Commit Graph

510 Commits

Author SHA1 Message Date
Peter Zijlstra
77a4d1a1b9 sched: Cleanup bandwidth timers
Roman reported a 3 cpu lockup scenario involving __start_cfs_bandwidth().

The more I look at that code the more I'm convinced its crack, that
entire __start_cfs_bandwidth() thing is brain melting, we don't need to
cancel a timer before starting it, *hrtimer_start*() will happily remove
the timer for you if its still enqueued.

Removing that, removes a big part of the problem, no more ugly cancel
loop to get stuck in.

So now, if I understand things right, the entire reason you have this
cfs_b->lock guarded ->timer_active nonsense is to make sure we don't
accidentally lose the timer.

It appears to me that it should be possible to guarantee that same by
unconditionally (re)starting the timer when !queued. Because regardless
what hrtimer::function will return, if we beat it to (re)enqueue the
timer, it doesn't matter.

Now, because hrtimers don't come with any serialization guarantees we
must ensure both handler and (re)start loop serialize their access to
the hrtimer to avoid both trying to forward the timer at the same
time.

Update the rt bandwidth timer to match.

This effectively reverts: 09dc4ab039 ("sched/fair: Fix
tg_set_cfs_bandwidth() deadlock on rq->lock").

Reported-by: Roman Gushchin <klamm@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20150415095011.804589208@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-04-22 17:06:53 +02:00
Thomas Gleixner
4961b6e118 sched: core: Use hrtimer_start[_expires]()
hrtimer_start() now enforces a timer interrupt when an already expired
timer is enqueued.

Get rid of the __hrtimer_start_range_ns() invocations and the loops
around it.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20150414203502.531131739@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-04-22 17:06:51 +02:00
Linus Torvalds
49d2953c72 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler changes from Ingo Molnar:
 "Major changes:

   - Reworked CPU capacity code, for better SMP load balancing on
     systems with assymetric CPUs. (Vincent Guittot, Morten Rasmussen)

   - Reworked RT task SMP balancing to be push based instead of pull
     based, to reduce latencies on large CPU count systems. (Steven
     Rostedt)

   - SCHED_DEADLINE support updates and fixes. (Juri Lelli)

   - SCHED_DEADLINE task migration support during CPU hotplug. (Wanpeng Li)

   - x86 mwait-idle optimizations and fixes. (Mike Galbraith, Len Brown)

   - sched/numa improvements. (Rik van Riel)

   - various cleanups"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
  sched/core: Drop debugging leftover trace_printk call
  sched/deadline: Support DL task migration during CPU hotplug
  sched/core: Check for available DL bandwidth in cpuset_cpu_inactive()
  sched/deadline: Always enqueue on previous rq when dl_task_timer() fires
  sched/core: Remove unused argument from init_[rt|dl]_rq()
  sched/deadline: Fix rt runtime corruption when dl fails its global constraints
  sched/deadline: Avoid a superfluous check
  sched: Improve load balancing in the presence of idle CPUs
  sched: Optimize freq invariant accounting
  sched: Move CFS tasks to CPUs with higher capacity
  sched: Add SD_PREFER_SIBLING for SMT level
  sched: Remove unused struct sched_group_capacity::capacity_orig
  sched: Replace capacity_factor by usage
  sched: Calculate CPU's usage statistic and put it into struct sg_lb_stats::group_usage
  sched: Add struct rq::cpu_capacity_orig
  sched: Make scale_rt invariant with frequency
  sched: Make sched entity usage tracking scale-invariant
  sched: Remove frequency scaling from cpu_capacity
  sched: Track group sched_entity usage contributions
  sched: Add sched_avg::utilization_avg_contrib
  ...
2015-04-13 10:47:34 -07:00
Naoya Horiguchi
6b79c57b92 mm: numa: disable change protection for vma(VM_HUGETLB)
Currently when a process accesses a hugetlb range protected with
PROTNONE, unexpected COWs are triggered, which finally puts the hugetlb
subsystem into a broken/uncontrollable state, where for example
h->resv_huge_pages is subtracted too much and wraps around to a very
large number, and the free hugepage pool is no longer maintainable.

This patch simply stops changing protection for vma(VM_HUGETLB) to fix
the problem.  And this also allows us to avoid useless overhead of minor
faults.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Suggested-by: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-07 16:45:33 -07:00
Preeti U Murthy
d4573c3e1c sched: Improve load balancing in the presence of idle CPUs
When a CPU is kicked to do nohz idle balancing, it wakes up to do load
balancing on itself, followed by load balancing on behalf of idle CPUs.
But it may end up with load after the load balancing attempt on itself.
This aborts nohz idle balancing. As a result several idle CPUs are left
without tasks till such a time that an ILB CPU finds it unfavorable to
pull tasks upon itself. This delays spreading of load across idle CPUs
and worse, clutters only a few CPUs with tasks.

The effect of the above problem was observed on an SMT8 POWER server
with 2 levels of numa domains. Busy loops equal to number of cores were
spawned. Since load balancing on fork/exec is discouraged across numa
domains, all busy loops would start on one of the numa domains. However
it was expected that eventually one busy loop would run per core across
all domains due to nohz idle load balancing. But it was observed that it
took as long as 10 seconds to spread the load across numa domains.

Further investigation showed that this was a consequence of the
following:

 1. An ILB CPU was chosen from the first numa domain to trigger nohz idle
    load balancing [Given the experiment, upto 6 CPUs per core could be
    potentially idle in this domain.]

 2. However the ILB CPU would call load_balance() on itself before
    initiating nohz idle load balancing.

 3. Given cores are SMT8, the ILB CPU had enough opportunities to pull
    tasks from its sibling cores to even out load.

 4. Now that the ILB CPU was no longer idle, it would abort nohz idle
    load balancing

As a result the opportunities to spread load across numa domains were
lost until such a time that the cores within the first numa domain had
equal number of tasks among themselves.  This is a pretty bad scenario,
since the cores within the first numa domain would have as many as 4
tasks each, while cores in the neighbouring numa domains would all
remain idle.

Fix this, by checking if a CPU was woken up to do nohz idle load
balancing, before it does load balancing upon itself. This way we allow
idle CPUs across the system to do load balancing which results in
quicker spread of load, instead of performing load balancing within the
local sched domain hierarchy of the ILB CPU alone under circumstances
such as above.

Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Jason Low <jason.low2@hp.com>
Cc: benh@kernel.crashing.org
Cc: daniel.lezcano@linaro.org
Cc: efault@gmx.de
Cc: iamjoonsoo.kim@lge.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: riel@redhat.com
Cc: srikar@linux.vnet.ibm.com
Cc: svaidy@linux.vnet.ibm.com
Cc: tim.c.chen@linux.intel.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/20150326130014.21532.17158.stgit@preeti.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:09 +01:00
Peter Zijlstra
dfbca41f34 sched: Optimize freq invariant accounting
Currently the freq invariant accounting (in
__update_entity_runnable_avg() and sched_rt_avg_update()) get the
scale factor from a weak function call, this means that even for archs
that default on their implementation the compiler cannot see into this
function and optimize the extra scaling math away.

This is sad, esp. since its a 64-bit multiplication which can be quite
costly on some platforms.

So replace the weak function with #ifdef and __always_inline goo. This
is not quite as nice from an arch support PoV but should at least
result in compile time errors if done wrong.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Morten.Rasmussen@arm.com
Cc: Paul Turner <pjt@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/20150323131905.GF23123@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:08 +01:00
Vincent Guittot
1aaf90a4b8 sched: Move CFS tasks to CPUs with higher capacity
When a CPU is used to handle a lot of IRQs or some RT tasks, the remaining
capacity for CFS tasks can be significantly reduced. Once we detect such
situation by comparing cpu_capacity_orig and cpu_capacity, we trig an idle
load balance to check if it's worth moving its tasks on an idle CPU.

It's worth trying to move the task before the CPU is fully utilized to
minimize the preemption by irq or RT tasks.

Once the idle load_balance has selected the busiest CPU, it will look for an
active load balance for only two cases:

  - There is only 1 task on the busiest CPU.

  - We haven't been able to move a task of the busiest rq.

A CPU with a reduced capacity is included in the 1st case, and it's worth to
actively migrate its task if the idle CPU has got more available capacity for
CFS tasks. This test has been added in need_active_balance.

As a sidenote, this will not generate more spurious ilb because we already
trig an ilb if there is more than 1 busy cpu. If this cpu is the only one that
has a task, we will trig the ilb once for migrating the task.

The nohz_kick_needed function has been cleaned up a bit while adding the new
test

env.src_cpu and env.src_rq must be set unconditionnally because they are used
in need_active_balance which is called even if busiest->nr_running equals 1

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-12-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:06 +01:00
Vincent Guittot
dc7ff76ead sched: Remove unused struct sched_group_capacity::capacity_orig
The 'struct sched_group_capacity::capacity_orig' field is no longer used
in the scheduler so we can remove it.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425378903-5349-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:05 +01:00
Vincent Guittot
ea67821b9a sched: Replace capacity_factor by usage
The scheduler tries to compute how many tasks a group of CPUs can handle by
assuming that a task's load is SCHED_LOAD_SCALE and a CPU's capacity is
SCHED_CAPACITY_SCALE.

'struct sg_lb_stats:group_capacity_factor' divides the capacity of the group
by SCHED_LOAD_SCALE to estimate how many task can run in the group. Then, it
compares this value with the sum of nr_running to decide if the group is
overloaded or not.

But the 'group_capacity_factor' concept is hardly working for SMT systems, it
sometimes works for big cores but fails to do the right thing for little cores.

Below are two examples to illustrate the problem that this patch solves:

1- If the original capacity of a CPU is less than SCHED_CAPACITY_SCALE
   (640 as an example), a group of 3 CPUS will have a max capacity_factor of 2
   (div_round_closest(3x640/1024) = 2) which means that it will be seen as
   overloaded even if we have only one task per CPU.

2 - If the original capacity of a CPU is greater than SCHED_CAPACITY_SCALE
   (1512 as an example), a group of 4 CPUs will have a capacity_factor of 4
   (at max and thanks to the fix [0] for SMT system that prevent the apparition
   of ghost CPUs) but if one CPU is fully used by rt tasks (and its capacity is
   reduced to nearly nothing), the capacity factor of the group will still be 4
   (div_round_closest(3*1512/1024) = 5 which is cap to 4 with [0]).

So, this patch tries to solve this issue by removing capacity_factor and
replacing it with the 2 following metrics:

  - The available CPU's capacity for CFS tasks which is already used by
    load_balance().

  - The usage of the CPU by the CFS tasks. For the latter, utilization_avg_contrib
    has been re-introduced to compute the usage of a CPU by CFS tasks.

'group_capacity_factor' and 'group_has_free_capacity' has been removed and replaced
by 'group_no_capacity'. We compare the number of task with the number of CPUs and
we evaluate the level of utilization of the CPUs to define if a group is
overloaded or if a group has capacity to handle more tasks.

For SD_PREFER_SIBLING, a group is tagged overloaded if it has more than 1 task
so it will be selected in priority (among the overloaded groups). Since [1],
SD_PREFER_SIBLING is no more concerned by the computation of 'load_above_capacity'
because local is not overloaded.

[1] 9a5d9ba6a3 ("sched/fair: Allow calculate_imbalance() to move idle cpus")

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1425052454-25797-9-git-send-email-vincent.guittot@linaro.org
[ Tidied up the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:04 +01:00
Vincent Guittot
8bb5b00c2f sched: Calculate CPU's usage statistic and put it into struct sg_lb_stats::group_usage
Monitor the usage level of each group of each sched_domain level. The usage is
the portion of cpu_capacity_orig that is currently used on a CPU or group of
CPUs. We use the utilization_load_avg to evaluate the usage level of each
group.

The utilization_load_avg only takes into account the running time of the CFS
tasks on a CPU with a maximum value of SCHED_LOAD_SCALE when the CPU is fully
utilized. Nevertheless, we must cap utilization_load_avg which can be
temporally greater than SCHED_LOAD_SCALE after the migration of a task on this
CPU and until the metrics are stabilized.

The utilization_load_avg is in the range [0..SCHED_LOAD_SCALE] to reflect the
running load on the CPU whereas the available capacity for the CFS task is in
the range [0..cpu_capacity_orig]. In order to test if a CPU is fully utilized
by CFS tasks, we have to scale the utilization in the cpu_capacity_orig range
of the CPU to get the usage of the latter. The usage can then be compared with
the available capacity (ie cpu_capacity) to deduct the usage level of a CPU.

The frequency scaling invariance of the usage is not taken into account in this
patch, it will be solved in another patch which will deal with frequency
scaling invariance on the utilization_load_avg.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425455327-13508-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:03 +01:00
Vincent Guittot
ca6d75e690 sched: Add struct rq::cpu_capacity_orig
This new field 'cpu_capacity_orig' reflects the original capacity of a CPU
before being altered by rt tasks and/or IRQ

The cpu_capacity_orig will be used:

  - to detect when the capacity of a CPU has been noticeably reduced so we can
    trig load balance to look for a CPU with better capacity. As an example, we
    can detect when a CPU handles a significant amount of irq
    (with CONFIG_IRQ_TIME_ACCOUNTING) but this CPU is seen as an idle CPU by
    scheduler whereas CPUs, which are really idle, are available.

  - evaluate the available capacity for CFS tasks

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:02 +01:00
Vincent Guittot
b5b4860d1d sched: Make scale_rt invariant with frequency
The average running time of RT tasks is used to estimate the remaining compute
capacity for CFS tasks. This remaining capacity is the original capacity scaled
down by a factor (aka scale_rt_capacity). This estimation of available capacity
must also be invariant with frequency scaling.

A frequency scaling factor is applied on the running time of the RT tasks for
computing scale_rt_capacity.

In sched_rt_avg_update(), we now scale the RT execution time like below:

  rq->rt_avg += rt_delta * arch_scale_freq_capacity() >> SCHED_CAPACITY_SHIFT

Then, scale_rt_capacity can be summarized by:

  scale_rt_capacity = SCHED_CAPACITY_SCALE * available / total

with available = total - rq->rt_avg

This has been been optimized in current code by:

  scale_rt_capacity = available / (total >> SCHED_CAPACITY_SHIFT)

But we can also developed the equation like below:

  scale_rt_capacity = SCHED_CAPACITY_SCALE - ((rq->rt_avg << SCHED_CAPACITY_SHIFT) / total)

and we can optimize the equation by removing SCHED_CAPACITY_SHIFT shift in
the computation of rq->rt_avg and scale_rt_capacity().

so rq->rt_avg += rt_delta * arch_scale_freq_capacity()
and
scale_rt_capacity = SCHED_CAPACITY_SCALE - (rq->rt_avg / total)

arch_scale_frequency_capacity() will be called in the hot path of the scheduler
which implies to have a short and efficient function.

As an example, arch_scale_frequency_capacity() should return a cached value that
is updated periodically outside of the hot path.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-6-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:01 +01:00
Morten Rasmussen
0c1dc6b27d sched: Make sched entity usage tracking scale-invariant
Apply frequency scale-invariance correction factor to usage tracking.

Each segment of the running_avg_sum geometric series is now scaled by the
current frequency so the utilization_avg_contrib of each entity will be
invariant with frequency scaling.

As a result, utilization_load_avg which is the sum of utilization_avg_contrib,
becomes invariant too. So the usage level that is returned by get_cpu_usage(),
stays relative to the max frequency as the cpu_capacity which is is compared against.

Then, we want the keep the load tracking values in a 32-bit type, which implies
that the max value of {runnable|running}_avg_sum must be lower than
2^32/88761=48388 (88761 is the max weigth of a task). As LOAD_AVG_MAX = 47742,
arch_scale_freq_capacity() must return a value less than
(48388/47742) << SCHED_CAPACITY_SHIFT = 1037 (SCHED_SCALE_CAPACITY = 1024).
So we define the range to [0..SCHED_SCALE_CAPACITY] in order to avoid overflow.

Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Morten.Rasmussen@arm.com
Cc: Paul Turner <pjt@google.com>
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425455186-13451-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:00 +01:00
Vincent Guittot
a8faa8f55d sched: Remove frequency scaling from cpu_capacity
Now that arch_scale_cpu_capacity has been introduced to scale the original
capacity, the arch_scale_freq_capacity is no longer used (it was
previously used by ARM arch).

Remove arch_scale_freq_capacity from the computation of cpu_capacity.
The frequency invariance will be handled in the load tracking and not in
the CPU capacity. arch_scale_freq_capacity will be revisited for scaling
load with the current frequency of the CPUs in a later patch.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:35:59 +01:00
Morten Rasmussen
21f4486630 sched: Track group sched_entity usage contributions
Add usage contribution tracking for group entities. Unlike
se->avg.load_avg_contrib, se->avg.utilization_avg_contrib for group
entities is the sum of se->avg.utilization_avg_contrib for all entities on the
group runqueue.

It is _not_ influenced in any way by the task group h_load. Hence it is
representing the actual cpu usage of the group, not its intended load
contribution which may differ significantly from the utilization on
lightly utilized systems.

Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Morten.Rasmussen@arm.com
Cc: Paul Turner <pjt@google.com>
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:35:58 +01:00
Vincent Guittot
36ee28e45d sched: Add sched_avg::utilization_avg_contrib
Add new statistics which reflect the average time a task is running on the CPU
and the sum of these running time of the tasks on a runqueue. The latter is
named utilization_load_avg.

This patch is based on the usage metric that was proposed in the 1st
versions of the per-entity load tracking patchset by Paul Turner
<pjt@google.com> but that has be removed afterwards. This version differs from
the original one in the sense that it's not linked to task_group.

The rq's utilization_load_avg will be used to check if a rq is overloaded or
not instead of trying to compute how many tasks a group of CPUs can handle.

Rename runnable_avg_period into avg_period as it is now used with both
runnable_avg_sum and running_avg_sum.

Add some descriptions of the variables to explain their differences.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Morten.Rasmussen@arm.com
Cc: Paul Turner <pjt@google.com>
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:35:57 +01:00
Mel Gorman
074c238177 mm: numa: slow PTE scan rate if migration failures occur
Dave Chinner reported the following on https://lkml.org/lkml/2015/3/1/226

  Across the board the 4.0-rc1 numbers are much slower, and the degradation
  is far worse when using the large memory footprint configs. Perf points
  straight at the cause - this is from 4.0-rc1 on the "-o bhash=101073" config:

   -   56.07%    56.07%  [kernel]            [k] default_send_IPI_mask_sequence_phys
      - default_send_IPI_mask_sequence_phys
         - 99.99% physflat_send_IPI_mask
            - 99.37% native_send_call_func_ipi
                 smp_call_function_many
               - native_flush_tlb_others
                  - 99.85% flush_tlb_page
                       ptep_clear_flush
                       try_to_unmap_one
                       rmap_walk
                       try_to_unmap
                       migrate_pages
                       migrate_misplaced_page
                     - handle_mm_fault
                        - 99.73% __do_page_fault
                             trace_do_page_fault
                             do_async_page_fault
                           + async_page_fault
              0.63% native_send_call_func_single_ipi
                 generic_exec_single
                 smp_call_function_single

This is showing excessive migration activity even though excessive
migrations are meant to get throttled.  Normally, the scan rate is tuned
on a per-task basis depending on the locality of faults.  However, if
migrations fail for any reason then the PTE scanner may scan faster if
the faults continue to be remote.  This means there is higher system CPU
overhead and fault trapping at exactly the time we know that migrations
cannot happen.  This patch tracks when migration failures occur and
slows the PTE scanner.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-25 16:20:31 -07:00
Jan Beulich
890a5409f9 sched/numa: Avoid some pointless iterations
Commit 81907478c4 ("sched/fair: Avoid using uninitialized variable
in preferred_group_nid()") unconditionally initializes max_group with
NODE_MASK_NONE, this means that when !max_faults (max_group didn't get
set), we'll now continue the iteration with an empty mask.

Which in turn makes the actual body of the loop go away, so we'll just
iterate until completion; short circuit this by breaking out of the
loop as soon as this would happen.

Signed-off-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20150209113727.GS5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 16:18:02 +01:00
Rik van Riel
095bebf61a sched/numa: Do not move past the balance point if unbalanced
There is a subtle interaction between the logic introduced in commit
e63da03639 ("sched/numa: Allow task switch if load imbalance improves"),
the way the load balancer counts the load on each NUMA node, and the way
NUMA hinting faults are done.

Specifically, the load balancer only counts currently running tasks
in the load, while NUMA hinting faults may cause tasks to stop, if
the page is locked by another task.

This could cause all of the threads of a large single instance workload,
like SPECjbb2005, to migrate to the same NUMA node. This was possible
because occasionally they all fault on the same few pages, and only one
of the threads remains runnable. That thread can move to the process's
preferred NUMA node without making the imbalance worse, because nothing
else is running at that time.

The fix is to check the direction of the net moving of load, and to
refuse a NUMA move if it would cause the system to move past the point
of balance.  In an unbalanced state, only moves that bring us closer
to the balance point are allowed.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/20150203165648.0e9ac692@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 16:18:00 +01:00
Ingo Molnar
3847b27224 Merge branch 'sched/urgent' into sched/core
Merge all pending fixes and refresh the tree, before applying new changes.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-30 19:28:36 +01:00
Jan Beulich
81907478c4 sched/fair: Avoid using uninitialized variable in preferred_group_nid()
At least some gcc versions - validly afaict - warn about potentially
using max_group uninitialized: There's no way the compiler can prove
that the body of the conditional where it and max_faults get set/
updated gets executed; in fact, without knowing all the details of
other scheduler code, I can't prove this either.

Generally the necessary change would appear to be to clear max_group
prior to entering the inner loop, and break out of the outer loop when
it ends up being all clear after the inner one. This, however, seems
inefficient, and afaict the same effect can be achieved by exiting the
outer loop when max_faults is still zero after the inner loop.

[ mingo: changed the solution to zero initialization: uninitialized_var()
  needs to die, as it's an actively dangerous construct: if in the future
  a known-proven-good piece of code is changed to have a true, buggy
  uninitialized variable, the compiler warning is then supressed...

  The better long term solution is to clean up the code flow, so that
  even simple minded compilers (and humans!) are able to read it without
  getting a headache.  ]

Signed-off-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/54C2139202000078000588F7@mail.emea.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-28 13:14:12 +01:00
Peter Zijlstra
9edfbfed3f sched/core: Rework rq->clock update skips
The original purpose of rq::skip_clock_update was to avoid 'costly' clock
updates for back to back wakeup-preempt pairs. The big problem with it
has always been that the rq variable is unaware of the context and
causes indiscrimiate clock skips.

Rework the entire thing and create a sense of context by only allowing
schedule() to skip clock updates. (XXX can we measure the cost of the
added store?)

By ensuring only schedule can ever skip an update, we guarantee we're
never more than 1 tick behind on the update.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150105103554.432381549@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:20 +01:00
Peter Zijlstra
cebde6d681 sched/core: Validate rq_clock*() serialization
rq->clock{,_task} are serialized by rq->lock, verify this.

One immediate fail is the usage in scale_rt_capability, so 'annotate'
that for now, there's more 'funny' there. Maybe change rq->lock into a
raw_seqlock_t?

(Only 32-bit is affected)

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150105103554.361872747@infradead.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:19 +01:00
Kirill Tkhai
bb04159df9 sched/fair: Fix sched_entity::avg::decay_count initialization
Child has the same decay_count as parent. If it's not zero,
we add it to parent's cfs_rq->removed_load:

wake_up_new_task()->set_task_cpu()->migrate_task_rq_fair().

Child's load is a just garbade after copying of parent,
it hasn't been on cfs_rq yet, and it must not be added to
cfs_rq::removed_load in migrate_task_rq_fair().

The patch moves sched_entity::avg::decay_count intialization
in sched_fork(). So, migrate_task_rq_fair() does not change
removed_load.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1418644618.6074.13.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:16 +01:00
Xunlei Pang
638476007d sched/fair: Fix the dealing with decay_count in __synchronize_entity_decay()
In __synchronize_entity_decay(), if "decays" happens to be zero,
se->avg.decay_count will not be zeroed, holding the positive value
assigned when dequeued last time.

This is problematic in the following case:
If this runnable task is CFS-balanced to other CPUs soon afterwards,
migrate_task_rq_fair() will treat it as a blocked task due to its
non-zero decay_count, thereby adding its load to cfs_rq->removed_load
wrongly.

Thus, we must zero se->avg.decay_count in this case as well.

Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1418745509-2609-1-git-send-email-pang.xunlei@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:13 +01:00
Tetsuo Handa
7f1a169b88 sched/fair: Fix RCU stall upon -ENOMEM in sched_create_group()
When alloc_fair_sched_group() in sched_create_group() fails,
free_sched_group() is called, and free_fair_sched_group() is called by
free_sched_group(). Since destroy_cfs_bandwidth() is called by
free_fair_sched_group() without calling init_cfs_bandwidth(),
RCU stall occurs at hrtimer_cancel():

  INFO: rcu_sched self-detected stall on CPU { 1}  (t=60000 jiffies g=13074 c=13073 q=0)
  Task dump for CPU 1:
  (fprintd)       R  running task        0  6249      1 0x00000088
  ...
  Call Trace:
   <IRQ>  [<ffffffff81094988>] sched_show_task+0xa8/0x110
   [<ffffffff81097acd>] dump_cpu_task+0x3d/0x50
   [<ffffffff810c3a80>] rcu_dump_cpu_stacks+0x90/0xd0
   [<ffffffff810c7751>] rcu_check_callbacks+0x491/0x700
   [<ffffffff810cbf2b>] update_process_times+0x4b/0x80
   [<ffffffff810db046>] tick_sched_handle.isra.20+0x36/0x50
   [<ffffffff810db0a2>] tick_sched_timer+0x42/0x70
   [<ffffffff810ccb19>] __run_hrtimer+0x69/0x1a0
   [<ffffffff810db060>] ? tick_sched_handle.isra.20+0x50/0x50
   [<ffffffff810ccedf>] hrtimer_interrupt+0xef/0x230
   [<ffffffff810452cb>] local_apic_timer_interrupt+0x3b/0x70
   [<ffffffff8164a465>] smp_apic_timer_interrupt+0x45/0x60
   [<ffffffff816485bd>] apic_timer_interrupt+0x6d/0x80
   <EOI>  [<ffffffff810cc588>] ? lock_hrtimer_base.isra.23+0x18/0x50
   [<ffffffff81193cf1>] ? __kmalloc+0x211/0x230
   [<ffffffff810cc9d2>] hrtimer_try_to_cancel+0x22/0xd0
   [<ffffffff81193cf1>] ? __kmalloc+0x211/0x230
   [<ffffffff810ccaa2>] hrtimer_cancel+0x22/0x30
   [<ffffffff810a3cb5>] free_fair_sched_group+0x25/0xd0
   [<ffffffff8108df46>] free_sched_group+0x16/0x40
   [<ffffffff810971bb>] sched_create_group+0x4b/0x80
   [<ffffffff810aa383>] sched_autogroup_create_attach+0x43/0x1c0
   [<ffffffff8107dc9c>] sys_setsid+0x7c/0x110
   [<ffffffff81647729>] system_call_fastpath+0x12/0x17

Check whether init_cfs_bandwidth() was called before calling
destroy_cfs_bandwidth().

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
[ Move the check into destroy_cfs_bandwidth() to aid compilability. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/201412252210.GCC30204.SOMVFFOtQJFLOH@I-love.SAKURA.ne.jp
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-09 11:19:00 +01:00
Yuyang Du
32a8df4e0b sched: Fix odd values in effective_load() calculations
In effective_load, we have (long w * unsigned long tg->shares) / long W,
when w is negative, it is cast to unsigned long and hence the product is
insanely large. Fix this by casting tg->shares to long.

Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141219002956.GA25405@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-09 11:18:54 +01:00
Wanpeng Li
cb0b9f2445 sched/fair: Fix stale overloaded status in the busiest group finding logic
Commit caeb178c60 ("sched/fair: Make update_sd_pick_busiest() return
'true' on a busier sd") changes groups to be ranked in the order of
overloaded > imbalance > other, and busiest group is picked according
to this order.

sgs->group_capacity_factor is used to check if the group is overloaded.

When the child domain prefers tasks to go to siblings first, the
sgs->group_capacity_factor will be set lower than one in order to
move all the excess tasks away.

However, group overloaded status is not updated when
sgs->group_capacity_factor is set to lower than one, which leads to us
missing to find the busiest group.

This patch fixes it by updating group overloaded status when sg capacity
factor is set to one, in order to find the busiest group accurately.

Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1415144690-25196-1-git-send-email-wanpeng.li@linux.intel.com
[ Fixed the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:58:56 +01:00
Wanpeng Li
6c1d9410f0 sched: Move p->nr_cpus_allowed check to select_task_rq()
Move the p->nr_cpus_allowed check into kernel/sched/core.c: select_task_rq().
This change will make fair.c, rt.c, and deadline.c all start with the
same logic.

Suggested-and-Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "pang.xunlei" <pang.xunlei@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1415150077-59053-1-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:58:55 +01:00
Kirill Tkhai
753899183c sched/fair: Kill task_struct::numa_entry and numa_group::task_list
Nobody iterates over numa_group::task_list, this just confuses the readers.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1415358456.28592.17.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:58:48 +01:00
Ingo Molnar
e9ac5f0fa8 Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying more changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:50:25 +01:00
Stanislaw Gruszka
6e998916df sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency
Commit d670ec1317 "posix-cpu-timers: Cure SMP wobbles" fixes one glibc
test case in cost of breaking another one. After that commit, calling
clock_nanosleep(TIMER_ABSTIME, X) and then clock_gettime(&Y) can result
of Y time being smaller than X time.

Reproducer/tester can be found further below, it can be compiled and ran by:

	gcc -o tst-cpuclock2 tst-cpuclock2.c -pthread
	while ./tst-cpuclock2 ; do : ; done

This reproducer, when running on a buggy kernel, will complain
about "clock_gettime difference too small".

Issue happens because on start in thread_group_cputimer() we initialize
sum_exec_runtime of cputimer with threads runtime not yet accounted and
then add the threads runtime to running cputimer again on scheduler
tick, making it's sum_exec_runtime bigger than actual threads runtime.

KOSAKI Motohiro posted a fix for this problem, but that patch was never
applied: https://lkml.org/lkml/2013/5/26/191 .

This patch takes different approach to cure the problem. It calls
update_curr() when cputimer starts, that assure we will have updated
stats of running threads and on the next schedule tick we will account
only the runtime that elapsed from cputimer start. That also assure we
have consistent state between cpu times of individual threads and cpu
time of the process consisted by those threads.

Full reproducer (tst-cpuclock2.c):

	#define _GNU_SOURCE
	#include <unistd.h>
	#include <sys/syscall.h>
	#include <stdio.h>
	#include <time.h>
	#include <pthread.h>
	#include <stdint.h>
	#include <inttypes.h>

	/* Parameters for the Linux kernel ABI for CPU clocks.  */
	#define CPUCLOCK_SCHED          2
	#define MAKE_PROCESS_CPUCLOCK(pid, clock) \
		((~(clockid_t) (pid) << 3) | (clockid_t) (clock))

	static pthread_barrier_t barrier;

	/* Help advance the clock.  */
	static void *chew_cpu(void *arg)
	{
		pthread_barrier_wait(&barrier);
		while (1) ;

		return NULL;
	}

	/* Don't use the glibc wrapper.  */
	static int do_nanosleep(int flags, const struct timespec *req)
	{
		clockid_t clock_id = MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED);

		return syscall(SYS_clock_nanosleep, clock_id, flags, req, NULL);
	}

	static int64_t tsdiff(const struct timespec *before, const struct timespec *after)
	{
		int64_t before_i = before->tv_sec * 1000000000ULL + before->tv_nsec;
		int64_t after_i = after->tv_sec * 1000000000ULL + after->tv_nsec;

		return after_i - before_i;
	}

	int main(void)
	{
		int result = 0;
		pthread_t th;

		pthread_barrier_init(&barrier, NULL, 2);

		if (pthread_create(&th, NULL, chew_cpu, NULL) != 0) {
			perror("pthread_create");
			return 1;
		}

		pthread_barrier_wait(&barrier);

		/* The test.  */
		struct timespec before, after, sleeptimeabs;
		int64_t sleepdiff, diffabs;
		const struct timespec sleeptime = {.tv_sec = 0,.tv_nsec = 100000000 };

		/* The relative nanosleep.  Not sure why this is needed, but its presence
		   seems to make it easier to reproduce the problem.  */
		if (do_nanosleep(0, &sleeptime) != 0) {
			perror("clock_nanosleep");
			return 1;
		}

		/* Get the current time.  */
		if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &before) < 0) {
			perror("clock_gettime[2]");
			return 1;
		}

		/* Compute the absolute sleep time based on the current time.  */
		uint64_t nsec = before.tv_nsec + sleeptime.tv_nsec;
		sleeptimeabs.tv_sec = before.tv_sec + nsec / 1000000000;
		sleeptimeabs.tv_nsec = nsec % 1000000000;

		/* Sleep for the computed time.  */
		if (do_nanosleep(TIMER_ABSTIME, &sleeptimeabs) != 0) {
			perror("absolute clock_nanosleep");
			return 1;
		}

		/* Get the time after the sleep.  */
		if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &after) < 0) {
			perror("clock_gettime[3]");
			return 1;
		}

		/* The time after sleep should always be equal to or after the absolute sleep
		   time passed to clock_nanosleep.  */
		sleepdiff = tsdiff(&sleeptimeabs, &after);
		if (sleepdiff < 0) {
			printf("absolute clock_nanosleep woke too early: %" PRId64 "\n", sleepdiff);
			result = 1;

			printf("Before %llu.%09llu\n", before.tv_sec, before.tv_nsec);
			printf("After  %llu.%09llu\n", after.tv_sec, after.tv_nsec);
			printf("Sleep  %llu.%09llu\n", sleeptimeabs.tv_sec, sleeptimeabs.tv_nsec);
		}

		/* The difference between the timestamps taken before and after the
		   clock_nanosleep call should be equal to or more than the duration of the
		   sleep.  */
		diffabs = tsdiff(&before, &after);
		if (diffabs < sleeptime.tv_nsec) {
			printf("clock_gettime difference too small: %" PRId64 "\n", diffabs);
			result = 1;
		}

		pthread_cancel(th);

		return result;
	}

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141112155843.GA24803@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:04:20 +01:00
Peter Zijlstra
7af683350c sched/numa: Avoid selecting oneself as swap target
Because the whole numa task selection stuff runs with preemption
enabled (its long and expensive) we can end up migrating and selecting
oneself as a swap target. This doesn't really work out well -- we end
up trying to acquire the same lock twice for the swap migrate -- so
avoid this.

Reported-and-Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141110100328.GF29390@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:04:17 +01:00
Iulia Manda
44dba3d5d6 sched: Refactor task_struct to use numa_faults instead of numa_* pointers
This patch simplifies task_struct by removing the four numa_* pointers
in the same array and replacing them with the array pointer. By doing this,
on x86_64, the size of task_struct is reduced by 3 ulong pointers (24 bytes on
x86_64).

A new parameter is added to the task_faults_idx function so that it can return
an index to the correct offset, corresponding with the old precalculated
pointers.

All of the code in sched/ that depended on task_faults_idx and numa_* was
changed in order to match the new logic.

Signed-off-by: Iulia Manda <iulia.manda21@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: dave@stgolabs.net
Cc: riel@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141031001331.GA30662@winterfell
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:57 +01:00
Yao Dongdong
9f96742a13 sched: Check if we got a shallowest_idle_cpu before searching for least_loaded_cpu
Idle cpu is idler than non-idle cpu, so we needn't search for least_loaded_cpu
after we have found an idle cpu.

Signed-off-by: Yao Dongdong <yaodongdong@huawei.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414469286-6023-1-git-send-email-yaodongdong@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:51 +01:00
Rik van Riel
9de05d4871 sched/numa: Check all nodes when placing a pseudo-interleaved group
In pseudo-interleaved numa_groups, all tasks try to relocate to
the group's preferred_nid.  When a group is spread across multiple
NUMA nodes, this can lead to tasks swapping their location with
other tasks inside the same group, instead of swapping location with
tasks from other NUMA groups. This can keep NUMA groups from converging.

Examining all nodes, when dealing with a task in a pseudo-interleaved
NUMA group, avoids this problem. Note that only CPUs in nodes that
improve the task or group score are examined, so the loop isn't too
bad.

Tested-by: Vinod Chegu <chegu_vinod@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "Vinod Chegu" <chegu_vinod@hp.com>
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141009172747.0d97c38c@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:52 +01:00
Rik van Riel
54009416ac sched/numa: Find the preferred nid with complex NUMA topology
On systems with complex NUMA topologies, the node scoring is adjusted
to allow workloads to converge on nodes that are near each other.

The way a task group's preferred nid is determined needs to be adjusted,
in order for the preferred_nid to be consistent with group_weight scoring.
This ensures that we actually try to converge workloads on adjacent nodes.

Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1413530994-9732-6-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:51 +01:00
Rik van Riel
6c6b1193e7 sched/numa: Calculate node scores in complex NUMA topologies
In order to do task placement on systems with complex NUMA topologies,
it is necessary to count the faults on nodes nearby the node that is
being examined for a potential move.

In case of a system with a backplane interconnect, we are dealing with
groups of NUMA nodes; each of the nodes within a group is the same number
of hops away from nodes in other groups in the system. Optimal placement
on this topology is achieved by counting all nearby nodes equally. When
comparing nodes A and B at distance N, nearby nodes are those at distances
smaller than N from nodes A or B.

Placement strategy on a system with a glueless mesh NUMA topology needs
to be different, because there are no natural groups of nodes determined
by the hardware. Instead, when dealing with two nodes A and B at distance
N, N >= 2, there will be intermediate nodes at distance < N from both nodes
A and B. Good placement can be achieved by right shifting the faults on
nearby nodes by the number of hops from the node being scored. In this
context, a nearby node is any node less than the maximum distance in the
system away from the node. Those nodes are skipped for efficiency reasons,
there is no real policy reason to do so.

Placement policy on directly connected NUMA systems is not affected.

Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Link: http://lkml.kernel.org/r/1413530994-9732-5-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:50 +01:00
Rik van Riel
7bd953206b sched/numa: Prepare for complex topology placement
Preparatory patch for adding NUMA placement on systems with
complex NUMA topology. Also fix a potential divide by zero
in group_weight()

Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1413530994-9732-4-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:49 +01:00
Kirill Tkhai
6419265899 sched/fair: Fix division by zero sysctl_numa_balancing_scan_size
File /proc/sys/kernel/numa_balancing_scan_size_mb allows writing of zero.

This bash command reproduces problem:

$ while :; do echo 0 > /proc/sys/kernel/numa_balancing_scan_size_mb; \
	   echo 256 > /proc/sys/kernel/numa_balancing_scan_size_mb; done

	divide error: 0000 [#1] SMP
	Modules linked in:
	CPU: 0 PID: 24112 Comm: bash Not tainted 3.17.0+ #8
	Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
	task: ffff88013c852600 ti: ffff880037a68000 task.ti: ffff880037a68000
	RIP: 0010:[<ffffffff81074191>]  [<ffffffff81074191>] task_scan_min+0x21/0x50
	RSP: 0000:ffff880037a6bce0  EFLAGS: 00010246
	RAX: 0000000000000a00 RBX: 00000000000003e8 RCX: 0000000000000000
	RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88013c852600
	RBP: ffff880037a6bcf0 R08: 0000000000000001 R09: 0000000000015c90
	R10: ffff880239bf6c00 R11: 0000000000000016 R12: 0000000000003fff
	R13: ffff88013c852600 R14: ffffea0008d1b000 R15: 0000000000000003
	FS:  00007f12bb048700(0000) GS:ffff88007da00000(0000) knlGS:0000000000000000
	CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
	CR2: 0000000001505678 CR3: 0000000234770000 CR4: 00000000000006f0
	Stack:
	 ffff88013c852600 0000000000003fff ffff880037a6bd18 ffffffff810741d1
	 ffff88013c852600 0000000000003fff 000000000002bfff ffff880037a6bda8
	 ffffffff81077ef7 ffffea0008a56d40 0000000000000001 0000000000000001
	Call Trace:
	 [<ffffffff810741d1>] task_scan_max+0x11/0x40
	 [<ffffffff81077ef7>] task_numa_fault+0x1f7/0xae0
	 [<ffffffff8115a896>] ? migrate_misplaced_page+0x276/0x300
	 [<ffffffff81134a4d>] handle_mm_fault+0x62d/0xba0
	 [<ffffffff8103e2f1>] __do_page_fault+0x191/0x510
	 [<ffffffff81030122>] ? native_smp_send_reschedule+0x42/0x60
	 [<ffffffff8106dc00>] ? check_preempt_curr+0x80/0xa0
	 [<ffffffff8107092c>] ? wake_up_new_task+0x11c/0x1a0
	 [<ffffffff8104887d>] ? do_fork+0x14d/0x340
	 [<ffffffff811799bb>] ? get_unused_fd_flags+0x2b/0x30
	 [<ffffffff811799df>] ? __fd_install+0x1f/0x60
	 [<ffffffff8103e67c>] do_page_fault+0xc/0x10
	 [<ffffffff8150d322>] page_fault+0x22/0x30
	RIP  [<ffffffff81074191>] task_scan_min+0x21/0x50
	RSP <ffff880037a6bce0>
	---[ end trace 9a826d16936c04de ]---

Also fix race in task_scan_min (it depends on compiler behaviour).

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Aaron Tomlin <atomlin@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: David Rientjes <rientjes@google.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Link: http://lkml.kernel.org/r/1413455977.24793.78.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:46:04 +01:00
Yasuaki Ishimatsu
2847c90e1b sched/fair: Care divide error in update_task_scan_period()
While offling node by hot removing memory, the following divide error
occurs:

  divide error: 0000 [#1] SMP
  [...]
  Call Trace:
   [...] handle_mm_fault
   [...] ? try_to_wake_up
   [...] ? wake_up_state
   [...] __do_page_fault
   [...] ? do_futex
   [...] ? put_prev_entity
   [...] ? __switch_to
   [...] do_page_fault
   [...] page_fault
  [...]
  RIP  [<ffffffff810a7081>] task_numa_fault
   RSP <ffff88084eb2bcb0>

The issue occurs as follows:
  1. When page fault occurs and page is allocated from node 1,
     task_struct->numa_faults_buffer_memory[] of node 1 is
     incremented and p->numa_faults_locality[] is also incremented
     as follows:

     o numa_faults_buffer_memory[]       o numa_faults_locality[]
              NR_NUMA_HINT_FAULT_TYPES
             |      0     |     1     |
     ----------------------------------  ----------------------
      node 0 |      0     |     0     |   remote |      0     |
      node 1 |      0     |     1     |   locale |      1     |
     ----------------------------------  ----------------------

  2. node 1 is offlined by hot removing memory.

  3. When page fault occurs, fault_types[] is calculated by using
     p->numa_faults_buffer_memory[] of all online nodes in
     task_numa_placement(). But node 1 was offline by step 2. So
     the fault_types[] is calculated by using only
     p->numa_faults_buffer_memory[] of node 0. So both of fault_types[]
     are set to 0.

  4. The values(0) of fault_types[] pass to update_task_scan_period().

  5. numa_faults_locality[1] is set to 1. So the following division is
     calculated.

        static void update_task_scan_period(struct task_struct *p,
                                unsigned long shared, unsigned long private){
        ...
                ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
        }

  6. But both of private and shared are set to 0. So divide error
     occurs here.

The divide error is rare case because the trigger is node offline.
This patch always increments denominator for avoiding divide error.

Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/54475703.8000505@jp.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:46:03 +01:00
Kirill Tkhai
1effd9f193 sched/numa: Fix unsafe get_task_struct() in task_numa_assign()
Unlocked access to dst_rq->curr in task_numa_compare() is racy.
If curr task is exiting this may be a reason of use-after-free:

task_numa_compare()                    do_exit()
    ...                                        current->flags |= PF_EXITING;
    ...                                    release_task()
    ...                                        ~~delayed_put_task_struct()~~
    ...                                    schedule()
    rcu_read_lock()                        ...
    cur = ACCESS_ONCE(dst_rq->curr)        ...
        ...                                rq->curr = next;
        ...                                    context_switch()
        ...                                        finish_task_switch()
        ...                                            put_task_struct()
        ...                                                __put_task_struct()
        ...                                                    free_task_struct()
        task_numa_assign()                                     ...
            get_task_struct()                                  ...

As noted by Oleg:

  <<The lockless get_task_struct(tsk) is only safe if tsk == current
    and didn't pass exit_notify(), or if this tsk was found on a rcu
    protected list (say, for_each_process() or find_task_by_vpid()).
    IOW, it is only safe if release_task() was not called before we
    take rcu_read_lock(), in this case we can rely on the fact that
    delayed_put_pid() can not drop the (potentially) last reference
    until rcu_read_unlock().

    And as Kirill pointed out task_numa_compare()->task_numa_assign()
    path does get_task_struct(dst_rq->curr) and this is not safe. The
    task_struct itself can't go away, but rcu_read_lock() can't save
    us from the final put_task_struct() in finish_task_switch(); this
    reference goes away without rcu gp>>

The patch provides simple check of PF_EXITING flag. If it's not set,
this guarantees that call_rcu() of delayed_put_task_struct() callback
hasn't happened yet, so we can safely do get_task_struct() in
task_numa_assign().

Locked dst_rq->lock protects from concurrency with the last schedule().
Reusing or unmapping of cur's memory may happen without it.

Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1413962231.19914.130.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:46:02 +01:00
Linus Torvalds
0429fbc0bd Merge branch 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu consistent-ops changes from Tejun Heo:
 "Way back, before the current percpu allocator was implemented, static
  and dynamic percpu memory areas were allocated and handled separately
  and had their own accessors.  The distinction has been gone for many
  years now; however, the now duplicate two sets of accessors remained
  with the pointer based ones - this_cpu_*() - evolving various other
  operations over time.  During the process, we also accumulated other
  inconsistent operations.

  This pull request contains Christoph's patches to clean up the
  duplicate accessor situation.  __get_cpu_var() uses are replaced with
  with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().

  Unfortunately, the former sometimes is tricky thanks to C being a bit
  messy with the distinction between lvalues and pointers, which led to
  a rather ugly solution for cpumask_var_t involving the introduction of
  this_cpu_cpumask_var_ptr().

  This converts most of the uses but not all.  Christoph will follow up
  with the remaining conversions in this merge window and hopefully
  remove the obsolete accessors"

* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
  irqchip: Properly fetch the per cpu offset
  percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
  ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
  percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
  Revert "powerpc: Replace __get_cpu_var uses"
  percpu: Remove __this_cpu_ptr
  clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
  sparc: Replace __get_cpu_var uses
  avr32: Replace __get_cpu_var with __this_cpu_write
  blackfin: Replace __get_cpu_var uses
  tile: Use this_cpu_ptr() for hardware counters
  tile: Replace __get_cpu_var uses
  powerpc: Replace __get_cpu_var uses
  alpha: Replace __get_cpu_var
  ia64: Replace __get_cpu_var uses
  s390: cio driver &__get_cpu_var replacements
  s390: Replace __get_cpu_var uses
  mips: Replace __get_cpu_var uses
  MIPS: Replace __get_cpu_var uses in FPU emulator.
  arm: Replace __this_cpu_ptr with raw_cpu_ptr
  ...
2014-10-15 07:48:18 +02:00
Linus Torvalds
faafcba3b5 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle were:

   - Optimized support for Intel "Cluster-on-Die" (CoD) topologies (Dave
     Hansen)

   - Various sched/idle refinements for better idle handling (Nicolas
     Pitre, Daniel Lezcano, Chuansheng Liu, Vincent Guittot)

   - sched/numa updates and optimizations (Rik van Riel)

   - sysbench speedup (Vincent Guittot)

   - capacity calculation cleanups/refactoring (Vincent Guittot)

   - Various cleanups to thread group iteration (Oleg Nesterov)

   - Double-rq-lock removal optimization and various refactorings
     (Kirill Tkhai)

   - various sched/deadline fixes

  ... and lots of other changes"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
  sched/dl: Use dl_bw_of() under rcu_read_lock_sched()
  sched/fair: Delete resched_cpu() from idle_balance()
  sched, time: Fix build error with 64 bit cputime_t on 32 bit systems
  sched: Improve sysbench performance by fixing spurious active migration
  sched/x86: Fix up typo in topology detection
  x86, sched: Add new topology for multi-NUMA-node CPUs
  sched/rt: Use resched_curr() in task_tick_rt()
  sched: Use rq->rd in sched_setaffinity() under RCU read lock
  sched: cleanup: Rename 'out_unlock' to 'out_free_new_mask'
  sched: Use dl_bw_of() under RCU read lock
  sched/fair: Remove duplicate code from can_migrate_task()
  sched, mips, ia64: Remove __ARCH_WANT_UNLOCKED_CTXSW
  sched: print_rq(): Don't use tasklist_lock
  sched: normalize_rt_tasks(): Don't use _irqsave for tasklist_lock, use task_rq_lock()
  sched: Fix the task-group check in tg_has_rt_tasks()
  sched/fair: Leverage the idle state info when choosing the "idlest" cpu
  sched: Let the scheduler see CPU idle states
  sched/deadline: Fix inter- exclusive cpusets migrations
  sched/deadline: Clear dl_entity params when setscheduling to different class
  sched/numa: Kill the wrong/dead TASK_DEAD check in task_numa_fault()
  ...
2014-10-13 16:23:15 +02:00
Oleg Nesterov
6b6482bbf6 mempolicy: remove the "task" arg of vma_policy_mof() and simplify it
1. vma_policy_mof(task) is simply not safe unless task == current,
   it can race with do_exit()->mpol_put(). Remove this arg and update
   its single caller.

2. vma can not be NULL, remove this check and simplify the code.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:56 -04:00
Kirill Tkhai
10a12983b3 sched/fair: Delete resched_cpu() from idle_balance()
We already reschedule env.dst_cpu in attach_tasks()->check_preempt_curr()
if this is necessary.

Furthermore, a higher priority class task may be current on dest rq,
we shouldn't disturb it.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140930210441.5258.55054.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-03 05:46:56 +02:00
Vincent Guittot
43f4d66637 sched: Improve sysbench performance by fixing spurious active migration
Since commit caeb178c60 ("sched/fair: Make update_sd_pick_busiest() ...")
sd_pick_busiest returns a group that can be neither imbalanced nor overloaded
but is only more loaded than others. This change has been introduced to ensure
a better load balance in system that are not overloaded but as a side effect,
it can also generate useless active migration between groups.

Let take the example of 3 tasks on a quad cores system. We will always have an
idle core so the load balance will find a busiest group (core) whenever an ILB
is triggered and it will force an active migration (once above
nr_balance_failed threshold) so the idle core becomes busy but another core
will become idle. With the next ILB, the freshly idle core will try to pull the
task of a busy CPU.
The number of spurious active migration is not so huge in quad core system
because the ILB is not triggered so much. But it becomes significant as soon as
you have more than one sched_domain level like on a dual cluster of quad cores
where the ILB is triggered every tick when you have more than 1 busy_cpu

We need to ensure that the migration generate a real improveùent and will not
only move the avg_load imbalance on another CPU.

Before caeb178c60, the filtering of such use
case was ensured by the following test in f_b_g:

  if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running  <= busiest->group_weight)

This patch modified the condition to take into account situation where busiest
group is not overloaded: If the diff between the number of idle cpus in 2
groups is less than or equal to 1 and the busiest group is not overloaded,
moving a task will not improve the load balance but just move it.

A test with sysbench on a dual clusters of quad cores gives the following
results:

  command: sysbench --test=cpu --num-threads=5 --max-time=5 run

The HZ is 200 which means that 1000 ticks has fired during the test.

With Mainline, perf gives the following figures:

 Samples: 727  of event 'sched:sched_migrate_task'
 Event count (approx.): 727
  Overhead  Command          Shared Object  Symbol
  ........  ...............  .............  ..............
    12.52%  migration/1      [unknown]      [.] 00000000
    12.52%  migration/5      [unknown]      [.] 00000000
    12.52%  migration/7      [unknown]      [.] 00000000
    12.10%  migration/6      [unknown]      [.] 00000000
    11.83%  migration/0      [unknown]      [.] 00000000
    11.83%  migration/3      [unknown]      [.] 00000000
    11.14%  migration/4      [unknown]      [.] 00000000
    10.87%  migration/2      [unknown]      [.] 00000000
     2.75%  sysbench         [unknown]      [.] 00000000
     0.83%  swapper          [unknown]      [.] 00000000
     0.55%  ktps65090charge  [unknown]      [.] 00000000
     0.41%  mmcqd/1          [unknown]      [.] 00000000
     0.14%  perf             [unknown]      [.] 00000000

With this patch, perf gives the following figures

 Samples: 20  of event 'sched:sched_migrate_task'
 Event count (approx.): 20
  Overhead  Command          Shared Object  Symbol
  ........  ...............  .............  ..............
    80.00%  sysbench         [unknown]      [.] 00000000
    10.00%  swapper          [unknown]      [.] 00000000
     5.00%  ktps65090charge  [unknown]      [.] 00000000
     5.00%  migration/1      [unknown]      [.] 00000000

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1412170735-5356-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-03 05:46:54 +02:00
Kirill Tkhai
7a96c231ca sched/fair: Remove duplicate code from can_migrate_task()
Combine two branches which do the same.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140922183612.11015.64200.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-24 14:47:07 +02:00
Nicolas Pitre
83a0a96a5f sched/fair: Leverage the idle state info when choosing the "idlest" cpu
The code in find_idlest_cpu() looks for the CPU with the smallest load.
However, if multiple CPUs are idle, the first idle CPU is selected
irrespective of the depth of its idle state.

Among the idle CPUs we should pick the one with with the shallowest idle
state, or the latest to have gone idle if all idle CPUs are in the same
state.  The later applies even when cpuidle is configured out.

This patch doesn't cover the following issues:

- The idle exit latency of a CPU might be larger than the time needed
  to migrate the waking task to an already running CPU with sufficient
  capacity, and therefore performance would benefit from task packing
  in such case (in most cases task packing is about power saving).

- Some idle states have a non negligible and non abortable entry latency
  which needs to run to completion before the exit latency can start.
  A concurrent patch series is making this info available to the cpuidle
  core.  Once available, the entry latency with the idle timestamp could
  determine when the exit latency may be effective.

Those issues will be handled in due course.  In the mean time, what
is implemented here should improve things already compared to the current
state of affairs.

Based on an initial patch from Daniel Lezcano.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-pm@vger.kernel.org
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/n/tip-@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-24 14:46:59 +02:00
Oleg Nesterov
be34f0f3e6 sched/numa: Kill the wrong/dead TASK_DEAD check in task_numa_fault()
current->state == TASK_DEAD means that the task is doing its
last schedule(), page fault is obviously impossible at this
stage.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140921194743.GA30114@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-24 09:35:05 +02:00
Zhihui Zhang
9c58c79a8a sched: Clean up some typos and grammatical errors in code/comments
Signed-off-by: Zhihui Zhang <zzhsuny@gmail.com>
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1411262676-19928-1-git-send-email-zzhsuny@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-21 09:00:02 +02:00
Vincent Guittot
bd61c98f9b sched: Test the CPU's capacity in wake_affine()
Currently the task always wakes affine on this_cpu if the latter is idle.
Before waking up the task on this_cpu, we check that this_cpu capacity is not
significantly reduced because of RT tasks or irq activity.

Use case where the number of irq and/or the time spent under irq is important
will take benefit of this because the task that is woken up by irq or softirq
will not use the same CPU than irq (and softirq) but a idle one.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Cc: Morten.Rasmussen@arm.com
Cc: efault@gmx.de
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409051215-16788-8-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-19 12:35:28 +02:00
Vincent Guittot
26bc3c50d3 sched: Allow all architectures to set 'capacity_orig'
'capacity_orig' is only changed for systems with an SMT sched_domain level in order
to reflect the lower capacity of CPUs. Heterogenous systems also have to reflect an
original capacity that is different from the default value.

Create a more generic function arch_scale_cpu_capacity that can be also used by
non SMT platforms to set capacity_orig.

The __weak implementation of arch_scale_cpu_capacity() is the previous SMT variant,
in order to keep backward compatibility with the use of capacity_orig.

arch_scale_smt_capacity() and default_scale_smt_capacity() have been removed as
they were not used elsewhere than in arch_scale_cpu_capacity().

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Reviewed-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
[ Added default_scale_cpu_capacity() back. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: riel@redhat.com
Cc: Morten.Rasmussen@arm.com
Cc: efault@gmx.de
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409051215-16788-5-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-19 12:35:27 +02:00
Vincent Guittot
65fdac08c2 sched: Fix avg_load computation
The computation of avg_load and avg_load_per_task should only take into
account the number of CFS tasks. The non-CFS tasks are already taken into
account by decreasing the CPU's capacity and they will be tracked in the
CPU's utilization (group_utilization) of the next patches.

Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: riel@redhat.com
Cc: Morten.Rasmussen@arm.com
Cc: efault@gmx.de
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409051215-16788-4-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-19 12:35:26 +02:00
Vincent Guittot
05bfb65f52 sched: Remove a wake_affine() condition
In wake_affine() I have tried to understand the meaning of the condition:

 (this_load <= load &&
  this_load + target_load(prev_cpu, idx) <= tl_per_task)

but I failed to find a use case that can take advantage of it and I haven't
found clear description in the previous commit's log.

Futhermore, the comment of the condition refers to the task_hot function that
was used before being replaced by the current condition:

/*
 * This domain has SD_WAKE_AFFINE and
 * p is cache cold in this domain, and
 * there is no bad imbalance.
 */

If we look more deeply the below condition:

 this_load + target_load(prev_cpu, idx) <= tl_per_task

When sync is clear, we have:

 tl_per_task = runnable_load_avg / nr_running
 this_load = max(runnable_load_avg, cpuload[idx])
 target_load =  max(runnable_load_avg', cpuload'[idx])

It implies that runnable_load_avg == 0 and nr_running <= 1 in order to match the
condition. This implies that runnable_load_avg == 0 too because of the
condition: this_load <= load.

but if this _load is null, 'balanced' is already set and the test is redundant.

If sync is set, it's not as straight forward as above (especially if cgroup
are involved) but the policy should be similar as we have removed a task that's
going to sleep in order to get a more accurate load and this_load values.

The current conclusion is that these additional condition don't give any benefit
so we can remove them.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Cc: Morten.Rasmussen@arm.com
Cc: efault@gmx.de
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409051215-16788-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-19 12:35:25 +02:00
Vincent Guittot
afdeee0510 sched: Fix imbalance flag reset
The imbalance flag can stay set whereas there is no imbalance.

Let assume that we have 3 tasks that run on a dual cores /dual cluster system.
We will have some idle load balance which are triggered during tick.
Unfortunately, the tick is also used to queue background work so we can reach
the situation where short work has been queued on a CPU which already runs a
task. The load balance will detect this imbalance (2 tasks on 1 CPU and an idle
CPU) and will try to pull the waiting task on the idle CPU. The waiting task is
a worker thread that is pinned on a CPU so an imbalance due to pinned task is
detected and the imbalance flag is set.

Then, we will not be able to clear the flag because we have at most 1 task on
each CPU but the imbalance flag will trig to useless active load balance
between the idle CPU and the busy CPU.

We need to reset of the imbalance flag as soon as we have reached a balanced
state. If all tasks are pinned, we don't consider that as a balanced state and
let the imbalance flag set.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: riel@redhat.com
Cc: Morten.Rasmussen@arm.com
Cc: efault@gmx.de
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409051215-16788-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-19 12:35:24 +02:00
Kirill Tkhai
a8edd07532 sched/fair: cleanup: Remove useless assignment in select_task_rq_fair()
new_cpu is reassigned below, so we do not need this here.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1410529276.3569.24.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-19 12:35:18 +02:00
Rik van Riel
ba7e5a279e sched/numa: Use select_idle_sibling() to select a destination for task_numa_move()
The code in task_numa_compare() will only examine at most one idle CPU per node,
because they all have the same score. However, some idle CPUs are better
candidates than others, due to busy or idle SMT siblings, etc...

The scheduler has logic to find the best CPU within an LLC to place a
task. The NUMA code should probably use it.

This seems to reduce the standard deviation for single instance SPECjbb2005
with a low warehouse count on my 4 node test system.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140904163530.189d410a@cuia.bos.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-19 12:35:14 +02:00
Jason Low
8236d907ab sched: Reduce contention in update_cfs_rq_blocked_load()
When running workloads on 2+ socket systems, based on perf profiles, the
update_cfs_rq_blocked_load() function often shows up as taking up a
noticeable % of run time.

Much of the contention is in __update_cfs_rq_tg_load_contrib() when we
update the tg load contribution stats.  However, it turns out that in many
cases, they don't need to be updated and "tg_contrib" is 0.

This patch adds a check in __update_cfs_rq_tg_load_contrib() to skip updating
tg load contribution stats when nothing needs to be updated. This reduces the
cacheline contention that would be unnecessary.

Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: jason.low2@hp.com
Cc: Yuyang Du <yuyang.du@intel.com>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409643684.19197.15.camel@j-VirtualBox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-09 06:47:29 +02:00
xiaofeng.yan
177ef2a631 sched/deadline: Fix a precision problem in the microseconds range
An overrun could happen in function start_hrtick_dl()
when a task with SCHED_DEADLINE runs in the microseconds
range.

For example, if a task with SCHED_DEADLINE has the following parameters:

  Task  runtime  deadline  period
   P1   200us     500us    500us

The deadline and period from task P1 are less than 1ms.

In order to achieve microsecond precision, we need to enable HRTICK feature
by the next command:

  PC#echo "HRTICK" > /sys/kernel/debug/sched_features
  PC#trace-cmd record -e sched_switch &
  PC#./schedtool -E -t 200000:500000:500000 -e ./test

The binary test is in an endless while(1) loop here.
Some pieces of trace.dat are as follows:

  <idle>-0   157.603157: sched_switch: :R ==> 2481:4294967295: test
  test-2481  157.603203: sched_switch:  2481:R ==> 0:120: swapper/2
  <idle>-0   157.605657: sched_switch:  :R ==> 2481:4294967295: test
  test-2481  157.608183: sched_switch:  2481:R ==> 2483:120: trace-cmd
  trace-cmd-2483 157.609656: sched_switch:2483:R==>2481:4294967295: test

We can get the runtime of P1 from the information above:

  runtime = 157.608183 - 157.605657
  runtime = 0.002526(2.526ms)

The correct runtime should be less than or equal to 200us at some point.

The problem is caused by a conditional judgment "delta > 10000"
in function start_hrtick_dl().

Because no hrtimer start up to control the rest of runtime
when the reset of runtime is less than 10us.

So the process will continue to run until tick-period is coming.

Move the code with the limit of the least time slice
from hrtick_start_fair() to hrtick_start() because the
EDF schedule class also needs this function in start_hrtick_dl().

To fix this problem, we call hrtimer_start() unconditionally in
start_hrtick_dl(), and make sure the scheduling slice won't be smaller
than 10us in hrtimer_start().

Signed-off-by: Xiaofeng Yan <xiaofeng.yan@huawei.com>
Reviewed-by: Li Zefan <lizefan@huawei.com>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409022941-5880-1-git-send-email-xiaofeng.yan@huawei.com
[ Massaged the changelog and the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-07 11:09:59 +02:00
Andreea-Cristina Bernat
35b123e2f7 sched/fair: Replace rcu_assign_pointer() with RCU_INIT_POINTER()
The use of "rcu_assign_pointer()" is NULLing out the pointer.
According to RCU_INIT_POINTER()'s block comment:

  "1.   This use of RCU_INIT_POINTER() is NULLing out the pointer"

it is better to use it instead of rcu_assign_pointer() because it has a
smaller overhead.

The following Coccinelle semantic patch was used:
 @@
 @@

 - rcu_assign_pointer
 + RCU_INIT_POINTER
   (..., NULL)

Signed-off-by: Andreea-Cristina Bernat <bernat.ada@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: paulmck@linux.vnet.ibm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140822145043.GA580@ada
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-05 08:11:57 +02:00
Christoph Lameter
4ba2968420 percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
__get_cpu_var can paper over differences in the definitions of
cpumask_var_t and either use the address of the cpumask variable
directly or perform a fetch of the address of the struct cpumask
allocated elsewhere. This is important particularly when using per cpu
cpumask_var_t declarations because in one case we have an offset into
a per cpu area to handle and in the other case we need to fetch a
pointer from the offset.

This patch introduces a new macro

this_cpu_cpumask_var_ptr()

that is defined where cpumask_var_t is defined and performs the proper
actions. All use cases where __get_cpu_var is used with cpumask_var_t
are converted to the use of this_cpu_cpumask_var_ptr().

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-28 08:58:57 -04:00
Kirill Tkhai
163122b7fc sched/fair: Remove double_lock_balance() from load_balance()
Avoid double_rq_lock() and use TASK_ON_RQ_MIGRATING for
load_balance(). The advantage is (obviously) not holding two
rq->lock's at the same time and thereby increasing parallelism.

Further note that if there was no task to migrate we will not
have acquired the second rq->lock at all.

The important point to note is that because we acquire dst->lock
immediately after releasing src->lock the potential wait time of
task_rq_lock() callers on TASK_ON_RQ_MIGRATING is not longer
than it would have been in the double rq lock scenario.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528109.23412.94.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-20 14:53:05 +02:00
Kirill Tkhai
e5673f2805 sched/fair: Remove double_lock_balance() from active_load_balance_cpu_stop()
Avoid double_rq_lock() and use the TASK_ON_RQ_MIGRATING state for
active_load_balance_cpu_stop(). The advantage is (obviously) not
holding two 'rq->lock's at the same time and thereby increasing
parallelism.

Further note that if there was no task to migrate we will not
have acquired the second rq->lock at all.

The important point to note is that because we acquire dst->lock
immediately after releasing src->lock the potential wait time of
task_rq_lock() callers on TASK_ON_RQ_MIGRATING is not longer
than it would have been in the double rq lock scenario.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528081.23412.92.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-20 14:53:03 +02:00
Kirill Tkhai
da0c1e65b5 sched: Add wrapper for checking task_struct::on_rq
Implement task_on_rq_queued() and use it everywhere instead of
on_rq check. No functional changes.

The only exception is we do not use the wrapper in
check_for_tasks(), because it requires to export
task_on_rq_queued() in global header files. Next patch in series
would return it back, so we do not twist it from here to there.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528052.23412.87.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-20 14:52:59 +02:00
Kirill Tkhai
f36c019c79 sched/fair: Fix reschedule which is generated on throttled cfs_rq
(sched_entity::on_rq == 1) does not guarantee the task is pickable;
changes on throttled cfs_rq must not lead to reschedule.

Check for task_struct::on_rq instead.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1407312361.8424.35.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-20 09:47:20 +02:00
Rik van Riel
83d7f24247 sched/numa: Fix numa capacity computation
Commit c61037e9 fixes the phenomenon of 'fantom' cores due to
N*frac(smt_power) >= 1 by limiting the capacity to the actual
number of cores in the load balancing code.

This patch applies the same correction to the NUMA balancing
code.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: vincent.guittot@linaro.org
Cc: Morten.Rasmussen@arm.com
Cc: nicolas.pitre@linaro.org
Cc: efault@gmx.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1407173008-9334-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-12 12:48:23 +02:00
Rik van Riel
b932c03c34 sched/numa: Fix off-by-one in capacity check
Commit a43455a1d5 ensures that
task_numa_migrate will call task_numa_compare on the preferred
node all the time, even when the preferred node has no free capacity.

This could lead to a performance regression if nr_running == capacity
on both the source and the destination node. This can be avoided by
also checking for nr_running == capacity on the source node, which is
one stricter than checking .has_free_capacity.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: vincent.guittot@linaro.org
Cc: Morten.Rasmussen@arm.com
Cc: nicolas.pitre@linaro.org
Cc: efault@gmx.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1407173008-9334-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-12 12:48:22 +02:00
Peter Zijlstra
9a5d9ba6a3 sched/fair: Allow calculate_imbalance() to move idle cpus
Allow calculate_imbalance() to 'create' idle cpus in the busiest group
if there are idle cpus in the local group.

Suggested-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140729152705.GX12054@laptop.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-12 12:48:20 +02:00
Rik van Riel
caeb178c60 sched/fair: Make update_sd_pick_busiest() return 'true' on a busier sd
Currently update_sd_pick_busiest only identifies the busiest sd
that is either overloaded, or has a group imbalance. When no
sd is imbalanced or overloaded, the load balancer fails to find
the busiest domain.

This breaks load balancing between domains that are not overloaded,
in the !SD_ASYM_PACKING case. This patch makes update_sd_pick_busiest
return true when the busiest sd yet is encountered.

Groups are ranked in the order overloaded > imbalanced > other,
with higher ranked groups getting priority even when their load
is lower. This is necessary due to the possibility of unequal
capacities and cpumasks between domains within a sched group.

Behaviour for SD_ASYM_PACKING does not seem to match the comment,
but I have no hardware to test that so I have left the behaviour
of that code unchanged.

Enum for group classification suggested by Peter Zijlstra.

Signed-off-by: Rik van Riel <riel@redhat.com>
[peterz: replaced sg_lb_stats::group_imb with the new enum group_type
         in an attempt to avoid endless recalculation]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Michael Neuling <mikey@neuling.org>
Cc: ktkhai@parallels.com
Cc: tim.c.chen@linux.intel.com
Cc: nicolas.pitre@linaro.org
Cc: jhladky@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140729152743.GI3935@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-12 12:48:19 +02:00
Peter Zijlstra
743cb1ff19 sched/fair: Make calculate_imbalance() independent
Rik noticed that calculate_imbalance() relies on
update_sd_pick_busiest() to guarantee that busiest->sum_nr_running >
busiest->group_capacity_factor.

Break this implicit assumption (with the intent of not providing it
anymore) by having calculat_imbalance() verify it and not rely on
others.

Reported-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20140729152631.GW12054@laptop.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-12 12:48:18 +02:00
Masanari Iida
cd3bd4e628 sched/fair: Fix 'make xmldocs' warning caused by missing description
This patch fix following warning caused by missing description
"overload" in kernel/sched/fair.c

Warning(.//kernel/sched/fair.c:5906): No description found for
parameter 'overload'

Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1406518686-7274-1-git-send-email-standby24x7@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-28 10:04:14 +02:00
Peter Zijlstra
e720fff634 sched/numa: Revert "Use effective_load() to balance NUMA loads"
Due to divergent trees, Rik find that this patch is no longer
required.

Requested-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-u6odkgkw8wz3m7orgsjfo5pi@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:23 +02:00
Kirill Tkhai
8875125efe sched: Transform resched_task() into resched_curr()
We always use resched_task() with rq->curr argument.
It's not possible to reschedule any task but rq's current.

The patch introduces resched_curr(struct rq *) to
replace all of the repeating patterns. The main aim
is cleanup, but there is a little size profit too:

  (before)
	$ size kernel/sched/built-in.o
	   text	   data	    bss	    dec	    hex	filename
	155274	  16445	   7042	 178761	  2ba49	kernel/sched/built-in.o

	$ size vmlinux
	   text	   data	    bss	    dec	    hex	filename
	7411490	1178376	 991232	9581098	 92322a	vmlinux

  (after)
	$ size kernel/sched/built-in.o
	   text	   data	    bss	    dec	    hex	filename
	155130	  16445	   7042	 178617	  2b9b9	kernel/sched/built-in.o

	$ size vmlinux
	   text	   data	    bss	    dec	    hex	filename
	7411362	1178376	 991232	9580970	 9231aa	vmlinux

	I was choosing between resched_curr() and resched_rq(),
	and the first name looks better for me.

A little lie in Documentation/trace/ftrace.txt. I have not
actually collected the tracing again. With a hope the patch
won't make execution times much worse :)

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140628200219.1778.18735.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:19 +02:00
Kirill Tkhai
0e59bdaea7 sched/fair: Disable runtime_enabled on dying rq
We kill rq->rd on the CPU_DOWN_PREPARE stage:

	cpuset_cpu_inactive -> cpuset_update_active_cpus -> partition_sched_domains ->
	-> cpu_attach_domain -> rq_attach_root -> set_rq_offline

This unthrottles all throttled cfs_rqs.

But the cpu is still able to call schedule() till

	take_cpu_down->__cpu_disable()

is called from stop_machine.

This case the tasks from just unthrottled cfs_rqs are pickable
in a standard scheduler way, and they are picked by dying cpu.
The cfs_rqs becomes throttled again, and migrate_tasks()
in migration_call skips their tasks (one more unthrottle
in migrate_tasks()->CPU_DYING does not happen, because rq->rd
is already NULL).

Patch sets runtime_enabled to zero. This guarantees, the runtime
is not accounted, and the cfs_rqs won't exceed given
cfs_rq->runtime_remaining = 1, and tasks will be pickable
in migrate_tasks(). runtime_enabled is recalculated again
when rq becomes online again.

Ben Segall also noticed, we always enable runtime in
tg_set_cfs_bandwidth(). Actually, we should do that for online
cpus only. To prevent races with unthrottle_offline_cfs_rqs()
we take get_online_cpus() lock.

Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
CC: Konstantin Khorenko <khorenko@parallels.com>
CC: Paul Turner <pjt@google.com>
CC: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403684382.3462.42.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:42 +02:00
Rik van Riel
a22b4b0123 sched/numa: Change scan period code to match intent
Reading through the scan period code and comment, it appears the
intent was to slow down NUMA scanning when a majority of accesses
are on the local node, specifically a local:remote ratio of 3:1.

However, the code actually tests local / (local + remote), and
the actual cut-off point was around 30% local accesses, well before
a task has actually converged on a node.

Changing the threshold to 7 means scanning slows down when a task
has around 70% of its accesses local, which appears to match the
intent of the code more closely.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538095-31256-8-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:40 +02:00
Rik van Riel
db015daedb sched/numa: Rework best node setting in task_numa_migrate()
Fix up the best node setting in task_numa_migrate() to deal with a task
in a pseudo-interleaved NUMA group, which is already running in the
best location.

Set the task's preferred nid to the current nid, so task migration is
not retried at a high rate.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538095-31256-7-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:39 +02:00
Rik van Riel
0132c3e177 sched/numa: Examine a task move when examining a task swap
Running "perf bench numa mem -0 -m -P 1000 -p 8 -t 20" on a 4
node system results in 160 runnable threads on a system with 80
CPU threads.

Once a process has nearly converged, with 39 threads on one node
and 1 thread on another node, the remaining thread will be unable
to migrate to its preferred node through a task swap.

However, a simple task move would make the workload converge,
witout causing an imbalance.

Test for this unlikely occurrence, and attempt a task move to
the preferred nid when it happens.

 # Running main, "perf bench numa mem -p 8 -t 20 -0 -m -P 1000"

 ###
 # 160 tasks will execute (on 4 nodes, 80 CPUs):
 #         -1x     0MB global  shared mem operations
 #         -1x  1000MB process shared mem operations
 #         -1x     0MB thread  local  mem operations
 ###

 ###
 #
 #    0.0%  [0.2 mins]  0/0   1/1  36/2   0/0  [36/3 ] l:  0-0   (  0) {0-2}
 #    0.0%  [0.3 mins] 43/3  37/2  39/2  41/3  [ 6/10] l:  0-1   (  1) {1-2}
 #    0.0%  [0.4 mins] 42/3  38/2  40/2  40/2  [ 4/9 ] l:  1-2   (  1) [50.0%] {1-2}
 #    0.0%  [0.6 mins] 41/3  39/2  40/2  40/2  [ 2/9 ] l:  2-4   (  2) [50.0%] {1-2}
 #    0.0%  [0.7 mins] 40/2  40/2  40/2  40/2  [ 0/8 ] l:  3-5   (  2) [40.0%] (  41.8s converged)

Without this patch, this same perf bench numa mem run had to
rely on the scheduler load balancer to first balance out the
load (moving a random task), before a task swap could complete
the NUMA convergence.

The load balancer does not normally take action unless the load

difference exceeds 25%. Convergence times of over half an hour
have been observed without this patch.

With this patch, the NUMA balancing code will simply migrate the
task, if that does not cause an imbalance.

Also skip examining a CPU in detail if the improvement on that CPU
is no more than the best we already have.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: chegu_vinod@hp.com
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-ggthh0rnh0yua6o5o3p6cr1o@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:38 +02:00
Rik van Riel
1c5d3eb375 sched/numa: Simplify task_numa_compare()
When a task is part of a numa_group, the comparison should always use
the group weight, in order to make workloads converge.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: chegu_vinod@hp.com
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538378-31571-4-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:37 +02:00
Rik van Riel
6dc1a672ab sched/numa: Use effective_load() to balance NUMA loads
When CONFIG_FAIR_GROUP_SCHED is enabled, the load that a task places
on a CPU is determined by the group the task is in. The active groups
on the source and destination CPU can be different, resulting in a
different load contribution by the same task at its source and at its
destination. As a result, the load needs to be calculated separately
for each CPU, instead of estimated once with task_h_load().

Getting this calculation right allows some workloads to converge,
where previously the last thread could get stuck on another node,
without being able to migrate to its final destination.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538378-31571-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:35 +02:00
Rik van Riel
28a2174519 sched/numa: Move power adjustment into load_too_imbalanced()
Currently the NUMA code scales the load on each node with the
amount of CPU power available on that node, but it does not
apply any adjustment to the load of the task that is being
moved over.

On systems with SMT/HT, this results in a task being weighed
much more heavily than a CPU core, and a task move that would
even out the load between nodes being disallowed.

The correct thing is to apply the power correction to the
numbers after we have first applied the move of the tasks'
loads to them.

This also allows us to do the power correction with a multiplication,
rather than a division.

Also drop two function arguments for load_too_unbalanced, since it
takes various factors from env already.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: chegu_vinod@hp.com
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538378-31571-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:34 +02:00
Rik van Riel
f0b8a4afd6 sched/numa: Use group's max nid as task's preferred nid
From task_numa_placement, always try to consolidate the tasks
in a group on the group's top nid.

In case this task is part of a group that is interleaved over
multiple nodes, task_numa_migrate will set the task's preferred
nid to the best node it could find for the task, so this patch
will cause at most one run through task_numa_migrate.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403538095-31256-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:33 +02:00
Tim Chen
4486edd12b sched/fair: Implement fast idling of CPUs when the system is partially loaded
When a system is lightly loaded (i.e. no more than 1 job per cpu),
attempt to pull job to a cpu before putting it to idle is unnecessary and
can be skipped.  This patch adds an indicator so the scheduler can know
when there's no more than 1 active job is on any CPU in the system to
skip needless job pulls.

On a 4 socket machine with a request/response kind of workload from
clients, we saw about 0.13 msec delay when we go through a full load
balance to try pull job from all the other cpus.  While 0.1 msec was
spent on processing the request and generating a response, the 0.13 msec
load balance overhead was actually more than the actual work being done.
This overhead can be skipped much of the time for lightly loaded systems.

With this patch, we tested with a netperf request/response workload that
has the server busy with half the cpus in a 4 socket system.  We found
the patch eliminated 75% of the load balance attempts before idling a cpu.

The overhead of setting/clearing the indicator is low as we already gather
the necessary info while we call add_nr_running() and update_sd_lb_stats.()
We switch to full load balance load immediately if any cpu got more than
one job on its run queue in add_nr_running.  We'll clear the indicator
to avoid load balance when we detect no cpu's have more than one job
when we scan the work queues in update_sg_lb_stats().  We are aggressive
in turning on the load balance and opportunistic in skipping the load
balance.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Jason Low <jason.low2@hp.com>
Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403551009.2970.613.camel@schen9-DESK
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:32 +02:00
Ben Segall
c06f04c704 sched: Fix potential near-infinite distribute_cfs_runtime() loop
distribute_cfs_runtime() intentionally only hands out enough runtime to
bring each cfs_rq to 1 ns of runtime, expecting the cfs_rqs to then take
the runtime they need only once they actually get to run. However, if
they get to run sufficiently quickly, the period timer is still in
distribute_cfs_runtime() and no runtime is available, causing them to
throttle. Then distribute has to handle them again, and this can go on
until distribute has handed out all of the runtime 1ns at a time, which
takes far too long.

Instead allow access to the same runtime that distribute is handing out,
accepting that corner cases with very low quota may be able to spend the
entire cfs_b->runtime during distribute_cfs_runtime, meaning that the
runtime directly handed out by distribute_cfs_runtime was over quota. In
addition, if a cfs_rq does manage to throttle like this, make sure the
existing distribute_cfs_runtime no longer loops over it again.

Signed-off-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140620222120.13814.21652.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:29 +02:00
Hillf Danton
5d5e2b1bcb sched: Fix CACHE_HOT_BUDY condition
When computing cache hot, we should check if the migration dst cpu is idle,
instead of the current cpu. Though they are same in normal balancing, that
is false nowadays in nohz idle balancing at least.

Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140607090452.4696E301D2@webmail.sinamail.sina.com.cn
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-18 18:29:59 +02:00
Rik van Riel
bb97fc3164 sched/numa: Always try to migrate to preferred node at task_numa_placement() time
It is possible that at task_numa_placement() time, the task's
numa_preferred_nid does not change, but the task is not
actually running on the preferred node at the time.

In that case, we still want to attempt migration to the
preferred node.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140604163315.1dbc7b56@cuia.bos.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-18 18:29:58 +02:00
Rik van Riel
a43455a1d5 sched/numa: Ensure task_numa_migrate() checks the preferred node
The first thing task_numa_migrate() does is check to see if there is
CPU capacity available on the preferred node, in order to move the
task there.

However, if the preferred node is all busy, we would skip considering
that node for tasks swaps in the subsequent loop. This prevents NUMA
convergence of tasks on busy systems.

However, swapping locations with a task on our preferred nid, when
the preferred nid is busy, is perfectly fine.

The fix is to also look for a CPU on our preferred nid when it is
totally busy.

This changes "perf bench numa mem -p 4 -t 20 -m -0 -P 1000" from
not converging in 15 minutes on my 4 node system, to converging in
10-20 seconds.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140604160942.6969b101@cuia.bos.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-18 18:29:57 +02:00
Linus Torvalds
b2e09f633a Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more scheduler updates from Ingo Molnar:
 "Second round of scheduler changes:
   - try-to-wakeup and IPI reduction speedups, from Andy Lutomirski
   - continued power scheduling cleanups and refactorings, from Nicolas
     Pitre
   - misc fixes and enhancements"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/deadline: Delete extraneous extern for to_ratio()
  sched/idle: Optimize try-to-wake-up IPI
  sched/idle: Simplify wake_up_idle_cpu()
  sched/idle: Clear polling before descheduling the idle thread
  sched, trace: Add a tracepoint for IPI-less remote wakeups
  cpuidle: Set polling in poll_idle
  sched: Remove redundant assignment to "rt_rq" in update_curr_rt(...)
  sched: Rename capacity related flags
  sched: Final power vs. capacity cleanups
  sched: Remove remaining dubious usage of "power"
  sched: Let 'struct sched_group_power' care about CPU capacity
  sched/fair: Disambiguate existing/remaining "capacity" usage
  sched/fair: Change "has_capacity" to "has_free_capacity"
  sched/fair: Remove "power" from 'struct numa_stats'
  sched: Fix signedness bug in yield_to()
  sched/fair: Use time_after() in record_wakee()
  sched/balancing: Reduce the rate of needless idle load balancing
  sched/fair: Fix unlocked reads of some cfs_b->quota/period
2014-06-12 19:42:15 -07:00
Rik van Riel
1662867a9b numa,sched: fix load_to_imbalanced logic inversion
This function is supposed to return true if the new load imbalance is
worse than the old one.  It didn't.  I can only hope brown paper bags
are in style.

Now things converge much better on both the 4 node and 8 node systems.

I am not sure why this did not seem to impact specjbb performance on the
4 node system, which is the system I have full-time access to.

This bug was introduced recently, with commit e63da03639 ("sched/numa:
Allow task switch if load imbalance improves")

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-08 14:35:05 -07:00
Linus Torvalds
3f17ea6dea Merge branch 'next' (accumulated 3.16 merge window patches) into master
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.

* accumulated work in next: (6809 commits)
  ufs: sb mutex merge + mutex_destroy
  powerpc: update comments for generic idle conversion
  cris: update comments for generic idle conversion
  idle: remove cpu_idle() forward declarations
  nbd: zero from and len fields in NBD_CMD_DISCONNECT.
  mm: convert some level-less printks to pr_*
  MAINTAINERS: adi-buildroot-devel is moderated
  MAINTAINERS: add linux-api for review of API/ABI changes
  mm/kmemleak-test.c: use pr_fmt for logging
  fs/dlm/debug_fs.c: replace seq_printf by seq_puts
  fs/dlm/lockspace.c: convert simple_str to kstr
  fs/dlm/config.c: convert simple_str to kstr
  mm: mark remap_file_pages() syscall as deprecated
  mm: memcontrol: remove unnecessary memcg argument from soft limit functions
  mm: memcontrol: clean up memcg zoneinfo lookup
  mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
  mm/mempool.c: update the kmemleak stack trace for mempool allocations
  lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
  mm: introduce kmemleak_update_trace()
  mm/kmemleak.c: use %u to print ->checksum
  ...
2014-06-08 11:31:16 -07:00
Nicolas Pitre
5d4dfddd4f sched: Rename capacity related flags
It is better not to think about compute capacity as being equivalent
to "CPU power".  The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.

Let's rename the following feature flags since they do relate to capacity:

	SD_SHARE_CPUPOWER  -> SD_SHARE_CPUCAPACITY
	ARCH_POWER         -> ARCH_CAPACITY
	NONTASK_POWER      -> NONTASK_CAPACITY

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Andy Fleming <afleming@freescale.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: devicetree@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/n/tip-e93lpnxb87owfievqatey6b5@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:32 +02:00
Nicolas Pitre
ca8ce3d0b1 sched: Final power vs. capacity cleanups
It is better not to think about compute capacity as being equivalent
to "CPU power".  The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.

This contains the architecture visible changes.  Incidentally, only ARM
takes advantage of the available pow^H^H^Hcapacity scaling hooks and
therefore those changes outside kernel/sched/ are confined to one ARM
specific file.  The default arch_scale_smt_power() hook is not overridden
by anyone.

Replacements are as follows:

	arch_scale_freq_power  --> arch_scale_freq_capacity
	arch_scale_smt_power   --> arch_scale_smt_capacity
	SCHED_POWER_SCALE      --> SCHED_CAPACITY_SCALE
	SCHED_POWER_SHIFT      --> SCHED_CAPACITY_SHIFT

The local usage of "power" in arch/arm/kernel/topology.c is also changed
to "capacity" as appropriate.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Brown <broonie@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: devicetree@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-48zba9qbznvglwelgq2cfygh@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:30 +02:00
Nicolas Pitre
ced549fa5f sched: Remove remaining dubious usage of "power"
It is better not to think about compute capacity as being equivalent
to "CPU power".  The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.

This is the remaining "power" -> "capacity" rename for local symbols.
Those symbols visible to the rest of the kernel are not included yet.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-yyyhohzhkwnaotr3lx8zd5aa@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:29 +02:00
Nicolas Pitre
63b2ca30bd sched: Let 'struct sched_group_power' care about CPU capacity
It is better not to think about compute capacity as being equivalent
to "CPU power".  The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.

Since struct sched_group_power is really about compute capacity of sched
groups, let's rename it to struct sched_group_capacity. Similarly sgp
becomes sgc. Related variables and functions dealing with groups are also
adjusted accordingly.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-5yeix833vvgf2uyj5o36hpu9@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:26 +02:00
Nicolas Pitre
0fedc6c8e3 sched/fair: Disambiguate existing/remaining "capacity" usage
We have "power" (which should actually become "capacity") and "capacity"
which is a scaled down "capacity factor" in terms of unitary tasks.
Let's use "capacity_factor" to make room for proper usage of "capacity"
later.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-gk1co8sqdev3763opqm6ovml@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:25 +02:00
Nicolas Pitre
1b6a7495d3 sched/fair: Change "has_capacity" to "has_free_capacity"
The capacity of a CPU/group should be some intrinsic value that doesn't
change with task placement.  It is like a container which capacity is
stable regardless of the amount of liquid in it (its "utilization")...
unless the container itself is crushed that is, but that's another story.

Therefore let's rename "has_capacity" to "has_free_capacity" in order to
better convey the wanted meaning.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-djzkk027jm0e8x8jxy70opzh@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:22 +02:00
Nicolas Pitre
5ef20ca181 sched/fair: Remove "power" from 'struct numa_stats'
It is better not to think about compute capacity as being equivalent
to "CPU power".  The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.

To make things explicit and not create more confusion with the existing
"capacity" member, let's rename things as follows:

	power    -> compute_capacity
	capacity -> task_capacity

Note: none of those fields are actually used outside update_numa_stats().

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-2e2ndymj5gyshyjq8am79f20@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:14 +02:00
Manuel Schölling
2538d960d0 sched/fair: Use time_after() in record_wakee()
To be future-proof and for better readability the time comparisons are modified
to use time_after() instead of plain, error-prone math.

Signed-off-by: Manuel Schölling <manuel.schoelling@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1400780723-24626-1-git-send-email-manuel.schoelling@gmx.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:02 +02:00
Tim Chen
ed61bbc69c sched/balancing: Reduce the rate of needless idle load balancing
The current no_hz idle load balancer do load balancing for *all* idle cpus,
even though the time due to load balance for a particular
idle cpu could be still a while in the future.  This introduces a much
higher load balancing rate than what is necessary.  The patch
changes the behavior by only doing idle load balancing on
behalf of an idle cpu only when it is due for load balancing.

On SGI's systems with over 3000 cores, the cpu responsible for idle balancing
got overwhelmed with idle balancing, and introduces a lot of OS noise
to workloads.  This patch fixes the issue.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Russ Anderson <rja@sgi.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Hedi Berriche <hedi@sgi.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: MichelLespinasse <walken@google.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1400621967.2970.280.camel@schen9-DESK
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:01 +02:00
Ben Segall
51f2176d74 sched/fair: Fix unlocked reads of some cfs_b->quota/period
sched_cfs_period_timer() reads cfs_b->period without locks before calling
do_sched_cfs_period_timer(), and similarly unthrottle_offline_cfs_rqs()
would read cfs_b->period without the right lock. Thus a simultaneous
change of bandwidth could cause corruption on any platform where ktime_t
or u64 writes/reads are not atomic.

Extend cfs_b->lock from do_sched_cfs_period_timer() to include the read of
cfs_b->period to solve that issue; unthrottle_offline_cfs_rqs() can just
use 1 rather than the exact quota, much like distribute_cfs_runtime()
does.

There is also an unlocked read of cfs_b->runtime_expires, but a race
there would only delay runtime expiry by a tick. Still, the comparison
should just be != anyway, which clarifies even that problem.

Signed-off-by: Ben Segall <bsegall@google.com>
Tested-by: Roman Gushchin <klamm@yandex-team.ru>
[peterz: Fix compile warn]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140519224945.20303.93530.stgit@sword-of-the-dawn.mtv.corp.google.com
Cc: pjt@google.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:00 +02:00
Roman Gushchin
09dc4ab039 sched/fair: Fix tg_set_cfs_bandwidth() deadlock on rq->lock
tg_set_cfs_bandwidth() sets cfs_b->timer_active to 0 to
force the period timer restart. It's not safe, because
can lead to deadlock, described in commit 927b54fccb:
"__start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock,
waiting for the hrtimer to finish. However, if sched_cfs_period_timer
runs for another loop iteration, the hrtimer can attempt to take
rq->lock, resulting in deadlock."

Three CPUs must be involved:

  CPU0               CPU1                         CPU2
  take rq->lock      period timer fired
  ...                take cfs_b lock
  ...                ...                          tg_set_cfs_bandwidth()
  throttle_cfs_rq()  release cfs_b lock           take cfs_b lock
  ...                distribute_cfs_runtime()     timer_active = 0
  take cfs_b->lock   wait for rq->lock            ...
  __start_cfs_bandwidth()
  {wait for timer callback
   break if timer_active == 1}

So, CPU0 and CPU1 are deadlocked.

Instead of resetting cfs_b->timer_active, tg_set_cfs_bandwidth can
wait for period timer callbacks (ignoring cfs_b->timer_active) and
restart the timer explicitly.

Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/87wqdi9g8e.wl\%klamm@yandex-team.ru
Cc: pjt@google.com
Cc: chris.j.arges@canonical.com
Cc: gregkh@linuxfoundation.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:51:34 +02:00
Steven Rostedt
e9dd685ce8 sched/numa: Fix use of spin_{un}lock_irq() when interrupts are disabled
As Peter Zijlstra told me, we have the following path:

do_exit()
  exit_itimers()
    itimer_delete()
      spin_lock_irqsave(&timer->it_lock, &flags);
      timer_delete_hook(timer);
        kc->timer_del(timer) := posix_cpu_timer_del()
          put_task_struct()
            __put_task_struct()
              task_numa_free()
                spin_lock(&grp->lock);

Which means that task_numa_free() can be called with interrupts
disabled, which means that we should not be using spin_lock_irq() but
spin_lock_irqsave() instead. Otherwise we are enabling interrupts while
holding an interrupt unsafe lock!

Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner<tglx@linutronix.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140527182541.GH11096@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:07:41 +02:00
Rik van Riel
096aa33863 sched/numa: Decay ->wakee_flips instead of zeroing
Affine wakeups have the potential to interfere with NUMA placement.
If a task wakes up too many other tasks, affine wakeups will get
disabled.

However, regardless of how many other tasks it wakes up, it gets
re-enabled once a second, potentially interfering with NUMA
placement of other tasks.

By decaying wakee_wakes in half instead of zeroing it, we can avoid
that problem for some workloads.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: chegu_vinod@hp.com
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20140516001332.67f91af2@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-22 11:16:41 +02:00
Rik van Riel
b1ad065e65 sched/numa: Update migrate_improves/degrades_locality()
Update the migrate_improves/degrades_locality() functions with
knowledge of pseudo-interleaving.

Do not consider moving tasks around within the set of group's active
nodes as improving or degrading locality. Instead, leave the load
balancer free to balance the load between a numa_group's active nodes.

Also, switch from the group/task_weight functions to the group/task_fault
functions. The "weight" functions involve a division, but both calls use
the same divisor, so there's no point in doing that from these functions.

On a 4 node (x10 core) system, performance of SPECjbb2005 seems
unaffected, though the number of migrations with 2 8-warehouse wide
instances seems to have almost halved, due to the scheduler running
each instance on a single node.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Link: http://lkml.kernel.org/r/20140515130306.61aae7db@cuia.bos.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-22 11:16:39 +02:00
Rik van Riel
e63da03639 sched/numa: Allow task switch if load imbalance improves
Currently the NUMA balancing code only allows moving tasks between NUMA
nodes when the load on both nodes is in balance. This breaks down when
the load was imbalanced to begin with.

Allow tasks to be moved between NUMA nodes if the imbalance is small,
or if the new imbalance is be smaller than the original one.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/20140514132221.274b3463@annuminas.surriel.com
2014-05-22 11:16:38 +02:00
Kirill Tkhai
7246544786 sched, nohz: Change rq->nr_running to always use wrappers
Sometimes ->nr_running may cross 2 but interrupt is not being
sent to rq's cpu. In this case we don't reenable the timer.
Looks like this may be the reason for rare unexpected effects,
if nohz is enabled.

Patch replaces all places of direct changing of nr_running
and makes add_nr_running() caring about crossing border.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140508225830.2469.97461.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-22 11:16:33 +02:00
Jason Low
52a08ef1f1 sched: Fix the rq->next_balance logic in rebalance_domains() and idle_balance()
Currently, in idle_balance(), we update rq->next_balance when we pull_tasks.
However, it is also important to update this in the !pulled_tasks case too.

When the CPU is "busy" (the CPU isn't idle), rq->next_balance gets computed
using sd->busy_factor (so we increase the balance interval when the CPU is
busy). However, when the CPU goes idle, rq->next_balance could still be set
to a large value that was computed with the sd->busy_factor.

Thus, we need to also update rq->next_balance in idle_balance() in the cases
where !pulled_tasks too, so that rq->next_balance gets updated without taking
the busy_factor into account when the CPU is about to go idle.

This patch makes rq->next_balance get updated independently of whether or
not we pulled_task. Also, we add logic to ensure that we always traverse
at least 1 of the sched domains to get a proper next_balance value for
updating rq->next_balance.

Additionally, since load_balance() modifies the sd->balance_interval, we
need to re-obtain the sched domain's interval after the call to
load_balance() in rebalance_domains() before we update rq->next_balance.

This patch adds and uses 2 new helper functions, update_next_balance() and
get_sd_balance_interval() to update next_balance and obtain the sched
domain's balance_interval.

Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: daniel.lezcano@linaro.org
Cc: alex.shi@linaro.org
Cc: efault@gmx.de
Cc: vincent.guittot@linaro.org
Cc: morten.rasmussen@arm.com
Cc: aswin@hp.com
Link: http://lkml.kernel.org/r/1399596562.2200.7.camel@j-VirtualBox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-22 11:16:32 +02:00
Rik van Riel
8bf21433f3 sched: Call select_idle_sibling() when not affine_sd
On smaller systems, the top level sched domain will be an affine
domain, and select_idle_sibling is invoked for every SD_WAKE_AFFINE
wakeup. This seems to be working well.

On larger systems, with the node distance between far away NUMA nodes
being > RECLAIM_DISTANCE, select_idle_sibling is only called if the
waker and the wakee are on nodes less than RECLAIM_DISTANCE apart.

This patch leaves in place the policy of not pulling the task across
nodes on such systems, while fixing the issue that select_idle_sibling
is not called at all in certain circumstances.

The code will look for an idle CPU in the same CPU package as the
CPU where the task ran previously.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: morten.rasmussen@arm.com
Cc: george.mccollister@gmail.com
Cc: ktkhai@parallels.com
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Link: http://lkml.kernel.org/r/20140514114037.2d93266f@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-22 11:16:28 +02:00
Ben Segall
3944a9274e sched: Fix exec_start/task_hot on migrated tasks
task_hot checks exec_start on any runnable task, but if it has been
migrated since the it last ran, then exec_start is a clock_task from
another cpu. If the old cpu's clock_task was sufficiently far ahead of
this cpu's then the task will not be considered for another migration
until it has run. Instead reset exec_start whenever a task is migrated,
since it is presumably no longer hot anyway.

Signed-off-by: Ben Segall <bsegall@google.com>
[ Made it compile. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140515225920.7179.13924.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-22 11:16:25 +02:00
Jason Low
39a4d9ca77 sched/fair: Stop searching for tasks in newidle balance if there are runnable tasks
It was found that when running some workloads (such as AIM7) on large
systems with many cores, CPUs do not remain idle for long. Thus, tasks
can wake/get enqueued while doing idle balancing.

In this patch, while traversing the domains in idle balance, in
addition to checking for pulled_task, we add an extra check for
this_rq->nr_running for determining if we should stop searching for
tasks to pull. If there are runnable tasks on this rq, then we will
stop traversing the domains. This reduces the chance that idle balance
delays a task from running.

This patch resulted in approximately a 6% performance improvement when
running a Java Server workload on an 8 socket machine.

Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: daniel.lezcano@linaro.org
Cc: alex.shi@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: efault@gmx.de
Cc: vincent.guittot@linaro.org
Cc: morten.rasmussen@arm.com
Cc: aswin@hp.com
Cc: chegu_vinod@hp.com
Link: http://lkml.kernel.org/r/1398303035-18255-4-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-07 13:33:53 +02:00
Rik van Riel
68d1b02a58 sched/numa: Do not set preferred_node on migration to a second choice node
Setting the numa_preferred_node for a task in task_numa_migrate
does nothing on a 2-node system. Either we migrate to the node
that already was our preferred node, or we stay where we were.

On a 4-node system, it can slightly decrease overhead, by not
calling the NUMA code as much. Since every node tends to be
directly connected to every other node, running on the wrong
node for a while does not do much damage.

However, on an 8 node system, there are far more bad nodes
than there are good ones, and pretending that a second choice
is actually the preferred node can greatly delay, or even
prevent, a workload from converging.

The only time we can safely pretend that a second choice
node is the preferred node is when the task is part of a
workload that spans multiple NUMA nodes.

Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Vinod Chegu <chegu_vinod@hp.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1397235629-16328-4-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-07 13:33:47 +02:00
Rik van Riel
5085e2a328 sched/numa: Retry placement more frequently when misplaced
When tasks have not converged on their preferred nodes yet, we want
to retry fairly often, to make sure we do not migrate a task's memory
to an undesirable location, only to have to move it again later.

This patch reduces the interval at which migration is retried,
when the task's numa_scan_period is small.

Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Vinod Chegu <chegu_vinod@hp.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1397235629-16328-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-07 13:33:46 +02:00
Rik van Riel
792568ec6a sched/numa: Count pages on active node as local
The NUMA code is smart enough to distribute the memory of workloads
that span multiple NUMA nodes across those NUMA nodes.

However, it still has a pretty high scan rate for such workloads,
because any memory that is left on a node other than the node of
the CPU that faulted on the memory is counted as non-local, which
causes the scan rate to go up.

Counting the memory on any node where the task's numa group is
actively running as local, allows the scan rate to slow down
once the application is settled in.

This should reduce the overhead of the automatic NUMA placement
code, when a workload spans multiple NUMA nodes.

Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Vinod Chegu <chegu_vinod@hp.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1397235629-16328-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-07 13:33:45 +02:00
Ingo Molnar
2fe5de9ce7 Merge branch 'sched/urgent' into sched/core, to avoid conflicts
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-07 13:15:46 +02:00
Jason Low
0e5b5337f0 sched: Fix updating rq->max_idle_balance_cost and rq->next_balance in idle_balance()
The following commit:

  e5fc66119e ("sched: Fix race in idle_balance()")

can potentially cause rq->max_idle_balance_cost to not be updated,
even when load_balance(NEWLY_IDLE) is attempted and the per-sd
max cost value is updated.

Preeti noticed a similar issue with updating rq->next_balance.

In this patch, we fix this by making sure we still check/update those values
even if a task gets enqueued while browsing the domains.

Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: morten.rasmussen@arm.com
Cc: aswin@hp.com
Cc: daniel.lezcano@linaro.org
Cc: alex.shi@linaro.org
Cc: efault@gmx.de
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1398725155-7591-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-07 11:51:36 +02:00
Kirill Tkhai
46383648b3 sched: Revert commit 4c6c4e38c4 ("sched/core: Fix endless loop in pick_next_task()")
This reverts commit 4c6c4e38c4 ("sched/core: Fix endless loop in
pick_next_task()"), which is not necessary after ("sched/rt: Substract number
of tasks of throttled queues from rq->nr_running").

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
[conflict resolution with stop task checking patch]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835307.18748.34.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18 12:07:29 +02:00
Peter Zijlstra
cadefd3d6c sched: Make scale_rt_power() deal with backward clocks
Mike reported that, while unlikely, its entirely possible for
scale_rt_power() to see the time go backwards. This yields rather
'interesting' results.

So like all other sites that deal with clocks; make this one ignore
backward clock movement too.

Reported-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140227094035.GZ9987@twins.programming.kicks-ass.net
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18 12:07:21 +02:00
Kirill Tkhai
a1d9a3231e sched: Check for stop task appearance when balancing happens
We need to do it like we do for the other higher priority classes..

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Cc: Michael wang <wangyun@linux.vnet.ibm.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/336561397137116@web27h.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-17 13:39:51 +02:00
Mike Galbraith
60e69eed85 sched/numa: Fix task_numa_free() lockdep splat
Sasha reported that lockdep claims that the following commit:
made numa_group.lock interrupt unsafe:

  156654f491 ("sched/numa: Move task_numa_free() to __put_task_struct()")

While I don't see how that could be, given the commit in question moved
task_numa_free() from one irq enabled region to another, the below does
make both gripes and lockups upon gripe with numa=fake=4 go away.

Reported-by: Sasha Levin <sasha.levin@oracle.com>
Fixes: 156654f491 ("sched/numa: Move task_numa_free() to __put_task_struct()")
Signed-off-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: torvalds@linux-foundation.org
Cc: mgorman@suse.com
Cc: akpm@linux-foundation.org
Cc: Dave Jones <davej@redhat.com>
Link: http://lkml.kernel.org/r/1396860915.5170.5.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-11 10:39:15 +02:00
Alex Shi
6037dd1a49 sched: Clean up the task_hot() function
task_hot() doesn't need the 'sched_domain' parameter, so remove it.

Signed-off-by: Alex Shi <alex.shi@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394607111-1904-1-git-send-email-alex.shi@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-12 10:49:01 +01:00
Vincent Guittot
a2cd42601b sched: Remove double calculation in fix_small_imbalance()
The tmp value has been already calculated in:

  scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
		busiest->group_power;

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394555166-22894-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-12 10:49:00 +01:00
Kirill Tkhai
35805ff8f4 sched/fair: Fix endless loop in idle_balance()
Check for fair tasks number to decide, that we've pulled a task.
rq's nr_running may contain throttled RT tasks.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394118975.19290.104.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-11 12:05:41 +01:00
Kirill Tkhai
4c6c4e38c4 sched/core: Fix endless loop in pick_next_task()
1) Single cpu machine case.

When rq has only RT tasks, but no one of them can be picked
because of throttling, we enter in endless loop.

pick_next_task_{dl,rt} return NULL.

In pick_next_task_fair() we permanently go to retry

	if (rq->nr_running != rq->cfs.h_nr_running)
		return RETRY_TASK;

(rq->nr_running is not being decremented when rt_rq becomes
throttled).

No chances to unthrottle any rt_rq or to wake fair here,
because of rq is locked permanently and interrupts are
disabled.

2) In case of SMP this can cause a hang too. Although we unlock
   rq in idle_balance(), interrupts are still disabled.

The solution is to check for available tasks in DL and RT
classes instead of checking for sum.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394098321.19290.11.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-11 12:05:39 +01:00
Kirill Tkhai
e4aa358b6c sched/fair: Push down check for high priority class task into idle_balance()
We close idle_exit_fair() bracket in case of we've pulled something or we've received
task of high priority class.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/1394098315.19290.10.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-11 12:05:37 +01:00
Ingo Molnar
a02ed5e3e0 Merge branch 'sched/urgent' into sched/core
Pick up fixes before queueing up new changes.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-11 11:34:27 +01:00
Peter Zijlstra
37e117c07b sched: Guarantee task priority in pick_next_task()
Michael spotted that the idle_balance() push down created a task
priority problem.

Previously, when we called idle_balance() before pick_next_task() it
wasn't a problem when -- because of the rq->lock droppage -- an rt/dl
task slipped in.

Similarly for pre_schedule(), rt pre-schedule could have a dl task
slip in.

But by pulling it into the pick_next_task() loop, we'll not try a
higher task priority again.

Cure this by creating a re-start condition in pick_next_task(); and
triggering this from pick_next_task_{rt,fair}().

It also fixes a live-lock where we get stuck in pick_next_task_fair()
due to idle_balance() seeing !0 nr_running but there not actually
being any fair tasks about.

Reported-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140224121218.GR15586@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-27 12:41:02 +01:00
Dietmar Eggemann
f5f9739d7a sched: Put rq's sched_avg under CONFIG_FAIR_GROUP_SCHED
The struct sched_avg of struct rq is only used in case group
scheduling is enabled inside __update_tg_runnable_avg() to update
per-cpu representation of a task group.  I.e. that there is no need to
maintain the runnable avg of a rq in the !CONFIG_FAIR_GROUP_SCHED case.

This patch guards struct sched_avg of struct rq and
update_rq_runnable_avg() with CONFIG_FAIR_GROUP_SCHED.

There is an extra empty definition for update_rq_runnable_avg()
necessary for the !CONFIG_FAIR_GROUP_SCHED && CONFIG_SMP case.

The function print_cfs_group_stats() which prints out struct sched_avg
of struct rq is already guarded with CONFIG_FAIR_GROUP_SCHED.

Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/530DCDC5.1060406@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-27 12:41:00 +01:00
George McCollister
791c9e0292 sched: Fix double normalization of vruntime
dequeue_entity() is called when p->on_rq and sets se->on_rq = 0
which appears to guarentee that the !se->on_rq condition is met.
If the task has done set_current_state(TASK_INTERRUPTIBLE) without
schedule() the second condition will be met and vruntime will be
incorrectly adjusted twice.

In certain cases this can result in the task's vruntime never increasing
past the vruntime of other tasks on the CFS' run queue, starving them of
CPU time.

This patch changes switched_from_fair() to use !p->on_rq instead of
!se->on_rq.

I'm able to cause a task with a priority of 120 to starve all other
tasks with the same priority on an ARM platform running 3.2.51-rt72
PREEMPT RT by writing one character at time to a serial tty (16550 UART)
in a tight loop. I'm also able to verify making this change corrects the
problem on that platform and kernel version.

Signed-off-by: George McCollister <george.mccollister@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1392767811-28916-1-git-send-email-george.mccollister@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-27 12:29:38 +01:00
Mike Galbraith
d987fc7f32 sched, nohz: Exclude isolated cores from load balancing
The user explicitly disabled load balancing, else this core would not be
disconnected.  Don't add these to nohz.idle_cpus_mask.

Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Lei Wen <leiwen@marvell.com>
Link: http://lkml.kernel.org/n/tip-vmme4f49psirp966pklm5l9j@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-22 18:17:22 +01:00
Morten Rasmussen
de91b9cb97 sched: Fix select_task_rq_fair() description comments
Brings select_task_rq_fair() description comments up-to-date.

Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392732864-10927-1-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-22 18:17:04 +01:00
Peter Zijlstra
3f1d2a3181 sched: Fix hotplug task migration
Dan Carpenter reported:

> kernel/sched/rt.c:1347 pick_next_task_rt() warn: variable dereferenced before check 'prev' (see line 1338)
> kernel/sched/deadline.c:1011 pick_next_task_dl() warn: variable dereferenced before check 'prev' (see line 1005)

Kirill also spotted that migrate_tasks() will have an instant NULL
deref because pick_next_task() will immediately deref prev.

Instead of fixing all the corner cases because migrate_tasks() can
pass in a NULL prev task in the unlikely case of hot-un-plug, provide
a fake task such that we can remove all the NULL checks from the far
more common paths.

A further problem; not previously spotted; is that because we pushed
pre_schedule() and idle_balance() into pick_next_task() we now need to
avoid those getting called and pulling more tasks on our dying CPU.

We avoid pull_{dl,rt}_task() by setting fake_task.prio to MAX_PRIO+1.
We also note that since we call pick_next_task() exactly the amount of
times we have runnable tasks present, we should never land in
idle_balance().

Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Kirill Tkhai <tkhai@yandex.ru>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140212094930.GB3545@laptop.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:43:18 +01:00
Peter Zijlstra
6e83125c6b sched/fair: Remove idle_balance() declaration in sched.h
Remove idle_balance() from the public life; also reduce some #ifdef
clutter by folding the pick_next_task_fair() idle path into
idle_balance().

Cc: mingo@kernel.org
Reported-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140211151148.GP27965@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:43:17 +01:00
Michael wang
eb7a59b2c8 sched/fair: Reset se-depth when task switched to FAIR
Sasha reported:

[  522.645288] BUG: unable to handle kernel NULL pointer dereference at ...
[  522.646271] IP: [<ffffffff81186c6f>] check_preempt_wakeup+0x11f/0x210
		...
[  522.650021] Call Trace:
[  522.650021]  <IRQ>
[  522.650021]  [<ffffffff8117361d>] check_preempt_curr+0x3d/0xb0
[  522.650021]  [<ffffffff81175d88>] ttwu_do_wakeup+0x18/0x130
		...

which was caused by the se-depth changed during the time when task is not
FAIR, and we will use the wrong depth value after it switched back to FAIR.

This patch reset the depth at the time when task switched to FAIR, make sure
that we always have the correct value when task is FAIR.

Cc: Ingo Molnar <mingo@kernel.org>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5305732D.70001@linux.vnet.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:43:17 +01:00
Rik van Riel
3cf1962cdb sched,numa: add cond_resched to task_numa_work
Normally task_numa_work scans over a fairly small amount of memory,
but it is possible to run into a large unpopulated part of virtual
memory, with no pages mapped. In that case, task_numa_work can run
for a while, and it may make sense to reschedule as required.

Cc: akpm@linux-foundation.org
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Xing Gang <gang.xing@hp.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392761566-24834-2-git-send-email-riel@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:27:10 +01:00
Dietmar Eggemann
27f17580fd sched: Delete is_same_group() outside CONFIG_FAIR_GROUP_SCHED
Since is_same_group() is only used in the group scheduling code, there is
no need to define it outside CONFIG_FAIR_GROUP_SCHED.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1391005773-29493-1-git-send-email-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-11 09:58:16 +01:00
Peter Zijlstra
38033c37fa sched: Push down pre_schedule() and idle_balance()
This patch both merged idle_balance() and pre_schedule() and pushes
both of them into pick_next_task().

Conceptually pre_schedule() and idle_balance() are rather similar,
both are used to pull more work onto the current CPU.

We cannot however first move idle_balance() into pre_schedule_fair()
since there is no guarantee the last runnable task is a fair task, and
thus we would miss newidle balances.

Similarly, the dl and rt pre_schedule calls must be ran before
idle_balance() since their respective tasks have higher priority and
it would not do to delay their execution searching for less important
tasks first.

However, by noticing that pick_next_tasks() already traverses the
sched_class hierarchy in the right order, we can get the right
behaviour and do away with both calls.

We must however change the special case optimization to also require
that prev is of sched_class_fair, otherwise we can miss doing a dl or
rt pull where we needed one.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-a8k6vvaebtn64nie345kx1je@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-11 09:58:10 +01:00
Peter Zijlstra
678d5718d8 sched/fair: Optimize cgroup pick_next_task_fair()
Since commit 2f36825b1 ("sched: Next buddy hint on sleep and preempt
path") it is likely we pick a new task from the same cgroup, doing a put
and then set on all intermediate entities is a waste of time, so try to
avoid this.

Measured using:

  mount nodev /cgroup -t cgroup -o cpu
  cd /cgroup
  mkdir a; cd a
  mkdir b; cd b
  mkdir c; cd c
  echo $$ > tasks
  perf stat --repeat 10 -- taskset 1 perf bench sched pipe

PRE :      4.542422684 seconds time elapsed   ( +-  0.33% )
POST:      4.389409991 seconds time elapsed   ( +-  0.32% )

Which shows a significant improvement of ~3.5%

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:19 +01:00
Peter Zijlstra
f10447998a sched/fair: Clean up the __clear_buddies_*() functions
Slightly easier code flow, no functional changes.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:16 +01:00
Peter Zijlstra
606dba2e28 sched: Push put_prev_task() into pick_next_task()
In order to avoid having to do put/set on a whole cgroup hierarchy
when we context switch, push the put into pick_next_task() so that
both operations are in the same function. Further changes then allow
us to possibly optimize away redundant work.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:13 +01:00
Peter Zijlstra
fed14d45f9 sched/fair: Track cgroup depth
Track depth in cgroup tree, this is useful for things like
find_matching_se() where you need to get to a common parent of two
sched entities.

Keeping the depth avoids having to calculate it on the spot, which
saves a number of possible cache-misses.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:10 +01:00
Daniel Lezcano
3c4017c13f sched: Move rq->idle_stamp up to the core
idle_balance() modifies the rq->idle_stamp field, making this information
shared across core.c and fair.c.

As we know if the cpu is going to idle or not with the previous patch, let's
encapsulate the rq->idle_stamp information in core.c by moving it up to the
caller.

The idle_balance() function returns true in case a balancing occured and the
cpu won't be idle, false if no balance happened and the cpu is going idle.

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: alex.shi@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389949444-14821-3-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:07 +01:00
Daniel Lezcano
e5fc66119e sched: Fix race in idle_balance()
The scheduler main function 'schedule()' checks if there are no more tasks
on the runqueue. Then it checks if a task should be pulled in the current
runqueue in idle_balance() assuming it will go to idle otherwise.

But idle_balance() releases the rq->lock in order to look up the sched
domains and takes the lock again right after. That opens a window where
another cpu may put a task in our runqueue, so we won't go to idle but
we have filled the idle_stamp, thinking we will.

This patch closes the window by checking if the runqueue has been modified
but without pulling a task after taking the lock again, so we won't go to idle
right after in the __schedule() function.

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: alex.shi@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389949444-14821-2-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:04 +01:00
Daniel Lezcano
b4f2ab4361 sched: Remove 'cpu' parameter from idle_balance()
The cpu parameter passed to idle_balance() is not needed as it could
be retrieved from 'struct rq.'

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: alex.shi@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389949444-14821-1-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:01 +01:00
Ingo Molnar
eaa4e4fcf1 Merge branch 'linus' into sched/core, to resolve conflicts
Conflicts:
	kernel/sysctl.c

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-02 09:45:39 +01:00
Rik van Riel
be1e4e760d sched/numa: Turn some magic numbers into #defines
Cleanup suggested by Mel Gorman. Now the code contains some more
hints on what statistics go where.

Suggested-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-10-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-28 15:03:21 +01:00
Rik van Riel
58b46da336 sched/numa: Rename variables in task_numa_fault()
We track both the node of the memory after a NUMA fault, and the node
of the CPU on which the fault happened. Rename the local variables in
task_numa_fault to make things more explicit.

Suggested-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-9-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-28 15:03:19 +01:00
Rik van Riel
35664fd41e sched/numa: Do statistics calculation using local variables only
The current code in task_numa_placement calculates the difference
between the old and the new value, but also temporarily stores half
of the old value in the per-process variables.

The NUMA balancing code looks at those per-process variables, and
having other tasks temporarily see halved statistics could lead to
unwanted numa migrations. This can be avoided by doing all the math
in local variables.

This change also simplifies the code a little.

Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-8-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-28 15:03:17 +01:00
Rik van Riel
7e2703e609 sched/numa: Normalize faults_cpu stats and weigh by CPU use
Tracing the code that decides the active nodes has made it abundantly clear
that the naive implementation of the faults_from code has issues.

Specifically, the garbage collector in some workloads will access orders
of magnitudes more memory than the threads that do all the active work.
This resulted in the node with the garbage collector being marked the only
active node in the group.

This issue is avoided if we weigh the statistics by CPU use of each task in
the numa group, instead of by how many faults each thread has occurred.

To achieve this, we normalize the number of faults to the fraction of faults
that occurred on each node, and then multiply that fraction by the fraction
of CPU time the task has used since the last time task_numa_placement was
invoked.

This way the nodes in the active node mask will be the ones where the tasks
from the numa group are most actively running, and the influence of eg. the
garbage collector and other do-little threads is properly minimized.

On a 4 node system, using CPU use statistics calculated over a longer interval
results in about 1% fewer page migrations with two 32-warehouse specjbb runs
on a 4 node system, and about 5% fewer page migrations, as well as 1% better
throughput, with two 8-warehouse specjbb runs, as compared with the shorter
term statistics kept by the scheduler.

Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-7-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-28 15:03:10 +01:00
Rik van Riel
10f3904271 sched/numa, mm: Use active_nodes nodemask to limit numa migrations
Use the active_nodes nodemask to make smarter decisions on NUMA migrations.

In order to maximize performance of workloads that do not fit in one NUMA
node, we want to satisfy the following criteria:

  1) keep private memory local to each thread

  2) avoid excessive NUMA migration of pages

  3) distribute shared memory across the active nodes, to
     maximize memory bandwidth available to the workload

This patch accomplishes that by implementing the following policy for
NUMA migrations:

  1) always migrate on a private fault

  2) never migrate to a node that is not in the set of active nodes
     for the numa_group

  3) always migrate from a node outside of the set of active nodes,
     to a node that is in that set

  4) within the set of active nodes in the numa_group, only migrate
     from a node with more NUMA page faults, to a node with fewer
     NUMA page faults, with a 25% margin to avoid ping-ponging

This results in most pages of a workload ending up on the actively
used nodes, with reduced ping-ponging of pages between those nodes.

Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-6-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-28 13:17:07 +01:00
Rik van Riel
20e07dea28 sched/numa: Build per numa_group active node mask from numa_faults_cpu statistics
The numa_faults_cpu statistics are used to maintain an active_nodes nodemask
per numa_group. This allows us to be smarter about when to do numa migrations.

Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Chegu Vinod <chegu_vinod@hp.com>
Link: http://lkml.kernel.org/r/1390860228-21539-5-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-28 13:17:06 +01:00