Commit ce0d3c0a6f ("genirq: Revert sparse irq locking around
__cpu_up() and move it to x86 for now") reverted irq locking
introduced by commit a899418167 ("hotplug: Prevent alloc/free
of irq descriptors during cpu up/down") because of Xen allocating
irqs in both of its cpu_up ops.
We can move those allocations into CPU notifiers so that original
patch can be reinstated.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
If a crash kernel is loaded, do not crash the running domain. This is
needed if the kernel is loaded with crash_kexec_post_notifiers, because
panic notifiers are run before __crash_kexec() in that case, and this
Xen hook prevents its being called later.
[akpm@linux-foundation.org: build fix: unconditionally include kexec.h]
Link: http://lkml.kernel.org/r/20160713122000.14969.99963.stgit@hananiah.suse.cz
Signed-off-by: Petr Tesarik <ptesarik@suse.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 header cleanups from Ingo Molnar:
"This tree is a cleanup of the x86 tree reducing spurious uses of
module.h - which should improve build performance a bit"
* 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, crypto: Restore MODULE_LICENSE() to glue_helper.c so it loads
x86/apic: Remove duplicated include from probe_64.c
x86/ce4100: Remove duplicated include from ce4100.c
x86/headers: Include spinlock_types.h in x8664_ksyms_64.c for missing spinlock_t
x86/platform: Delete extraneous MODULE_* tags fromm ts5500
x86: Audit and remove any remaining unnecessary uses of module.h
x86/kvm: Audit and remove any unnecessary uses of module.h
x86/xen: Audit and remove any unnecessary uses of module.h
x86/platform: Audit and remove any unnecessary uses of module.h
x86/lib: Audit and remove any unnecessary uses of module.h
x86/kernel: Audit and remove any unnecessary uses of module.h
x86/mm: Audit and remove any unnecessary uses of module.h
x86: Don't use module.h just for AUTHOR / LICENSE tags
- ACPI support for guests on ARM platforms.
- Generic steal time support for arm and x86.
- Support cases where kernel cpu is not Xen VCPU number (e.g., if
in-guest kexec is used).
- Use the system workqueue instead of a custom workqueue in various
places.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJXmLlrAAoJEFxbo/MsZsTRvRQH/1wOMF8BmlbZfR7H3qwDfjst
ApNifCiZE08xDtWBlwUaBFAQxyflQS9BBiNZDVK0sysIdXeOdpWV7V0ZjRoLL+xr
czsaaGXDcmXxJxApoMDVuT7FeP6rEk6LVAYRoHpVjJjMZGW3BbX1vZaMW4DXl2WM
9YNaF2Lj+rpc1f8iG31nUxwkpmcXFog6ct4tu7HiyCFT3hDkHt/a4ghuBdQItCkd
vqBa1pTpcGtQBhSmWzlylN/PV2+NKcRd+kGiwd09/O/rNzogTMCTTWeHKAtMpPYb
Cu6oSqJtlK5o0vtr0qyLSWEGIoyjE2gE92s0wN3iCzFY1PldqdsxUO622nIj+6o=
=G6q3
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
"Features and fixes for 4.8-rc0:
- ACPI support for guests on ARM platforms.
- Generic steal time support for arm and x86.
- Support cases where kernel cpu is not Xen VCPU number (e.g., if
in-guest kexec is used).
- Use the system workqueue instead of a custom workqueue in various
places"
* tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (47 commits)
xen: add static initialization of steal_clock op to xen_time_ops
xen/pvhvm: run xen_vcpu_setup() for the boot CPU
xen/evtchn: use xen_vcpu_id mapping
xen/events: fifo: use xen_vcpu_id mapping
xen/events: use xen_vcpu_id mapping in events_base
x86/xen: use xen_vcpu_id mapping when pointing vcpu_info to shared_info
x86/xen: use xen_vcpu_id mapping for HYPERVISOR_vcpu_op
xen: introduce xen_vcpu_id mapping
x86/acpi: store ACPI ids from MADT for future usage
x86/xen: update cpuid.h from Xen-4.7
xen/evtchn: add IOCTL_EVTCHN_RESTRICT
xen-blkback: really don't leak mode property
xen-blkback: constify instance of "struct attribute_group"
xen-blkfront: prefer xenbus_scanf() over xenbus_gather()
xen-blkback: prefer xenbus_scanf() over xenbus_gather()
xen: support runqueue steal time on xen
arm/xen: add support for vm_assist hypercall
xen: update xen headers
xen-pciback: drop superfluous variables
xen-pciback: short-circuit read path used for merging write values
...
pv_time_ops might be overwritten with xen_time_ops after the
steal_clock operation has been initialized already. To prevent calling
a now uninitialized function pointer add the steal_clock static
initialization to xen_time_ops.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Pull x86 mm updates from Ingo Molnar:
"Various x86 low level modifications:
- preparatory work to support virtually mapped kernel stacks (Andy
Lutomirski)
- support for 64-bit __get_user() on 32-bit kernels (Benjamin
LaHaise)
- (involved) workaround for Knights Landing CPU erratum (Dave Hansen)
- MPX enhancements (Dave Hansen)
- mremap() extension to allow remapping of the special VDSO vma, for
purposes of user level context save/restore (Dmitry Safonov)
- hweight and entry code cleanups (Borislav Petkov)
- bitops code generation optimizations and cleanups with modern GCC
(H. Peter Anvin)
- syscall entry code optimizations (Paolo Bonzini)"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
x86/mm/cpa: Add missing comment in populate_pdg()
x86/mm/cpa: Fix populate_pgd(): Stop trying to deallocate failed PUDs
x86/syscalls: Add compat_sys_preadv64v2/compat_sys_pwritev64v2
x86/smp: Remove unnecessary initialization of thread_info::cpu
x86/smp: Remove stack_smp_processor_id()
x86/uaccess: Move thread_info::addr_limit to thread_struct
x86/dumpstack: Rename thread_struct::sig_on_uaccess_error to sig_on_uaccess_err
x86/uaccess: Move thread_info::uaccess_err and thread_info::sig_on_uaccess_err to thread_struct
x86/dumpstack: When OOPSing, rewind the stack before do_exit()
x86/mm/64: In vmalloc_fault(), use CR3 instead of current->active_mm
x86/dumpstack/64: Handle faults when printing the "Stack: " part of an OOPS
x86/dumpstack: Try harder to get a call trace on stack overflow
x86/mm: Remove kernel_unmap_pages_in_pgd() and efi_cleanup_page_tables()
x86/mm/cpa: In populate_pgd(), don't set the PGD entry until it's populated
x86/mm/hotplug: Don't remove PGD entries in remove_pagetable()
x86/mm: Use pte_none() to test for empty PTE
x86/mm: Disallow running with 32-bit PTEs to work around erratum
x86/mm: Ignore A/D bits in pte/pmd/pud_none()
x86/mm: Move swap offset/type up in PTE to work around erratum
x86/entry: Inline enter_from_user_mode()
...
Historically we didn't call VCPUOP_register_vcpu_info for CPU0 for
PVHVM guests (while we had it for PV and ARM guests). This is usually
fine as we can use vcpu info in the shared_info page but when we try
booting on a vCPU with Xen's vCPU id > 31 (e.g. when we try to kdump
after crashing on this CPU) we're not able to boot.
Switch to always doing VCPUOP_register_vcpu_info for the boot CPU.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
shared_info page has space for 32 vcpu info slots for first 32 vCPUs
but these are the first 32 vCPUs from Xen's perspective and we should
map them accordingly with the newly introduced xen_vcpu_id mapping.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
HYPERVISOR_vcpu_op() passes Linux's idea of vCPU id as a parameter
while Xen's idea is expected. In some cases these ideas diverge so we
need to do remapping.
Convert all callers of HYPERVISOR_vcpu_op() to use xen_vcpu_nr().
Leave xen_fill_possible_map() and xen_filter_cpu_maps() intact as
they're only being called by PV guests before perpu areas are
initialized. While the issue could be solved by switching to
early_percpu for xen_vcpu_id I think it's not worth it: PV guests will
probably never get to the point where their idea of vCPU id diverges
from Xen's.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
It may happen that Xen's and Linux's ideas of vCPU id diverge. In
particular, when we crash on a secondary vCPU we may want to do kdump
and unlike plain kexec where we do migrate_to_reboot_cpu() we try
booting on the vCPU which crashed. This doesn't work very well for
PVHVM guests as we have a number of hypercalls where we pass vCPU id
as a parameter. These hypercalls either fail or do something
unexpected.
To solve the issue introduce percpu xen_vcpu_id mapping. ARM and PV
guests get direct mapping for now. Boot CPU for PVHVM guest gets its
id from CPUID. With secondary CPUs it is a bit more
trickier. Currently, we initialize IPI vectors before these CPUs boot
so we can't use CPUID. Use ACPI ids from MADT instead.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace as needed.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20160714001901.31603-7-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kernel.h macro DIV_ROUND_UP performs the computation
(((n) + (d) - 1) /(d)) but is perhaps more readable.
The Coccinelle script used to make this change is as follows:
@haskernel@
@@
#include <linux/kernel.h>
@depends on haskernel@
expression n,d;
@@
(
- (n + d - 1) / d
+ DIV_ROUND_UP(n,d)
|
- (n + (d - 1)) / d
+ DIV_ROUND_UP(n,d)
)
Signed-off-by: Amitoj Kaur Chawla <amitoj1606@gmail.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
This will match how PMU errors are reported at check_hw_exists()'s
msr_fail label, which is reached when VPMU initialzation fails.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
The pv_time_ops structure contains a function pointer for the
"steal_clock" functionality used only by KVM and Xen on ARM. Xen on x86
uses its own mechanism to account for the "stolen" time a thread wasn't
able to run due to hypervisor scheduling.
Add support in Xen arch independent time handling for this feature by
moving it out of the arm arch into drivers/xen and remove the x86 Xen
hack.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Move x86 specific codes to architecture directory and export those EFI
runtime service functions. This will be useful for initializing runtime
service on ARM later.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Tested-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Stefano Stabellini <sstabellini@kernel.org>
Move xlated_setup_gnttab_pages to common place, so it can be reused by
ARM to setup grant table.
Rename it to xen_xlate_map_ballooned_pages.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Reviewed-by: Julien Grall <julien.grall@arm.com>
Tested-by: Julien Grall <julien.grall@arm.com>
Merge misc fixes from Andrew Morton:
"Two weeks worth of fixes here"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (41 commits)
init/main.c: fix initcall_blacklisted on ia64, ppc64 and parisc64
autofs: don't get stuck in a loop if vfs_write() returns an error
mm/page_owner: avoid null pointer dereference
tools/vm/slabinfo: fix spelling mistake: "Ocurrences" -> "Occurrences"
fs/nilfs2: fix potential underflow in call to crc32_le
oom, suspend: fix oom_reaper vs. oom_killer_disable race
ocfs2: disable BUG assertions in reading blocks
mm, compaction: abort free scanner if split fails
mm: prevent KASAN false positives in kmemleak
mm/hugetlb: clear compound_mapcount when freeing gigantic pages
mm/swap.c: flush lru pvecs on compound page arrival
memcg: css_alloc should return an ERR_PTR value on error
memcg: mem_cgroup_migrate() may be called with irq disabled
hugetlb: fix nr_pmds accounting with shared page tables
Revert "mm: disable fault around on emulated access bit architecture"
Revert "mm: make faultaround produce old ptes"
mailmap: add Boris Brezillon's email
mailmap: add Antoine Tenart's email
mm, sl[au]b: add __GFP_ATOMIC to the GFP reclaim mask
mm: mempool: kasan: don't poot mempool objects in quarantine
...
This is the third version of the patchset previously sent [1]. I have
basically only rebased it on top of 4.7-rc1 tree and dropped "dm: get
rid of superfluous gfp flags" which went through dm tree. I am sending
it now because it is tree wide and chances for conflicts are reduced
considerably when we want to target rc2. I plan to send the next step
and rename the flag and move to a better semantic later during this
release cycle so we will have a new semantic ready for 4.8 merge window
hopefully.
Motivation:
While working on something unrelated I've checked the current usage of
__GFP_REPEAT in the tree. It seems that a majority of the usage is and
always has been bogus because __GFP_REPEAT has always been about costly
high order allocations while we are using it for order-0 or very small
orders very often. It seems that a big pile of them is just a
copy&paste when a code has been adopted from one arch to another.
I think it makes some sense to get rid of them because they are just
making the semantic more unclear. Please note that GFP_REPEAT is
documented as
* __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
* _might_ fail. This depends upon the particular VM implementation.
while !costly requests have basically nofail semantic. So one could
reasonably expect that order-0 request with __GFP_REPEAT will not loop
for ever. This is not implemented right now though.
I would like to move on with __GFP_REPEAT and define a better semantic
for it.
$ git grep __GFP_REPEAT origin/master | wc -l
111
$ git grep __GFP_REPEAT | wc -l
36
So we are down to the third after this patch series. The remaining
places really seem to be relying on __GFP_REPEAT due to large allocation
requests. This still needs some double checking which I will do later
after all the simple ones are sorted out.
I am touching a lot of arch specific code here and I hope I got it right
but as a matter of fact I even didn't compile test for some archs as I
do not have cross compiler for them. Patches should be quite trivial to
review for stupid compile mistakes though. The tricky parts are usually
hidden by macro definitions and thats where I would appreciate help from
arch maintainers.
[1] http://lkml.kernel.org/r/1461849846-27209-1-git-send-email-mhocko@kernel.org
This patch (of 19):
__GFP_REPEAT has a rather weak semantic but since it has been introduced
around 2.6.12 it has been ignored for low order allocations. Yet we
have the full kernel tree with its usage for apparently order-0
allocations. This is really confusing because __GFP_REPEAT is
explicitly documented to allow allocation failures which is a weaker
semantic than the current order-0 has (basically nofail).
Let's simply drop __GFP_REPEAT from those places. This would allow to
identify place which really need allocator to retry harder and formulate
a more specific semantic for what the flag is supposed to do actually.
Link: http://lkml.kernel.org/r/1464599699-30131-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com> [for tile]
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: John Crispin <blogic@openwrt.org>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When page tables entries are set using xen_set_pte_init() during early
boot there is no page fault handler that could handle a fault when
performing an M2P lookup.
In 64 bit guests (usually dom0) early_ioremap() would fault in
xen_set_pte_init() because an M2P lookup faults because the MFN is in
MMIO space and not mapped in the M2P. This lookup is done to see if
the PFN in in the range used for the initial page table pages, so that
the PTE may be set as read-only.
The M2P lookup can be avoided by moving the check (and clear of RW)
earlier when the PFN is still available.
Reported-by: Kevin Moraga <kmoragas@riseup.net>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
xen_cleanhighmap() is operating on level2_kernel_pgt only. The upper
bound of the loop setting non-kernel-image entries to zero should not
exceed the size of level2_kernel_pgt.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
A year ago, via the following commit:
aa1acff356 ("x86/xen: Probe target addresses in set_aliased_prot() before the hypercall")
I added an explicit probe to work around a hypercall issue. The code can
be simplified by using probe_kernel_read().
No change in functionality.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com>
Acked-by: David Vrabel <david.vrabel@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Vrabel <dvrabel@cantab.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <jbeulich@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel <xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/0706f1a2538e481194514197298cca6b5e3f2638.1464129798.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of having two functions for cycling through the E820 map in
order to count to be remapped pages and remap them later, just use one
function with a caller supplied sub-function called for each region to
be processed. This eliminates the possibility of a mismatch between
both loops which showed up in certain configurations.
Suggested-by: Ed Swierk <eswierk@skyportsystems.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
On slow platforms with unreliable TSC, such as QEMU emulated machines,
it is possible for the kernel to request the next event in the past. In
that case, in the current implementation of xen_vcpuop_clockevent, we
simply return -ETIME. To be precise the Xen returns -ETIME and we pass
it on. However the result of this is a missed event, which simply causes
the kernel to hang.
Instead it is better to always ask the hypervisor for a timer event,
even if the timeout is in the past. That way there are no lost
interrupts and the kernel survives. To do that, remove the
VCPU_SSHOTTMR_future flag.
Signed-off-by: Stefano Stabellini <sstabellini@kernel.org>
Acked-by: Juergen Gross <jgross@suse.com>
Pull x86 boot updates from Ingo Molnar:
"The biggest changes in this cycle were:
- prepare for more KASLR related changes, by restructuring, cleaning
up and fixing the existing boot code. (Kees Cook, Baoquan He,
Yinghai Lu)
- simplifly/concentrate subarch handling code, eliminate
paravirt_enabled() usage. (Luis R Rodriguez)"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
x86/KASLR: Clarify purpose of each get_random_long()
x86/KASLR: Add virtual address choosing function
x86/KASLR: Return earliest overlap when avoiding regions
x86/KASLR: Add 'struct slot_area' to manage random_addr slots
x86/boot: Add missing file header comments
x86/KASLR: Initialize mapping_info every time
x86/boot: Comment what finalize_identity_maps() does
x86/KASLR: Build identity mappings on demand
x86/boot: Split out kernel_ident_mapping_init()
x86/boot: Clean up indenting for asm/boot.h
x86/KASLR: Improve comments around the mem_avoid[] logic
x86/boot: Simplify pointer casting in choose_random_location()
x86/KASLR: Consolidate mem_avoid[] entries
x86/boot: Clean up pointer casting
x86/boot: Warn on future overlapping memcpy() use
x86/boot: Extract error reporting functions
x86/boot: Correctly bounds-check relocations
x86/KASLR: Clean up unused code from old 'run_size' and rename it to 'kernel_total_size'
x86/boot: Fix "run_size" calculation
x86/boot: Calculate decompression size during boot not build
...
The following commit:
1fb3a8b2cf ("xen/spinlock: Fix locking path engaging too soon under PVHVM.")
... moved the initalization of the kicker interrupt until after
native_cpu_up() is called.
However, when using qspinlocks, a CPU may try to kick another CPU that is
spinning (because it has not yet initialized its kicker interrupt), resulting
in the following crash during boot:
kernel BUG at /build/linux-Ay7j_C/linux-4.4.0/drivers/xen/events/events_base.c:1210!
invalid opcode: 0000 [#1] SMP
...
RIP: 0010:[<ffffffff814c97c9>] [<ffffffff814c97c9>] xen_send_IPI_one+0x59/0x60
...
Call Trace:
[<ffffffff8102be9e>] xen_qlock_kick+0xe/0x10
[<ffffffff810cabc2>] __pv_queued_spin_unlock+0xb2/0xf0
[<ffffffff810ca6d1>] ? __raw_callee_save___pv_queued_spin_unlock+0x11/0x20
[<ffffffff81052936>] ? check_tsc_warp+0x76/0x150
[<ffffffff81052aa6>] check_tsc_sync_source+0x96/0x160
[<ffffffff81051e28>] native_cpu_up+0x3d8/0x9f0
[<ffffffff8102b315>] xen_hvm_cpu_up+0x35/0x80
[<ffffffff8108198c>] _cpu_up+0x13c/0x180
[<ffffffff81081a4a>] cpu_up+0x7a/0xa0
[<ffffffff81f80dfc>] smp_init+0x7f/0x81
[<ffffffff81f5a121>] kernel_init_freeable+0xef/0x212
[<ffffffff81817f30>] ? rest_init+0x80/0x80
[<ffffffff81817f3e>] kernel_init+0xe/0xe0
[<ffffffff8182488f>] ret_from_fork+0x3f/0x70
[<ffffffff81817f30>] ? rest_init+0x80/0x80
To fix this, only send the kick if the target CPU's interrupt has been
initialized. This check isn't racy, because the target is waiting for
the spinlock, so it won't have initialized the interrupt in the
meantime.
Signed-off-by: Ross Lagerwall <ross.lagerwall@citrix.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have 4 types of x86 platforms that disable RTC:
* Intel MID
* Lguest - uses paravirt
* Xen dom-U - uses paravirt
* x86 on legacy systems annotated with an ACPI legacy flag
We can consolidate all of these into a platform specific legacy
quirk set early in boot through i386_start_kernel() and through
x86_64_start_reservations(). This deals with the RTC quirks which
we can rely on through the hardware subarch, the ACPI check can
be dealt with separately.
For Xen things are bit more complex given that the @X86_SUBARCH_XEN
x86_hardware_subarch is shared on for Xen which uses the PV path for
both domU and dom0. Since the semantics for differentiating between
the two are Xen specific we provide a platform helper to help override
default legacy features -- x86_platform.set_legacy_features(). Use
of this helper is highly discouraged, its only purpose should be
to account for the lack of semantics available within your given
x86_hardware_subarch.
As per 0-day, this bumps the vmlinux size using i386-tinyconfig as
follows:
TOTAL TEXT init.text x86_early_init_platform_quirks()
+70 +62 +62 +43
Only 8 bytes overhead total, as the main increase in size is
all removed via __init.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: andrew.cooper3@citrix.com
Cc: andriy.shevchenko@linux.intel.com
Cc: bigeasy@linutronix.de
Cc: boris.ostrovsky@oracle.com
Cc: david.vrabel@citrix.com
Cc: ffainelli@freebox.fr
Cc: george.dunlap@citrix.com
Cc: glin@suse.com
Cc: jlee@suse.com
Cc: josh@joshtriplett.org
Cc: julien.grall@linaro.org
Cc: konrad.wilk@oracle.com
Cc: kozerkov@parallels.com
Cc: lenb@kernel.org
Cc: lguest@lists.ozlabs.org
Cc: linux-acpi@vger.kernel.org
Cc: lv.zheng@intel.com
Cc: matt@codeblueprint.co.uk
Cc: mbizon@freebox.fr
Cc: rjw@rjwysocki.net
Cc: robert.moore@intel.com
Cc: rusty@rustcorp.com.au
Cc: tiwai@suse.de
Cc: toshi.kani@hp.com
Cc: xen-devel@lists.xensource.com
Link: http://lkml.kernel.org/r/1460592286-300-5-git-send-email-mcgrof@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This adds paravirt callbacks for unsafe MSR access. On native, they
call native_{read,write}_msr(). On Xen, they use xen_{read,write}_msr_safe().
Nothing uses them yet for ease of bisection. The next patch will
use them in rdmsrl(), wrmsrl(), etc.
I intentionally didn't make them warn on #GP on Xen. I think that
should be done separately by the Xen maintainers.
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: KVM list <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel <Xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/880eebc5dcd2ad9f310d41345f82061ea500e9fa.1459605520.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These callbacks match the _safe variants, so name them accordingly.
This will make room for unsafe PV callbacks.
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: KVM list <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel <Xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/9ee3fb6a196a514c93325bdfa15594beecf04876.1459605520.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use static_cpu_has() in __flush_tlb_all() due to the time-sensitivity of
this one.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459266123-21878-10-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This call has always been missing from xen_play dead() but until
recently this was rather benign. With new cpu hotplug framework
(commit 8df3e07e7f ("cpu/hotplug: Let upcoming cpu bring itself fully up").
however this call is required, otherwise a hot-plugged CPU will not
be properly brough up (by never calling cpuhp_online_idle())
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJW9xVQAAoJEHm+PkMAQRiGLCYH/RaD6PE78ttLoAIm2rTUY+P9
jtNhRVVNPmNn6103r0g9RYxyN0k+KyRQiO0I3XC77i30ksJV0duqhZfpg9nyHaFZ
ljiYBLWFcc6qyMiE5B9ogEwveQriKtbUTrIPHer/vEmOdJHDRoUIVZ/qQ+eNzGmq
aHa0bJalCXqkRpXatfZBUz8OyblrNjZMpX6907vqR5kRrcXqRn52X32gmy6bwSRp
oRRQvSjzzZzApISz1uQIY5TFEb9ARrtK2FUf/rM0WS4gE1tB/p8Ccx7iopqk/zjI
f+vZEdQ6o6FdPZ38XZGnwyr1nf52AV5/7wJs+5D1rLCHK8buEJD01BiT7qQvpnI=
=q0+P
-----END PGP SIGNATURE-----
Merge tag 'v4.6-rc1' into for-linus-4.6
Linux 4.6-rc1
* tag 'v4.6-rc1': (12823 commits)
Linux 4.6-rc1
f2fs/crypto: fix xts_tweak initialization
NTB: Remove _addr functions from ntb_hw_amd
orangefs: fix orangefs_superblock locking
orangefs: fix do_readv_writev() handling of error halfway through
orangefs: have ->kill_sb() evict the VFS side of things first
orangefs: sanitize ->llseek()
orangefs-bufmap.h: trim unused junk
orangefs: saner calling conventions for getting a slot
orangefs_copy_{to,from}_bufmap(): don't pass bufmap pointer
orangefs: get rid of readdir_handle_s
thp: fix typo in khugepaged_scan_pmd()
MAINTAINERS: fill entries for KASAN
mm/filemap: generic_file_read_iter(): check for zero reads unconditionally
kasan: test fix: warn if the UAF could not be detected in kmalloc_uaf2
mm, kasan: stackdepot implementation. Enable stackdepot for SLAB
arch, ftrace: for KASAN put hard/soft IRQ entries into separate sections
mm, kasan: add GFP flags to KASAN API
mm, kasan: SLAB support
kasan: modify kmalloc_large_oob_right(), add kmalloc_pagealloc_oob_right()
...
Xen supports PAT without MTRRs for its guests. In order to
enable WC attribute, it was necessary for xen_start_kernel()
to call pat_init_cache_modes() to update PAT table before
starting guest kernel.
Now that the kernel initializes PAT table to the BIOS handoff
state when MTRR is disabled, this Xen-specific PAT init code
is no longer necessary. Delete it from xen_start_kernel().
Also change __init_cache_modes() to a static function since
PAT table should not be tweaked by other modules.
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: elliott@hpe.com
Cc: paul.gortmaker@windriver.com
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1458769323-24491-7-git-send-email-toshi.kani@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation for fixing a regression caused by:
9cd25aac1f ("x86/mm/pat: Emulate PAT when it is disabled")'
... PAT needs to support a case that PAT MSR is initialized with a
non-default value.
When pat_init() is called and PAT is disabled, it initializes the
PAT table with the BIOS default value. Xen, however, sets PAT MSR
with a non-default value to enable WC. This causes inconsistency
between the PAT table and PAT MSR when PAT is set to disable on Xen.
Change pat_init() to handle the PAT disable cases properly. Add
init_cache_modes() to handle two cases when PAT is set to disable.
1. CPU supports PAT: Set PAT table to be consistent with PAT MSR.
2. CPU does not support PAT: Set PAT table to be consistent with
PWT and PCD bits in a PTE.
Note, __init_cache_modes(), renamed from pat_init_cache_modes(),
will be changed to a static function in a later patch.
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: elliott@hpe.com
Cc: konrad.wilk@oracle.com
Cc: paul.gortmaker@windriver.com
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1458769323-24491-2-git-send-email-toshi.kani@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently Xen uses default_cpu_present_to_apicid() which will always
report BAD_APICID for PV guests since x86_bios_cpu_apic_id is initialised
to that value and is never updated.
With commit 1f12e32f4c ("x86/topology: Create logical package id"), this
op is now called by smp_init_package_map() when deciding whether to call
topology_update_package_map() which sets cpu_data(cpu).logical_proc_id.
The latter (as topology_logical_package_id(cpu)) may be used, for example,
by cpu_to_rapl_pmu() as an array index. Since uninitialized
logical_package_id is set to -1, the index will become 64K which is
obviously problematic.
While RAPL code (and any other users of logical_package_id) should be
careful in their assumptions about id's validity, Xen's
cpu_present_to_apicid op should still provide value consistent with its
own xen_apic_read(APIC_ID).
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
- Make earlyprintk=xen work for HVM guests.
- Remove module support for things never built as modules.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJW8YhlAAoJEFxbo/MsZsTRiCgH/3GnL93s/BsRTrA/DYykYqA4
rPPkDd6WMlEbrko6FY7o4IxUAZ50LWU8wjmDNVTT+R/VKlWCVh2+ksxjbH8e0nzr
0QohAYTdG1VGmhkrwTjKj0wC3Nr8vaDqoBXAFRz4DiQdbobn12wzXjaVrbl8RRNc
oHDqR+DfZj6ontqx8oFkkTk7CFKIGEOtm/uBhCAV2fNkQSUCzuQyKLlarxM6jq/2
EnLR1bhnyoy5zNFzXxmaJgZOit8QFMKvPdDRknlp9yDHYJ5zolJkv+6FPiAG6SZs
A8yAUPQoAD+ekAiV2DIhb8qoNNNdZXdRCFBpoudwX3GyyU4O2P5Intl0xEg17Nk=
=L8S4
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.6-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
"Features and fixes for 4.6:
- Make earlyprintk=xen work for HVM guests
- Remove module support for things never built as modules"
* tag 'for-linus-4.6-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
drivers/xen: make platform-pci.c explicitly non-modular
drivers/xen: make sys-hypervisor.c explicitly non-modular
drivers/xen: make xenbus_dev_[front/back]end explicitly non-modular
drivers/xen: make [xen-]ballon explicitly non-modular
xen: audit usages of module.h ; remove unnecessary instances
xen/x86: Drop mode-selecting ifdefs in startup_xen()
xen/x86: Zero out .bss for PV guests
hvc_xen: make early_printk work with HVM guests
hvc_xen: fix xenboot for DomUs
hvc_xen: add earlycon support
Pull 'objtool' stack frame validation from Ingo Molnar:
"This tree adds a new kernel build-time object file validation feature
(ONFIG_STACK_VALIDATION=y): kernel stack frame correctness validation.
It was written by and is maintained by Josh Poimboeuf.
The motivation: there's a category of hard to find kernel bugs, most
of them in assembly code (but also occasionally in C code), that
degrades the quality of kernel stack dumps/backtraces. These bugs are
hard to detect at the source code level. Such bugs result in
incorrect/incomplete backtraces most of time - but can also in some
rare cases result in crashes or other undefined behavior.
The build time correctness checking is done via the new 'objtool'
user-space utility that was written for this purpose and which is
hosted in the kernel repository in tools/objtool/. The tool's (very
simple) UI and source code design is shaped after Git and perf and
shares quite a bit of infrastructure with tools/perf (which tooling
infrastructure sharing effort got merged via perf and is already
upstream). Objtool follows the well-known kernel coding style.
Objtool does not try to check .c or .S files, it instead analyzes the
resulting .o generated machine code from first principles: it decodes
the instruction stream and interprets it. (Right now objtool supports
the x86-64 architecture.)
From tools/objtool/Documentation/stack-validation.txt:
"The kernel CONFIG_STACK_VALIDATION option enables a host tool named
objtool which runs at compile time. It has a "check" subcommand
which analyzes every .o file and ensures the validity of its stack
metadata. It enforces a set of rules on asm code and C inline
assembly code so that stack traces can be reliable.
Currently it only checks frame pointer usage, but there are plans to
add CFI validation for C files and CFI generation for asm files.
For each function, it recursively follows all possible code paths
and validates the correct frame pointer state at each instruction.
It also follows code paths involving special sections, like
.altinstructions, __jump_table, and __ex_table, which can add
alternative execution paths to a given instruction (or set of
instructions). Similarly, it knows how to follow switch statements,
for which gcc sometimes uses jump tables."
When this new kernel option is enabled (it's disabled by default), the
tool, if it finds any suspicious assembly code pattern, outputs
warnings in compiler warning format:
warning: objtool: rtlwifi_rate_mapping()+0x2e7: frame pointer state mismatch
warning: objtool: cik_tiling_mode_table_init()+0x6ce: call without frame pointer save/setup
warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer
... so that scripts that pick up compiler warnings will notice them.
All known warnings triggered by the tool are fixed by the tree, most
of the commits in fact prepare the kernel to be warning-free. Most of
them are bugfixes or cleanups that stand on their own, but there are
also some annotations of 'special' stack frames for justified cases
such entries to JIT-ed code (BPF) or really special boot time code.
There are two other long-term motivations behind this tool as well:
- To improve the quality and reliability of kernel stack frames, so
that they can be used for optimized live patching.
- To create independent infrastructure to check the correctness of
CFI stack frames at build time. CFI debuginfo is notoriously
unreliable and we cannot use it in the kernel as-is without extra
checking done both on the kernel side and on the build side.
The quality of kernel stack frames matters to debuggability as well,
so IMO we can merge this without having to consider the live patching
or CFI debuginfo angle"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
objtool: Only print one warning per function
objtool: Add several performance improvements
tools: Copy hashtable.h into tools directory
objtool: Fix false positive warnings for functions with multiple switch statements
objtool: Rename some variables and functions
objtool: Remove superflous INIT_LIST_HEAD
objtool: Add helper macros for traversing instructions
objtool: Fix false positive warnings related to sibling calls
objtool: Compile with debugging symbols
objtool: Detect infinite recursion
objtool: Prevent infinite recursion in noreturn detection
objtool: Detect and warn if libelf is missing and don't break the build
tools: Support relative directory path for 'O='
objtool: Support CROSS_COMPILE
x86/asm/decoder: Use explicitly signed chars
objtool: Enable stack metadata validation on 64-bit x86
objtool: Add CONFIG_STACK_VALIDATION option
objtool: Add tool to perform compile-time stack metadata validation
x86/kprobes: Mark kretprobe_trampoline() stack frame as non-standard
sched: Always inline context_switch()
...
On Xen PV, regs->flags doesn't reliably reflect IOPL and the
exit-to-userspace code doesn't change IOPL. We need to context
switch it manually.
I'm doing this without going through paravirt because this is
specific to Xen PV. After the dust settles, we can merge this with
the 32-bit code, tidy up the iopl syscall implementation, and remove
the set_iopl pvop entirely.
Fixes XSA-171.
Reviewewd-by: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/693c3bd7aeb4d3c27c92c622b7d0f554a458173c.1458162709.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull cpu hotplug updates from Thomas Gleixner:
"This is the first part of the ongoing cpu hotplug rework:
- Initial implementation of the state machine
- Runs all online and prepare down callbacks on the plugged cpu and
not on some random processor
- Replaces busy loop waiting with completions
- Adds tracepoints so the states can be followed"
More detailed commentary on this work from an earlier email:
"What's wrong with the current cpu hotplug infrastructure?
- Asymmetry
The hotplug notifier mechanism is asymmetric versus the bringup and
teardown. This is mostly caused by the notifier mechanism.
- Largely undocumented dependencies
While some notifiers use explicitely defined notifier priorities,
we have quite some notifiers which use numerical priorities to
express dependencies without any documentation why.
- Control processor driven
Most of the bringup/teardown of a cpu is driven by a control
processor. While it is understandable, that preperatory steps,
like idle thread creation, memory allocation for and initialization
of essential facilities needs to be done before a cpu can boot,
there is no reason why everything else must run on a control
processor. Before this patch series, bringup looks like this:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring the rest up
- All or nothing approach
There is no way to do partial bringups. That's something which is
really desired because we waste e.g. at boot substantial amount of
time just busy waiting that the cpu comes to life. That's stupid
as we could very well do preparatory steps and the initial IPI for
other cpus and then go back and do the necessary low level
synchronization with the freshly booted cpu.
- Minimal debuggability
Due to the notifier based design, it's impossible to switch between
two stages of the bringup/teardown back and forth in order to test
the correctness. So in many hotplug notifiers the cancel
mechanisms are either not existant or completely untested.
- Notifier [un]registering is tedious
To [un]register notifiers we need to protect against hotplug at
every callsite. There is no mechanism that bringup/teardown
callbacks are issued on the online cpus, so every caller needs to
do it itself. That also includes error rollback.
What's the new design?
The base of the new design is a symmetric state machine, where both
the control processor and the booting/dying cpu execute a well
defined set of states. Each state is symmetric in the end, except
for some well defined exceptions, and the bringup/teardown can be
stopped and reversed at almost all states.
So the bringup of a cpu will look like this in the future:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring itself up
The synchronization step does not require the control cpu to wait.
That mechanism can be done asynchronously via a worker or some
other mechanism.
The teardown can be made very similar, so that the dying cpu cleans
up and brings itself down. Cleanups which need to be done after
the cpu is gone, can be scheduled asynchronously as well.
There is a long way to this, as we need to refactor the notion when a
cpu is available. Today we set the cpu online right after it comes
out of the low level bringup, which is not really correct.
The proper mechanism is to set it to available, i.e. cpu local
threads, like softirqd, hotplug thread etc. can be scheduled on that
cpu, and once it finished all booting steps, it's set to online, so
general workloads can be scheduled on it. The reverse happens on
teardown. First thing to do is to forbid scheduling of general
workloads, then teardown all the per cpu resources and finally shut it
off completely.
This patch series implements the basic infrastructure for this at the
core level. This includes the following:
- Basic state machine implementation with well defined states, so
ordering and prioritization can be expressed.
- Interfaces to [un]register state callbacks
This invokes the bringup/teardown callback on all online cpus with
the proper protection in place and [un]installs the callbacks in
the state machine array.
For callbacks which have no particular ordering requirement we have
a dynamic state space, so that drivers don't have to register an
explicit hotplug state.
If a callback fails, the code automatically does a rollback to the
previous state.
- Sysfs interface to drive the state machine to a particular step.
This is only partially functional today. Full functionality and
therefor testability will be achieved once we converted all
existing hotplug notifiers over to the new scheme.
- Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying
processor:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
wait for boot
bring itself up
Signal completion to control cpu
In a previous step of this work we've done a full tree mechanical
conversion of all hotplug notifiers to the new scheme. The balance
is a net removal of about 4000 lines of code.
This is not included in this series, as we decided to take a
different approach. Instead of mechanically converting everything
over, we will do a proper overhaul of the usage sites one by one so
they nicely fit into the symmetric callback scheme.
I decided to do that after I looked at the ugliness of some of the
converted sites and figured out that their hotplug mechanism is
completely buggered anyway. So there is no point to do a
mechanical conversion first as we need to go through the usage
sites one by one again in order to achieve a full symmetric and
testable behaviour"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
cpu/hotplug: Document states better
cpu/hotplug: Fix smpboot thread ordering
cpu/hotplug: Remove redundant state check
cpu/hotplug: Plug death reporting race
rcu: Make CPU_DYING_IDLE an explicit call
cpu/hotplug: Make wait for dead cpu completion based
cpu/hotplug: Let upcoming cpu bring itself fully up
arch/hotplug: Call into idle with a proper state
cpu/hotplug: Move online calls to hotplugged cpu
cpu/hotplug: Create hotplug threads
cpu/hotplug: Split out the state walk into functions
cpu/hotplug: Unpark smpboot threads from the state machine
cpu/hotplug: Move scheduler cpu_online notifier to hotplug core
cpu/hotplug: Implement setup/removal interface
cpu/hotplug: Make target state writeable
cpu/hotplug: Add sysfs state interface
cpu/hotplug: Hand in target state to _cpu_up/down
cpu/hotplug: Convert the hotplugged cpu work to a state machine
cpu/hotplug: Convert to a state machine for the control processor
cpu/hotplug: Add tracepoints
...