If when reading a page we find a hole and our caller had already locked
the range (bio flags has the bit EXTENT_BIO_PARENT_LOCKED set), we end
up unlocking the hole's range and then later our caller unlocks it
again, which might have already been locked by some other task once
the first unlock happened.
Currently this can only happen during a call to the extent_same ioctl,
as it's the only caller of __do_readpage() that sets the bit
EXTENT_BIO_PARENT_LOCKED for bio flags.
Fix this by leaving the unlock exclusively to the caller.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Currently the clone ioctl allows to clone an inline extent from one file
to another that already has other (non-inlined) extents. This is a problem
because btrfs is not designed to deal with files having inline and regular
extents, if a file has an inline extent then it must be the only extent
in the file and must start at file offset 0. Having a file with an inline
extent followed by regular extents results in EIO errors when doing reads
or writes against the first 4K of the file.
Also, the clone ioctl allows one to lose data if the source file consists
of a single inline extent, with a size of N bytes, and the destination
file consists of a single inline extent with a size of M bytes, where we
have M > N. In this case the clone operation removes the inline extent
from the destination file and then copies the inline extent from the
source file into the destination file - we lose the M - N bytes from the
destination file, a read operation will get the value 0x00 for any bytes
in the the range [N, M] (the destination inode's i_size remained as M,
that's why we can read past N bytes).
So fix this by not allowing such destructive operations to happen and
return errno EOPNOTSUPP to user space.
Currently the fstest btrfs/035 tests the data loss case but it totally
ignores this - i.e. expects the operation to succeed and does not check
the we got data loss.
The following test case for fstests exercises all these cases that result
in file corruption and data loss:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_need_to_be_root
_supported_fs btrfs
_supported_os Linux
_require_scratch
_require_cloner
_require_btrfs_fs_feature "no_holes"
_require_btrfs_mkfs_feature "no-holes"
rm -f $seqres.full
test_cloning_inline_extents()
{
local mkfs_opts=$1
local mount_opts=$2
_scratch_mkfs $mkfs_opts >>$seqres.full 2>&1
_scratch_mount $mount_opts
# File bar, the source for all the following clone operations, consists
# of a single inline extent (50 bytes).
$XFS_IO_PROG -f -c "pwrite -S 0xbb 0 50" $SCRATCH_MNT/bar \
| _filter_xfs_io
# Test cloning into a file with an extent (non-inlined) where the
# destination offset overlaps that extent. It should not be possible to
# clone the inline extent from file bar into this file.
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0K 16K" $SCRATCH_MNT/foo \
| _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo
# Doing IO against any range in the first 4K of the file should work.
# Due to a past clone ioctl bug which allowed cloning the inline extent,
# these operations resulted in EIO errors.
echo "File foo data after clone operation:"
# All bytes should have the value 0xaa (clone operation failed and did
# not modify our file).
od -t x1 $SCRATCH_MNT/foo
$XFS_IO_PROG -c "pwrite -S 0xcc 0 100" $SCRATCH_MNT/foo | _filter_xfs_io
# Test cloning the inline extent against a file which has a hole in its
# first 4K followed by a non-inlined extent. It should not be possible
# as well to clone the inline extent from file bar into this file.
$XFS_IO_PROG -f -c "pwrite -S 0xdd 4K 12K" $SCRATCH_MNT/foo2 \
| _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo2
# Doing IO against any range in the first 4K of the file should work.
# Due to a past clone ioctl bug which allowed cloning the inline extent,
# these operations resulted in EIO errors.
echo "File foo2 data after clone operation:"
# All bytes should have the value 0x00 (clone operation failed and did
# not modify our file).
od -t x1 $SCRATCH_MNT/foo2
$XFS_IO_PROG -c "pwrite -S 0xee 0 90" $SCRATCH_MNT/foo2 | _filter_xfs_io
# Test cloning the inline extent against a file which has a size of zero
# but has a prealloc extent. It should not be possible as well to clone
# the inline extent from file bar into this file.
$XFS_IO_PROG -f -c "falloc -k 0 1M" $SCRATCH_MNT/foo3 | _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo3
# Doing IO against any range in the first 4K of the file should work.
# Due to a past clone ioctl bug which allowed cloning the inline extent,
# these operations resulted in EIO errors.
echo "First 50 bytes of foo3 after clone operation:"
# Should not be able to read any bytes, file has 0 bytes i_size (the
# clone operation failed and did not modify our file).
od -t x1 $SCRATCH_MNT/foo3
$XFS_IO_PROG -c "pwrite -S 0xff 0 90" $SCRATCH_MNT/foo3 | _filter_xfs_io
# Test cloning the inline extent against a file which consists of a
# single inline extent that has a size not greater than the size of
# bar's inline extent (40 < 50).
# It should be possible to do the extent cloning from bar to this file.
$XFS_IO_PROG -f -c "pwrite -S 0x01 0 40" $SCRATCH_MNT/foo4 \
| _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo4
# Doing IO against any range in the first 4K of the file should work.
echo "File foo4 data after clone operation:"
# Must match file bar's content.
od -t x1 $SCRATCH_MNT/foo4
$XFS_IO_PROG -c "pwrite -S 0x02 0 90" $SCRATCH_MNT/foo4 | _filter_xfs_io
# Test cloning the inline extent against a file which consists of a
# single inline extent that has a size greater than the size of bar's
# inline extent (60 > 50).
# It should not be possible to clone the inline extent from file bar
# into this file.
$XFS_IO_PROG -f -c "pwrite -S 0x03 0 60" $SCRATCH_MNT/foo5 \
| _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo5
# Reading the file should not fail.
echo "File foo5 data after clone operation:"
# Must have a size of 60 bytes, with all bytes having a value of 0x03
# (the clone operation failed and did not modify our file).
od -t x1 $SCRATCH_MNT/foo5
# Test cloning the inline extent against a file which has no extents but
# has a size greater than bar's inline extent (16K > 50).
# It should not be possible to clone the inline extent from file bar
# into this file.
$XFS_IO_PROG -f -c "truncate 16K" $SCRATCH_MNT/foo6 | _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo6
# Reading the file should not fail.
echo "File foo6 data after clone operation:"
# Must have a size of 16K, with all bytes having a value of 0x00 (the
# clone operation failed and did not modify our file).
od -t x1 $SCRATCH_MNT/foo6
# Test cloning the inline extent against a file which has no extents but
# has a size not greater than bar's inline extent (30 < 50).
# It should be possible to clone the inline extent from file bar into
# this file.
$XFS_IO_PROG -f -c "truncate 30" $SCRATCH_MNT/foo7 | _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo7
# Reading the file should not fail.
echo "File foo7 data after clone operation:"
# Must have a size of 50 bytes, with all bytes having a value of 0xbb.
od -t x1 $SCRATCH_MNT/foo7
# Test cloning the inline extent against a file which has a size not
# greater than the size of bar's inline extent (20 < 50) but has
# a prealloc extent that goes beyond the file's size. It should not be
# possible to clone the inline extent from bar into this file.
$XFS_IO_PROG -f -c "falloc -k 0 1M" \
-c "pwrite -S 0x88 0 20" \
$SCRATCH_MNT/foo8 | _filter_xfs_io
$CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/bar $SCRATCH_MNT/foo8
echo "File foo8 data after clone operation:"
# Must have a size of 20 bytes, with all bytes having a value of 0x88
# (the clone operation did not modify our file).
od -t x1 $SCRATCH_MNT/foo8
_scratch_unmount
}
echo -e "\nTesting without compression and without the no-holes feature...\n"
test_cloning_inline_extents
echo -e "\nTesting with compression and without the no-holes feature...\n"
test_cloning_inline_extents "" "-o compress"
echo -e "\nTesting without compression and with the no-holes feature...\n"
test_cloning_inline_extents "-O no-holes" ""
echo -e "\nTesting with compression and with the no-holes feature...\n"
test_cloning_inline_extents "-O no-holes" "-o compress"
status=0
exit
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
This fixes a regression introduced by 37b8d27d between v4.1 and v4.2.
When a snapshot is received, its received_uuid is set to the original
uuid of the subvolume. When that snapshot is then resent to a third
filesystem, it's received_uuid is set to the second uuid
instead of the original one. The same was true for the parent_uuid.
This behaviour was partially changed in 37b8d27d, but in that patch
only the parent_uuid was taken from the real original,
not the uuid itself, causing the search for the parent to fail in
the case below.
This happens for example when trying to send a series of linked
snapshots (e.g. created by snapper) from the backup file system back
to the original one.
The following commands reproduce the issue in v4.2.1
(no error in 4.1.6)
# setup three test file systems
for i in 1 2 3; do
truncate -s 50M fs$i
mkfs.btrfs fs$i
mkdir $i
mount fs$i $i
done
echo "content" > 1/testfile
btrfs su snapshot -r 1/ 1/snap1
echo "changed content" > 1/testfile
btrfs su snapshot -r 1/ 1/snap2
# works fine:
btrfs send 1/snap1 | btrfs receive 2/
btrfs send -p 1/snap1 1/snap2 | btrfs receive 2/
# ERROR: could not find parent subvolume
btrfs send 2/snap1 | btrfs receive 3/
btrfs send -p 2/snap1 2/snap2 | btrfs receive 3/
Signed-off-by: Robin Ruede <rruede+git@gmail.com>
Fixes: 37b8d27de5 ("Btrfs: use received_uuid of parent during send")
Cc: stable@vger.kernel.org # v4.2+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Ed Tomlinson <edt@aei.ca>
If we have a file that shares an extent with other files, when processing
the extent item relative to a shared extent, we blindly issue a clone
operation that will target a length matching the length in the extent item
and uses as a source some other file the receiver already has and points
to the same extent. However that range in the other file might not
exclusively point only to the shared extent, and so using that length
will result in the receiver getting a file with different data from the
one in the send snapshot. This issue happened both for incremental and
full send operations.
So fix this by issuing clone operations with lengths that don't cover
regions of the source file that point to different extents (or have holes).
The following test case for fstests reproduces the problem.
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
rm -fr $send_files_dir
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_supported_fs btrfs
_supported_os Linux
_require_scratch
_need_to_be_root
_require_cp_reflink
_require_xfs_io_command "fpunch"
send_files_dir=$TEST_DIR/btrfs-test-$seq
rm -f $seqres.full
rm -fr $send_files_dir
mkdir $send_files_dir
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount
# Create our test file with a single 100K extent.
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0K 100K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Clone our file into a new file named bar.
cp --reflink=always $SCRATCH_MNT/foo $SCRATCH_MNT/bar
# Now overwrite parts of our foo file.
$XFS_IO_PROG -c "pwrite -S 0xbb 50K 10K" \
-c "pwrite -S 0xcc 90K 10K" \
-c "fpunch 70K 10k" \
$SCRATCH_MNT/foo | _filter_xfs_io
_run_btrfs_util_prog subvolume snapshot -r $SCRATCH_MNT \
$SCRATCH_MNT/snap
echo "File digests in the original filesystem:"
md5sum $SCRATCH_MNT/snap/foo | _filter_scratch
md5sum $SCRATCH_MNT/snap/bar | _filter_scratch
_run_btrfs_util_prog send $SCRATCH_MNT/snap -f $send_files_dir/1.snap
# Now recreate the filesystem by receiving the send stream and verify
# we get the same file contents that the original filesystem had.
_scratch_unmount
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount
_run_btrfs_util_prog receive $SCRATCH_MNT -f $send_files_dir/1.snap
# We expect the destination filesystem to have exactly the same file
# data as the original filesystem.
# The btrfs send implementation had a bug where it sent a clone
# operation from file foo into file bar covering the whole [0, 100K[
# range after creating and writing the file foo. This was incorrect
# because the file bar now included the updates done to file foo after
# we cloned foo to bar, breaking the COW nature of reflink copies
# (cloned extents).
echo "File digests in the new filesystem:"
md5sum $SCRATCH_MNT/snap/foo | _filter_scratch
md5sum $SCRATCH_MNT/snap/bar | _filter_scratch
status=0
exit
Another test case that reproduces the problem when we have compressed
extents:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
rm -fr $send_files_dir
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_supported_fs btrfs
_supported_os Linux
_require_scratch
_need_to_be_root
_require_cp_reflink
send_files_dir=$TEST_DIR/btrfs-test-$seq
rm -f $seqres.full
rm -fr $send_files_dir
mkdir $send_files_dir
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount "-o compress"
# Create our file with an extent of 100K starting at file offset 0K.
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0K 100K" \
-c "fsync" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Rewrite part of the previous extent (its first 40K) and write a new
# 100K extent starting at file offset 100K.
$XFS_IO_PROG -c "pwrite -S 0xbb 0K 40K" \
-c "pwrite -S 0xcc 100K 100K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Our file foo now has 3 file extent items in its metadata:
#
# 1) One covering the file range 0 to 40K;
# 2) One covering the file range 40K to 100K, which points to the first
# extent we wrote to the file and has a data offset field with value
# 40K (our file no longer uses the first 40K of data from that
# extent);
# 3) One covering the file range 100K to 200K.
# Now clone our file foo into file bar.
cp --reflink=always $SCRATCH_MNT/foo $SCRATCH_MNT/bar
# Create our snapshot for the send operation.
_run_btrfs_util_prog subvolume snapshot -r $SCRATCH_MNT \
$SCRATCH_MNT/snap
echo "File digests in the original filesystem:"
md5sum $SCRATCH_MNT/snap/foo | _filter_scratch
md5sum $SCRATCH_MNT/snap/bar | _filter_scratch
_run_btrfs_util_prog send $SCRATCH_MNT/snap -f $send_files_dir/1.snap
# Now recreate the filesystem by receiving the send stream and verify we
# get the same file contents that the original filesystem had.
# Btrfs send used to issue a clone operation from foo's range
# [80K, 140K[ to bar's range [40K, 100K[ when cloning the extent pointed
# to by foo's second file extent item, this was incorrect because of bad
# accounting of the file extent item's data offset field. The correct
# range to clone from should have been [40K, 100K[.
_scratch_unmount
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount "-o compress"
_run_btrfs_util_prog receive $SCRATCH_MNT -f $send_files_dir/1.snap
echo "File digests in the new filesystem:"
# Must match the digests we got in the original filesystem.
md5sum $SCRATCH_MNT/snap/foo | _filter_scratch
md5sum $SCRATCH_MNT/snap/bar | _filter_scratch
status=0
exit
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Leandro Awa writes:
"After switching to version 4.1.6, our parallelized and distributed
workflows now fail consistently with errors of the form:
T34: ./regex.c:39:22: error: config.h: No such file or directory
From our 'git bisect' testing, the following commit appears to be the
possible cause of the behavior we've been seeing: commit 766c4cbfacd8"
Al Viro says:
"What happens is that 766c4cbfac got the things subtly wrong.
We used to treat d_is_negative() after lookup_fast() as "fall with
ENOENT". That was wrong - checking ->d_flags outside of ->d_seq
protection is unreliable and failing with hard error on what should've
fallen back to non-RCU pathname resolution is a bug.
Unfortunately, we'd pulled the test too far up and ran afoul of
another kind of staleness. The dentry might have been absolutely
stable from the RCU point of view (and we might be on UP, etc), but
stale from the remote fs point of view. If ->d_revalidate() returns
"it's actually stale", dentry gets thrown away and the original code
wouldn't even have looked at its ->d_flags.
What we need is to check ->d_flags where 766c4cbfac does (prior to
->d_seq validation) but only use the result in cases where we do not
discard this dentry outright"
Reported-by: Leandro Awa <lawa@nvidia.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=104911
Fixes: 766c4cbfac ("namei: d_is_negative() should be checked...")
Tested-by: Leandro Awa <lawa@nvidia.com>
Cc: stable@vger.kernel.org # v4.1+
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Removing barriers is scary, but a call to atomic_dec_and_test implies
a barrier, so we don't need to issue another one.
Signed-off-by: David Sterba <dsterba@suse.com>
waitqueue_active should be preceded by a barrier, in this function we
don't need to call it all the time.
Signed-off-by: David Sterba <dsterba@suse.com>
Normally the waitqueue_active would need a barrier, but this is not
necessary here because it's not a performance sensitive context and we
can call wake_up directly.
Suggested-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs fixes from Chris Mason:
"These are small and assorted. Neil's is the oldest, I dropped the
ball thinking he was going to send it in"
* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: support NFSv2 export
Btrfs: open_ctree: Fix possible memory leak
Btrfs: fix deadlock when finalizing block group creation
Btrfs: update fix for read corruption of compressed and shared extents
Btrfs: send, fix corner case for reference overwrite detection
Convert the simple cases, not all functions provide a way to reach the
fs_info. Also skipped debugging messages (print-tree, integrity
checker and pr_debug) and messages that are printed from possibly
unfinished mount.
Signed-off-by: David Sterba <dsterba@suse.com>
Due to the missing variants there are messages that lack the information
printed by btrfs_info etc helpers.
Signed-off-by: David Sterba <dsterba@suse.com>
Highlights include:
Bugfixes:
- Fix a use-after-free bug in the RPC/RDMA client
- Fix a write performance regression
- Fix up page writeback accounting
- Don't try to reclaim unused state owners
- Fix a NFSv4 nograce recovery hang
- reset states to use open_stateid when returning delegation voluntarily
- Fix a tracepoint NULL-pointer dereference
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWFIgBAAoJEGcL54qWCgDy3qwQAJrMvwiO0shZe9+PsUZcDIhw
1CnDmWYafJmpNGK+YEZatI+tdR9pwSYXdfiCGj/Ijfvl1PXUgyVAmNARAB9oFUza
DVvZjqJ6aiFzeawGC8f2IfwY4XcAy4+BIZOiwp2JafepRnoSgZl24olKbO4cQ7UD
i5IaDrYYvAxefsUoRogEF19H1y8zC1yUA2aDKrriV6A9rEZSbaZLRfS8BHppXBjY
w0OP74neD4rnn/rL0YDEdsjiI17W7QwoMk05yzOJH3wQt/Y4Ll/lwLO4y3URpIGF
wzHzMIeggGPPEM9e1JixPc3Y9F9kCHW8YjGJ3xxY2C6q8vt7dzpaVhh10AxycZtZ
gcbepjMhoL7gJqu5DQ/0S86Sb5jNaL0KlUDsEnqtOfe3/UiyTJ/f57TMfdscm+wI
pdyFFtxUHcFueO1a2XuEOuSIUFzFuwIQ2aiHlbu90ev04dd7dqzU0PffhRlzu3tJ
8+ZHQMbSmotUmhxlpI+VA4rG0JUsaLY09chH5r0NvsXm0LR+z3vX7Q6oONN7IBDv
5hULj4ecB69smBv+FjQyVUAu0LiahINAGu0p0wEjTdBwFMic5qpVVfhTs8qrkGRZ
M8RYrANtVhY17fJf5WF7Wyt58icAWRKDHslGdzUav+2VFBfNK1ZeG+QhYYqDNF5k
SkJsG4iCIN9JazwqfqJI
=aoNS
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.3-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client bugfixes from Trond Myklebust:
"Highlights include:
Bugfixes:
- Fix a use-after-free bug in the RPC/RDMA client
- Fix a write performance regression
- Fix up page writeback accounting
- Don't try to reclaim unused state owners
- Fix a NFSv4 nograce recovery hang
- reset states to use open_stateid when returning delegation
voluntarily
- Fix a tracepoint NULL-pointer dereference"
* tag 'nfs-for-4.3-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs:
NFS: Fix a tracepoint NULL-pointer dereference
nfs4: reset states to use open_stateid when returning delegation voluntarily
NFSv4: Fix a nograce recovery hang
NFSv4.1: nfs4_opendata_check_deleg needs to handle NFS4_OPEN_CLAIM_DELEG_CUR_FH
NFSv4: Don't try to reclaim unused state owners
NFS: Fix a write performance regression
NFS: Fix up page writeback accounting
xprtrdma: disconnect and flush cqs before freeing buffers
Running xfstest generic/013 with the tracepoint nfs:nfs4_open_file
enabled produces a NULL-pointer dereference when calculating fileid and
filehandle of the opened file. Fix this by checking if state is NULL
before trying to use the inode pointer.
Reported-by: Olga Kornievskaia <aglo@umich.edu>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
The "fh_len" passed to ->fh_to_* is not guaranteed to be that same as
that returned by encode_fh - it may be larger.
With NFSv2, the filehandle is fixed length, so it may appear longer
than expected and be zero-padded.
So we must test that fh_len is at least some value, not exactly equal
to it.
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: David Sterba <dsterba@suse.cz>
After reading one of chunk or tree root tree's root node from disk, if the
root node does not have EXTENT_BUFFER_UPTODATE flag set, we fail to release
the memory used by the root node. Fix this.
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Pull CIFS fixes from Steve French:
"Two fixes for problems pointed out by automated tools.
Thanks PaX/grsecurity team and Dan Carpenter (and the Smatch tool)"
* 'for-next' of git://git.samba.org/sfrench/cifs-2.6:
[CIFS] Update cifs version number
[SMB3] Do not fall back to SMBWriteX in set_file_size error cases
[SMB3] Missing null tcon check
Josef ran into a deadlock while a transaction handle was finalizing the
creation of its block groups, which produced the following trace:
[260445.593112] fio D ffff88022a9df468 0 8924 4518 0x00000084
[260445.593119] ffff88022a9df468 ffffffff81c134c0 ffff880429693c00 ffff88022a9df488
[260445.593126] ffff88022a9e0000 ffff8803490d7b00 ffff8803490d7b18 ffff88022a9df4b0
[260445.593132] ffff8803490d7af8 ffff88022a9df488 ffffffff8175a437 ffff8803490d7b00
[260445.593137] Call Trace:
[260445.593145] [<ffffffff8175a437>] schedule+0x37/0x80
[260445.593189] [<ffffffffa0850f37>] btrfs_tree_lock+0xa7/0x1f0 [btrfs]
[260445.593197] [<ffffffff810db7c0>] ? prepare_to_wait_event+0xf0/0xf0
[260445.593225] [<ffffffffa07eac44>] btrfs_lock_root_node+0x34/0x50 [btrfs]
[260445.593253] [<ffffffffa07eff6b>] btrfs_search_slot+0x88b/0xa00 [btrfs]
[260445.593295] [<ffffffffa08389df>] ? free_extent_buffer+0x4f/0x90 [btrfs]
[260445.593324] [<ffffffffa07f1a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
[260445.593351] [<ffffffffa07ea94a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs]
[260445.593394] [<ffffffffa08403b9>] btrfs_finish_chunk_alloc+0x1c9/0x570 [btrfs]
[260445.593427] [<ffffffffa08002ab>] btrfs_create_pending_block_groups+0x11b/0x200 [btrfs]
[260445.593459] [<ffffffffa0800964>] do_chunk_alloc+0x2a4/0x2e0 [btrfs]
[260445.593491] [<ffffffffa0803815>] find_free_extent+0xa55/0xd90 [btrfs]
[260445.593524] [<ffffffffa0803c22>] btrfs_reserve_extent+0xd2/0x220 [btrfs]
[260445.593532] [<ffffffff8119fe5d>] ? account_page_dirtied+0xdd/0x170
[260445.593564] [<ffffffffa0803e78>] btrfs_alloc_tree_block+0x108/0x4a0 [btrfs]
[260445.593597] [<ffffffffa080c9de>] ? btree_set_page_dirty+0xe/0x10 [btrfs]
[260445.593626] [<ffffffffa07eb5cd>] __btrfs_cow_block+0x12d/0x5b0 [btrfs]
[260445.593654] [<ffffffffa07ebbff>] btrfs_cow_block+0x11f/0x1c0 [btrfs]
[260445.593682] [<ffffffffa07ef8c7>] btrfs_search_slot+0x1e7/0xa00 [btrfs]
[260445.593724] [<ffffffffa08389df>] ? free_extent_buffer+0x4f/0x90 [btrfs]
[260445.593752] [<ffffffffa07f1a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
[260445.593830] [<ffffffffa07ea94a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs]
[260445.593905] [<ffffffffa08403b9>] btrfs_finish_chunk_alloc+0x1c9/0x570 [btrfs]
[260445.593946] [<ffffffffa08002ab>] btrfs_create_pending_block_groups+0x11b/0x200 [btrfs]
[260445.593990] [<ffffffffa0815798>] btrfs_commit_transaction+0xa8/0xb40 [btrfs]
[260445.594042] [<ffffffffa085abcd>] ? btrfs_log_dentry_safe+0x6d/0x80 [btrfs]
[260445.594089] [<ffffffffa082bc84>] btrfs_sync_file+0x294/0x350 [btrfs]
[260445.594115] [<ffffffff8123e29b>] vfs_fsync_range+0x3b/0xa0
[260445.594133] [<ffffffff81023891>] ? syscall_trace_enter_phase1+0x131/0x180
[260445.594149] [<ffffffff8123e35d>] do_fsync+0x3d/0x70
[260445.594169] [<ffffffff81023bb8>] ? syscall_trace_leave+0xb8/0x110
[260445.594187] [<ffffffff8123e600>] SyS_fsync+0x10/0x20
[260445.594204] [<ffffffff8175de6e>] entry_SYSCALL_64_fastpath+0x12/0x71
This happened because the same transaction handle created a large number
of block groups and while finalizing their creation (inserting new items
and updating existing items in the chunk and device trees) a new metadata
extent had to be allocated and no free space was found in the current
metadata block groups, which made find_free_extent() attempt to allocate
a new block group via do_chunk_alloc(). However at do_chunk_alloc() we
ended up allocating a new system chunk too and exceeded the threshold
of 2Mb of reserved chunk bytes, which makes do_chunk_alloc() enter the
final part of block group creation again (at
btrfs_create_pending_block_groups()) and attempt to lock again the root
of the chunk tree when it's already write locked by the same task.
Similarly we can deadlock on extent tree nodes/leafs if while we are
running delayed references we end up creating a new metadata block group
in order to allocate a new node/leaf for the extent tree (as part of
a CoW operation or growing the tree), as btrfs_create_pending_block_groups
inserts items into the extent tree as well. In this case we get the
following trace:
[14242.773581] fio D ffff880428ca3418 0 3615 3100 0x00000084
[14242.773588] ffff880428ca3418 ffff88042d66b000 ffff88042a03c800 ffff880428ca3438
[14242.773594] ffff880428ca4000 ffff8803e4b20190 ffff8803e4b201a8 ffff880428ca3460
[14242.773600] ffff8803e4b20188 ffff880428ca3438 ffffffff8175a437 ffff8803e4b20190
[14242.773606] Call Trace:
[14242.773613] [<ffffffff8175a437>] schedule+0x37/0x80
[14242.773656] [<ffffffffa057ff07>] btrfs_tree_lock+0xa7/0x1f0 [btrfs]
[14242.773664] [<ffffffff810db7c0>] ? prepare_to_wait_event+0xf0/0xf0
[14242.773692] [<ffffffffa0519c44>] btrfs_lock_root_node+0x34/0x50 [btrfs]
[14242.773720] [<ffffffffa051ef6b>] btrfs_search_slot+0x88b/0xa00 [btrfs]
[14242.773750] [<ffffffffa0520a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
[14242.773758] [<ffffffff811ef4a2>] ? kmem_cache_alloc+0x1d2/0x200
[14242.773786] [<ffffffffa0520ad1>] btrfs_insert_item+0x71/0xf0 [btrfs]
[14242.773818] [<ffffffffa052f292>] btrfs_create_pending_block_groups+0x102/0x200 [btrfs]
[14242.773850] [<ffffffffa052f96e>] do_chunk_alloc+0x2ae/0x2f0 [btrfs]
[14242.773934] [<ffffffffa0532825>] find_free_extent+0xa55/0xd90 [btrfs]
[14242.773998] [<ffffffffa0532c22>] btrfs_reserve_extent+0xc2/0x1d0 [btrfs]
[14242.774041] [<ffffffffa0532e38>] btrfs_alloc_tree_block+0x108/0x4a0 [btrfs]
[14242.774078] [<ffffffffa051a5cd>] __btrfs_cow_block+0x12d/0x5b0 [btrfs]
[14242.774118] [<ffffffffa051abff>] btrfs_cow_block+0x11f/0x1c0 [btrfs]
[14242.774155] [<ffffffffa051e8c7>] btrfs_search_slot+0x1e7/0xa00 [btrfs]
[14242.774194] [<ffffffffa0528021>] ? __btrfs_free_extent.isra.70+0x2e1/0xcb0 [btrfs]
[14242.774235] [<ffffffffa0520a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
[14242.774274] [<ffffffffa051994a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs]
[14242.774318] [<ffffffffa052c433>] __btrfs_run_delayed_refs+0xbb3/0x1020 [btrfs]
[14242.774358] [<ffffffffa052f404>] btrfs_run_delayed_refs.part.78+0x74/0x280 [btrfs]
[14242.774391] [<ffffffffa052f627>] btrfs_run_delayed_refs+0x17/0x20 [btrfs]
[14242.774432] [<ffffffffa05be236>] commit_cowonly_roots+0x8d/0x2bd [btrfs]
[14242.774474] [<ffffffffa059d07f>] ? __btrfs_run_delayed_items+0x1cf/0x210 [btrfs]
[14242.774516] [<ffffffffa05adac3>] ? btrfs_qgroup_account_extents+0x83/0x130 [btrfs]
[14242.774558] [<ffffffffa0544c40>] btrfs_commit_transaction+0x590/0xb40 [btrfs]
[14242.774599] [<ffffffffa0589b9d>] ? btrfs_log_dentry_safe+0x6d/0x80 [btrfs]
[14242.774642] [<ffffffffa055ac54>] btrfs_sync_file+0x294/0x350 [btrfs]
[14242.774650] [<ffffffff8123e29b>] vfs_fsync_range+0x3b/0xa0
[14242.774657] [<ffffffff81023891>] ? syscall_trace_enter_phase1+0x131/0x180
[14242.774663] [<ffffffff8123e35d>] do_fsync+0x3d/0x70
[14242.774669] [<ffffffff81023bb8>] ? syscall_trace_leave+0xb8/0x110
[14242.774675] [<ffffffff8123e600>] SyS_fsync+0x10/0x20
[14242.774681] [<ffffffff8175de6e>] entry_SYSCALL_64_fastpath+0x12/0x71
Fix this by never recursing into the finalization phase of block group
creation and making sure we never trigger the finalization of block group
creation while running delayed references.
Reported-by: Josef Bacik <jbacik@fb.com>
Fixes: 00d80e342c ("Btrfs: fix quick exhaustion of the system array in the superblock")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
My previous fix in commit 005efedf2c ("Btrfs: fix read corruption of
compressed and shared extents") was effective only if the compressed
extents cover a file range with a length that is not a multiple of 16
pages. That's because the detection of when we reached a different range
of the file that shares the same compressed extent as the previously
processed range was done at extent_io.c:__do_contiguous_readpages(),
which covers subranges with a length up to 16 pages, because
extent_readpages() groups the pages in clusters no larger than 16 pages.
So fix this by tracking the start of the previously processed file
range's extent map at extent_readpages().
The following test case for fstests reproduces the issue:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_need_to_be_root
_supported_fs btrfs
_supported_os Linux
_require_scratch
_require_cloner
rm -f $seqres.full
test_clone_and_read_compressed_extent()
{
local mount_opts=$1
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount $mount_opts
# Create our test file with a single extent of 64Kb that is going to
# be compressed no matter which compression algo is used (zlib/lzo).
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0K 64K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Now clone the compressed extent into an adjacent file offset.
$CLONER_PROG -s 0 -d $((64 * 1024)) -l $((64 * 1024)) \
$SCRATCH_MNT/foo $SCRATCH_MNT/foo
echo "File digest before unmount:"
md5sum $SCRATCH_MNT/foo | _filter_scratch
# Remount the fs or clear the page cache to trigger the bug in
# btrfs. Because the extent has an uncompressed length that is a
# multiple of 16 pages, all the pages belonging to the second range
# of the file (64K to 128K), which points to the same extent as the
# first range (0K to 64K), had their contents full of zeroes instead
# of the byte 0xaa. This was a bug exclusively in the read path of
# compressed extents, the correct data was stored on disk, btrfs
# just failed to fill in the pages correctly.
_scratch_remount
echo "File digest after remount:"
# Must match the digest we got before.
md5sum $SCRATCH_MNT/foo | _filter_scratch
}
echo -e "\nTesting with zlib compression..."
test_clone_and_read_compressed_extent "-o compress=zlib"
_scratch_unmount
echo -e "\nTesting with lzo compression..."
test_clone_and_read_compressed_extent "-o compress=lzo"
status=0
exit
Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Timofey Titovets <nefelim4ag@gmail.com>
When the inode given to did_overwrite_ref() matches the current progress
and has a reference that collides with the reference of other inode that
has the same number as the current progress, we were always telling our
caller that the inode's reference was overwritten, which is incorrect
because the other inode might be a new inode (different generation number)
in which case we must return false from did_overwrite_ref() so that its
callers don't use an orphanized path for the inode (as it will never be
orphanized, instead it will be unlinked and the new inode created later).
The following test case for fstests reproduces the issue:
seq=`basename $0`
seqres=$RESULT_DIR/$seq
echo "QA output created by $seq"
tmp=/tmp/$$
status=1 # failure is the default!
trap "_cleanup; exit \$status" 0 1 2 3 15
_cleanup()
{
rm -fr $send_files_dir
rm -f $tmp.*
}
# get standard environment, filters and checks
. ./common/rc
. ./common/filter
# real QA test starts here
_supported_fs btrfs
_supported_os Linux
_require_scratch
_need_to_be_root
send_files_dir=$TEST_DIR/btrfs-test-$seq
rm -f $seqres.full
rm -fr $send_files_dir
mkdir $send_files_dir
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount
# Create our test file with a single extent of 64K.
mkdir -p $SCRATCH_MNT/foo
$XFS_IO_PROG -f -c "pwrite -S 0xaa 0 64K" $SCRATCH_MNT/foo/bar \
| _filter_xfs_io
_run_btrfs_util_prog subvolume snapshot -r $SCRATCH_MNT \
$SCRATCH_MNT/mysnap1
_run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT \
$SCRATCH_MNT/mysnap2
echo "File digest before being replaced:"
md5sum $SCRATCH_MNT/mysnap1/foo/bar | _filter_scratch
# Remove the file and then create a new one in the same location with
# the same name but with different content. This new file ends up
# getting the same inode number as the previous one, because that inode
# number was the highest inode number used by the snapshot's root and
# therefore when attempting to find the a new inode number for the new
# file, we end up reusing the same inode number. This happens because
# currently btrfs uses the highest inode number summed by 1 for the
# first inode created once a snapshot's root is loaded (done at
# fs/btrfs/inode-map.c:btrfs_find_free_objectid in the linux kernel
# tree).
# Having these two different files in the snapshots with the same inode
# number (but different generation numbers) caused the btrfs send code
# to emit an incorrect path for the file when issuing an unlink
# operation because it failed to realize they were different files.
rm -f $SCRATCH_MNT/mysnap2/foo/bar
$XFS_IO_PROG -f -c "pwrite -S 0xbb 0 96K" \
$SCRATCH_MNT/mysnap2/foo/bar | _filter_xfs_io
_run_btrfs_util_prog subvolume snapshot -r $SCRATCH_MNT/mysnap2 \
$SCRATCH_MNT/mysnap2_ro
_run_btrfs_util_prog send $SCRATCH_MNT/mysnap1 -f $send_files_dir/1.snap
_run_btrfs_util_prog send -p $SCRATCH_MNT/mysnap1 \
$SCRATCH_MNT/mysnap2_ro -f $send_files_dir/2.snap
echo "File digest in the original filesystem after being replaced:"
md5sum $SCRATCH_MNT/mysnap2_ro/foo/bar | _filter_scratch
# Now recreate the filesystem by receiving both send streams and verify
# we get the same file contents that the original filesystem had.
_scratch_unmount
_scratch_mkfs >>$seqres.full 2>&1
_scratch_mount
_run_btrfs_util_prog receive -vv $SCRATCH_MNT -f $send_files_dir/1.snap
_run_btrfs_util_prog receive -vv $SCRATCH_MNT -f $send_files_dir/2.snap
echo "File digest in the new filesystem:"
# Must match the digest from the new file.
md5sum $SCRATCH_MNT/mysnap2_ro/foo/bar | _filter_scratch
status=0
exit
Reported-by: Martin Raiber <martin@urbackup.org>
Fixes: 8b191a6849 ("Btrfs: incremental send, check if orphanized dir inode needs delayed rename")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
When the client goes to return a delegation, it should always update any
nfs4_state currently set up to use that delegation stateid to instead
use the open stateid. It already does do this in some cases,
particularly in the state recovery code, but not currently when the
delegation is voluntarily returned (e.g. in advance of a RENAME). This
causes the client to try to continue using the delegation stateid after
the DELEGRETURN, e.g. in LAYOUTGET.
Set the nfs4_state back to using the open stateid in
nfs4_open_delegation_recall, just before clearing the
NFS_DELEGATED_STATE bit.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Since commit 5cae02f427 an OPEN_CONFIRM should
have a privileged sequence in the recovery case to allow nograce recovery to
proceed for NFSv4.0.
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
We need to warn against broken NFSv4.1 servers that try to hand out
delegations in response to NFS4_OPEN_CLAIM_DELEG_CUR_FH.
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Currently, we don't test if the state owner is in use before we try to
recover it. The problem is that if the refcount is zero, then the
state owner will be waiting on the lru list for garbage collection.
The expectation in that case is that if you bump the refcount, then
you must also remove the state owner from the lru list. Otherwise
the call to nfs4_put_state_owner will corrupt that list by trying
to add our state owner a second time.
Avoid the whole problem by just skipping state owners that hold no
state.
Reported-by: Andrew W Elble <aweits@rit.edu>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
If all other conditions in nfs_can_extend_write() are met, and there
are no locks, then we should be able to assume close-to-open semantics
and the ability to extend our write to cover the whole page.
With this patch, the xfstests generic/074 test completes in 242s instead
of >1400s on my test rig.
Fixes: bd61e0a9c8 ("locks: convert posix locks to file_lock_context")
Cc: Jeff Layton <jlayton@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Currently, we are crediting all the calls to nfs_writepages_callback()
(i.e. the nfs_writepages() callback) to nfs_writepage(). Aside from
being inconsistent with the behaviour of the equivalent readpage/readpages
accounting, this also means that we cannot distinguish between bulk writes
and single page writebacks (which confuses the 'nfsiostat -p' tool).
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
The error paths in set_file_size for cifs and smb3 are incorrect.
In the unlikely event that a server did not support set file info
of the file size, the code incorrectly falls back to trying SMBWriteX
(note that only the original core SMB Write, used for example by DOS,
can set the file size this way - this actually does not work for the more
recent SMBWriteX). The idea was since the old DOS SMB Write could set
the file size if you write zero bytes at that offset then use that if
server rejects the normal set file info call.
Fortunately the SMBWriteX will never be sent on the wire (except when
file size is zero) since the length and offset fields were reversed
in the two places in this function that call SMBWriteX causing
the fall back path to return an error. It is also important to never call
an SMB request from an SMB2/sMB3 session (which theoretically would
be possible, and can cause a brief session drop, although the client
recovers) so this should be fixed. In practice this path does not happen
with modern servers but the error fall back to SMBWriteX is clearly wrong.
Removing the calls to SMBWriteX in the error paths in cifs_set_file_size
Pointed out by PaX/grsecurity team
Signed-off-by: Steve French <steve.french@primarydata.com>
Reported-by: PaX Team <pageexec@freemail.hu>
CC: Emese Revfy <re.emese@gmail.com>
CC: Brad Spengler <spender@grsecurity.net>
CC: Stable <stable@vger.kernel.org>
Commit 46c043ede4 ("mm: take i_mmap_lock in unmap_mapping_range() for
DAX") moved some code in __dax_pmd_fault() that was responsible for
zeroing newly allocated PMD pages. The new location didn't properly set
up 'kaddr', so when run this code resulted in a NULL pointer BUG.
Fix this by getting the correct 'kaddr' via bdev_direct_access().
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To avoid deadlock described in commit 084b6e7c76 ("btrfs: Fix a
lockdep warning when running xfstest."), we should move kobj stuff out
of dev_replace lock range.
"It is because the btrfs_kobj_{add/rm}_device() will call memory
allocation with GFP_KERNEL,
which may flush fs page cache to free space, waiting for it self to do
the commit, causing the deadlock.
To solve the problem, move btrfs_kobj_{add/rm}_device() out of the
dev_replace lock range, also involing split the
btrfs_rm_dev_replace_srcdev() function into remove and free parts.
Now only btrfs_rm_dev_replace_remove_srcdev() is called in dev_replace
lock range, and kobj_{add/rm} and btrfs_rm_dev_replace_free_srcdev() are
called out of the lock range."
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[added lockup description]
Signed-off-by: David Sterba <dsterba@suse.com>
Originally the message was not in a helper but ended up there. We should
print error messages from callers instead.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[reworded subject and changelog]
Signed-off-by: David Sterba <dsterba@suse.com>
By general rule of thumb there shouldn't be any way that user land
could trigger a kernel operation just by sending wrong arguments.
Here do commit cleanups after user input has been verified.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch updates and renames btrfs_scratch_superblocks, (which is used
by the replace device thread), with those fixes from the scratch
superblock code section of btrfs_rm_device(). The fixes are:
Scratch all copies of superblock
Notify kobject that superblock has been changed
Update time on the device
So that btrfs_rm_device() can use the function
btrfs_scratch_superblocks() instead of its own scratch code. And further
replace deivce code which similarly releases device back to the system,
will have the fixes from the btrfs device delete.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[renamed to btrfs_scratch_superblock]
Signed-off-by: David Sterba <dsterba@suse.com>
This uses a chunk of code from btrfs_read_dev_super() and creates
a function called btrfs_read_dev_one_super() so that next patch
can use it for scratch superblock.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[renamed bufhead to bh]
Signed-off-by: David Sterba <dsterba@suse.com>
Use btrfs specific error code BTRFS_ERROR_DEV_MISSING_NOT_FOUND instead
of -ENOENT. Next this removes the logging when user specifies "missing"
and we don't find it in the kernel device list. Logging are for system
events not for user input errors.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
and UBIFS.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABAgAGBQJWCmxzAAoJEEtJtSqsAOnWvfUP/R4NXpQmTJvmKfPaHJxuKMO3
uzEZET8qoc54OVN/GvvPFPRsZhZ5C6a1apWiCg77/WuDm9HHHEYrJVMYcOwqkPU1
5eqXSYdsvS7MjuSJS1fW4zIG+/HYaTXGJ/3bdP0vogtjzaKIBksKBmMTRNOAL8b8
2R6htwkVTMJdOUq6/xQuxG7FzT5m6wPEqUENfqGB3livbiqvU7OTud8I6yvcfD1M
tN02BuUduFgBR/4TwMQSbLzWH0T+XG74t79J5s7sBJwe5/dEeTUXV0HfcPEuG/9+
8TBDeoaxz+m9bvQYROPSRlkAIkh9TPsxTeKTdBDN67/CB2y5P06rz+Kta7ygNSTD
Dn/fZ0I2JhQOtz2EiXvK9N36aHbZAltUFpFp0KNf8GUUM9vNMDY3sjeGQidAwxMc
/qVtu+Syk5+HMz8hQCWpdIbqk3ahZsOvTADwedMn+vxxri6IaQqcnBWmIRy7rffq
prYxJx0VTVbLua5WXCOJILQCGEELqsnUKlnCm6LtznBUpff0Wmj6KsXmmXLs/X7X
NoztNx9FfhHQkWIIx92vu2cbC76LvsCXSuAfwC7k3KyW1hA9uWkc39Hs7yO5UcBp
lQZwsIZTe7qSuVt8lVC5omTeIgQiSc/Gte3WFEtNXNo2uq1VJa717NH6qwNOPayy
/L6on4YEUleHKrvJFjcd
=j/qn
-----END PGP SIGNATURE-----
Merge tag 'upstream-4.3-rc4' of git://git.infradead.org/linux-ubifs
Pull UBI/UBIFS fixes from Richard Weinberger:
"This contains three bug fixes for both UBI and UBIFS"
* tag 'upstream-4.3-rc4' of git://git.infradead.org/linux-ubifs:
UBI: return ENOSPC if no enough space available
UBI: Validate data_size
UBIFS: Kill unneeded locking in ubifs_init_security
btrfs_error() and btrfs_std_error() does the same thing
and calls _btrfs_std_error(), so consolidate them together.
And the main motivation is that btrfs_error() is closely
named with btrfs_err(), one handles error action the other
is to log the error, so don't closely name them.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Suggested-by: David Sterba <dsterba@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
error handling logic behaves differently with or without
CONFIG_PRINTK defined, since there are two copies of the same
function which a bit of different logic
One, when CONFIG_PRINTK is defined, code is
__btrfs_std_error(..)
{
::
save_error_info(fs_info);
if (sb->s_flags & MS_BORN)
btrfs_handle_error(fs_info);
}
and two when CONFIG_PRINTK is not defined, the code is
__btrfs_std_error(..)
{
::
if (sb->s_flags & MS_BORN) {
save_error_info(fs_info);
btrfs_handle_error(fs_info);
}
}
I doubt if this was intentional ? and appear to have caused since
we maintain two copies of the same function and they got diverged
with commits.
Now to decide which logic is correct reviewed changes as below,
533574c6bc
Commit added two copies of this function
cf79ffb5b7
Commit made change to only one copy of the function and to the
copy when CONFIG_PRINTK is defined.
To fix this, instead of maintaining two copies of same function
approach, maintain single function, and just put the extra
portion of the code under CONFIG_PRINTK define.
This patch just does that. And keeps code of with CONFIG_PRINTK
defined.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This will return EIO when __bread() fails to read SB,
instead of EINVAL.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>