The ->show_options() function for GFS2 was not correctly displaying
the value when statfs slow in in use.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Reported-by: Milos Jakubicek <xjakub@fi.muni.cz>
Use the rbm structure for gfs2_setbit() in order to simplify the
arguments to the function. We have to add a bool to control whether
the clone bitmap should be updated (if it exists) but otherwise it
is a more or less direct substitution.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Change the arguments to gfs2_testbit() so that it now just takes an
rbm specifying the position of the two bit entry to return.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Function gfs2_bitfit was checking for state > 3, but that's
impossible since it is only called from rgblk_search, which receives
only GFS2_BLKST_ constants.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Function add_to_queue was checking may_grant for the passed-in
holder for every iteration of its gh2 loop. Now it only checks it
once at the beginning to see if a try lock is futile.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Function gfs2_glock_dq_wait called two-line function wait_on_demote,
so they were combined.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Function gfs2_glock_wait only called function wait_on_holder and
returned its return code, so they were combined for readability.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Since function gfs2_glock_schedule_for_reclaim is only two
significant lines, we can eliminate it, simplifying the code
and making it more readable.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch changes function gfs2_direct_IO so that it uses a normal
call to gfs2_glock_dq rather than a call to a multiple-dq of one item.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch fixes a few small rbm related things. First, it fixes
a corner case where the rbm needs to switch bitmaps and wasn't
adjusting its buffer pointer. Second, there's a white space issue
fixed. Third, the logic in function gfs2_rbm_from_block was optimized
a bit. Lastly, a check for goal block overflows was added to function
gfs2_alloc_blocks.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
One corner case which the original patch failed to take into
account was when there is a reservation which ended such that
the following block was one beyond the end of the rgrp in
question. This extra test fixes that case.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Reported-by: Bob Peterson <rpeterso@redhat.com>
Tested-by: Bob Peterson <rpeterso@redhat.com>
gfs2 calls RB_EMPTY_NODE() to check if nodes are not on an rbtree.
The corresponding initialization function is RB_CLEAR_NODE().
rb_init_node() was never clearly defined and is going away.
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This is part of a series of patches which are introducing the
gfs2_rbm structure throughout the block allocation code. The
main aim of this part is to create a search function which can
deal directly with struct gfs2_rbm. In this case it specifies
the initial position at which to start the search and also the
point at which the search terminates.
The net result of this is to clean up the search code and make
it rather more readable, and the various possible exceptions which
may occur during the search are partitioned into their own functions.
There are some bug fixes too. We should not be checking the reservations
while allocating extents - the time for that is when we are searching
for where to put the extent, not when we've already made that decision.
Also, rgblk_search had two uses, and in only one of those cases did
it make sense to check for reservations. This is fixed in the new
gfs2_rbm_find function, which has a cleaner interface.
The reservation checking has been improved by always checking for
contiguous reservations, and returning the first free block after
all contiguous reservations. This is done under the spin lock to
ensure consistancy of the tree.
The allocation of extents is now in all cases done by the existing
allocation code, and if there is an active reservation, that is updated
after the fact. Again this is done under the spin lock, since it entails
changing the lookup key for the reservation in question.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch introduces a new structure, gfs2_rbm, which is a
tuple of a resource group, a bitmap within the resource group
and an offset within that bitmap. This is designed to make
manipulating these sets of variables easier. There is also a
new helper function which converts this representation back
to a disk block address.
In addition, the rbtree nodes which are used for the reservations
were not being correctly initialised, which is now fixed. Also,
the tracing was not passing through the inode where it should
have been. That is mostly fixed aside from one corner case. This
needs to be revisited since there can also be a NULL rgrp in
some cases which results in the device being incorrect in the
trace.
This is intended to be the first step towards cleaning up some
of the allocation code, and some further bug fixes.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
The rs_requested field is left over from the original allocation
code, however this should have been a parameter passed to the
various functions from gfs2_inplace_reserve() and not a member of the
reservation structure as the value is not required after the
initial allocation.
This also helps simplify the code since we no longer need to set
the rs_requested to zero. Also the gfs2_inplace_release()
function can also be simplified since the reservation structure
will always be defined when it is called, and the only remaining
task is to unlock the rgrp if required. It can also now be
called unconditionally too, resulting in a further simplification.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
There were two functions in the xattr code which were nearly
identical, the only difference being that one was copy data into
the unstuffed xattrs and the other was copying data out from it.
This patch merges the two functions such that the code which deal
with iteration over the unstuffed xattrs is no longer duplicated.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
When either of __alloc_from_contiguous or __alloc_remap_buffer fails
to provide a valid pointer, allocated memory is freed up and an error
is returned. 'pages' was however not freed before returning error.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
commit b17459c050
raid5: add a per-stripe lock
added a spin_lock to the 'stripe_head' struct.
Unfortunately there are two places where this struct is allocated
but the spin lock was only initialised in one of them.
So add the missing spin_lock_init.
Signed-off-by: NeilBrown <neilb@suse.de>
Pull kbuild fixes from Michal Marek:
"There are two more kbuild fixes for 3.6.
One fixes a race between x86's archscripts target and the rule
(re)building scripts/basic/fixdep. The second is a fix for the
previous attempt at fixing make firmware_install with make 3.82.
This new solution should work with any version of GNU make"
* 'rc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild:
x86/kbuild: archscripts depends on scripts_basic
firmware: fix directory creation rule matching with make 3.80
Pull hwmon subsystem fixes from Jean Delvare.
* 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvare/staging:
hwmon: (fam15h_power) Tweak runavg_range on resume
hwmon: (coretemp) Use get_online_cpus to avoid races involving CPU hotplug
hwmon: (via-cputemp) Use get_online_cpus to avoid races involving CPU hotplug
This is a set of four essential fixes: two oops related (bnx2i, virtio-scsi),
one data corruption related (hpsa) and one failure to boot due to interrupt
routing issues (mpt2ss).
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQEcBAABAgAGBQJQXrUlAAoJEDeqqVYsXL0ME4oH/iy9TsFxk/GyEptEpCqhCh8m
ZoOJs7ml2OdQYVpTpng359Yo1u8FDYz7CRE7CvTG9hgC+kz6nZ/HFWi/gmVFaMAu
3czMs1YdCdXX/xgSIs+AamN0MlUCnJ4n3XE7MopBybGEGSdn9IQdYkM2JTV1DADF
clJqnPD2tF1FD9qxESPSGdsm+li3E/E1etzyRTcV86zwo2fLkzdBAsBBrpwyP4Dq
JAaAGNb20ympxaDzpeT1a0HoYWG86GgJUkHWr1jEa+1l0DMEk2/Vz8x+fhVoRizn
v8H4rW+ZhL+F4PbpVJqA/urVfuF9nvd7D9JI1rwCPJeHSDm1g1lksR4rhdkotlY=
=l8/M
-----END PGP SIGNATURE-----
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
Pull SCSI fixes from James Bottomley:
"This is a set of four essential fixes: two oops related (bnx2i,
virtio-scsi), one data corruption related (hpsa) and one failure to
boot due to interrupt routing issues (mpt2ss).
Signed-off-by: James Bottomley <JBottomley@Parallels.com>"
* tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi:
[SCSI] hpsa: fix handling of protocol error
[SCSI] mpt2sas: Fix for issue - Unable to boot from the drive connected to HBA
[SCSI] bnx2i: Fixed NULL ptr deference for 1G bnx2 Linux iSCSI offload
[SCSI] scsi: virtio-scsi: Fix address translation failure of HighMem pages used by sg list
Fix potential NULL pointer dereference in edac_unregister_sysfs() on
system boot introduced in 3.6-rc1.
Since commit 7a623c039 ("edac: rewrite the sysfs code to use struct
device") edac_mc_alloc() no longer initializes embedded kobjects in
struct mem_ctl_info. Therefore edac_mc_free() can no longer simply
decrement a kobject reference count to free the allocated memory unless
the memory controller driver module had also called edac_mc_add_mc().
Now edac_mc_free() will check if the newly embedded struct device has
been registered with sysfs before using either the standard device
release functions or freeing the data structures itself with logic
pulled out of the error path of edac_mc_alloc().
The BUG this patch resolves for me:
BUG: unable to handle kernel NULL pointer dereference at (null)
EIP is at __wake_up_common+0x1a/0x6a
Process modprobe (pid: 933, ti=f3dc6000 task=f3db9520 task.ti=f3dc6000)
Call Trace:
complete_all+0x3f/0x50
device_pm_remove+0x23/0xa2
device_del+0x34/0x142
edac_unregister_sysfs+0x3b/0x5c [edac_core]
edac_mc_free+0x29/0x2f [edac_core]
e7xxx_probe1+0x268/0x311 [e7xxx_edac]
e7xxx_init_one+0x56/0x61 [e7xxx_edac]
local_pci_probe+0x13/0x15
...
Cc: Mauro Carvalho Chehab <mchehab@redhat.com>
Cc: Shaohui Xie <Shaohui.Xie@freescale.com>
Signed-off-by: Shaun Ruffell <sruffell@digium.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
coccinelle warns about:
+ drivers/edac/edac_mc.c:429:9-23: ERROR: reference preceded by free on line 429
421 if (mci->csrows) {
> 422 for (chn = 0; chn < tot_channels; chn++) {
423 csr = mci->csrows[chn];
424 if (csr) {
> 425 for (chn = 0; chn < tot_channels; chn++)
426 kfree(csr->channels[chn]);
427 kfree(csr);
428 }
> 429 kfree(mci->csrows[i]);
430 }
431 kfree(mci->csrows);
432 }
and that code block seem to mess things up in several ways (double free, memory
leak, out-of-bound reads etc.):
L422: The iterator "chn" and bound "tot_channels" are totally wrong. Should be
"row" and "tot_csrows" respectively. Which means either memory leak, or
out-of-bound reads (which if does not trigger an immediate page fault
error, will further lead to kfree() on random addresses).
L425: The inner loop is reusing the same iterator "chn" as the outer loop,
which could lead to premature end of the outer loop, and hence memory leak.
L429: The array index 'i' in mci->csrows[i] is a temporary value used in
previous loops, and won't change at all in the current loop. Which
means either out-of-bound read and possibly kfree(random number), or the
same mci->csrows[i] get freed once and again, and possibly double free
for the kfree(csr) in L427.
L426/L427: a kfree(csr->channels) is needed in between to avoid leaking the memory.
The buggy code was introduced by commit de3910eb ("edac: change the mem
allocation scheme to make Documentation/kobject.txt happy") in the 3.6-rc1
merge window. Fix it by freeing up resources in this order:
free csrows[i]->channels[j]
free csrows[i]->channels
free csrows[i]
free csrows
CC: Mauro Carvalho Chehab <mchehab@redhat.com>
CC: Shaun Ruffell <sruffell@digium.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If receiving an OGM from a neighbor other than the currently selected
and if it has the same TQ then we are supposed to switch if this
neighbor provides a more symmetric link than the currently selected one.
However this symmetry check currently is broken if the interface of the
neighbor we received the OGM from and the one of the currently selected
neighbor differ: We are currently trying to determine the symmetry of the
link towards the selected router via the link we received the OGM from
instead of just checking via the link towards the currently selected
router.
This leads to way more route switches than necessary and can lead to
permanent route flapping in many common multi interface setups.
This patch fixes this issue by using the right interface for this
symmetry check.
Signed-off-by: Linus Lüssing <linus.luessing@web.de>
Into function interface_set_mac_addr, the function tt_local_add was
invoked before updating dev->dev_addr. The new MAC address was not
tagged as NoPurge.
Signed-off-by: Def <def@laposte.net>
The quirk introduced with commit
00250ec909 (hwmon: fam15h_power: fix
bogus values with current BIOSes) is not only required during driver
load but also when system resumes from suspend. The BIOS might set the
previously recommended (but unsuitable) initilization value for the
running average range register during resume.
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Tested-by: Andreas Hartmann <andihartmann@01019freenet.de>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Cc: stable@vger.kernel.org # 3.0+
coretemp_init loops with for_each_online_cpu, adding platform_devices
and sysfs interfaces, then calls register_hotcpu_notifier. There is a
race if a CPU is offlined or onlined after the loop, but before
register_hotcpu_notifier. The race might result in the absence of a
platform_device+sysfs interface for an online CPU, or the presence of
a platform_device+sysfs interface for an offline CPU. A similar race
occurs during coretemp_exit, after the module calls
unregister_hotcpu_notifier, but before it unregisters all devices, a
CPU might offline and a device for an offline CPU will exist for a
short while.
This fix surrounds for_each_online_cpu and register_hotcpu_notifier
with get_online_cpus+put_online_cpus; and surrounds
unregister_hotcpu_notifier and device unregistering with
get_online_cpus+put_online_cpus.
Build tested.
Signed-off-by: Silas Boyd-Wickizer <sbw@mit.edu>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
via_cputemp_init loops with for_each_online_cpu, adding
platform_devices, then calls register_hotcpu_notifier. If a CPU is
offlined between the loop and register_hotcpu_notifier, then later
onlined, via_cputemp_device_add will attempt to add platform devices
with the same ID. A similar race occurs during via_cputemp_exit,
after the module calls unregister_hotcpu_notifier, a CPU might offline
and a device will exist for a CPU that is offline.
This fix surrounds for_each_online_cpu and register_hotcpu_notifier
with get_online_cpus+put_online_cpus; and surrounds
unregister_hotcpu_notifier and device unregistering with
get_online_cpus+put_online_cpus.
Build tested.
Signed-off-by: Silas Boyd-Wickizer <sbw@mit.edu>
Acked-by: Harald Welte <laforge@gnumonks.org>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Traditionally, the entire idle task served as an RCU quiescent state.
But when RCU read side critical sections started appearing within the
idle loop, this traditional strategy became untenable. The fix was to
create new RCU APIs named rcu_idle_enter() and rcu_idle_exit(), which
must be called by each architecture's idle loop so that RCU can tell
when it is safe to ignore a given idle CPU.
Unfortunately, this fix was never applied to ia64, a shortcoming remedied
by this commit.
Reported by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Cc: <stable@vger.kernel.org> # 3.3+
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the xtensa's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: <stable@vger.kernel.org> # 3.3+
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in scores's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: <stable@vger.kernel.org> # 3.3+
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the parisc's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Parisc <linux-parisc@vger.kernel.org>
Cc: <stable@vger.kernel.org> # 3.3+
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the mn10300's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: <stable@vger.kernel.org> # 3.3+
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the m68k's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: m68k <linux-m68k@lists.linux-m68k.org>
Cc: <stable@vger.kernel.org> # 3.3+
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the m32r's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: <stable@vger.kernel.org> # 3.3+
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the h8300's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: <stable@vger.kernel.org> # 3.3+
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the Frv's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: <stable@vger.kernel.org> # 3.3+
Acked-by: David Howells <dhowells@redhat.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the Cris's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Cris <linux-cris-kernel@axis.com>
Cc: <stable@vger.kernel.org> # 3.3+
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
In the old times, the whole idle task was considered
as an RCU quiescent state. But as RCU became more and
more successful overtime, some RCU read side critical
section have been added even in the code of some
architectures idle tasks, for tracing for example.
So nowadays, rcu_idle_enter() and rcu_idle_exit() must
be called by the architecture to tell RCU about the part
in the idle loop that doesn't make use of rcu read side
critical sections, typically the part that puts the CPU
in low power mode.
This is necessary for RCU to find the quiescent states in
idle in order to complete grace periods.
Add this missing pair of calls in the Alpha's idle loop.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Michael Cree <mcree@orcon.net.nz>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: alpha <linux-alpha@vger.kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # 3.3+
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
cpu_idle() is called on the boot CPU by the init code with
preemption disabled. But the cpu_idle() function in alpha
doesn't handle this when it calls schedule() directly.
Fix it by converting it into schedule_preempt_disabled().
Also disable preemption before calling cpu_idle() from
secondary CPU entry code to stay consistent with this
state.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Michael Cree <mcree@orcon.net.nz>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: alpha <linux-alpha@vger.kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
If arch/x86/kernel/cpuid.c is a module, a CPU might offline or online
between the for_each_online_cpu() loop and the call to
register_hotcpu_notifier in cpuid_init or the call to
unregister_hotcpu_notifier in cpuid_exit. The potential races can
lead to leaks/duplicates, attempts to destroy non-existant devices, or
random pointer dereferences.
For example, in cpuid_exit if:
for_each_online_cpu(cpu)
cpuid_device_destroy(cpu);
class_destroy(cpuid_class);
__unregister_chrdev(CPUID_MAJOR, 0, NR_CPUS, "cpu/cpuid");
<----- CPU onlines
unregister_hotcpu_notifier(&cpuid_class_cpu_notifier);
the hotcpu notifier will attempt to create a device for the
cpuid_class, which the module already destroyed.
This fix surrounds for_each_online_cpu and register_hotcpu_notifier or
unregister_hotcpu_notifier with get_online_cpus+put_online_cpus.
Tested on a VM.
Signed-off-by: Silas Boyd-Wickizer <sbw@mit.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
If arch/x86/kernel/msr.c is a module, a CPU might offline or online
between the for_each_online_cpu(i) loop and the call to
register_hotcpu_notifier in msr_init or the call to
unregister_hotcpu_notifier in msr_exit. The potential races can lead
to leaks/duplicates, attempts to destroy non-existant devices, or
random pointer dereferences.
For example, in msr_init if:
for_each_online_cpu(i) {
err = msr_device_create(i);
if (err != 0)
goto out_class;
}
<----- CPU offlines
register_hotcpu_notifier(&msr_class_cpu_notifier);
and the CPU never onlines before msr_exit, then the module will never
call msr_device_destroy for the associated CPU.
This fix surrounds for_each_online_cpu and register_hotcpu_notifier or
unregister_hotcpu_notifier with get_online_cpus+put_online_cpus.
Tested on a VM.
Signed-off-by: Silas Boyd-Wickizer <sbw@mit.edu>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Rabik and Paul reported two different issues related to the same few
lines of code.
Rabik's issue is that the nr_uninterruptible migration code is wrong in
that he sees artifacts due to this (Rabik please do expand in more
detail).
Paul's issue is that this code as it stands relies on us using
stop_machine() for unplug, we all would like to remove this assumption
so that eventually we can remove this stop_machine() usage altogether.
The only reason we'd have to migrate nr_uninterruptible is so that we
could use for_each_online_cpu() loops in favour of
for_each_possible_cpu() loops, however since nr_uninterruptible() is the
only such loop and its using possible lets not bother at all.
The problem Rabik sees is (probably) caused by the fact that by
migrating nr_uninterruptible we screw rq->calc_load_active for both rqs
involved.
So don't bother with fancy migration schemes (meaning we now have to
keep using for_each_possible_cpu()) and instead fold any nr_active delta
after we migrate all tasks away to make sure we don't have any skewed
nr_active accounting.
[ paulmck: Move call to calc_load_migration to CPU_DEAD to avoid
miscounting noted by Rakib. ]
Reported-by: Rakib Mullick <rakib.mullick@gmail.com>
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Posting a callback after the CPU_DEAD notifier effectively leaks
that callback unless/until that CPU comes back online. Silence is
unhelpful when attempting to track down such leaks, so this commit emits
a WARN_ON_ONCE() and unconditionally leaks the callback when an offline
CPU attempts to register a callback. The rdp->nxttail[RCU_NEXT_TAIL] is
set to NULL in the CPU_DEAD notifier and restored in the CPU_UP_PREPARE
notifier, allowing _call_rcu() to determine exactly when posting callbacks
is illegal.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Currently, _rcu_barrier() relies on preempt_disable() to prevent
any CPU from going offline, which in turn depends on CPU hotplug's
use of __stop_machine().
This patch therefore makes _rcu_barrier() use get_online_cpus() to
block CPU-hotplug operations. This has the added benefit of removing
the need for _rcu_barrier() to adopt callbacks: Because CPU-hotplug
operations are excluded, there can be no callbacks to adopt. This
commit simplifies the code accordingly.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The print_cpu_stall_fast_no_hz() function attempts to print -1 when
the ->idle_gp_timer is not pending, but unsigned arithmetic causes it
to instead print ULONG_MAX, which is 4294967295 on 32-bit systems and
18446744073709551615 on 64-bit systems. Neither of these are the most
reader-friendly values, so this commit instead causes "timer not pending"
to be printed when ->idle_gp_timer is not pending.
Reported-by: Paul Walmsley <paul@pwsan.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
TINY_RCU's rcu_idle_enter_common() invokes rcu_sched_qs() in order
to inform the RCU core of the quiescent state implied by idle entry.
Of course, idle is also an extended quiescent state, so that the call
to rcu_sched_qs() speeds up RCU's invoking of any callbacks that might
be queued. This speed-up is important when entering into dyntick-idle
mode -- if there are no further scheduling-clock interrupts, the callbacks
might never be invoked, which could result in a system hang.
However, processing callbacks does event tracing, which in turn
implies RCU read-side critical sections, which are illegal in extended
quiescent states. This patch therefore moves the call to rcu_sched_qs()
so that it precedes the point at which we inform lockdep that RCU has
entered an extended quiescent state.
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>