(FALLOC_FL_PUNCH_HOLE)
one huge page in QEMU.
WARNING: CPU: 7 PID: 6636 at mm/page_counter.c:57 page_counter_uncharge+0x4b/0x50
Modules linked in: ...
CPU: 7 PID: 6636 Comm: qemu-system-x86 Not tainted 5.9.0 #137
Hardware name: Gigabyte Technology Co., Ltd. X570 AORUS PRO/X570 AORUS PRO, BIOS F21 07/31/2020
RIP: 0010:page_counter_uncharge+0x4b/0x50
...
Call Trace:
hugetlb_cgroup_uncharge_file_region+0x4b/0x80
region_del+0x1d3/0x300
hugetlb_unreserve_pages+0x39/0xb0
remove_inode_hugepages+0x1a8/0x3d0
hugetlbfs_fallocate+0x3c4/0x5c0
vfs_fallocate+0x146/0x290
__x64_sys_fallocate+0x3e/0x70
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Investigation of the issue uncovered bugs in hugetlb cgroup reservation
accounting. This patch addresses the found issues.
Fixes: 075a61d07a ("hugetlb_cgroup: add accounting for shared mappings")
Reported-by: Michal Privoznik <mprivozn@redhat.com>
Co-developed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Michal Privoznik <mprivozn@redhat.com>
Reviewed-by: Mina Almasry <almasrymina@google.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20201021204426.36069-1-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 6f42193fd8 ("memremap: don't use a separate devm action for
devmap_managed_enable_get") changed the static key updates such that we
now call devmap_managed_enable_put() without doing the equivalent
devmap_managed_enable_get().
devmap_managed_enable_get() is only called for MEMORY_DEVICE_PRIVATE and
MEMORY_DEVICE_FS_DAX, But memunmap_pages() get called for other pgmap
types too. This results in the below warning when switching between
system-ram and devdax mode for devdax namespace.
jump label: negative count!
WARNING: CPU: 52 PID: 1335 at kernel/jump_label.c:235 static_key_slow_try_dec+0x88/0xa0
Modules linked in:
....
NIP static_key_slow_try_dec+0x88/0xa0
LR static_key_slow_try_dec+0x84/0xa0
Call Trace:
static_key_slow_try_dec+0x84/0xa0
__static_key_slow_dec_cpuslocked+0x34/0xd0
static_key_slow_dec+0x54/0xf0
memunmap_pages+0x36c/0x500
devm_action_release+0x30/0x50
release_nodes+0x2f4/0x3e0
device_release_driver_internal+0x17c/0x280
bus_remove_device+0x124/0x210
device_del+0x1d4/0x530
unregister_dev_dax+0x48/0xe0
devm_action_release+0x30/0x50
release_nodes+0x2f4/0x3e0
device_release_driver_internal+0x17c/0x280
unbind_store+0x130/0x170
drv_attr_store+0x40/0x60
sysfs_kf_write+0x6c/0xb0
kernfs_fop_write+0x118/0x280
vfs_write+0xe8/0x2a0
ksys_write+0x84/0x140
system_call_exception+0x120/0x270
system_call_common+0xf0/0x27c
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Link: https://lkml.kernel.org/r/20201023183222.13186-1-rcampbell@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The removal of compat_process_vm_{readv,writev} didn't change
process_vm_rw(), which always assumes it's not doing a compat syscall.
Instead of passing in 'false' unconditionally for 'compat', make it
conditional on in_compat_syscall().
[ Both Al and Christoph point out that trying to access a 64-bit process
from a 32-bit one cannot work anyway, and is likely better prohibited,
but that's a separate issue - Linus ]
Fixes: c3973b401e ("mm: remove compat_process_vm_{readv,writev}")
Reported-and-tested-by: Kyle Huey <me@kylehuey.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Move the file range remap generic functions out of mm/filemap.c and
fs/read_write.c and into fs/remap_range.c to reduce clutter in the first
two files.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl+SADAACgkQ+H93GTRK
tOtZPxAAjwh/wOD+QPWAlu2zs1qvq9aU5uU56nWZC86JXr5RTokc2DIIwHvsT28I
Xr3Oya8hiegsIVohQWLQr7AhVe469G2iegTkn7YmmLJLfrwhtSYxvkYTNMI/Uyx3
LzGRcaqg9QR6DnrEHzI9QfCHyKz73PMD26eJR1wLerVIIcMYIsg7xp3Yd6Y0G5iD
VX9qJ15OZNnXlQelG8E/A44dggZPt10D20czD9f/N7ZIpPxrQQLonO08i2YhPlRz
sqQT4RjkZoJeZGY2wv2+vGMsbUxTui7sJj7Zsk+ljfo8ByY/wy1nK2IM9xR0jeZx
o/td9YcSzGEMan9Q4jSIwMYbgMLw/x79nNWpnFdRh4+xQYGGPfkGOseJ9Sm0SlW5
P6zb2bWMxZkiE/xq/Dsxbnl5Obzk3xc8c1w4nsStsQTcgBTLFJupP626Ib+yythZ
pOzWRc2wdH9f4Oy52kxO8GB8kg23abXMACgTfSpzqU9GtSIijoS/Z+AN36jWT890
mkoLFsssRfufmalQX438c8XF94xD+tRCOkxgq9ud71kcWgQnUVzQWvCflkIfetEa
jcw+uuChuPOaQ9x6M6Z7gGt+a2zYreyGAmTw67M32UsgXQGO/nCx7f2j/7raYitd
ZJb/XoGB1aRfWKpWjaL+66ORmOFY7Uuq9UkRibtYzmR6iMknQcA=
=DAPl
-----END PGP SIGNATURE-----
Merge tag 'vfs-5.10-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull clone/dedupe/remap code refactoring from Darrick Wong:
"Move the generic file range remap (aka reflink and dedupe) functions
out of mm/filemap.c and fs/read_write.c and into fs/remap_range.c to
reduce clutter in the first two files"
* tag 'vfs-5.10-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
vfs: move the generic write and copy checks out of mm
vfs: move the remap range helpers to remap_range.c
vfs: move generic_remap_checks out of mm
- Fix the test suite after introduction of the local_lock
- Fix a bug in the IDA spotted by Coverity
- Change the API that allows the workingset code to delete a node
- Fix xas_reload() when dealing with entries that occupy multiple indices
- Add a few more tests to the test suite
- Fix an unsigned int being shifted into an unsigned long
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEejHryeLBw/spnjHrDpNsjXcpgj4FAl+OzzAACgkQDpNsjXcp
gj5YFgf/cV99dyPaal7AfMwhVwFcuVjIRH4S/VeOHkjS2QT1lpu3ffqfKALVR8vU
3IObM3oDCmLk0mYz9O+V/udVJoBYWiduI0LZhR6+V5ZrDjbw/d4VdCbwOplpeF5x
rntyI9r8f5d4LxBJ/moLjsosc1KfCzyVnV389eZRvZ8Muxuyc73WdAwZZZfD79nY
66gScEXQokU99zqJJ1nWfh05XTcTsKF25fVBGMLZTUBAytoFyPuC/kO2z8Uq9lEi
Ug6gDClskSB7A2W5gvprMcoUAVYcHfTb0wqJD5/MhkHyoTdcWdW8Re0kssXvD86V
KwlBdYQ/JuskgY/hbynZ/FP3p8+t1Q==
=12E/
-----END PGP SIGNATURE-----
Merge tag 'xarray-5.9' of git://git.infradead.org/users/willy/xarray
Pull XArray updates from Matthew Wilcox:
- Fix the test suite after introduction of the local_lock
- Fix a bug in the IDA spotted by Coverity
- Change the API that allows the workingset code to delete a node
- Fix xas_reload() when dealing with entries that occupy multiple
indices
- Add a few more tests to the test suite
- Fix an unsigned int being shifted into an unsigned long
* tag 'xarray-5.9' of git://git.infradead.org/users/willy/xarray:
XArray: Fix xas_create_range for ranges above 4 billion
radix-tree: fix the comment of radix_tree_next_slot()
XArray: Fix xas_reload for multi-index entries
XArray: Add private interface for workingset node deletion
XArray: Fix xas_for_each_conflict documentation
XArray: Test marked multiorder iterations
XArray: Test two more things about xa_cmpxchg
ida: Free allocated bitmap in error path
radix tree test suite: Fix compilation
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl+O9WEQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpqajEADSD5PiO94YWTtVNWFUjn5RW+GlCE70/0VV
XImdasmvM8nb48E+z2EW0Ky4vKXeVy5r+WZAeIYqPUHy/ogQDVpEn00NL7tFQmOz
8UYrlZ3LLE/bSeWM5iavgG7TldVs/ZfspJ0hj3/Ac7jJpzuRGEI5TClsxJ0mWV39
b2qT4OYBDhwvwVPZ/qhWgEwJXJFzFywckouIbMw8gPkveebUYeyu/yuScNGwYuiQ
46YPEk/XIuOy8iUvQjqhLY+NNlAKJwt3z9WZgt5F+TZIhkpp7z6h20+jezFQcuFP
GXzIDN+EADpsbw7MWJYIZVffxDEMlDpkJlAVMT1hsYLDfTXoEzmFwRddoFh2Fjf6
ghWqhOKffUuAOX2xs1MrS2xLaxd0ot7QqZJVTYk7zEljkaRANlstSZZ+PpI+Sad/
rNieQvs6jnsmTODDEaV3qyFX5aBQ2NdvyndZNU9wz0GZAWAdz+wxE0A1FVD0A37i
p6m8sIvhNg3/cW89G04IDYUkAygi8knVDnEDHRwaJtswZQ4pRSGMp+N4qZ0GpnK7
BviaAhofGaYlqruavO6Ug2YyomYpWGlUxTaB9ZKh0HkEDlDM945+0sgQRdxfsE8d
OboycqJn3puOl/wh5Fc4oGYrWLsDbaA/5kksC4lm85Z+HUf+UXMS4QFdoPJYjhuM
H6oMz1w2bQ==
=v56S
-----END PGP SIGNATURE-----
Merge tag 'io_uring-5.10-2020-10-20' of git://git.kernel.dk/linux-block
Pull io_uring updates from Jens Axboe:
"A mix of fixes and a few stragglers. In detail:
- Revert the bogus __read_mostly that we discussed for the initial
pull request.
- Fix a merge window regression with fixed file registration error
path handling.
- Fix io-wq numa node affinities.
- Series abstracting out an io_identity struct, making it both easier
to see what the personality items are, and also easier to to adopt
more. Use this to cover audit logging.
- Fix for read-ahead disabled block condition in async buffered
reads, and using single page read-ahead to unify what
generic_file_buffer_read() path is used.
- Series for REQ_F_COMP_LOCKED fix and removal of it (Pavel)
- Poll fix (Pavel)"
* tag 'io_uring-5.10-2020-10-20' of git://git.kernel.dk/linux-block: (21 commits)
io_uring: use blk_queue_nowait() to check if NOWAIT supported
mm: use limited read-ahead to satisfy read
mm: mark async iocb read as NOWAIT once some data has been copied
io_uring: fix double poll mask init
io-wq: inherit audit loginuid and sessionid
io_uring: use percpu counters to track inflight requests
io_uring: assign new io_identity for task if members have changed
io_uring: store io_identity in io_uring_task
io_uring: COW io_identity on mismatch
io_uring: move io identity items into separate struct
io_uring: rely solely on work flags to determine personality.
io_uring: pass required context in as flags
io-wq: assign NUMA node locality if appropriate
io_uring: fix error path cleanup in io_sqe_files_register()
Revert "io_uring: mark io_uring_fops/io_op_defs as __read_mostly"
io_uring: fix REQ_F_COMP_LOCKED by killing it
io_uring: dig out COMP_LOCK from deep call chain
io_uring: don't put a poll req under spinlock
io_uring: don't unnecessarily clear F_LINK_TIMEOUT
io_uring: don't set COMP_LOCKED if won't put
...
No point in having the filename inside the file.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Link: https://lkml.kernel.org/r/20201002124035.1539300-3-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "two small vmalloc cleanups".
This patch (of 2):
__vmalloc_area_node currently has four different gfp_t variables to
just express this simple logic:
- use the passed in mask, plus __GFP_NOWARN and __GFP_HIGHMEM (if
suitable) for the underlying page allocation
- use just the reclaim flags from the passed in mask plus __GFP_ZERO
for allocating the page array
Simplify this down to just use the pre-existing nested_gfp as-is for
the page array allocation, and just the passed in gfp_mask for the
page allocation, after conditionally ORing __GFP_HIGHMEM into it. This
also makes the allocation warning a little more correct.
Also initialize two variables at the time of declaration while touching
this area.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Link: https://lkml.kernel.org/r/20201002124035.1539300-1-hch@lst.de
Link: https://lkml.kernel.org/r/20201002124035.1539300-2-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Besides calling the callback on each page, apply_to_page_range also has
the effect of pre-faulting all PTEs for the range. To support callers
that only need the pre-faulting, make the callback optional.
Based on a patch from Minchan Kim <minchan@kernel.org>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Link: https://lkml.kernel.org/r/20201002122204.1534411-5-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a proper helper to remap PFNs into kernel virtual space so that
drivers don't have to abuse alloc_vm_area and open coded PTE manipulation
for it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Link: https://lkml.kernel.org/r/20201002122204.1534411-4-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a flag so that vmap takes ownership of the passed in page array. When
vfree is called on such an allocation it will put one reference on each
page, and free the page array itself.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Link: https://lkml.kernel.org/r/20201002122204.1534411-3-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "remove alloc_vm_area", v4.
This series removes alloc_vm_area, which was left over from the big
vmalloc interface rework. It is a rather arkane interface, basicaly the
equivalent of get_vm_area + actually faulting in all PTEs in the allocated
area. It was originally addeds for Xen (which isn't modular to start
with), and then grew users in zsmalloc and i915 which seems to mostly
qualify as abuses of the interface, especially for i915 as a random driver
should not set up PTE bits directly.
This patch (of 11):
* Document that you can call vfree() on an address returned from vmap()
* Remove the note about the minimum size -- the minimum size of a vmalloc
allocation is one page
* Add a Context: section
* Fix capitalisation
* Reword the prohibition on calling from NMI context to avoid a double
negative
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Link: https://lkml.kernel.org/r/20201002122204.1534411-1-hch@lst.de
Link: https://lkml.kernel.org/r/20201002122204.1534411-2-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is usecase that System Management Software(SMS) want to give a
memory hint like MADV_[COLD|PAGEEOUT] to other processes and in the
case of Android, it is the ActivityManagerService.
The information required to make the reclaim decision is not known to the
app. Instead, it is known to the centralized userspace
daemon(ActivityManagerService), and that daemon must be able to initiate
reclaim on its own without any app involvement.
To solve the issue, this patch introduces a new syscall
process_madvise(2). It uses pidfd of an external process to give the
hint. It also supports vector address range because Android app has
thousands of vmas due to zygote so it's totally waste of CPU and power if
we should call the syscall one by one for each vma.(With testing 2000-vma
syscall vs 1-vector syscall, it showed 15% performance improvement. I
think it would be bigger in real practice because the testing ran very
cache friendly environment).
Another potential use case for the vector range is to amortize the cost
ofTLB shootdowns for multiple ranges when using MADV_DONTNEED; this could
benefit users like TCP receive zerocopy and malloc implementations. In
future, we could find more usecases for other advises so let's make it
happens as API since we introduce a new syscall at this moment. With
that, existing madvise(2) user could replace it with process_madvise(2)
with their own pid if they want to have batch address ranges support
feature.
ince it could affect other process's address range, only privileged
process(PTRACE_MODE_ATTACH_FSCREDS) or something else(e.g., being the same
UID) gives it the right to ptrace the process could use it successfully.
The flag argument is reserved for future use if we need to extend the API.
I think supporting all hints madvise has/will supported/support to
process_madvise is rather risky. Because we are not sure all hints make
sense from external process and implementation for the hint may rely on
the caller being in the current context so it could be error-prone. Thus,
I just limited hints as MADV_[COLD|PAGEOUT] in this patch.
If someone want to add other hints, we could hear the usecase and review
it for each hint. It's safer for maintenance rather than introducing a
buggy syscall but hard to fix it later.
So finally, the API is as follows,
ssize_t process_madvise(int pidfd, const struct iovec *iovec,
unsigned long vlen, int advice, unsigned int flags);
DESCRIPTION
The process_madvise() system call is used to give advice or directions
to the kernel about the address ranges from external process as well as
local process. It provides the advice to address ranges of process
described by iovec and vlen. The goal of such advice is to improve
system or application performance.
The pidfd selects the process referred to by the PID file descriptor
specified in pidfd. (See pidofd_open(2) for further information)
The pointer iovec points to an array of iovec structures, defined in
<sys/uio.h> as:
struct iovec {
void *iov_base; /* starting address */
size_t iov_len; /* number of bytes to be advised */
};
The iovec describes address ranges beginning at address(iov_base)
and with size length of bytes(iov_len).
The vlen represents the number of elements in iovec.
The advice is indicated in the advice argument, which is one of the
following at this moment if the target process specified by pidfd is
external.
MADV_COLD
MADV_PAGEOUT
Permission to provide a hint to external process is governed by a
ptrace access mode PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).
The process_madvise supports every advice madvise(2) has if target
process is in same thread group with calling process so user could
use process_madvise(2) to extend existing madvise(2) to support
vector address ranges.
RETURN VALUE
On success, process_madvise() returns the number of bytes advised.
This return value may be less than the total number of requested
bytes, if an error occurred. The caller should check return value
to determine whether a partial advice occurred.
FAQ:
Q.1 - Why does any external entity have better knowledge?
Quote from Sandeep
"For Android, every application (including the special SystemServer)
are forked from Zygote. The reason of course is to share as many
libraries and classes between the two as possible to benefit from the
preloading during boot.
After applications start, (almost) all of the APIs end up calling into
this SystemServer process over IPC (binder) and back to the
application.
In a fully running system, the SystemServer monitors every single
process periodically to calculate their PSS / RSS and also decides
which process is "important" to the user for interactivity.
So, because of how these processes start _and_ the fact that the
SystemServer is looping to monitor each process, it does tend to *know*
which address range of the application is not used / useful.
Besides, we can never rely on applications to clean things up
themselves. We've had the "hey app1, the system is low on memory,
please trim your memory usage down" notifications for a long time[1].
They rely on applications honoring the broadcasts and very few do.
So, if we want to avoid the inevitable killing of the application and
restarting it, some way to be able to tell the OS about unimportant
memory in these applications will be useful.
- ssp
Q.2 - How to guarantee the race(i.e., object validation) between when
giving a hint from an external process and get the hint from the target
process?
process_madvise operates on the target process's address space as it
exists at the instant that process_madvise is called. If the space
target process can run between the time the process_madvise process
inspects the target process address space and the time that
process_madvise is actually called, process_madvise may operate on
memory regions that the calling process does not expect. It's the
responsibility of the process calling process_madvise to close this
race condition. For example, the calling process can suspend the
target process with ptrace, SIGSTOP, or the freezer cgroup so that it
doesn't have an opportunity to change its own address space before
process_madvise is called. Another option is to operate on memory
regions that the caller knows a priori will be unchanged in the target
process. Yet another option is to accept the race for certain
process_madvise calls after reasoning that mistargeting will do no
harm. The suggested API itself does not provide synchronization. It
also apply other APIs like move_pages, process_vm_write.
The race isn't really a problem though. Why is it so wrong to require
that callers do their own synchronization in some manner? Nobody
objects to write(2) merely because it's possible for two processes to
open the same file and clobber each other's writes --- instead, we tell
people to use flock or something. Think about mmap. It never
guarantees newly allocated address space is still valid when the user
tries to access it because other threads could unmap the memory right
before. That's where we need synchronization by using other API or
design from userside. It shouldn't be part of API itself. If someone
needs more fine-grained synchronization rather than process level,
there were two ideas suggested - cookie[2] and anon-fd[3]. Both are
applicable via using last reserved argument of the API but I don't
think it's necessary right now since we have already ways to prevent
the race so don't want to add additional complexity with more
fine-grained optimization model.
To make the API extend, it reserved an unsigned long as last argument
so we could support it in future if someone really needs it.
Q.3 - Why doesn't ptrace work?
Injecting an madvise in the target process using ptrace would not work
for us because such injected madvise would have to be executed by the
target process, which means that process would have to be runnable and
that creates the risk of the abovementioned race and hinting a wrong
VMA. Furthermore, we want to act the hint in caller's context, not the
callee's, because the callee is usually limited in cpuset/cgroups or
even freezed state so they can't act by themselves quick enough, which
causes more thrashing/kill. It doesn't work if the target process are
ptraced(e.g., strace, debugger, minidump) because a process can have at
most one ptracer.
[1] https://developer.android.com/topic/performance/memory"
[2] process_getinfo for getting the cookie which is updated whenever
vma of process address layout are changed - Daniel Colascione -
https://lore.kernel.org/lkml/20190520035254.57579-1-minchan@kernel.org/T/#m7694416fd179b2066a2c62b5b139b14e3894e224
[3] anonymous fd which is used for the object(i.e., address range)
validation - Michal Hocko -
https://lore.kernel.org/lkml/20200120112722.GY18451@dhcp22.suse.cz/
[minchan@kernel.org: fix process_madvise build break for arm64]
Link: http://lkml.kernel.org/r/20200303145756.GA219683@google.com
[minchan@kernel.org: fix build error for mips of process_madvise]
Link: http://lkml.kernel.org/r/20200508052517.GA197378@google.com
[akpm@linux-foundation.org: fix patch ordering issue]
[akpm@linux-foundation.org: fix arm64 whoops]
[minchan@kernel.org: make process_madvise() vlen arg have type size_t, per Florian]
[akpm@linux-foundation.org: fix i386 build]
[sfr@canb.auug.org.au: fix syscall numbering]
Link: https://lkml.kernel.org/r/20200905142639.49fc3f1a@canb.auug.org.au
[sfr@canb.auug.org.au: madvise.c needs compat.h]
Link: https://lkml.kernel.org/r/20200908204547.285646b4@canb.auug.org.au
[minchan@kernel.org: fix mips build]
Link: https://lkml.kernel.org/r/20200909173655.GC2435453@google.com
[yuehaibing@huawei.com: remove duplicate header which is included twice]
Link: https://lkml.kernel.org/r/20200915121550.30584-1-yuehaibing@huawei.com
[minchan@kernel.org: do not use helper functions for process_madvise]
Link: https://lkml.kernel.org/r/20200921175539.GB387368@google.com
[akpm@linux-foundation.org: pidfd_get_pid() gained an argument]
[sfr@canb.auug.org.au: fix up for "iov_iter: transparently handle compat iovecs in import_iovec"]
Link: https://lkml.kernel.org/r/20200928212542.468e1fef@canb.auug.org.au
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Christian Brauner <christian@brauner.io>
Cc: Daniel Colascione <dancol@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Dias <joaodias@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Sandeep Patil <sspatil@google.com>
Cc: SeongJae Park <sj38.park@gmail.com>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Florian Weimer <fw@deneb.enyo.de>
Cc: <linux-man@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200302193630.68771-3-minchan@kernel.org
Link: http://lkml.kernel.org/r/20200508183320.GA125527@google.com
Link: http://lkml.kernel.org/r/20200622192900.22757-4-minchan@kernel.org
Link: https://lkml.kernel.org/r/20200901000633.1920247-4-minchan@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "introduce memory hinting API for external process", v9.
Now, we have MADV_PAGEOUT and MADV_COLD as madvise hinting API. With
that, application could give hints to kernel what memory range are
preferred to be reclaimed. However, in some platform(e.g., Android), the
information required to make the hinting decision is not known to the app.
Instead, it is known to a centralized userspace daemon(e.g.,
ActivityManagerService), and that daemon must be able to initiate reclaim
on its own without any app involvement.
To solve the concern, this patch introduces new syscall -
process_madvise(2). Bascially, it's same with madvise(2) syscall but it
has some differences.
1. It needs pidfd of target process to provide the hint
2. It supports only MADV_{COLD|PAGEOUT|MERGEABLE|UNMEREABLE} at this
moment. Other hints in madvise will be opened when there are explicit
requests from community to prevent unexpected bugs we couldn't support.
3. Only privileged processes can do something for other process's
address space.
For more detail of the new API, please see "mm: introduce external memory
hinting API" description in this patchset.
This patch (of 3):
In upcoming patches, do_madvise will be called from external process
context so we shouldn't asssume "current" is always hinted process's
task_struct.
Furthermore, we must not access mm_struct via task->mm, but obtain it via
access_mm() once (in the following patch) and only use that pointer [1],
so pass it to do_madvise() as well. Note the vma->vm_mm pointers are
safe, so we can use them further down the call stack.
And let's pass current->mm as arguments of do_madvise so it shouldn't
change existing behavior but prepare next patch to make review easy.
[vbabka@suse.cz: changelog tweak]
[minchan@kernel.org: use current->mm for io_uring]
Link: http://lkml.kernel.org/r/20200423145215.72666-1-minchan@kernel.org
[akpm@linux-foundation.org: fix it for upstream changes]
[akpm@linux-foundation.org: whoops]
[rdunlap@infradead.org: add missing includes]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jann Horn <jannh@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Daniel Colascione <dancol@google.com>
Cc: Sandeep Patil <sspatil@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: John Dias <joaodias@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: SeongJae Park <sj38.park@gmail.com>
Cc: Christian Brauner <christian@brauner.io>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Florian Weimer <fw@deneb.enyo.de>
Cc: <linux-man@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200901000633.1920247-1-minchan@kernel.org
Link: http://lkml.kernel.org/r/20200622192900.22757-1-minchan@kernel.org
Link: http://lkml.kernel.org/r/20200302193630.68771-2-minchan@kernel.org
Link: http://lkml.kernel.org/r/20200622192900.22757-2-minchan@kernel.org
Link: https://lkml.kernel.org/r/20200901000633.1920247-2-minchan@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To be safe against concurrent changes to the VMA tree, we must take the
mmap lock around GUP operations (excluding the GUP-fast family of
operations, which will take the mmap lock by themselves if necessary).
This code is only for testing, and it's only reachable by root through
debugfs, so this doesn't really have any impact; however, if we want to
add lockdep asserts into the GUP path, we need to have clean locking here.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Michel Lespinasse <walken@google.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Link: https://lkml.kernel.org/r/CAG48ez3SG6ngZLtasxJ6LABpOnqCz5-QHqb0B4k44TQ8F9n6+w@mail.gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two locations that have a block of code for munmapping a vma
range. Change those two locations to use a function and add meaningful
comments about what happens to the arguments, which was unclear in the
previous code.
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200818154707.2515169-2-Liam.Howlett@Oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are three places that the next vma is required which uses the same
block of code. Replace the block with a function and add comments on what
happens in the case where NULL is encountered.
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200818154707.2515169-1-Liam.Howlett@Oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to check if this process has the right to modify the
specified process when they are same. And we could also skip the security
hook call if a process is modifying its own pages. Add helper function to
handle these.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Hongxiang Lou <louhongxiang@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christopher Lameter <cl@linux.com>
Link: https://lkml.kernel.org/r/20200819083331.19012-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To calculate the correct node to migrate the page for hotplug, we need to
check node id of the page. Wrapper for alloc_migration_target() exists
for this purpose.
However, Vlastimil informs that all migration source pages come from a
single node. In this case, we don't need to check the node id for each
page and we don't need to re-set the target nodemask for each page by
using the wrapper. Set up the migration_target_control once and use it
for all pages.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-10-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a well-defined standard migration target callback. Use it
directly.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-9-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a memcg to charge can be determined (using remote charging API), there
are no reasons to exclude allocations made from an interrupt context from
the accounting.
Such allocations will pass even if the resulting memcg size will exceed
the hard limit, but it will affect the application of the memory pressure
and an inability to put the workload under the limit will eventually
trigger the OOM.
To use active_memcg() helper, memcg_kmem_bypass() is moved back to
memcontrol.c.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-5-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remote memcg charging API uses current->active_memcg to store the
currently active memory cgroup, which overwrites the memory cgroup of the
current process. It works well for normal contexts, but doesn't work for
interrupt contexts: indeed, if an interrupt occurs during the execution of
a section with an active memcg set, all allocations inside the interrupt
will be charged to the active memcg set (given that we'll enable
accounting for allocations from an interrupt context). But because the
interrupt might have no relation to the active memcg set outside, it's
obviously wrong from the accounting prospective.
To resolve this problem, let's add a global percpu int_active_memcg
variable, which will be used to store an active memory cgroup which will
be used from interrupt contexts. set_active_memcg() will transparently
use current->active_memcg or int_active_memcg depending on the context.
To make the read part simple and transparent for the caller, let's
introduce two new functions:
- struct mem_cgroup *active_memcg(void),
- struct mem_cgroup *get_active_memcg(void).
They are returning the active memcg if it's set, hiding all implementation
details: where to get it depending on the current context.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are checks for current->mm and current->active_memcg in
get_obj_cgroup_from_current(), but these checks are redundant:
memcg_kmem_bypass() called just above performs same checks.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: kmem: kernel memory accounting in an interrupt context".
This patchset implements memcg-based memory accounting of allocations made
from an interrupt context.
Historically, such allocations were passed unaccounted mostly because
charging the memory cgroup of the current process wasn't an option. Also
performance reasons were likely a reason too.
The remote charging API allows to temporarily overwrite the currently
active memory cgroup, so that all memory allocations are accounted towards
some specified memory cgroup instead of the memory cgroup of the current
process.
This patchset extends the remote charging API so that it can be used from
an interrupt context. Then it removes the fence that prevented the
accounting of allocations made from an interrupt context. It also
contains a couple of optimizations/code refactorings.
This patchset doesn't directly enable accounting for any specific
allocations, but prepares the code base for it. The bpf memory accounting
will likely be the first user of it: a typical example is a bpf program
parsing an incoming network packet, which allocates an entry in hashmap
map to store some information.
This patch (of 4):
Currently memcg_kmem_bypass() is called before obtaining the current
memory/obj cgroup using get_mem/obj_cgroup_from_current(). Moving
memcg_kmem_bypass() into get_mem/obj_cgroup_from_current() reduces the
number of call sites and allows further code simplifications.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-1-guro@fb.com
Link: http://lkml.kernel.org/r/20200827225843.1270629-2-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the remote memcg charging API consists of two functions:
memalloc_use_memcg() and memalloc_unuse_memcg(), which set and clear the
memcg value, which overwrites the memcg of the current task.
memalloc_use_memcg(target_memcg);
<...>
memalloc_unuse_memcg();
It works perfectly for allocations performed from a normal context,
however an attempt to call it from an interrupt context or just nest two
remote charging blocks will lead to an incorrect accounting. On exit from
the inner block the active memcg will be cleared instead of being
restored.
memalloc_use_memcg(target_memcg);
memalloc_use_memcg(target_memcg_2);
<...>
memalloc_unuse_memcg();
Error: allocation here are charged to the memcg of the current
process instead of target_memcg.
memalloc_unuse_memcg();
This patch extends the remote charging API by switching to a single
function: struct mem_cgroup *set_active_memcg(struct mem_cgroup *memcg),
which sets the new value and returns the old one. So a remote charging
block will look like:
old_memcg = set_active_memcg(target_memcg);
<...>
set_active_memcg(old_memcg);
This patch is heavily based on the patch by Johannes Weiner, which can be
found here: https://lkml.org/lkml/2020/5/28/806 .
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dan Schatzberg <dschatzberg@fb.com>
Link: https://lkml.kernel.org/r/20200821212056.3769116-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For the case where read-ahead is disabled on the file, or if the cgroup
is congested, ensure that we can at least do 1 page of read-ahead to
make progress on the read in an async fashion. This could potentially be
larger, but it's not needed in terms of functionality, so let's error on
the side of caution as larger counts of pages may run into reclaim
issues (particularly if we're congested).
This makes sure we're not hitting the potentially sync ->readpage() path
for IO that is marked IOCB_WAITQ, which could cause us to block. It also
means we'll use the same path for IO, regardless of whether or not
read-ahead happens to be disabled on the lower level device.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: Hao_Xu <haoxu@linux.alibaba.com>
[axboe: updated for new ractl API]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Once we've copied some data for an iocb that is marked with IOCB_WAITQ,
we should no longer attempt to async lock a new page. Instead make sure
we return the copied amount, and let the caller retry, instead of
returning -EIOCBQUEUED for a new page.
This should only be possible with read-ahead disabled on the below
device, and multiple threads racing on the same file. Haven't been able
to reproduce on anything else.
Cc: stable@vger.kernel.org # v5.9
Fixes: 1a0a7853b9 ("mm: support async buffered reads in generic_file_buffered_read()")
Reported-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+QmuaPwR3wnBdVwACF8+vY7k4RUFAl+JNGYACgkQCF8+vY7k
4RV/TA//ZoRoMQE5B6zwO4kOGILMbmW2uepjoEysLgus2ctkTUoRkpNLWS3SozcU
6c/eW1rC4Fji24te6lwusciZa5zQgbGMjFYk1LhnJ65lJA+kQ+kV1DGz/ZWtklMM
gLX20+tQADqGl+u2dmFCvmRhPWJ9nzt1C0auN7dGeu+9g97GnhKG6o2Kv/nVCb68
qMmAs9UrfN24DO5G1ixkdY08nSNJPrpgQnIR2ruUysUII/yTTtcnmHDbH3WWL6+9
2P87AZ6zsa3FdBhAjmG5YJklQgPkLFWEykHMTqq/Mkcpff/JB/AayrL6XNB2QoZb
YXLHJp3Na6iBmdmHhecg+VQDgz28UfMk+p+HFoJh8RTtJa9/qJvYdJmIE/mUPrnY
gL4jNgMVwkptGHXh7IRuSLysT5heJPMQss6TfZ6yYadeOIpx7W8MCAYnGffiElLQ
hmKdmyCszS3SERJz40EOBdr2NQYcDEUt2NtEhdVfium21A4PFOdJlCejifGhJyzP
n1QcyMXHnh/d4zecA6fcD0LVyxBgngeKEvdtOLZJ1ubxWwHhgWTN8R4HedoN2Nb9
cLEUK8Td+9n2RVS8UED4BBI+6vfN3Y6Syjvy8qD3pCs4SBcu3k790mf47t2QhkEq
+Ho06gdrGJdEcSDO8zVY7qjZX/GX/dbRHCb5CRokL5FmNWhXd/Y=
=26wi
-----END PGP SIGNATURE-----
Merge tag 'docs/v5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-media
Pull documentation updates from Mauro Carvalho Chehab:
"A series of patches addressing warnings produced by make htmldocs.
This includes:
- kernel-doc markup fixes
- ReST fixes
- Updates at the build system in order to support newer versions of
the docs build toolchain (Sphinx)
After this series, the number of html build warnings should reduce
significantly, and building with Sphinx 3.1 or later should now be
supported (although it is still recommended to use Sphinx 2.4.4).
As agreed with Jon, I should be sending you a late pull request by the
end of the merge window addressing remaining issues with docs build,
as there are a number of warning fixes that depends on pull requests
that should be happening along the merge window.
The end goal is to have a clean htmldocs build on Kernel 5.10.
PS. It should be noticed that Sphinx 3.0 is not currently supported,
as it lacks support for C domain namespaces. Such feature, needed in
order to document uAPI system calls with Sphinx 3.x, was added only on
Sphinx 3.1"
* tag 'docs/v5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-media: (75 commits)
PM / devfreq: remove a duplicated kernel-doc markup
mm/doc: fix a literal block markup
workqueue: fix a kernel-doc warning
docs: virt: user_mode_linux_howto_v2.rst: fix a literal block markup
Input: sparse-keymap: add a description for @sw
rcu/tree: docs: document bkvcache new members at struct kfree_rcu_cpu
nl80211: docs: add a description for s1g_cap parameter
usb: docs: document altmode register/unregister functions
kunit: test.h: fix a bad kernel-doc markup
drivers: core: fix kernel-doc markup for dev_err_probe()
docs: bio: fix a kerneldoc markup
kunit: test.h: solve kernel-doc warnings
block: bio: fix a warning at the kernel-doc markups
docs: powerpc: syscall64-abi.rst: fix a malformed table
drivers: net: hamradio: fix document location
net: appletalk: Kconfig: Fix docs location
dt-bindings: fix references to files converted to yaml
memblock: get rid of a :c:type leftover
math64.h: kernel-docs: Convert some markups into normal comments
media: uAPI: buffer.rst: remove a left-over documentation
...
Merge more updates from Andrew Morton:
"155 patches.
Subsystems affected by this patch series: mm (dax, debug, thp,
readahead, page-poison, util, memory-hotplug, zram, cleanups), misc,
core-kernel, get_maintainer, MAINTAINERS, lib, bitops, checkpatch,
binfmt, ramfs, autofs, nilfs, rapidio, panic, relay, kgdb, ubsan,
romfs, and fault-injection"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (155 commits)
lib, uaccess: add failure injection to usercopy functions
lib, include/linux: add usercopy failure capability
ROMFS: support inode blocks calculation
ubsan: introduce CONFIG_UBSAN_LOCAL_BOUNDS for Clang
sched.h: drop in_ubsan field when UBSAN is in trap mode
scripts/gdb/tasks: add headers and improve spacing format
scripts/gdb/proc: add struct mount & struct super_block addr in lx-mounts command
kernel/relay.c: drop unneeded initialization
panic: dump registers on panic_on_warn
rapidio: fix the missed put_device() for rio_mport_add_riodev
rapidio: fix error handling path
nilfs2: fix some kernel-doc warnings for nilfs2
autofs: harden ioctl table
ramfs: fix nommu mmap with gaps in the page cache
mm: remove the now-unnecessary mmget_still_valid() hack
mm/gup: take mmap_lock in get_dump_page()
binfmt_elf, binfmt_elf_fdpic: use a VMA list snapshot
coredump: rework elf/elf_fdpic vma_dump_size() into common helper
coredump: refactor page range dumping into common helper
coredump: let dump_emit() bail out on short writes
...
The preceding patches have ensured that core dumping properly takes the
mmap_lock. Thanks to that, we can now remove mmget_still_valid() and all
its users.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200827114932.3572699-8-jannh@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Properly take the mmap_lock before calling into the GUP code from
get_dump_page(); and play nice, allowing the GUP code to drop the
mmap_lock if it has to sleep.
As Linus pointed out, we don't actually need the VMA because
__get_user_pages() will flush the dcache for us if necessary.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200827114932.3572699-7-jannh@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Fix ELF / FDPIC ELF core dumping, and use mmap_lock properly in there", v5.
At the moment, we have that rather ugly mmget_still_valid() helper to work
around <https://crbug.com/project-zero/1790>: ELF core dumping doesn't
take the mmap_sem while traversing the task's VMAs, and if anything (like
userfaultfd) then remotely messes with the VMA tree, fireworks ensue. So
at the moment we use mmget_still_valid() to bail out in any writers that
might be operating on a remote mm's VMAs.
With this series, I'm trying to get rid of the need for that as cleanly as
possible. ("cleanly" meaning "avoid holding the mmap_lock across
unbounded sleeps".)
Patches 1, 2, 3 and 4 are relatively unrelated cleanups in the core
dumping code.
Patches 5 and 6 implement the main change: Instead of repeatedly accessing
the VMA list with sleeps in between, we snapshot it at the start with
proper locking, and then later we just use our copy of the VMA list. This
ensures that the kernel won't crash, that VMA metadata in the coredump is
consistent even in the presence of concurrent modifications, and that any
virtual addresses that aren't being concurrently modified have their
contents show up in the core dump properly.
The disadvantage of this approach is that we need a bit more memory during
core dumping for storing metadata about all VMAs.
At the end of the series, patch 7 removes the old workaround for this
issue (mmget_still_valid()).
I have tested:
- Creating a simple core dump on X86-64 still works.
- The created coredump on X86-64 opens in GDB and looks plausible.
- X86-64 core dumps contain the first page for executable mappings at
offset 0, and don't contain the first page for non-executable file
mappings or executable mappings at offset !=0.
- NOMMU 32-bit ARM can still generate plausible-looking core dumps
through the FDPIC implementation. (I can't test this with GDB because
GDB is missing some structure definition for nommu ARM, but I've
poked around in the hexdump and it looked decent.)
This patch (of 7):
dump_emit() is for kernel pointers, and VMAs describe userspace memory.
Let's be tidy here and avoid accessing userspace pointers under KERNEL_DS,
even if it probably doesn't matter much on !MMU systems - especially given
that it looks like we can just use the same get_dump_page() as on MMU if
we move it out of the CONFIG_MMU block.
One small change we have to make in get_dump_page() is to use
__get_user_pages_locked() instead of __get_user_pages(), since the latter
doesn't exist on nommu. On mmu builds, __get_user_pages_locked() will
just call __get_user_pages() for us.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200827114932.3572699-1-jannh@google.com
Link: http://lkml.kernel.org/r/20200827114932.3572699-2-jannh@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current page_order() can only be called on pages in the buddy
allocator. For compound pages, you have to use compound_order(). This is
confusing and led to a bug, so rename page_order() to buddy_order().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20201001152259.14932-2-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 1da177e4c3 ("Linux-2.6.12-rc2"), the helper put_write_access()
came with the atomic_dec operation of the i_writecount field. But it
forgot to use this helper in __vma_link_file() and dup_mmap().
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20200924115235.5111-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix following warnings caused by mismatch bewteen function parameters and
comments.
mm/workingset.c:228: warning: Function parameter or member 'lruvec' not described in 'workingset_age_nonresident'
mm/workingset.c:228: warning: Excess function parameter 'memcg' description in 'workingset_age_nonresident'
Signed-off-by: Xiaofei Tan <tanxiaofei@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/1600485913-11192-1-git-send-email-tanxiaofei@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Correct one function name "get_partials" with "get_partial". Update the
old struct name of list3 with kmem_cache_node.
Signed-off-by: Chen Tao <chentao3@hotmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Link: https://lkml.kernel.org/r/Message-ID:
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix some broken comments including typo, grammar error and wrong function
name.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.kernel.org/r/20200913095456.54873-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The #endif at the end of the file matches up with the '#if
defined(HASHED_PAGE_VIRTUAL)' on line 374. Not the CONFIG_HIGHMEM #if
earlier.
Fix comments on both of the #endif's to indicate the correct end of
blocks for each.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Link: https://lkml.kernel.org/r/20200819184635.112579-1-ira.weiny@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
list_for_each_entry_safe() guarantees that we will never stumble over the
list head; "&page->lru != list" will always evaluate to true. Let's
simplify.
[david@redhat.com: Changelog refinements]
Signed-off-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Link: http://lkml.kernel.org/r/20200818084448.33969-1-richard.weiyang@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove duplicate header which is included twice.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Link: http://lkml.kernel.org/r/20200818114323.58156-1-yuehaibing@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As we no longer shuffle via generic_online_page() and when undoing
isolation, we can simplify the comment.
We now effectively shuffle only once (properly) when onlining new memory.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-6-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__free_pages_core() is used when exposing fresh memory to the buddy during
system boot and when onlining memory in generic_online_page().
generic_online_page() is used in two cases:
1. Direct memory onlining in online_pages().
2. Deferred memory onlining in memory-ballooning-like mechanisms (HyperV
balloon and virtio-mem), when parts of a section are kept
fake-offline to be fake-onlined later on.
In 1, we already place pages to the tail of the freelist. Pages will be
freed to MIGRATE_ISOLATE lists first and moved to the tail of the
freelists via undo_isolate_page_range().
In 2, we currently don't implement a proper rule. In case of virtio-mem,
where we currently always online MAX_ORDER - 1 pages, the pages will be
placed to the HEAD of the freelist - undesireable. While the hyper-v
balloon calls generic_online_page() with single pages, usually it will
call it on successive single pages in a larger block.
The pages are fresh, so place them to the tail of the freelist and avoid
the PCP. In __free_pages_core(), remove the now superflouos call to
set_page_refcounted() and add a comment regarding page initialization and
the refcount.
Note: In 2. we currently don't shuffle. If ever relevant (page shuffling
is usually of limited use in virtualized environments), we might want to
shuffle after a sequence of generic_online_page() calls in the relevant
callers.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Link: https://lkml.kernel.org/r/20201005121534.15649-5-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Whenever we move pages between freelists via move_to_free_list()/
move_freepages_block(), we don't actually touch the pages:
1. Page isolation doesn't actually touch the pages, it simply isolates
pageblocks and moves all free pages to the MIGRATE_ISOLATE freelist.
When undoing isolation, we move the pages back to the target list.
2. Page stealing (steal_suitable_fallback()) moves free pages directly
between lists without touching them.
3. reserve_highatomic_pageblock()/unreserve_highatomic_pageblock() moves
free pages directly between freelists without touching them.
We already place pages to the tail of the freelists when undoing isolation
via __putback_isolated_page(), let's do it in any case (e.g., if order <=
pageblock_order) and document the behavior. To simplify, let's move the
pages to the tail for all move_to_free_list()/move_freepages_block() users.
In 2., the target list is empty, so there should be no change. In 3., we
might observe a change, however, highatomic is more concerned about
allocations succeeding than cache hotness - if we ever realize this change
degrades a workload, we can special-case this instance and add a proper
comment.
This change results in all pages getting onlined via online_pages() to be
placed to the tail of the freelist.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-4-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__putback_isolated_page() already documents that pages will be placed to
the tail of the freelist - this is, however, not the case for "order >=
MAX_ORDER - 2" (see buddy_merge_likely()) - which should be the case for
all existing users.
This change affects two users:
- free page reporting
- page isolation, when undoing the isolation (including memory onlining).
This behavior is desirable for pages that haven't really been touched
lately, so exactly the two users that don't actually read/write page
content, but rather move untouched pages.
The new behavior is especially desirable for memory onlining, where we
allow allocation of newly onlined pages via undo_isolate_page_range() in
online_pages(). Right now, we always place them to the head of the
freelist, resulting in undesireable behavior: Assume we add individual
memory chunks via add_memory() and online them right away to the NORMAL
zone. We create a dependency chain of unmovable allocations e.g., via the
memmap. The memmap of the next chunk will be placed onto previous chunks
- if the last block cannot get offlined+removed, all dependent ones cannot
get offlined+removed. While this can already be observed with individual
DIMMs, it's more of an issue for virtio-mem (and I suspect also ppc
DLPAR).
Document that this should only be used for optimizations, and no code
should rely on this behavior for correction (if the order of the freelists
ever changes).
We won't care about page shuffling: memory onlining already properly
shuffles after onlining. free page reporting doesn't care about
physically contiguous ranges, and there are already cases where page
isolation will simply move (physically close) free pages to (currently)
the head of the freelists via move_freepages_block() instead of shuffling.
If this becomes ever relevant, we should shuffle the whole zone when
undoing isolation of larger ranges, and after free_contig_range().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: place pages to the freelist tail when onlining and undoing isolation", v2.
When adding separate memory blocks via add_memory*() and onlining them
immediately, the metadata (especially the memmap) of the next block will
be placed onto one of the just added+onlined block. This creates a chain
of unmovable allocations: If the last memory block cannot get
offlined+removed() so will all dependent ones. We directly have unmovable
allocations all over the place.
This can be observed quite easily using virtio-mem, however, it can also
be observed when using DIMMs. The freshly onlined pages will usually be
placed to the head of the freelists, meaning they will be allocated next,
turning the just-added memory usually immediately un-removable. The fresh
pages are cold, prefering to allocate others (that might be hot) also
feels to be the natural thing to do.
It also applies to the hyper-v balloon xen-balloon, and ppc64 dlpar: when
adding separate, successive memory blocks, each memory block will have
unmovable allocations on them - for example gigantic pages will fail to
allocate.
While the ZONE_NORMAL doesn't provide any guarantees that memory can get
offlined+removed again (any kind of fragmentation with unmovable
allocations is possible), there are many scenarios (hotplugging a lot of
memory, running workload, hotunplug some memory/as much as possible) where
we can offline+remove quite a lot with this patchset.
a) To visualize the problem, a very simple example:
Start a VM with 4GB and 8GB of virtio-mem memory:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000033fffffff 9G online yes 32-103
Memory block size: 128M
Total online memory: 12G
Total offline memory: 0B
Then try to unplug as much as possible using virtio-mem. Observe which
memory blocks are still around. Without this patch set:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000013fffffff 1G online yes 32-39
0x0000000148000000-0x000000014fffffff 128M online yes 41
0x0000000158000000-0x000000015fffffff 128M online yes 43
0x0000000168000000-0x000000016fffffff 128M online yes 45
0x0000000178000000-0x000000017fffffff 128M online yes 47
0x0000000188000000-0x0000000197ffffff 256M online yes 49-50
0x00000001a0000000-0x00000001a7ffffff 128M online yes 52
0x00000001b0000000-0x00000001b7ffffff 128M online yes 54
0x00000001c0000000-0x00000001c7ffffff 128M online yes 56
0x00000001d0000000-0x00000001d7ffffff 128M online yes 58
0x00000001e0000000-0x00000001e7ffffff 128M online yes 60
0x00000001f0000000-0x00000001f7ffffff 128M online yes 62
0x0000000200000000-0x0000000207ffffff 128M online yes 64
0x0000000210000000-0x0000000217ffffff 128M online yes 66
0x0000000220000000-0x0000000227ffffff 128M online yes 68
0x0000000230000000-0x0000000237ffffff 128M online yes 70
0x0000000240000000-0x0000000247ffffff 128M online yes 72
0x0000000250000000-0x0000000257ffffff 128M online yes 74
0x0000000260000000-0x0000000267ffffff 128M online yes 76
0x0000000270000000-0x0000000277ffffff 128M online yes 78
0x0000000280000000-0x0000000287ffffff 128M online yes 80
0x0000000290000000-0x0000000297ffffff 128M online yes 82
0x00000002a0000000-0x00000002a7ffffff 128M online yes 84
0x00000002b0000000-0x00000002b7ffffff 128M online yes 86
0x00000002c0000000-0x00000002c7ffffff 128M online yes 88
0x00000002d0000000-0x00000002d7ffffff 128M online yes 90
0x00000002e0000000-0x00000002e7ffffff 128M online yes 92
0x00000002f0000000-0x00000002f7ffffff 128M online yes 94
0x0000000300000000-0x0000000307ffffff 128M online yes 96
0x0000000310000000-0x0000000317ffffff 128M online yes 98
0x0000000320000000-0x0000000327ffffff 128M online yes 100
0x0000000330000000-0x000000033fffffff 256M online yes 102-103
Memory block size: 128M
Total online memory: 8.1G
Total offline memory: 0B
With this patch set:
[root@localhost ~]# lsmem
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x00000000bfffffff 3G online yes 0-23
0x0000000100000000-0x000000013fffffff 1G online yes 32-39
Memory block size: 128M
Total online memory: 4G
Total offline memory: 0B
All memory can get unplugged, all memory block can get removed. Of
course, no workload ran and the system was basically idle, but it
highlights the issue - the fairly deterministic chain of unmovable
allocations. When a huge page for the 2MB memmap is needed, a
just-onlined 4MB page will be split. The remaining 2MB page will be used
for the memmap of the next memory block. So one memory block will hold
the memmap of the two following memory blocks. Finally the pages of the
last-onlined memory block will get used for the next bigger allocations -
if any allocation is unmovable, all dependent memory blocks cannot get
unplugged and removed until that allocation is gone.
Note that with bigger memory blocks (e.g., 256MB), *all* memory
blocks are dependent and none can get unplugged again!
b) Experiment with memory intensive workload
I performed an experiment with an older version of this patch set (before
we used undo_isolate_page_range() in online_pages(): Hotplug 56GB to a VM
with an initial 4GB, onlining all memory to ZONE_NORMAL right from the
kernel when adding it. I then run various memory intensive workloads that
consume most system memory for a total of 45 minutes. Once finished, I
try to unplug as much memory as possible.
With this change, I am able to remove via virtio-mem (adding individual
128MB memory blocks) 413 out of 448 added memory blocks. Via individual
(256MB) DIMMs 380 out of 448 added memory blocks. (I don't have any
numbers without this patchset, but looking at the above example, it's at
most half of the 448 memory blocks for virtio-mem, and most probably none
for DIMMs).
Again, there are workloads that might behave very differently due to the
nature of ZONE_NORMAL.
This change also affects (besides memory onlining):
- Other users of undo_isolate_page_range(): Pages are always placed to the
tail.
-- When memory offlining fails
-- When memory isolation fails after having isolated some pageblocks
-- When alloc_contig_range() either succeeds or fails
- Other users of __putback_isolated_page(): Pages are always placed to the
tail.
-- Free page reporting
- Other users of __free_pages_core()
-- AFAIKs, any memory that is getting exposed to the buddy during boot.
IIUC we will now usually allocate memory from lower addresses within
a zone first (especially during boot).
- Other users of generic_online_page()
-- Hyper-V balloon
This patch (of 5):
Let's prepare for additional flags and avoid long parameter lists of
bools. Follow-up patches will also make use of the flags in
__free_pages_ok().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: https://lkml.kernel.org/r/20201005121534.15649-1-david@redhat.com
Link: https://lkml.kernel.org/r/20201005121534.15649-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At boot time, or when doing memory hot-add operations, if the links in
sysfs can't be created, the system is still able to run, so just report
the error in the kernel log rather than BUG_ON and potentially make system
unusable because the callpath can be called with locks held.
Since the number of memory blocks managed could be high, the messages are
rate limited.
As a consequence, link_mem_sections() has no status to report anymore.
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Rafael J . Wysocki" <rafael@kernel.org>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200915094143.79181-4-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"mem" in the name already indicates the root, similar to
release_mem_region() and devm_request_mem_region(). Make it implicit.
The only single caller always passes iomem_resource, other parents are not
applicable.
Suggested-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Link: https://lkml.kernel.org/r/20200916073041.10355-1-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some add_memory*() users add memory in small, contiguous memory blocks.
Examples include virtio-mem, hyper-v balloon, and the XEN balloon.
This can quickly result in a lot of memory resources, whereby the actual
resource boundaries are not of interest (e.g., it might be relevant for
DIMMs, exposed via /proc/iomem to user space). We really want to merge
added resources in this scenario where possible.
Let's provide a flag (MEMHP_MERGE_RESOURCE) to specify that a resource
either created within add_memory*() or passed via add_memory_resource()
shall be marked mergeable and merged with applicable siblings.
To implement that, we need a kernel/resource interface to mark selected
System RAM resources mergeable (IORESOURCE_SYSRAM_MERGEABLE) and trigger
merging.
Note: We really want to merge after the whole operation succeeded, not
directly when adding a resource to the resource tree (it would break
add_memory_resource() and require splitting resources again when the
operation failed - e.g., due to -ENOMEM).
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Roger Pau Monné <roger.pau@citrix.com>
Cc: Julien Grall <julien@xen.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lkml.kernel.org/r/20200911103459.10306-6-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We soon want to pass flags, e.g., to mark added System RAM resources.
mergeable. Prepare for that.
This patch is based on a similar patch by Oscar Salvador:
https://lkml.kernel.org/r/20190625075227.15193-3-osalvador@suse.de
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Juergen Gross <jgross@suse.com> # Xen related part
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Wei Liu <wei.liu@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Julien Grall <julien@xen.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Roger Pau Monné <roger.pau@citrix.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Link: https://lkml.kernel.org/r/20200911103459.10306-5-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We soon want to pass flags via a new type to add_memory() and friends.
That revealed that we currently don't guard some declarations by
CONFIG_MEMORY_HOTPLUG.
While some definitions could be moved to different places, let's keep it
minimal for now and use CONFIG_MEMORY_HOTPLUG for all functions only
compiled with CONFIG_MEMORY_HOTPLUG.
Wrap sparse_decode_mem_map() into CONFIG_MEMORY_HOTPLUG, it's only called
from CONFIG_MEMORY_HOTPLUG code.
While at it, remove allow_online_pfn_range(), which is no longer around,
and mhp_notimplemented(), which is unused.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Grall <julien@xen.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Roger Pau Monné <roger.pau@citrix.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20200911103459.10306-4-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
IORESOURCE_MEM_DRIVER_MANAGED currently uses an unused PnP bit, which is
always set to 0 by hardware. This is far from beautiful (and confusing),
and the bit only applies to SYSRAM. So let's move it out of the
bus-specific (PnP) defined bits.
We'll add another SYSRAM specific bit soon. If we ever need more bits for
other purposes, we can steal some from "desc", or reshuffle/regroup what
we have.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Grall <julien@xen.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Roger Pau Monné <roger.pau@citrix.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20200911103459.10306-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "selective merging of system ram resources", v4.
Some add_memory*() users add memory in small, contiguous memory blocks.
Examples include virtio-mem, hyper-v balloon, and the XEN balloon.
This can quickly result in a lot of memory resources, whereby the actual
resource boundaries are not of interest (e.g., it might be relevant for
DIMMs, exposed via /proc/iomem to user space). We really want to merge
added resources in this scenario where possible.
Resources are effectively stored in a list-based tree. Having a lot of
resources not only wastes memory, it also makes traversing that tree more
expensive, and makes /proc/iomem explode in size (e.g., requiring
kexec-tools to manually merge resources when creating a kdump header. The
current kexec-tools resource count limit does not allow for more than
~100GB of memory with a memory block size of 128MB on x86-64).
Let's allow to selectively merge system ram resources by specifying a new
flag for add_memory*(). Patch #5 contains a /proc/iomem example. Only
tested with virtio-mem.
This patch (of 8):
Let's make sure splitting a resource on memory hotunplug will never fail.
This will become more relevant once we merge selected System RAM resources
- then, we'll trigger that case more often on memory hotunplug.
In general, this function is already unlikely to fail. When we remove
memory, we free up quite a lot of metadata (memmap, page tables, memory
block device, etc.). The only reason it could really fail would be when
injecting allocation errors.
All other error cases inside release_mem_region_adjustable() seem to be
sanity checks if the function would be abused in different context - let's
add WARN_ON_ONCE() in these cases so we can catch them.
[natechancellor@gmail.com: fix use of ternary condition in release_mem_region_adjustable]
Link: https://lkml.kernel.org/r/20200922060748.2452056-1-natechancellor@gmail.com
Link: https://github.com/ClangBuiltLinux/linux/issues/1159
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Grall <julien@xen.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Roger Pau Monn <roger.pau@citrix.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20200911103459.10306-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, it can happen that pages are allocated (and freed) via the
buddy before we finished basic memory onlining.
For example, pages are exposed to the buddy and can be allocated before we
actually mark the sections online. Allocated pages could suddenly fail
pfn_to_online_page() checks. We had similar issues with pcp handling,
when pages are allocated+freed before we reach zone_pcp_update() in
online_pages() [1].
Instead, mark all pageblocks MIGRATE_ISOLATE, such that allocations are
impossible. Once done with the heavy lifting, use
undo_isolate_page_range() to move the pages to the MIGRATE_MOVABLE
freelist, marking them ready for allocation. Similar to offline_pages(),
we have to manually adjust zone->nr_isolate_pageblock.
[1] https://lkml.kernel.org/r/1597150703-19003-1-git-send-email-charante@codeaurora.org
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-11-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>