Commit Graph

4 Commits

Author SHA1 Message Date
Stefan Agner
0d018d7387 ARM: dts: vf610: add system reset controller and syscon-reboot
Add the system reset controller (SRC) module and use syscon-reboot
to register a restart handler which restarts the SoC using the
SRC SW_RST bit.

Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
2015-01-05 20:43:48 +08:00
Stefan Agner
c134e09fc5 ARM: dts: vf610: enable watchdog for Cortex-A5 dt's
During restructuring of the device tree files the watchdog was
changed to be disabled by default. However, since the watchdog
instance is dedicated to the Cortex-A5, enable the peripheral
by default in the base device tree vf500.dtsi.

Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
2015-01-05 20:43:48 +08:00
Stefan Agner
2b36bda3fb ARM: dts: vf610: use new GPIO support
Use GPIO support by adding SD card detection configuration and
GPIO pinmux for Colibri's standard GPIO pins. Attach the GPIO
pins to the iomuxc node to get the GPIO pin settings applied.

Signed-off-by: Stefan Agner <stefan@agner.ch>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
2014-11-23 15:08:11 +08:00
Stefan Agner
efb45b305f ARM: dts: vf610: create generic base device trees
This adds more generic base device trees for Vybrid SoCs. There
are three series of Vybrid SoC commonly available:
- VF3xx series: single core, Cortex-A5 without external memory
- VF5xx series: single core, Cortex-A5
- VF6xx series: dual core, Cortex-A5/Cortex-M4

The second digit represents the presents of a L2 cache (VFx1x).

The VF3xx series are not suitable for Linux especially since the
internal memory is quite small (1.5MiB).

The VF500 is essentially the base SoC, with only one core and
without L1 cache. The VF610 is a superset of the VF500, hence
vf500.dtsi is then included and enhanced by vf610.dtsi. There is
no board using VF510 or VF600 currently, but, if needed, they can
be added easily.

The Linux kernel can also run on the Cortex-M4 CPU of Vybrid
using !MMU support. This patchset creates a device tree structure
which allows to share peripherals nodes for a VF6xx Cortex-M4
device tree too. The two CPU types have different views of the
system: Foremost they are using different interrupt controllers,
but also the memory map is slightly different. The base device
tree vfxxx.dtsi allows to create SoC and board level device trees
supporting the Cortex-M4 while reusing the shared peripherals
nodes.

Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Shawn Guo <shawn.guo@linaro.org>
2014-11-23 15:08:10 +08:00