Shutdown bus function might be called on the unbound device, so add a
check if there is a driver before calling its shutdown function.
This fixes following kernel panic obserbed during system reboot:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018
...
Call trace:
spi_shutdown+0x10/0x38
kernel_restart_prepare+0x34/0x40
kernel_restart+0x14/0x88
__do_sys_reboot+0x148/0x248
__arm64_sys_reboot+0x1c/0x28
el0_svc_common.constprop.3+0x74/0x198
do_el0_svc+0x20/0x98
el0_sync_handler+0x140/0x1a8
el0_sync+0x140/0x180
Code: f9403402 d1008041 f100005f 9a9f1021 (f9400c21)
---[ end trace 266c07205a2d632e ]---
Fixes: 9db34ee64c (spi: Use bus_type functions for probe, remove and shutdown)
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Link: https://lore.kernel.org/r/20201124131523.32287-1-m.szyprowski@samsung.com
Signed-off-by: Mark Brown <broonie@kernel.org>
I've discovered that due to the recent commit 49d7d695ca ("spi: dw:
Explicitly de-assert CS on SPI transfer completion") a concurrent usage of
the spidev devices with different chip-selects causes the "SPI transfer
timed out" error. The root cause of the problem has turned to be in a race
condition of the SPI-transfer execution procedure and the spi_setup()
method being called at the same time. In particular in calling the
spi_set_cs(false) while there is an SPI-transfer being executed. In my
case due to the commit cited above all CSs get to be switched off by
calling the spi_setup() for /dev/spidev0.1 while there is an concurrent
SPI-transfer execution performed on /dev/spidev0.0. Of course a situation
of the spi_setup() being called while there is an SPI-transfer being
executed for two different SPI peripheral devices of the same controller
may happen not only for the spidev driver, but for instance for MMC SPI +
some another device, or spi_setup() being called from an SPI-peripheral
probe method while some other device has already been probed and is being
used by a corresponding driver...
Of course I could have provided a fix affecting the DW APB SSI driver
only, for instance, by creating a mutual exclusive access to the set_cs
callback and setting/clearing only the bit responsible for the
corresponding chip-select. But after a short research I've discovered that
the problem most likely affects a lot of the other drivers:
- drivers/spi/spi-sun4i.c - RMW the chip-select register;
- drivers/spi/spi-rockchip.c - RMW the chip-select register;
- drivers/spi/spi-qup.c - RMW a generic force-CS flag in a CSR.
- drivers/spi/spi-sifive.c - set a generic CS-mode flag in a CSR.
- drivers/spi/spi-bcm63xx-hsspi.c - uses an internal mutex to serialize
the bus config changes, but still isn't protected from the race
condition described above;
- drivers/spi/spi-geni-qcom.c - RMW a chip-select internal flag and set the
CS state in HW;
- drivers/spi/spi-orion.c - RMW a chip-select register;
- drivers/spi/spi-cadence.c - RMW a chip-select register;
- drivers/spi/spi-armada-3700.c - RMW a chip-select register;
- drivers/spi/spi-lantiq-ssc.c - overwrites the chip-select register;
- drivers/spi/spi-sun6i.c - RMW a chip-select register;
- drivers/spi/spi-synquacer.c - RMW a chip-select register;
- drivers/spi/spi-altera.c - directly sets the chip-select state;
- drivers/spi/spi-omap2-mcspi.c - RMW an internally cached CS state and
writes it to HW;
- drivers/spi/spi-mt65xx.c - RMW some CSR;
- drivers/spi/spi-jcore.c - directly sets the chip-selects state;
- drivers/spi/spi-mt7621.c - RMW a chip-select register;
I could have missed some drivers, but a scale of the problem is obvious.
As you can see most of the drivers perform an unprotected
Read-modify-write chip-select register modification in the set_cs callback.
Seeing the spi_setup() function is calling the spi_set_cs() and it can be
executed concurrently with SPI-transfers exec procedure, which also calls
spi_set_cs() in the SPI core spi_transfer_one_message() method, the race
condition of the register modification turns to be obvious.
To sum up the problem denoted above affects each driver for a controller
having more than one chip-select lane and which:
1) performs the RMW to some CS-related register with no serialization;
2) directly disables any CS on spi_set_cs(dev, false).
* the later is the case of the DW APB SSI driver.
The controllers which equipped with a single CS theoretically can also
experience the problem, but in practice will not since normally the
spi_setup() isn't called concurrently with the SPI-transfers executed on
the same SPI peripheral device.
In order to generically fix the denoted bug I'd suggest to serialize an
access to the controller IO by taking the IO mutex in the spi_setup()
callback. The mutex is held while there is an SPI communication going on
on the SPI-bus of the corresponding SPI-controller. So calling the
spi_setup() method and disabling/updating the CS state within it would be
safe while there is no any SPI-transfers being executed. Also note I
suppose it would be safer to protect the spi_controller->setup() callback
invocation too, seeing some of the SPI-controller drivers update a HW
state in there.
Fixes: 49d7d695ca ("spi: dw: Explicitly de-assert CS on SPI transfer completion")
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Link: https://lore.kernel.org/r/20201117094517.5654-1-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Mark Brown <broonie@kernel.org>
The driver core ignores the return value of struct device_driver::remove
(because in general there is nothing that can be done about that). So
add a warning when an spi driver returns an error.
This simplifies the quest to make struct device_driver::remove return void.
A consequent change would be to make struct spi_driver::remove return void,
but I'm keeping this quest for later (or someone else).
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20201119161604.2633521-3-u.kleine-koenig@pengutronix.de
Signed-off-by: Mark Brown <broonie@kernel.org>
The eventual goal is to get rid of the callbacks in struct
device_driver. Other than not using driver callbacks there should be no
side effect of this patch.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20201119161604.2633521-2-u.kleine-koenig@pengutronix.de
Signed-off-by: Mark Brown <broonie@kernel.org>
Consider an spi driver with a .probe but without a .remove callback (e.g.
rtc-ds1347). The function spi_drv_probe() is called to bind a device and
so dev_pm_domain_attach() is called. As there is no remove callback
spi_drv_remove() isn't called at unbind time however and so calling
dev_pm_domain_detach() is missed and the pm domain keeps active.
To fix this always use both spi_drv_probe() and spi_drv_remove() and
make them handle the respective callback not being set. This has the
side effect that for a (hypothetical) driver that has neither .probe nor
remove the clk and pm domain setup is done.
Fixes: 33cf00e570 ("spi: attach/detach SPI device to the ACPI power domain")
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20201119161604.2633521-1-u.kleine-koenig@pengutronix.de
Signed-off-by: Mark Brown <broonie@kernel.org>
SPI driver probing currently comprises two steps, whereas removal
comprises only one step:
spi_alloc_master()
spi_register_controller()
spi_unregister_controller()
That's because spi_unregister_controller() calls device_unregister()
instead of device_del(), thereby releasing the reference on the
spi_controller which was obtained by spi_alloc_master().
An SPI driver's private data is contained in the same memory allocation
as the spi_controller struct. Thus, once spi_unregister_controller()
has been called, the private data is inaccessible. But some drivers
need to access it after spi_unregister_controller() to perform further
teardown steps.
Introduce devm_spi_alloc_master() and devm_spi_alloc_slave(), which
release a reference on the spi_controller struct only after the driver
has unbound, thereby keeping the memory allocation accessible. Change
spi_unregister_controller() to not release a reference if the
spi_controller was allocated by one of these new devm functions.
The present commit is small enough to be backportable to stable.
It allows fixing drivers which use the private data in their ->remove()
hook after it's been freed. It also allows fixing drivers which neglect
to release a reference on the spi_controller in the probe error path.
Long-term, most SPI drivers shall be moved over to the devm functions
introduced herein. The few that can't shall be changed in a treewide
commit to explicitly release the last reference on the controller.
That commit shall amend spi_unregister_controller() to no longer release
a reference, thereby completing the migration.
As a result, the behaviour will be less surprising and more consistent
with subsystems such as IIO, which also includes the private data in the
allocation of the generic iio_dev struct, but calls device_del() in
iio_device_unregister().
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Link: https://lore.kernel.org/r/272bae2ef08abd21388c98e23729886663d19192.1605121038.git.lukas@wunner.de
Signed-off-by: Mark Brown <broonie@kernel.org>
Commit f3186dd876 ("spi: Optionally use GPIO descriptors for CS GPIOs")
introduced the optional use of GPIO descriptors for chip selects.
A side-effect of this change: when a SPI bus uses GPIO descriptors,
all its client devices have SPI_CS_HIGH set in spi->mode. This flag is
required for the SPI bus to operate correctly.
This unfortunately breaks many client drivers, which use the following
pattern to configure their underlying SPI bus:
static int client_device_probe(struct spi_device *spi)
{
...
spi->mode = SPI_MODE_0;
spi->bits_per_word = 8;
err = spi_setup(spi);
..
}
In short, many client drivers overwrite the SPI_CS_HIGH bit in
spi->mode, and break the underlying SPI bus driver.
This is especially true for Freescale/NXP imx ecspi, where large
numbers of spi client drivers now no longer work.
Proposed fix:
-------------
When using gpio descriptors, depend on gpiolib to handle CS polarity.
Existing quirks in gpiolib ensure that this is handled correctly.
Existing gpiolib behaviour will force the polarity of any chip-select
gpiod to active-high (if 'spi-active-high' devicetree prop present) or
active-low (if 'spi-active-high' absent). Irrespective of whether
the gpio is marked GPIO_ACTIVE_[HIGH|LOW] in the devicetree.
Loose ends:
-----------
If this fix is applied:
- is commit 138c9c32f0
("spi: spidev: Fix CS polarity if GPIO descriptors are used")
still necessary / correct ?
Fixes: f3186dd876 ("spi: Optionally use GPIO descriptors for CS GPIOs")
Signed-off-by: Sven Van Asbroeck <thesven73@gmail.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/20201106150706.29089-1-TheSven73@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
There's some driver specific fixes here plus one core fix for memory
leaks that could be triggered by a potential race condition when
cleaning up after we have split transfers to fit into what the
controller can support.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAl9bavQTHGJyb29uaWVA
a2VybmVsLm9yZwAKCRAk1otyXVSH0JuiCACAZcBZFb6hshADoyt9YCCjQrD1+khD
AzkSuDOE6UP3SGOEBx/29QL1kE7j0V9ARC0XLVZutzZhUXbIvJ1ulgUqGgeQSnLz
ZvO/rIJiC+lsKIZQANgOBjOzWhfRzYXPOwfQwtsta5NfrP5ZafKJ5iG2C0xjnETr
Arybcx8D/EDZWKQ9PntM246J/jlmK+dsnK6wouqHlP2ulo3O4UQUxN0D5SjUC0RW
3xMH165RvIqwu0L5iCUWmzQhPuxuhk2QWpt48k3dPghmNx9XNGJuHDRI0THRxIp/
2mNRXiK0qKma4AwWO7+JJshyeXufR07HNMYfkL/d159K6QOsu1Uaq4z4
=d1ma
-----END PGP SIGNATURE-----
Merge tag 'spi-fix-v5.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
Pull spi fixes from Mark Brown:
"There's some driver specific fixes here plus one core fix for memory
leaks that could be triggered by a potential race condition when
cleaning up after we have split transfers to fit into what the
controller can support"
* tag 'spi-fix-v5.9-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi:
spi: stm32: fix pm_runtime_get_sync() error checking
spi: Fix memory leak on splited transfers
spi: spi-cadence-quadspi: Fix mapping of buffers for DMA reads
spi: stm32: Rate-limit the 'Communication suspended' message
spi: spi-loopback-test: Fix out-of-bounds read
spi: spi-cadence-quadspi: Populate get_name() interface
MAINTAINERS: add myself as maintainer for spi-fsl-dspi driver
In the prepare_message callback the bus driver has the
opportunity to split a transfer into smaller chunks.
spi_map_msg is done after prepare_message.
Function spi_res_release releases the splited transfers
in the message. Therefore spi_res_release should be called
after spi_map_msg.
The previous try at this was commit c9ba7a16d0
which released the splited transfers after
spi_finalize_current_message had been called.
This introduced a race since the message struct could be
out of scope because the spi_sync call got completed.
Fixes this leak on spi bus driver spi-bcm2835.c when transfer
size is greater than 65532:
Kmemleak:
sg_alloc_table+0x28/0xc8
spi_map_buf+0xa4/0x300
__spi_pump_messages+0x370/0x748
__spi_sync+0x1d4/0x270
spi_sync+0x34/0x58
spi_test_execute_msg+0x60/0x340 [spi_loopback_test]
spi_test_run_iter+0x548/0x578 [spi_loopback_test]
spi_test_run_test+0x94/0x140 [spi_loopback_test]
spi_test_run_tests+0x150/0x180 [spi_loopback_test]
spi_loopback_test_probe+0x50/0xd0 [spi_loopback_test]
spi_drv_probe+0x84/0xe0
Signed-off-by: Gustav Wiklander <gustavwi@axis.com>
Link: https://lore.kernel.org/r/20200908151129.15915-1-gustav.wiklander@axis.com
Signed-off-by: Mark Brown <broonie@kernel.org>
A bunch of fixes that came in for SPI during the merge window, a bunch
from ST and others for their controller, one from Lukas for a race
between device addition and controller unregistration and one from fix
from Geert for the DT bindings which unbreaks validation.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAl88HlMTHGJyb29uaWVA
a2VybmVsLm9yZwAKCRAk1otyXVSH0LSaB/9aKqZmi7DUz1mguWny26NdYwBfYjW/
tZzpK/wfdwOoaxnxlSpZjA1tTOgjIFKQK1mN3adkKyqh1KByokSMHN0jp9nTM/BM
VyYid0jv0mnoANXCUWueQMcGxE990cRGbrJoywEY47VdGBSxGUdOiv/NukgZv8wa
z0ijmA7phTe1cCavp5rzB/fdNbOj4STg0ErgArVrafXV1E/fHvnjjTtPf2RtXWTU
LuUBw51Uo1wBZch9gDcvqiBhyfuXxk7ik+U0e0nRVeRTTw0F/ZpVqpob95mHyWm+
YuDjn/SRyZRpIdr9uxwpSEUxNB6sowAs5MJOcxesjSHJBIU77WAwX7bA
=BjOG
-----END PGP SIGNATURE-----
Merge tag 'spi-fix-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
Pull spi fixes from Mark Brown:
"A bunch of fixes that came in for SPI during the merge window.
Some from ST and others for their controller, one from Lukas for a
race between device addition and controller unregistration and one
from fix from Geert for the DT bindings which unbreaks validation"
* tag 'spi-fix-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi:
dt-bindings: lpspi: Add missing boolean type for fsl,spi-only-use-cs1-sel
spi: stm32: always perform registers configuration prior to transfer
spi: stm32: fixes suspend/resume management
spi: stm32: fix stm32_spi_prepare_mbr in case of odd clk_rate
spi: stm32: fix fifo threshold level in case of short transfer
spi: stm32h7: fix race condition at end of transfer
spi: stm32: clear only asserted irq flags on interrupt
spi: Prevent adding devices below an unregistering controller
static priority level knowledge from non-scheduler code.
The three APIs for non-scheduler code to set SCHED_FIFO are:
- sched_set_fifo()
- sched_set_fifo_low()
- sched_set_normal()
These are two FIFO priority levels: default (high), and a 'low' priority level,
plus sched_set_normal() to set the policy back to non-SCHED_FIFO.
Since the changes affect a lot of non-scheduler code, we kept this in a separate
tree.
When merging to the latest upstream tree there's a conflict in drivers/spi/spi.c,
which can be resolved via:
sched_set_fifo(ctlr->kworker_task);
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8pPQIRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j0Jw/+LlSyX6gD2ATy3cizGL7DFPZogD5MVKTb
IXbhXH/ACpuPQlBe1+haRLbJj6XfXqbOlAleVKt7eh+jZ1jYjC972RCSTO4566mJ
0v8Iy9kkEeb2TDbYx1H3bnk78lf85t0CB+sCzyKUYFuTrXU04eRj7MtN3vAQyRQU
xJg83x/sT5DGdDTP50sL7lpbwk3INWkD0aDCJEaO/a9yHElMsTZiZBKoXxN/s30o
FsfzW56jqtng771H2bo8ERN7+abwJg10crQU5mIaLhacNMETuz0NZ/f8fY/fydCL
Ju8HAdNKNXyphWkAOmixQuyYtWKe2/GfbHg8hld0jmpwxkOSTgZjY+pFcv7/w306
g2l1TPOt8e1n5jbfnY3eig+9Kr8y0qHkXPfLfgRqKwMMaOqTTYixEzj+NdxEIRX9
Kr7oFAv6VEFfXGSpb5L1qyjIGVgQ5/JE/p3OC3GHEsw5VKiy5yjhNLoSmSGzdS61
1YurVvypSEUAn3DqTXgeGX76f0HH365fIKqmbFrUWxliF+YyflMhtrj2JFtejGzH
Md3RgAzxusE9S6k3gw1ev4byh167bPBbY8jz0w3Gd7IBRKy9vo92h6ZRYIl6xeoC
BU2To1IhCAydIr6hNsIiCSDTgiLbsYQzPuVVovUxNh+l1ZvKV2X+csEHhs8oW4pr
4BRU7dKL2NE=
=/7JH
-----END PGP SIGNATURE-----
Merge tag 'sched-fifo-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull sched/fifo updates from Ingo Molnar:
"This adds the sched_set_fifo*() encapsulation APIs to remove static
priority level knowledge from non-scheduler code.
The three APIs for non-scheduler code to set SCHED_FIFO are:
- sched_set_fifo()
- sched_set_fifo_low()
- sched_set_normal()
These are two FIFO priority levels: default (high), and a 'low'
priority level, plus sched_set_normal() to set the policy back to
non-SCHED_FIFO.
Since the changes affect a lot of non-scheduler code, we kept this in
a separate tree"
* tag 'sched-fifo-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
sched,tracing: Convert to sched_set_fifo()
sched: Remove sched_set_*() return value
sched: Remove sched_setscheduler*() EXPORTs
sched,psi: Convert to sched_set_fifo_low()
sched,rcutorture: Convert to sched_set_fifo_low()
sched,rcuperf: Convert to sched_set_fifo_low()
sched,locktorture: Convert to sched_set_fifo()
sched,irq: Convert to sched_set_fifo()
sched,watchdog: Convert to sched_set_fifo()
sched,serial: Convert to sched_set_fifo()
sched,powerclamp: Convert to sched_set_fifo()
sched,ion: Convert to sched_set_normal()
sched,powercap: Convert to sched_set_fifo*()
sched,spi: Convert to sched_set_fifo*()
sched,mmc: Convert to sched_set_fifo*()
sched,ivtv: Convert to sched_set_fifo*()
sched,drm/scheduler: Convert to sched_set_fifo*()
sched,msm: Convert to sched_set_fifo*()
sched,psci: Convert to sched_set_fifo*()
sched,drbd: Convert to sched_set_fifo*()
...
CONFIG_OF_DYNAMIC and CONFIG_ACPI allow adding SPI devices at runtime
using a DeviceTree overlay or DSDT patch. CONFIG_SPI_SLAVE allows the
same via sysfs.
But there are no precautions to prevent adding a device below a
controller that's being removed. Such a device is unusable and may not
even be able to unbind cleanly as it becomes inaccessible once the
controller has been torn down. E.g. it is then impossible to quiesce
the device's interrupt.
of_spi_notify() and acpi_spi_notify() do hold a ref on the controller,
but otherwise run lockless against spi_unregister_controller().
Fix by holding the spi_add_lock in spi_unregister_controller() and
bailing out of spi_add_device() if the controller has been unregistered
concurrently.
Fixes: ce79d54ae4 ("spi/of: Add OF notifier handler")
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Cc: stable@vger.kernel.org # v3.19+
Cc: Geert Uytterhoeven <geert+renesas@glider.be>
Cc: Octavian Purdila <octavian.purdila@intel.com>
Cc: Pantelis Antoniou <pantelis.antoniou@konsulko.com>
Link: https://lore.kernel.org/r/a8c3205088a969dc8410eec1eba9aface60f36af.1596451035.git.lukas@wunner.de
Signed-off-by: Mark Brown <broonie@kernel.org>
Currently we always defer idling of controllers to the SPI thread, the goal
being to ensure that we're doing teardown that's not suitable for atomic
context in an appropriate context and to try to batch up more expensive
teardown operations when the system is under higher load, allowing more
work to be started before the SPI thread is scheduled. However when the
controller does not require any substantial work to idle there is no need
to do this, we can instead save the context switch and immediately mark
the controller as idle. This is particularly useful for systems where there
is frequent but not constant activity.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20200715163610.9475-1-broonie@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
Use kthread_create_worker() helper to simplify the code. It uses
the kthread worker API the right way. It will eventually allow
to remove the FIXME in kthread_worker_fn() and add more consistency
checks in the future.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20200709065007.26896-1-m.szyprowski@samsung.com
Signed-off-by: Mark Brown <broonie@kernel.org>
On some SPI controllers (like spi-geni-qcom) setting the chip select
is a heavy operation. For instance on spi-geni-qcom, with the current
code, is was measured as taking upwards of 20 us. Even on SPI
controllers that aren't as heavy, setting the chip select is at least
something like a MMIO operation over some peripheral bus which isn't
as fast as a RAM access.
While it would be good to find ways to mitigate problems like this in
the drivers for those SPI controllers, it can also be noted that the
SPI framework could also help out. Specifically, in some situations,
we can see the SPI framework calling the driver's set_cs() with the
same parameter several times in a row. This is specifically observed
when looking at the way the Chrome OS EC SPI driver (cros_ec_spi)
works but other drivers likely trip it to some extent.
Let's solve this by caching the chip select state in the core and only
calling into the controller if there was a change. We check not only
the "enable" state but also the chip select mode (active high or
active low) since controllers may care about both the mode and the
enable flag in their callback.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20200629164103.1.Ied8e8ad8bbb2df7f947e3bc5ea1c315e041785a2@changeid
Signed-off-by: Mark Brown <broonie@kernel.org>
Add fallback to pio mode in case dma transfer failed with error status
SPI_TRANS_FAIL_NO_START.
If spi client driver want to enable this feature please set xfer->error in
the proper place such as dmaengine_prep_slave_sg() failure detect(but no
any data put into spi bus yet). Besides, add master->fallback checking in
its can_dma() so that spi core could switch to pio next time. Please refer
to spi-imx.c.
Signed-off-by: Robin Gong <yibin.gong@nxp.com>
Link: https://lore.kernel.org/r/1592347329-28363-2-git-send-email-yibin.gong@nxp.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Because SCHED_FIFO is a broken scheduler model (see previous patches)
take away the priority field, the kernel can't possibly make an
informed decision.
No effective change.
Cc: broonie@kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Originally spi_write_then_read() used a fixed statically allocated
buffer which limited the maximum message size it could handle. This
restriction was removed a while ago so that we could dynamically
allocate a buffer if required but the kerneldoc was not updated to
reflect this, do so.
Reported-by: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20200525133120.57273-1-broonie@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
since chip spi driver need get the transfer direction by 'tx_buf' and
'rx_buf' of 'struct spi_transfer' in 'SPI_3WIRE' mode.
so, we need bypass 'SPI_CONTROLLER_MUST_RX' and 'SPI_CONTROLLER_MUST_TX'
feature in 'SPI_3WIRE' mode
Signed-off-by: dillon min <dillon.minfei@gmail.com>
Link: https://lore.kernel.org/r/1590378348-8115-9-git-send-email-dillon.minfei@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
If the delay used is long enough the spi_delay_exec() will use a sleeping
function to implement it. Add a might_sleep() here to help avoid callers
using this from an atomic context and running into problems at runtime on
other systems.
Suggested-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20200522155005.46099-1-broonie@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
When an SPI controller unregisters, it unbinds all its slave devices.
For this, their drivers may need to access the SPI bus, e.g. to quiesce
interrupts.
However since commit ffbbdd2132 ("spi: create a message queueing
infrastructure"), spi_destroy_queue() is executed before unbinding the
slaves. It sets ctlr->running = false, thereby preventing SPI bus
access and causing unbinding of slave devices to fail.
Fix by unbinding slaves before calling spi_destroy_queue().
Fixes: ffbbdd2132 ("spi: create a message queueing infrastructure")
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Cc: stable@vger.kernel.org # v3.4+
Cc: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/8aaf9d44c153fe233b17bc2dec4eb679898d7e7b.1589557526.git.lukas@wunner.de
Signed-off-by: Mark Brown <broonie@kernel.org>
The variable ms is being initialized with a value that is never read
and it is being updated later with a new value. The initialization is
redundant and can be removed.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Addresses-Coverity: ("Unused value")
Link: https://lore.kernel.org/r/20200410122315.17523-1-colin.king@canonical.com
Signed-off-by: Mark Brown <broonie@kernel.org>
By unknown reason the commit 64bee4d28c
("spi / ACPI: add ACPI enumeration support")
missed the DataBitLength property to encounter when parse SPI slave
device data from ACPI.
Fill the gap here.
Fixes: 64bee4d28c ("spi / ACPI: add ACPI enumeration support")
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20200413180406.1826-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Mark Brown <broonie@kernel.org>
to_spi_device() already checks 'dev'. No need to do it before calling
it.
Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Niklas Söderlund <niklas.soderlund+renesas@ragnatech.se>
Link: https://lore.kernel.org/r/20200312134507.10000-1-wsa@the-dreams.de
Signed-off-by: Mark Brown <broonie@kernel.org>
This patchset from Chuanhong Guo <gch981213@gmail.com> adds a spi-mem
driver for Mediatek SPI-NOR controller, which already has limited
support by mtk-quadspi. This new driver can make use of full quadspi
capability of this controller.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAl5pQmYTHGJyb29uaWVA
a2VybmVsLm9yZwAKCRAk1otyXVSH0D9sB/9PBy5hYIWLJOqP3Tegy+si7eEjgYQe
32DvHZRYYL+Oc8OQMGnJYUY5grfriS300TjxeB4MNx8ajVyuaH7e2aIhgTz3oJ6a
YrygFcxEi0LmRT82HyLVxptyblMSo3A8QWOTOqe1aFvJRZjDDKvEIcGCW2RPmtxT
r/EoVVkSv4X+k3GUtYnRBrq12hL+vr1YIjZM05MVu2sDtFXLO2+wotFIODDv15zi
ByBtwhKumKawUOETzGDw4EDV5MJx9nZtswRC4x3hDrLS6au39F/MyP78gpHm8vw+
YfiS5/39rkB6j1QltcP3B9n7joxrgaFAYsLBTZUoE3IjeVTggcKCOSVX
=q5ml
-----END PGP SIGNATURE-----
gpgsig -----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAl5pQt4THGJyb29uaWVA
a2VybmVsLm9yZwAKCRAk1otyXVSH0BFqB/9jBg5bNy9mNXljELZ7RKCtbn9CThYk
NvccckUJnjaTxSccGcGEetfFtoVvM4IJ8ffiL6gBrNDgvuSbedLkboqlftRRbkE2
tvxnfjKGeiVIHXcXG0kzrVMDPPncYy+o8nQMJ8b/v+VFeLah6LCo0nT4t54LPvfZ
52Nncdr8jAnjoet7t2CX2nJrhTOPUGhC7HxbwOyu2HOOd5nWmYAdT4UZo4Vdv1g9
L1knLoZctpvCpql/mUWdOAqQbD0bD0vT3FKQaq6C6kAeE+kMWSGdPgYxyFdBEVXi
uOmaqU7lHt2bsr6TRbOpw4ON0PzQtzZ/YhW2XEPJd6uc3GWy//qEyqgO
=qoqi
-----END PGP SIGNATURE-----
Merge tag 'mtk-mtd-spi-move' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi into spi-5.7
spi: Rewrite mtk-quadspi spi-nor driver with spi-mem
This patchset from Chuanhong Guo <gch981213@gmail.com> adds a spi-mem
driver for Mediatek SPI-NOR controller, which already has limited
support by mtk-quadspi. This new driver can make use of full quadspi
capability of this controller.
We only need a spi-max-frequency when we specifically request a
spi frequency lower than the max speed of spi host.
This property is already documented as optional property and current
host drivers are implemented to operate at highest speed possible
when spi->max_speed_hz is 0.
This patch makes spi-max-frequency an optional property so that
we could just omit it to use max controller speed.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Link: https://lore.kernel.org/r/20200306085052.28258-2-gch981213@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
A selection of small fixes, mostly for drivers, that have arrived since
the merge window. None of them are earth shattering in themselves but
all useful for affected systems.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAl5iiroTHGJyb29uaWVA
a2VybmVsLm9yZwAKCRAk1otyXVSH0ALxB/0TAEys4X1IxDku7N4E9vivlTQP+Yy5
LmJ7Oc+z1aCWX3LrpMa3M9JInnY44iahjariaZgcQ9GXXTO4rEoOSTVL99fXzj0h
wRS23p+h8GNFQ0s6Bzni8HSITz+vzCUJjYQe4i8iJIpQBRIErFSrqzB4uRGd7SPI
PIgYeTSA3rFuVvdAgijRg3hPTW2rpn328G/k35JpUNo9OdZ/v6NDQl1Sbg/FedFu
iY0feUaQ1FafHGkja/+OYN43bCraDo7Fo4COyF9cHGIJ8nBzMZJumhjgei26nviM
OQ15zRewFpnLGlK8ffPykrnynOhqo3GF7JbFWvI5pga/G5XzzLY8mi19
=bFsu
-----END PGP SIGNATURE-----
Merge tag 'spi-fix-v5.6-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
Pull spi fixes from Mark Brown:
"A selection of small fixes, mostly for drivers, that have arrived
since the merge window. None of them are earth shattering in
themselves but all useful for affected systems"
* tag 'spi-fix-v5.6-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi:
spi: spi_register_controller(): free bus id on error paths
spi: bcm63xx-hsspi: Really keep pll clk enabled
spi: atmel-quadspi: fix possible MMIO window size overrun
spi/zynqmp: remove entry that causes a cs glitch
spi: pxa2xx: Add CS control clock quirk
spi: spidev: Fix CS polarity if GPIO descriptors are used
spi: qup: call spi_qup_pm_resume_runtime before suspending
spi: spi-omap2-mcspi: Support probe deferral for DMA channels
spi: spi-omap2-mcspi: Handle DMA size restriction on AM65x
When dealing with a SPI controller driver that is sending more than 1
byte at once (or the entire buffer at once), and the SPI peripheral
driver has requested timestamping for a byte in the middle of the
buffer, we find that spi_take_timestamp_pre never records a "pre"
timestamp.
This happens because the function currently expects to be called with
the "progress" argument >= to what the peripheral has requested to be
timestamped. But clearly there are cases when that isn't going to fly.
And since we can't change the past when we realize that the opportunity
to take a "pre" timestamp has just passed and there isn't going to be
another one, the approach taken is to keep recording the "pre" timestamp
on each call, overwriting the previously recorded one until the "post"
timestamp is also taken.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20200304220044.11193-8-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Some error paths leave the bus id allocated. As a result the IDR
allocation will fail after a deferred probe. Fix by freeing the bus id
always on error.
Signed-off-by: Aaro Koskinen <aaro.koskinen@nokia.com>
Message-Id: <20200304111740.27915-1-aaro.koskinen@nokia.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Currently ACPI firmware description for a SPI device does not have any
method to describe the data buswidth on the board.
So even through the controller and device may support higher modes than
standard SPI, it cannot be assumed that the board does - as such, that
device is limited to standard SPI in such a circumstance.
As a workaround, allow the controller driver supply buswidth override bits,
which are used inform the core code that the controller driver knows the
buswidth supported on that board for that device.
A host controller driver might know this info from DMI tables, for example.
Signed-off-by: John Garry <john.garry@huawei.com>
Link: https://lore.kernel.org/r/1582903131-160033-2-git-send-email-john.garry@huawei.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Some SPI master controllers always drive a native chip select when
performing a transfer. Hence when using both native and GPIO chip
selects, at least one native chip select must be left unused, to be
driven when performing transfers with slave devices using GPIO chip
selects.
Currently, to find an unused native chip select, SPI controller drivers
need to parse and process cs-gpios theirselves. This is not only
duplicated in each driver that needs it, but also duplicates part of the
work done later at SPI controller registration time. Note that this
cannot be done after spi_register_controller() returns, as at that time,
slave devices may have been probed already.
Hence add generic support to the SPI subsystem for finding an unused
native chip select. Optionally, this unused native chip select, and all
other in-use native chip selects, can be validated against the maximum
number of native chip selects available on the controller hardware.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://lore.kernel.org/r/20200102133822.29346-2-geert+renesas@glider.be
Signed-off-by: Mark Brown <broonie@kernel.org>
A small collection of fixes here, one to make the newly added PTP
timestamping code more accurate, a few driver fixes and a fix for the
core DT binding to document the fact that we support eight wire buses.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAl4TMdwTHGJyb29uaWVA
a2VybmVsLm9yZwAKCRAk1otyXVSH0M5UB/9w0mzrmuaJzctm3Jm8LiCIjJoZ0woQ
chgbhm2C/I6idENxdUhaJ1YZMI6NkmJKpJy5tQ/QH4MnbOVT/vHIEmIsRYO0vYoF
ApERJLia8da1OpiJlPTbsg3eUXVNmPMVeAkq5MgKSflaIjV6Ejc0FRWmgDYvzhu9
xkCsptAF7MYPUuHdBcjXPscSf1/w+FdDy8VYncEluyJ0NpGDU64N/XdTwRmsG8QW
BxA1jPPKi445NsC+OV8SFfNZbeEXG2iSEBPvp4tMGtd0TiIp3UNLTRzMstEFE6SD
hCzL9fQEzUgHD+B0vLmccyy0HR0phk6813jf9KeToAjAxKtf5XhQajW+
=Ad4n
-----END PGP SIGNATURE-----
Merge tag 'spi-fix-v5.5-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
Pull spi fixes from Mark Brown:
"A small collection of fixes here, one to make the newly added PTP
timestamping code more accurate, a few driver fixes and a fix for the
core DT binding to document the fact that we support eight wire buses"
* tag 'spi-fix-v5.5-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi:
spi: Document Octal mode as valid SPI bus width
spi: spi-dw: Add lock protect dw_spi rx/tx to prevent concurrent calls
spi: spi-fsl-dspi: Fix 16-bit word order in 32-bit XSPI mode
spi: Don't look at TX buffer for PTP system timestamping
spi: uniphier: Fix FIFO threshold
The API for PTP system timestamping (associating a SPI transaction with
the system time at which it was transferred) is flawed: it assumes that
the xfer->tx_buf pointer will always be present.
This is, of course, not always the case.
So introduce a "progress" variable that denotes how many word have been
transferred.
Fix the Freescale DSPI driver, the only user of the API so far, in the
same patch.
Fixes: b42faeee71 ("spi: Add a PTP system timestamp to the transfer structure")
Fixes: d6b71dfaee ("spi: spi-fsl-dspi: Implement the PTP system timestamping for TCFQ mode")
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20191227012417.1057-1-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
We can catch whether the SPI controller has declared it can take care of
software timestamping transfers, but didn't. So do it.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20191227012444.1204-1-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Commit d948e6ca18 ("spi: add power control when set_cs") added generic
runtime PM handling, but also changed the return value to be 1 instead
of 0 that we had earlier as pm_runtime_get functions return a positve
value on success.
This causes SPI devices to return errors for cases where they do:
ret = spi_setup(spi);
if (ret)
return ret;
As in many cases the SPI devices do not check for if (ret < 0).
Let's fix this by setting the status to 0 on succeess after the
runtime PM calls. Let's not return 0 at the end of the function
as this might break again later on if the function changes and
starts returning status again.
Fixes: d948e6ca18 ("spi: add power control when set_cs")
Cc: Luhua Xu <luhua.xu@mediatek.com>
Cc: wsd_upstream@mediatek.com
Signed-off-by: Tony Lindgren <tony@atomide.com>
Link: https://lore.kernel.org/r/20191111195334.44833-1-tony@atomide.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Even if the flag use_gpio_descriptors is set, it is possible that
cs_gpiods was not allocated, which leads to a kernel crash.
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Fixes: 3e5ec1db8b ("spi: Fix SPI_CS_HIGH setting when using native and GPIO CS")
Signed-off-by: Gregory CLEMENT <gregory.clement@bootlin.com>
Link: https://lore.kernel.org/r/20191024141309.22434-1-gregory.clement@bootlin.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Cc: <stable@vger.kernel.org>
When improving the CS GPIO support at core level, the SPI_CS_HIGH
has been enabled for all the CS lines used for a given SPI controller.
However, the SPI framework allows to have on the same controller native
CS and GPIO CS. The native CS may not support the SPI_CS_HIGH, so they
should not be setup automatically.
With this patch the setting is done only for the CS that will use a
GPIO as CS
Fixes: f3186dd876 ("spi: Optionally use GPIO descriptors for CS GPIOs")
Cc: <stable@vger.kernel.org>
Signed-off-by: Gregory CLEMENT <gregory.clement@bootlin.com>
Link: https://lore.kernel.org/r/20191018152929.3287-1-gregory.clement@bootlin.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The way the max delay is computed for this controller, it looks like it is
searching for the max delay from an SPI message a using that.
No idea if this is valid. But this change should support both `delay_usecs`
and the new `delay` data which is of `spi_delay` type.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-17-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
This change implements CS control for setup, hold & inactive delays.
The `cs_setup` delay is completely new, and can help with cases where
asserting the CS, also brings the device out of power-sleep, where there
needs to be a longer (than usual), before transferring data.
The `cs_hold` time can overlap with the `delay` (or `delay_usecs`) from an
SPI transfer. The main difference is that `cs_hold` implies that CS will be
de-asserted.
The `cs_inactive` delay does not have a clear use-case yet. It has been
implemented mostly because the `spi_set_cs_timing()` function implements
it. To some degree, this could overlap or replace `cs_change_delay`, but
this will require more consideration/investigation in the future.
All these delays have been added to the `spi_controller` struct, as they
would typically be configured by calling `spi_set_cs_timing()` after an
`spi_setup()` call.
Software-mode for CS control, implies that the `set_cs_timing()` hook has
not been provided for the `spi_controller` object.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-16-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The initial version of `spi_set_cs_timing()` was implemented with
consideration only for clock-cycles as delay.
For cases like `CS setup` time, it's sometimes needed that micro-seconds
(or nano-seconds) are required, or sometimes even longer delays, for cases
where the device needs a little longer to start transferring that after CS
is asserted.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-15-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The change introduces the `delay` field to the `spi_transfer` struct as an
`struct spi_delay` type.
This intends to eventually replace `delay_usecs`.
But, since there are many users of `delay_usecs`, this needs some
intermediate work.
A helper called `spi_transfer_delay_exec()` is also added, which maintains
backwards compatibility with `delay_usecs`, by assigning the value to
`delay` if non-zero.
This should maintain backwards compatibility with current users of
`udelay_usecs`.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-9-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
This change does a conversion from the `word_delay_usecs` -> `word_delay`
for the `spi_device` struct.
This allows users to specify inter-word delays in other unit types
(nano-seconds or clock cycles), depending on how users want.
The Atmel SPI driver is the only current user of the `word_delay_usecs`
field (from the `spi_device` struct).
So, it needed a slight conversion to use the `word_delay` as an `spi_delay`
struct.
In SPI core, the only required mechanism is to update the `word_delay`
information per `spi_transfer`. This requires a bit more logic than before,
because it needs that both delays be converted to a common unit
(nano-seconds) for comparison.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-8-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Since the logic for `spi_delay` struct + `spi_delay_exec()` has been copied
from the `cs_change_delay` logic, it's natural to make this delay, the
first user.
The `cs_change_delay` logic requires that the default remain 10 uS, in case
it is unspecified/unconfigured. So, there is some special handling needed
to do that.
The ADIS library is one of the few users of the new `cs_change_delay`
parameter for an spi_transfer.
The introduction of the `spi_delay` struct, requires that the users of of
`cs_change_delay` get an update. This change also updates the ADIS library.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-4-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
There are plenty of delays that have been introduced in SPI core. Most of
them are in micro-seconds, some need to be in nano-seconds, and some in
clock-cycles.
For some of these delays (related to transfers & CS timing) it may make
sense to have a `spi_delay` struct that abstracts these a bit.
The important element of these delays [for unification] seems to be the
`unit` of the delay.
It looks like micro-seconds is good enough for most people, but every-once
in a while, some delays seem to require other units of measurement.
This change adds the `spi_delay` struct & a `spi_delay_exec()` function
that processes a `spi_delay` object/struct to execute the delay.
It's a copy of the `cs_change_delay` mechanism, but without the default
for 10 uS.
The clock-cycle delay unit is a bit special, as it needs to be bound to an
`spi_transfer` object to execute.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-3-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
The `cs_change_delay` backwards compatibility value could be moved outside
of the switch statement.
The only reason to do it, is to make the next patches easier to diff.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Link: https://lore.kernel.org/r/20190926105147.7839-2-alexandru.ardelean@analog.com
Signed-off-by: Mark Brown <broonie@kernel.org>
SPI is one of the interfaces used to access devices which have a POSIX
clock driver (real time clocks, 1588 timers etc). The fact that the SPI
bus is slow is not what the main problem is, but rather the fact that
drivers don't take a constant amount of time in transferring data over
SPI. When there is a high delay in the readout of time, there will be
uncertainty in the value that has been read out of the peripheral.
When that delay is constant, the uncertainty can at least be
approximated with a certain accuracy which is fine more often than not.
Timing jitter occurs all over in the kernel code, and is mainly caused
by having to let go of the CPU for various reasons such as preemption,
servicing interrupts, going to sleep, etc. Another major reason is CPU
dynamic frequency scaling.
It turns out that the problem of retrieving time from a SPI peripheral
with high accuracy can be solved by the use of "PTP system
timestamping" - a mechanism to correlate the time when the device has
snapshotted its internal time counter with the Linux system time at that
same moment. This is sufficient for having a precise time measurement -
it is not necessary for the whole SPI transfer to be transmitted "as
fast as possible", or "as low-jitter as possible". The system has to be
low-jitter for a very short amount of time to be effective.
This patch introduces a PTP system timestamping mechanism in struct
spi_transfer. This is to be used by SPI device drivers when they need to
know the exact time at which the underlying device's time was
snapshotted. More often than not, SPI peripherals have a very exact
timing for when their SPI-to-interconnect bridge issues a transaction
for snapshotting and reading the time register, and that will be
dependent on when the SPI-to-interconnect bridge figures out that this
is what it should do, aka as soon as it sees byte N of the SPI transfer.
Since spi_device drivers are the ones who'd know best how the peripheral
behaves in this regard, expose a mechanism in spi_transfer which allows
them to specify which word (or word range) from the transfer should be
timestamped.
Add a default implementation of the PTP system timestamping in the SPI
core. This is not going to be satisfactory performance-wise, but should
at least increase the likelihood that SPI device drivers will use PTP
system timestamping in the future.
There are 3 entry points from the core towards the SPI controller
drivers:
- transfer_one: The driver is passed individual spi_transfers to
execute. This is the easiest to timestamp.
- transfer_one_message: The core passes the driver an entire spi_message
(a potential batch of spi_transfers). The core puts the same pre and
post timestamp to all transfers within a message. This is not ideal,
but nothing better can be done by default anyway, since the core has
no insight into how the driver batches the transfers.
- transfer: Like transfer_one_message, but for unqueued drivers (i.e.
the driver implements its own queue scheduling).
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20190905010114.26718-3-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQUwxxKyE5l/npt8ARiEGxRG/Sl2wUCXYAIeQAKCRBiEGxRG/Sl
2/SzAQDEnoNxzV/R5kWFd+2kmFeY3cll0d99KMrWJ8om+kje6QD/cXxZHzFm+T1L
UPF66k76oOODV7cyndjXnTnRXbeCRAM=
=Szby
-----END PGP SIGNATURE-----
Merge tag 'leds-for-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski/linux-leds
Pull LED updates from Jacek Anaszewski:
"In this cycle we've finally managed to contribute the patch set
sorting out LED naming issues. Besides that there are many changes
scattered among various LED class drivers and triggers.
LED naming related improvements:
- add new 'function' and 'color' fwnode properties and deprecate
'label' property which has been frequently abused for conveying
vendor specific names that have been available in sysfs anyway
- introduce a set of standard LED_FUNCTION* definitions
- introduce a set of standard LED_COLOR_ID* definitions
- add a new {devm_}led_classdev_register_ext() API with the
capability of automatic LED name composition basing on the
properties available in the passed fwnode; the function is
backwards compatible in a sense that it uses 'label' data, if
present in the fwnode, for creating LED name
- add tools/leds/get_led_device_info.sh script for retrieving LED
vendor, product and bus names, if applicable; it also performs
basic validation of an LED name
- update following drivers and their DT bindings to use the new LED
registration API:
- leds-an30259a, leds-gpio, leds-as3645a, leds-aat1290, leds-cr0014114,
leds-lm3601x, leds-lm3692x, leds-lp8860, leds-lt3593, leds-sc27xx-blt
Other LED class improvements:
- replace {devm_}led_classdev_register() macros with inlines
- allow to call led_classdev_unregister() unconditionally
- switch to use fwnode instead of be stuck with OF one
LED triggers improvements:
- led-triggers:
- fix dereferencing of null pointer
- fix a memory leak bug
- ledtrig-gpio:
- GPIO 0 is valid
Drop superseeded apu2/3 support from leds-apu since for apu2+ a newer,
more complete driver exists, based on a generic driver for the AMD
SOCs gpio-controller, supporting LEDs as well other devices:
- drop profile field from priv data
- drop iosize field from priv data
- drop enum_apu_led_platform_types
- drop superseeded apu2/3 led support
- add pr_fmt prefix for better log output
- fix error message on probing failure
Other misc fixes and improvements to existing LED class drivers:
- leds-ns2, leds-max77650:
- add of_node_put() before return
- leds-pwm, leds-is31fl32xx:
- use struct_size() helper
- leds-lm3697, leds-lm36274, leds-lm3532:
- switch to use fwnode_property_count_uXX()
- leds-lm3532:
- fix brightness control for i2c mode
- change the define for the fs current register
- fixes for the driver for stability
- add full scale current configuration
- dt: Add property for full scale current.
- avoid potentially unpaired regulator calls
- move static keyword to the front of declarations
- fix optional led-max-microamp prop error handling
- leds-max77650:
- add of_node_put() before return
- add MODULE_ALIAS()
- Switch to fwnode property API
- leds-as3645a:
- fix misuse of strlcpy
- leds-netxbig:
- add of_node_put() in netxbig_leds_get_of_pdata()
- remove legacy board-file support
- leds-is31fl319x:
- simplify getting the adapter of a client
- leds-ti-lmu-common:
- fix coccinelle issue
- move static keyword to the front of declaration
- leds-syscon:
- use resource managed variant of device register
- leds-ktd2692:
- fix a typo in the name of a constant
- leds-lp5562:
- allow firmware files up to the maximum length
- leds-an30259a:
- fix typo
- leds-pca953x:
- include the right header"
* tag 'leds-for-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski/linux-leds: (72 commits)
leds: lm3532: Fix optional led-max-microamp prop error handling
led: triggers: Fix dereferencing of null pointer
leds: ti-lmu-common: Move static keyword to the front of declaration
leds: lm3532: Move static keyword to the front of declarations
leds: trigger: gpio: GPIO 0 is valid
leds: pwm: Use struct_size() helper
leds: is31fl32xx: Use struct_size() helper
leds: ti-lmu-common: Fix coccinelle issue in TI LMU
leds: lm3532: Avoid potentially unpaired regulator calls
leds: syscon: Use resource managed variant of device register
leds: Replace {devm_}led_classdev_register() macros with inlines
leds: Allow to call led_classdev_unregister() unconditionally
leds: lm3532: Add full scale current configuration
dt: lm3532: Add property for full scale current.
leds: lm3532: Fixes for the driver for stability
leds: lm3532: Change the define for the fs current register
leds: lm3532: Fix brightness control for i2c mode
leds: Switch to use fwnode instead of be stuck with OF one
leds: max77650: Switch to fwnode property API
led: triggers: Fix a memory leak bug
...
__spi_alloc_controller() uses a single allocation to accommodate struct
spi_controller and the driver-private data, but places the latter behind
the former. This order does not guarantee cacheline alignment of the
driver-private data. (It does guarantee cacheline alignment of struct
spi_controller but the structure doesn't make any use of that property.)
Round up struct spi_controller to cacheline size. A forthcoming commit
leverages this to grant DMA access to driver-private data of the BCM2835
SPI master.
An alternative, less economical approach would be to use two allocations.
A third approach consists of reversing the order to conserve memory.
But Mark Brown is concerned that it may result in a performance penalty
on architectures that don't like unaligned accesses.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Link: https://lore.kernel.org/r/01625b9b26b93417fb09d2c15ad02dfe9cdbbbe5.1568187525.git.lukas@wunner.de
Signed-off-by: Mark Brown <broonie@kernel.org>
This helps a bit with line fitting now (the list_first_entry call) as
well as during the next patch which needs to iterate through all
transfers of ctlr->cur_msg so it timestamps them.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Link: https://lore.kernel.org/r/20190905010114.26718-2-olteanv@gmail.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Rename this function to of_spi_get_gpio_numbers() as this
is what the function does, it does not register a master,
it is called in the path of registering a master so the
name is logical in a convoluted way, but it is better to
follow Rusty Russell's ABI level no 7:
"The obvious use is (probably) the correct one"
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Link: https://lore.kernel.org/r/20190808150321.23319-1-linus.walleij@linaro.org
Signed-off-by: Mark Brown <broonie@kernel.org>
The SPI thingies request FIFO-99 by default, reduce this to FIFO-50.
FIFO-99 is the very highest priority available to SCHED_FIFO and
it not a suitable default; it would indicate the SPI work is the
most important work on the machine.
Cc: Benson Leung <bleung@chromium.org>
Cc: Enric Balletbo i Serra <enric.balletbo@collabora.com>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: linux-spi@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20190801111541.917256884@infradead.org
Signed-off-by: Mark Brown <broonie@kernel.org>
Convert the SPI slave control sysfs attribute from DEVICE_ATTR() to
DEVICE_ATTR_RW(), to reduce boilerplate.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://lore.kernel.org/r/20190731124738.14519-1-geert+renesas@glider.be
Signed-off-by: Mark Brown <broonie@kernel.org>
Add a generic helper to match a device by the ACPI_COMPANION device
and provide wrappers for the device lookup APIs.
Cc: Len Brown <lenb@kernel.org>
Cc: linux-acpi@vger.kernel.org
Cc: linux-spi@vger.kernel.org
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: linux-i2c@vger.kernel.org
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Brown <broonie@kernel.org>
Acked-by: Wolfram Sang <wsa@the-dreams.de> # I2C parts
Link: https://lore.kernel.org/r/20190723221838.12024-6-suzuki.poulose@arm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Here is the "big" driver core and debugfs changes for 5.3-rc1
It's a lot of different patches, all across the tree due to some api
changes and lots of debugfs cleanups. Because of this, there is going
to be some merge issues with your tree at the moment, I'll follow up
with the expected resolutions to make it easier for you.
Other than the debugfs cleanups, in this set of changes we have:
- bus iteration function cleanups (will cause build warnings
with s390 and coresight drivers in your tree)
- scripts/get_abi.pl tool to display and parse Documentation/ABI
entries in a simple way
- cleanups to Documenatation/ABI/ entries to make them parse
easier due to typos and other minor things
- default_attrs use for some ktype users
- driver model documentation file conversions to .rst
- compressed firmware file loading
- deferred probe fixes
All of these have been in linux-next for a while, with a bunch of merge
issues that Stephen has been patient with me for. Other than the merge
issues, functionality is working properly in linux-next :)
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXSgpnQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykcwgCfS30OR4JmwZydWGJ7zK/cHqk+KjsAnjOxjC1K
LpRyb3zX29oChFaZkc5a
=XrEZ
-----END PGP SIGNATURE-----
Merge tag 'driver-core-5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core and debugfs updates from Greg KH:
"Here is the "big" driver core and debugfs changes for 5.3-rc1
It's a lot of different patches, all across the tree due to some api
changes and lots of debugfs cleanups.
Other than the debugfs cleanups, in this set of changes we have:
- bus iteration function cleanups
- scripts/get_abi.pl tool to display and parse Documentation/ABI
entries in a simple way
- cleanups to Documenatation/ABI/ entries to make them parse easier
due to typos and other minor things
- default_attrs use for some ktype users
- driver model documentation file conversions to .rst
- compressed firmware file loading
- deferred probe fixes
All of these have been in linux-next for a while, with a bunch of
merge issues that Stephen has been patient with me for"
* tag 'driver-core-5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (102 commits)
debugfs: make error message a bit more verbose
orangefs: fix build warning from debugfs cleanup patch
ubifs: fix build warning after debugfs cleanup patch
driver: core: Allow subsystems to continue deferring probe
drivers: base: cacheinfo: Ensure cpu hotplug work is done before Intel RDT
arch_topology: Remove error messages on out-of-memory conditions
lib: notifier-error-inject: no need to check return value of debugfs_create functions
swiotlb: no need to check return value of debugfs_create functions
ceph: no need to check return value of debugfs_create functions
sunrpc: no need to check return value of debugfs_create functions
ubifs: no need to check return value of debugfs_create functions
orangefs: no need to check return value of debugfs_create functions
nfsd: no need to check return value of debugfs_create functions
lib: 842: no need to check return value of debugfs_create functions
debugfs: provide pr_fmt() macro
debugfs: log errors when something goes wrong
drivers: s390/cio: Fix compilation warning about const qualifiers
drivers: Add generic helper to match by of_node
driver_find_device: Unify the match function with class_find_device()
bus_find_device: Unify the match callback with class_find_device
...
In the new SPI ACPI slave enumeration code, we use the value of
lookup.max_speed_khz as a flag to decide whether a match occurred.
However, doing so only makes sense if we initialize its value to
zero beforehand, or otherwise, random junk from the stack will
cause spurious matches.
So zero initialize the lookup struct fully, and only set the non-zero
members explicitly.
Fixes: 4c3c59544f ("spi/acpi: enumerate all SPI slaves in the namespace")
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: andy.shevchenko@gmail.com
Cc: masahisa.kojima@linaro.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Cc: linux-acpi@vger.kernel.org
Cc: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
There is an arbitrary difference between the prototypes of
bus_find_device() and class_find_device() preventing their callers
from passing the same pair of data and match() arguments to both of
them, which is the const qualifier used in the prototype of
class_find_device(). If that qualifier is also used in the
bus_find_device() prototype, it will be possible to pass the same
match() callback function to both bus_find_device() and
class_find_device(), which will allow some optimizations to be made in
order to avoid code duplication going forward. Also with that, constify
the "data" parameter as it is passed as a const to the match function.
For this reason, change the prototype of bus_find_device() to match
the prototype of class_find_device() and adjust its callers to use the
const qualifier in accordance with the new prototype of it.
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andrew Lunn <andrew@lunn.ch>
Cc: Andreas Noever <andreas.noever@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Corey Minyard <minyard@acm.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David Kershner <david.kershner@unisys.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: David Airlie <airlied@linux.ie>
Cc: Felipe Balbi <balbi@kernel.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: Harald Freudenberger <freude@linux.ibm.com>
Cc: Hartmut Knaack <knaack.h@gmx.de>
Cc: Heiko Stuebner <heiko@sntech.de>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Cameron <jic23@kernel.org>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michael Jamet <michael.jamet@intel.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Peter Oberparleiter <oberpar@linux.ibm.com>
Cc: Sebastian Ott <sebott@linux.ibm.com>
Cc: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Cc: Yehezkel Bernat <YehezkelShB@gmail.com>
Cc: rafael@kernel.org
Acked-by: Corey Minyard <minyard@acm.org>
Acked-by: David Kershner <david.kershner@unisys.com>
Acked-by: Mark Brown <broonie@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Acked-by: Wolfram Sang <wsa@the-dreams.de> # for the I2C parts
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
at91sam9g25ek showed the following error at probe:
atmel_spi f0000000.spi: Using dma0chan2 (tx) and dma0chan3 (rx)
for DMA transfers
atmel_spi: probe of f0000000.spi failed with error -22
Commit 0a919ae492 ("spi: Don't call spi_get_gpio_descs() before device name is set")
moved the calling of spi_get_gpio_descs() after ctrl->dev is set,
but didn't move the !ctrl->num_chipselect check. When there are
chip selects in the device tree, the spi-atmel driver lets the
SPI core discover them when registering the SPI master.
The ctrl->num_chipselect is thus expected to be set by
spi_get_gpio_descs().
Move the !ctlr->num_chipselect after spi_get_gpio_descs() as it was
before the aforementioned commit. While touching this block, get rid
of the explicit comparison with 0 and update the commenting style.
Fixes: 0a919ae492 ("spi: Don't call spi_get_gpio_descs() before device name is set")
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
The ACPI device object parsing code for SPI slaves enumerates the
entire ACPI namespace to look for devices that refer to the master
in question via the 'resource_source' field in the 'SPISerialBus'
resource. If that field does not refer to a valid ACPI device or
if it refers to the wrong SPI master, we should disregard the
device.
Current, the valid device check is wrong, since it gets the
polarity of 'status' wrong. This could cause issues if the
'resource_source' field is bogus but parent_handle happens to
refer to the correct master (which is not entirely imaginary
since this code runs in a loop)
So test for ACPI_FAILURE() instead, to make the code more
self explanatory.
Fixes: 4c3c59544f ("spi/acpi: enumerate all SPI slaves in the namespace")
Reported-by: kbuild test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: andy.shevchenko@gmail.com
Cc: masahisa.kojima@linaro.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Cc: linux-acpi@vger.kernel.org
Cc: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
The loop declaration in function spi_res_release() can be simplified
by reusing the common list_for_each_entry_safe_reverse() helper
macro.
Signed-off-by: Vladimir Zapolskiy <vz@mleia.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
The device_for_each_child() doesn't require the returned value to be checked.
Thus, drop the dummy variable completely and have no warning anymore:
drivers/spi/spi.c: In function ‘spi_unregister_controller’:
drivers/spi/spi.c:2480:6: warning: variable ‘dummy’ set but not used [-Wunused-but-set-variable]
int dummy;
^~~~~
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Currently, the ACPI enumeration that takes place when registering a
SPI master only considers immediate child devices in the ACPI namespace,
rather than checking the ResourceSource field in the SpiSerialBus()
resource descriptor.
This is incorrect: SPI slaves could reside anywhere in the ACPI
namespace, and so we should enumerate the entire namespace and look for
any device that refers to the newly registered SPI master in its
resource descriptor.
So refactor the existing code and use a lookup structure so that
allocating the SPI device structure is deferred until we have identified
the device as an actual child of the controller. This approach is
loosely based on the way the I2C subsystem handles ACPI enumeration.
Note that Apple x86 hardware does not rely on SpiSerialBus() resources
in _CRS but uses nested devices below the controller's device node in
the ACPI namespace, with a special set of device properties. This means
we have to take care to only parse those properties for device nodes
that are direct children of the controller node.
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: linux-spi@vger.kernel.org
Cc: broonie@kernel.org
Cc: andy.shevchenko@gmail.com
Cc: masahisa.kojima@linaro.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Cc: linux-acpi@vger.kernel.org
Cc: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct spi_replaced_transfers {
...
struct spi_transfer inserted_transfers[];
};
Make use of the struct_size() helper instead of an open-coded version
in order to avoid any potential type mistakes.
So, replace the following form:
insert * sizeof(struct spi_transfer) + sizeof(struct spi_replaced_transfers)
with:
struct_size(rxfer, inserted_transfers, insert)
This code was detected with the help of Coccinelle.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Right now the only way to get the SPI pumping thread bumped up to
realtime priority is for the controller to request it. However it may
be that the controller works fine with the normal priority but
communication to a particular SPI device on the bus needs realtime
priority.
Let's add a way for devices to request realtime priority when they set
themselves up.
NOTE: this will just affect the priority of transfers that end up on
the SPI core's pumping thread. In many cases transfers happen in the
context of the caller so if you need realtime priority for all
transfers you should ensure the calling context is also realtime
priority.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Tested-by: Enric Balletbo i Serra <enric.balletbo@collabora.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Provide a means for the spi bus driver to report the effectively used
spi clock frequency used for each spi_transfer.
Signed-off-by: Martin Sperl <kernel@martin.sperl.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
This reverts commit c9ba7a16d0 (Release spi_res after finalizing
message) which causes races during cleanup.
Reported-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Signed-off-by: Mark Brown <broonie@kernel.org>
Support setting a delay between cs assert and deassert as
a multiple of spi clock length.
Signed-off-by: Martin Sperl <kernel@martin.sperl.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
For some SPI devices that support speed_hz > 1MHz the default 10 us delay
when cs_change = 1 is typically way to long and may result in poor spi bus
utilization.
This patch makes it possible to control the delay at micro or nano second
resolution on a per spi_transfer basis. It even allows an "as fast as
possible" mode with:
xfer.cs_change_delay_unit = SPI_DELAY_UNIT_NSECS;
xfer.cs_change_delay = 0;
The delay code is shared between delay_usecs and cs_change_delay for
consistency and reuse, so in the future this change_delay_unit could also
apply to delay_usec as well.
Note that on slower SOCs/CPU actually reaching ns deasserts on cs is not
realistic as the gpio overhead alone (without any delays added ) may
already leave cs deasserted for more than 1us - at least on a raspberry pi.
But at the very least this way we can keep it as short as possible.
Signed-off-by: Martin Sperl <kernel@martin.sperl.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
When GPIO chip-select is used nothing prevents any available SPI
controllers to work with both CS-high and traditional CS-low modes.
In fact the SPI bus core code already does it, so we don't need to
introduce any modification there. But spi_setup() still fails to
switch the interface settings if CS-high flag is set for the case
of GPIO-driven slave chip-select when the SPI controller doesn't
support the hardwired CS-inversion. Lets fix it by clearing the
SPI_CS_HIGH flag out from bad_bits (unsupported by controller) when
client chip is selected by GPIO.
This feature is useful for slave devices, which in accordance with
communication protocol can work with both active-high and active-low
chip-selects. I am aware of one such device. It is MMC-SPI interface,
when at init sequence the driver needs to perform a read operation with
low and high chip-select sequentially (requirement of 74 clock cycles
with both chipselect, see the mmc_spi driver for details).
Signed-off-by: Serge Semin <fancer.lancer@gmail.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
spi_split_transfers_maxsize() can be used to split a transfer. This
function uses spi_res to lifetime manage the added transfer structures.
So in order to finalize the current message while it contains the split
transfers, spi_res_release() must be called after finalizing.
Signed-off-by: Noralf Trønnes <noralf@tronnes.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Don't warn about splitting transfers, the info is available in the
statistics if needed.
Signed-off-by: Noralf Trønnes <noralf@tronnes.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Falling back to maximum speed of the controller in case of SPI slave
maximum speed is not set is needless. It already defaults to maximum
speed of the controller since commit 052eb2d490 ("spi: core: Set
max_speed_hz of spi_device default to max_speed_hz of controller").
Signed-off-by: Jarkko Nikula <jarkko.nikula@linux.intel.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
This patch creates set_cs_timing SPI master optional method for
SPI masters to implement configuring CS timing if applicable.
This patch also creates spi_cs_timing accessory for SPI clients to
use for requesting SPI master controllers to configure device requested
CS setup time, hold time and inactive delay.
Signed-off-by: Sowjanya Komatineni <skomatineni@nvidia.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
The 'status' local variable is initialized but this value is never used,
thus kill that initializer.
Signed-off-by: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Move code calling spi_get_gpio_descs() to happen after ctlr->dev's
name is set in order to have proper GPIO consumer names.
Before:
cat /sys/kernel/debug/gpio
gpiochip0: GPIOs 0-31, parent: platform/40049000.gpio, vf610-gpio:
gpio-6 ( |regulator-usb0-vbus ) out lo
gpiochip1: GPIOs 32-63, parent: platform/4004a000.gpio, vf610-gpio:
gpio-36 ( |scl ) in hi
gpio-37 ( |sda ) in hi
gpio-40 ( |(null) CS1 ) out lo
gpio-41 ( |(null) CS0 ) out lo ACTIVE LOW
gpio-42 ( |miso ) in hi
gpio-43 ( |mosi ) in lo
gpio-44 ( |sck ) out lo
After:
cat /sys/kernel/debug/gpio
gpiochip0: GPIOs 0-31, parent: platform/40049000.gpio, vf610-gpio:
gpio-6 ( |regulator-usb0-vbus ) out lo
gpiochip1: GPIOs 32-63, parent: platform/4004a000.gpio, vf610-gpio:
gpio-36 ( |scl ) in hi
gpio-37 ( |sda ) in hi
gpio-40 ( |spi0 CS1 ) out lo
gpio-41 ( |spi0 CS0 ) out lo ACTIVE LOW
gpio-42 ( |miso ) in hi
gpio-43 ( |mosi ) in lo
gpio-44 ( |sck ) out lo
Signed-off-by: Andrey Smirnov <andrew.smirnov@gmail.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Chris Healy <cphealy@gmail.com>
Cc: linux-spi@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
While devm_gpiod_get_index_optional() returns NULL if the GPIO is not
present (i.e. -ENOENT), it may still return other error codes, like
-EPROBE_DEFER. Currently these are not handled, leading to
unrecoverable failures later in case of probe deferral:
gpiod_set_consumer_name: invalid GPIO (errorpointer)
gpiod_direction_output: invalid GPIO (errorpointer)
gpiod_set_value_cansleep: invalid GPIO (errorpointer)
gpiod_set_value_cansleep: invalid GPIO (errorpointer)
gpiod_set_value_cansleep: invalid GPIO (errorpointer)
Detect and propagate errors to fix this.
Fixes: f3186dd876 ("spi: Optionally use GPIO descriptors for CS GPIOs")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Mark Brown <broonie@kernel.org>
The newly added tracepoints in the spi-mxs driver cause a link
error when the driver is a loadable module:
ERROR: "__tracepoint_spi_transfer_stop" [drivers/spi/spi-mxs.ko] undefined!
ERROR: "__tracepoint_spi_transfer_start" [drivers/spi/spi-mxs.ko] undefined!
I'm not quite sure where to put the export statements, but
directly after the inclusion of the header seems as good as
any other place.
Fixes: f3fdea3af4 ("spi: mxs: add tracing to custom .transfer_one_message callback")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Mark Brown <broonie@kernel.org>
This fixes a bug for messages containing both zero length and
unidirectional xfers.
The function spi_map_msg will allocate dummy tx and/or rx buffers
for use with unidirectional transfers when the hardware can only do
a bidirectional transfer. That dummy buffer will be used in place
of a NULL buffer even when the xfer length is 0.
Then in the function __spi_map_msg, if he hardware can dma,
the zero length xfer will have spi_map_buf called on the dummy
buffer.
Eventually, __sg_alloc_table is called and returns -EINVAL
because nents == 0.
This fix prevents the error by not using the dummy buffer when
the xfer length is zero.
Signed-off-by: Chris Lesiak <chris.lesiak@licor.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Sleeping is safe inside spi_transfer_one_message, and some
GPIO chips are running on slow busses (such as I2C GPIO
expanders) and need to sleep for setting values.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Some devices are slow and cannot keep up with the SPI bus and therefore
require a short delay between words of the SPI transfer.
The example of this that I'm looking at is a SAMA5D2 with a minimum SPI
clock of 400kHz talking to an AVR-based SPI slave. The AVR cannot put
bytes on the bus fast enough to keep up with the SoC's SPI controller
even at the lowest bus speed.
This patch introduces the ability to specify a required inter-word
delay for SPI devices. It is up to the controller driver to configure
itself accordingly in order to introduce the requested delay.
Note that, for spi_transfer, there is already a field word_delay that
provides similar functionality. This field, however, is specified in
clock cycles (and worse, SPI controller cycles, not SCK cycles); that
makes this value dependent on the master clock instead of the device
clock for which the delay is intended to provide some relief. This
patch leaves this old word_delay in place and provides a time-based
word_delay_us alongside it; the new field fits in the struct padding
so struct size is constant. There is only one in-kernel user of the
word_delay field and presumably that driver could be reworked to use
the time-based value instead.
The time-based delay is limited to 8 bits as these delays are intended
to be short. The SAMA5D2 that I've tested this on limits delays to a
maximum of ~100us, which is already many word-transfer periods even at
the minimum transfer speed supported by the controller.
Signed-off-by: Jonas Bonn <jonas@norrbonn.se>
CC: Mark Brown <broonie@kernel.org>
CC: Rob Herring <robh+dt@kernel.org>
CC: Mark Rutland <mark.rutland@arm.com>
CC: linux-spi@vger.kernel.org
CC: devicetree@vger.kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
All controllers using GPIO descriptors can by definition
support high CS connections, so just enforce this when
registering an SPI controller.
This fixes a regression where controllers were missing
SPI_CS_HIGH, the drivers would fail like this:
spi spi0.0: setup: unsupported mode bits 4
cdns-spi fd0b0000.spi: can't setup spi0.0, status -22
This is because as using descriptors moves the CS inversion
logic over to gpiolib, all such controllers are registered
with CS active high.
Cc: Jan Kotas <jank@cadence.com>
Reported-by: Jan Kotas <jank@cadence.com>
Tested-by: Jan Kotas <jank@cadence.com>
Fixes: f3186dd876 ("spi: Optionally use GPIO descriptors for CS GPIOs")
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Commit 412e603732 ("spi: core: avoid waking pump thread from spi_sync
instead run teardown delayed") introduced regressions on some boards,
apparently connected to spi_mem not triggering shutdown properly any
more. Since we've thus far been unable to figure out exactly where the
breakage is revert the optimisation for now.
Reported-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Cc: kernel@martin.sperl.org
This augments the SPI core to optionally use GPIO descriptors
for chip select on a per-master-driver opt-in basis.
Drivers using this will rely on the SPI core to look up
GPIO descriptors associated with the device, such as
when using device tree or board files with GPIO descriptor
tables.
When getting descriptors from the device tree, this will in
turn activate the code in gpiolib that was
added in commit 6953c57ab1
("gpio: of: Handle SPI chipselect legacy bindings")
which means that these descriptors are aware of the active
low semantics that is the default for SPI CS GPIO lines
and we can assume that all of these are "active high" and
thus assign SPI_CS_HIGH to all CS lines on the DT path.
The previously used gpio_set_value() would call down into
gpiod_set_raw_value() and ignore the polarity inversion
semantics.
It seems like many drivers go to great lengths to set up the
CS GPIO line as non-asserted, respecting SPI_CS_HIGH. We pull
this out of the SPI drivers and into the core, and by simply
requesting the line as GPIOD_OUT_LOW when retrieveing it from
the device and relying on the gpiolib to handle any inversion
semantics. This way a lot of code can be simplified and
removed in each converted driver.
The end goal after dealing with each driver in turn, is to
delete the non-descriptor path (of_spi_register_master() for
example) and let the core deal with only descriptors.
The different SPI drivers have complex interactions with the
core so we cannot simply change them all over, we need to use
a stepwise, bisectable approach so that each driver can be
converted and fixed in isolation.
This patch has the intended side effect of adding support for
ACPI GPIOs as it starts relying on gpiod_get_*() to get
the GPIO handle associated with the device.
Cc: Linuxarm <linuxarm@huawei.com>
Acked-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Tested-by: Fangjian (Turing) <f.fangjian@huawei.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Convert string compares of DT node names to use of_node_name_eq helper
instead. This removes direct access to the node name pointer.
Signed-off-by: Rob Herring <robh@kernel.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Add flags for Octal mode I/O data transfer
Required for the SPI controller which can do the data transfer (TX/RX)
on 8 data lines e.g. NXP FlexSPI controller.
SPI_TX_OCTAL: transmit with 8 wires
SPI_RX_OCTAL: receive with 8 wires
Signed-off-by: Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
Reviewed-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Mark Brown <broonie@kernel.org>