It's been deprecated since commit b547a88ea5 ("btrfs: start
deprecation of mount option inode_cache") which enumerates the reasons.
A filesystem that uses the feature (mount -o inode_cache) tracks the
inode numbers in bitmaps, that data stay on the filesystem after this
patch. The size is roughly 5MiB for 1M inodes [1], which is considered
small enough to be left there. Removal of the change can be implemented
in btrfs-progs if needed.
[1] https://lore.kernel.org/linux-btrfs/20201127145836.GZ6430@twin.jikos.cz/
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While writing an explanation for the need of the commit_root_sem for
btrfs_prepare_extent_commit, I realized we have a slight hole that could
result in leaked space if we have to do the old style caching. Consider
the following scenario
commit root
+----+----+----+----+----+----+----+
|\\\\| |\\\\|\\\\| |\\\\|\\\\|
+----+----+----+----+----+----+----+
0 1 2 3 4 5 6 7
new commit root
+----+----+----+----+----+----+----+
| | | |\\\\| | |\\\\|
+----+----+----+----+----+----+----+
0 1 2 3 4 5 6 7
Prior to this patch, we run btrfs_prepare_extent_commit, which updates
the last_byte_to_unpin, and then we subsequently run
switch_commit_roots. In this example lets assume that
caching_ctl->progress == 1 at btrfs_prepare_extent_commit() time, which
means that cache->last_byte_to_unpin == 1. Then we go and do the
switch_commit_roots(), but in the meantime the caching thread has made
some more progress, because we drop the commit_root_sem and re-acquired
it. Now caching_ctl->progress == 3. We swap out the commit root and
carry on to unpin.
The race can happen like:
1) The caching thread was running using the old commit root when it
found the extent for [2, 3);
2) Then it released the commit_root_sem because it was in the last
item of a leaf and the semaphore was contended, and set ->progress
to 3 (value of 'last'), as the last extent item in the current leaf
was for the extent for range [2, 3);
3) Next time it gets the commit_root_sem, will start using the new
commit root and search for a key with offset 3, so it never finds
the hole for [2, 3).
So the caching thread never saw [2, 3) as free space in any of the
commit roots, and by the time finish_extent_commit() was called for
the range [0, 3), ->last_byte_to_unpin was 1, so it only returned the
subrange [0, 1) to the free space cache, skipping [2, 3).
In the unpin code we have last_byte_to_unpin == 1, so we unpin [0,1),
but do not unpin [2,3). However because caching_ctl->progress == 3 we
do not see the newly freed section of [2,3), and thus do not add it to
our free space cache. This results in us missing a chunk of free space
in memory (on disk too, unless we have a power failure before writing
the free space cache to disk).
Fix this by making sure the ->last_byte_to_unpin is set at the same time
that we swap the commit roots, this ensures that we will always be
consistent.
CC: stable@vger.kernel.org # 5.8+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ update changelog with Filipe's review comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're using a rw_semaphore we no longer need to indicate if a
lock is blocking or not, nor do we need to flip the entire path from
blocking to spinning. Remove these helpers and all the places they are
called.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We do not need anymore to start writeback for delalloc of roots that are
being snapshotted and wait for it to complete. This was done in commit
609e804d77 ("Btrfs: fix file corruption after snapshotting due to mix
of buffered/DIO writes") to fix a type of file corruption where files in a
snapshot end up having their i_size updated in a non-ordered way, leaving
implicit file holes, when buffered IO writes that increase a file's size
are followed by direct IO writes that also increase the file's size.
This is not needed anymore because we now have a more generic mechanism
to prevent a non-ordered i_size update since commit 9ddc959e80
("btrfs: use the file extent tree infrastructure"), which addresses this
scenario involving snapshots as well.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we COW a block we are holding a lock on the original block, and
then we lock the new COW block. Because our lockdep maps are based on
root + level, this will make lockdep complain. We need a way to
indicate a subclass for locking the COW'ed block, so plumb through our
btrfs_lock_nesting from btrfs_cow_block down to the btrfs_init_buffer,
and then introduce BTRFS_NESTING_COW to be used for cow'ing blocks.
The reason I've added all this extra infrastructure is because there
will be need of different nesting classes in follow up patches.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently regardless of a full or a fast fsync we always wait for ordered
extents to complete, and then start logging the inode after that. However
for fast fsyncs we can just wait for the writeback to complete, we don't
need to wait for the ordered extents to complete since we use the list of
modified extents maps to figure out which extents we must log and we can
get their checksums directly from the ordered extents that are still in
flight, otherwise look them up from the checksums tree.
Until commit b5e6c3e170 ("btrfs: always wait on ordered extents at
fsync time"), for fast fsyncs, we used to start logging without even
waiting for the writeback to complete first, we would wait for it to
complete after logging, while holding a transaction open, which lead to
performance issues when using cgroups and probably for other cases too,
as wait for IO while holding a transaction handle should be avoided as
much as possible. After that, for fast fsyncs, we started to wait for
ordered extents to complete before starting to log, which adds some
latency to fsyncs and we even got at least one report about a performance
drop which bisected to that particular change:
https://lore.kernel.org/linux-btrfs/20181109215148.GF23260@techsingularity.net/
This change makes fast fsyncs only wait for writeback to finish before
starting to log the inode, instead of waiting for both the writeback to
finish and for the ordered extents to complete. This brings back part of
the logic we had that extracts checksums from in flight ordered extents,
which are not yet in the checksums tree, and making sure transaction
commits wait for the completion of ordered extents previously logged
(by far most of the time they have already completed by the time a
transaction commit starts, resulting in no wait at all), to avoid any
data loss if an ordered extent completes after the transaction used to
log an inode is committed, followed by a power failure.
When there are no other tasks accessing the checksums and the subvolume
btrees, the ordered extent completion is pretty fast, typically taking
100 to 200 microseconds only in my observations. However when there are
other tasks accessing these btrees, ordered extent completion can take a
lot more time due to lock contention on nodes and leaves of these btrees.
I've seen cases over 2 milliseconds, which starts to be significant. In
particular when we do have concurrent fsyncs against different files there
is a lot of contention on the checksums btree, since we have many tasks
writing the checksums into the btree and other tasks that already started
the logging phase are doing lookups for checksums in the btree.
This change also turns all ranged fsyncs into full ranged fsyncs, which
is something we already did when not using the NO_HOLES features or when
doing a full fsync. This is to guarantee we never miss checksums due to
writeback having been triggered only for a part of an extent, and we end
up logging the full extent but only checksums for the written range, which
results in missing checksums after log replay. Allowing ranged fsyncs to
operate again only in the original range, when using the NO_HOLES feature
and doing a fast fsync is doable but requires some non trivial changes to
the writeback path, which can always be worked on later if needed, but I
don't think they are a very common use case.
Several tests were performed using fio for different numbers of concurrent
jobs, each writing and fsyncing its own file, for both sequential and
random file writes. The tests were run on bare metal, no virtualization,
on a box with 12 cores (Intel i7-8700), 64Gb of RAM and a NVMe device,
with a kernel configuration that is the default of typical distributions
(debian in this case), without debug options enabled (kasan, kmemleak,
slub debug, debug of page allocations, lock debugging, etc).
The following script that calls fio was used:
$ cat test-fsync.sh
#!/bin/bash
DEV=/dev/nvme0n1
MNT=/mnt/btrfs
MOUNT_OPTIONS="-o ssd -o space_cache=v2"
MKFS_OPTIONS="-d single -m single"
if [ $# -ne 5 ]; then
echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ BLOCK_SIZE [write|randwrite]"
exit 1
fi
NUM_JOBS=$1
FILE_SIZE=$2
FSYNC_FREQ=$3
BLOCK_SIZE=$4
WRITE_MODE=$5
if [ "$WRITE_MODE" != "write" ] && [ "$WRITE_MODE" != "randwrite" ]; then
echo "Invalid WRITE_MODE, must be 'write' or 'randwrite'"
exit 1
fi
cat <<EOF > /tmp/fio-job.ini
[writers]
rw=$WRITE_MODE
fsync=$FSYNC_FREQ
fallocate=none
group_reporting=1
direct=0
bs=$BLOCK_SIZE
ioengine=sync
size=$FILE_SIZE
directory=$MNT
numjobs=$NUM_JOBS
EOF
echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
echo
echo "Using config:"
echo
cat /tmp/fio-job.ini
echo
umount $MNT &> /dev/null
mkfs.btrfs -f $MKFS_OPTIONS $DEV
mount $MOUNT_OPTIONS $DEV $MNT
fio /tmp/fio-job.ini
umount $MNT
The results were the following:
*************************
*** sequential writes ***
*************************
==== 1 job, 8GiB file, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=36.6MiB/s (38.4MB/s), 36.6MiB/s-36.6MiB/s (38.4MB/s-38.4MB/s), io=8192MiB (8590MB), run=223689-223689msec
After patch:
WRITE: bw=40.2MiB/s (42.1MB/s), 40.2MiB/s-40.2MiB/s (42.1MB/s-42.1MB/s), io=8192MiB (8590MB), run=203980-203980msec
(+9.8%, -8.8% runtime)
==== 2 jobs, 4GiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=35.8MiB/s (37.5MB/s), 35.8MiB/s-35.8MiB/s (37.5MB/s-37.5MB/s), io=8192MiB (8590MB), run=228950-228950msec
After patch:
WRITE: bw=43.5MiB/s (45.6MB/s), 43.5MiB/s-43.5MiB/s (45.6MB/s-45.6MB/s), io=8192MiB (8590MB), run=188272-188272msec
(+21.5% throughput, -17.8% runtime)
==== 4 jobs, 2GiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=50.1MiB/s (52.6MB/s), 50.1MiB/s-50.1MiB/s (52.6MB/s-52.6MB/s), io=8192MiB (8590MB), run=163446-163446msec
After patch:
WRITE: bw=64.5MiB/s (67.6MB/s), 64.5MiB/s-64.5MiB/s (67.6MB/s-67.6MB/s), io=8192MiB (8590MB), run=126987-126987msec
(+28.7% throughput, -22.3% runtime)
==== 8 jobs, 1GiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=64.0MiB/s (68.1MB/s), 64.0MiB/s-64.0MiB/s (68.1MB/s-68.1MB/s), io=8192MiB (8590MB), run=126075-126075msec
After patch:
WRITE: bw=86.8MiB/s (91.0MB/s), 86.8MiB/s-86.8MiB/s (91.0MB/s-91.0MB/s), io=8192MiB (8590MB), run=94358-94358msec
(+35.6% throughput, -25.2% runtime)
==== 16 jobs, 512MiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=79.8MiB/s (83.6MB/s), 79.8MiB/s-79.8MiB/s (83.6MB/s-83.6MB/s), io=8192MiB (8590MB), run=102694-102694msec
After patch:
WRITE: bw=107MiB/s (112MB/s), 107MiB/s-107MiB/s (112MB/s-112MB/s), io=8192MiB (8590MB), run=76446-76446msec
(+34.1% throughput, -25.6% runtime)
==== 32 jobs, 512MiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=93.2MiB/s (97.7MB/s), 93.2MiB/s-93.2MiB/s (97.7MB/s-97.7MB/s), io=16.0GiB (17.2GB), run=175836-175836msec
After patch:
WRITE: bw=111MiB/s (117MB/s), 111MiB/s-111MiB/s (117MB/s-117MB/s), io=16.0GiB (17.2GB), run=147001-147001msec
(+19.1% throughput, -16.4% runtime)
==== 64 jobs, 512MiB files, fsync frequency 1, block size 64KiB ====
Before patch:
WRITE: bw=108MiB/s (114MB/s), 108MiB/s-108MiB/s (114MB/s-114MB/s), io=32.0GiB (34.4GB), run=302656-302656msec
After patch:
WRITE: bw=133MiB/s (140MB/s), 133MiB/s-133MiB/s (140MB/s-140MB/s), io=32.0GiB (34.4GB), run=246003-246003msec
(+23.1% throughput, -18.7% runtime)
************************
*** random writes ***
************************
==== 1 job, 8GiB file, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=11.5MiB/s (12.0MB/s), 11.5MiB/s-11.5MiB/s (12.0MB/s-12.0MB/s), io=8192MiB (8590MB), run=714281-714281msec
After patch:
WRITE: bw=11.6MiB/s (12.2MB/s), 11.6MiB/s-11.6MiB/s (12.2MB/s-12.2MB/s), io=8192MiB (8590MB), run=705959-705959msec
(+0.9% throughput, -1.7% runtime)
==== 2 jobs, 4GiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=12.8MiB/s (13.5MB/s), 12.8MiB/s-12.8MiB/s (13.5MB/s-13.5MB/s), io=8192MiB (8590MB), run=638101-638101msec
After patch:
WRITE: bw=13.1MiB/s (13.7MB/s), 13.1MiB/s-13.1MiB/s (13.7MB/s-13.7MB/s), io=8192MiB (8590MB), run=625374-625374msec
(+2.3% throughput, -2.0% runtime)
==== 4 jobs, 2GiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=15.4MiB/s (16.2MB/s), 15.4MiB/s-15.4MiB/s (16.2MB/s-16.2MB/s), io=8192MiB (8590MB), run=531146-531146msec
After patch:
WRITE: bw=17.8MiB/s (18.7MB/s), 17.8MiB/s-17.8MiB/s (18.7MB/s-18.7MB/s), io=8192MiB (8590MB), run=460431-460431msec
(+15.6% throughput, -13.3% runtime)
==== 8 jobs, 1GiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=19.9MiB/s (20.8MB/s), 19.9MiB/s-19.9MiB/s (20.8MB/s-20.8MB/s), io=8192MiB (8590MB), run=412664-412664msec
After patch:
WRITE: bw=22.2MiB/s (23.3MB/s), 22.2MiB/s-22.2MiB/s (23.3MB/s-23.3MB/s), io=8192MiB (8590MB), run=368589-368589msec
(+11.6% throughput, -10.7% runtime)
==== 16 jobs, 512MiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=29.3MiB/s (30.7MB/s), 29.3MiB/s-29.3MiB/s (30.7MB/s-30.7MB/s), io=8192MiB (8590MB), run=279924-279924msec
After patch:
WRITE: bw=30.4MiB/s (31.9MB/s), 30.4MiB/s-30.4MiB/s (31.9MB/s-31.9MB/s), io=8192MiB (8590MB), run=269258-269258msec
(+3.8% throughput, -3.8% runtime)
==== 32 jobs, 512MiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=36.9MiB/s (38.7MB/s), 36.9MiB/s-36.9MiB/s (38.7MB/s-38.7MB/s), io=16.0GiB (17.2GB), run=443581-443581msec
After patch:
WRITE: bw=41.6MiB/s (43.6MB/s), 41.6MiB/s-41.6MiB/s (43.6MB/s-43.6MB/s), io=16.0GiB (17.2GB), run=394114-394114msec
(+12.7% throughput, -11.2% runtime)
==== 64 jobs, 512MiB files, fsync frequency 16, block size 4KiB ====
Before patch:
WRITE: bw=45.9MiB/s (48.1MB/s), 45.9MiB/s-45.9MiB/s (48.1MB/s-48.1MB/s), io=32.0GiB (34.4GB), run=714614-714614msec
After patch:
WRITE: bw=48.8MiB/s (51.1MB/s), 48.8MiB/s-48.8MiB/s (51.1MB/s-51.1MB/s), io=32.0GiB (34.4GB), run=672087-672087msec
(+6.3% throughput, -6.0% runtime)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Eric reported seeing this message while running generic/475
BTRFS: error (device dm-3) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted
Full stack trace:
BTRFS: error (device dm-0) in btrfs_commit_transaction:2323: errno=-5 IO failure (Error while writing out transaction)
BTRFS info (device dm-0): forced readonly
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
------------[ cut here ]------------
BTRFS: error (device dm-0) in cleanup_transaction:1894: errno=-5 IO failure
BTRFS: Transaction aborted (error -117)
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6480 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6488 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6490 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6498 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64c0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85e8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85f0 len 4096 err no 10
WARNING: CPU: 3 PID: 23985 at fs/btrfs/tree-log.c:3084 btrfs_sync_log+0xbc8/0xd60 [btrfs]
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4288 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4290 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4298 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42d0 len 4096 err no 10
CPU: 3 PID: 23985 Comm: fsstress Tainted: G W L 5.8.0-rc4-default+ #1181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
RIP: 0010:btrfs_sync_log+0xbc8/0xd60 [btrfs]
RSP: 0018:ffff909a44d17bd0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001
RDX: ffff8f3be41cb940 RSI: ffffffffb0108d2b RDI: ffffffffb0108ff7
RBP: ffff909a44d17e70 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000037988 R12: ffff8f3bd20e4000
R13: ffff8f3bd20e4428 R14: 00000000ffffff8b R15: ffff909a44d17c70
FS: 00007f6a6ed3fb80(0000) GS:ffff8f3c3dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6a6ed3e000 CR3: 00000000525c0003 CR4: 0000000000160ee0
Call Trace:
? finish_wait+0x90/0x90
? __mutex_unlock_slowpath+0x45/0x2a0
? lock_acquire+0xa3/0x440
? lockref_put_or_lock+0x9/0x30
? dput+0x20/0x4a0
? dput+0x20/0x4a0
? do_raw_spin_unlock+0x4b/0xc0
? _raw_spin_unlock+0x1f/0x30
btrfs_sync_file+0x335/0x490 [btrfs]
do_fsync+0x38/0x70
__x64_sys_fsync+0x10/0x20
do_syscall_64+0x50/0xe0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f6a6ef1b6e3
Code: Bad RIP value.
RSP: 002b:00007ffd01e20038 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 000000000007a120 RCX: 00007f6a6ef1b6e3
RDX: 00007ffd01e1ffa0 RSI: 00007ffd01e1ffa0 RDI: 0000000000000003
RBP: 0000000000000003 R08: 0000000000000001 R09: 00007ffd01e2004c
R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000009f
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00
softirqs last enabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace af146e0e38433456 ]---
BTRFS: error (device dm-0) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted
This ret came from btrfs_write_marked_extents(). If we get an aborted
transaction via EIO before, we'll see it in btree_write_cache_pages()
and return EUCLEAN, which gets printed as "Filesystem corrupted".
Except we shouldn't be returning EUCLEAN here, we need to be returning
EROFS because EUCLEAN is reserved for actual corruption, not IO errors.
We are inconsistent about our handling of BTRFS_FS_STATE_ERROR
elsewhere, but we want to use EROFS for this particular case. The
original transaction abort has the real error code for why we ended up
with an aborted transaction, all subsequent actions just need to return
EROFS because they may not have a trans handle and have no idea about
the original cause of the abort.
After patch "btrfs: don't WARN if we abort a transaction with EROFS" the
stacktrace will not be dumped either.
Reported-by: Eric Sandeen <esandeen@redhat.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add full test stacktrace ]
Signed-off-by: David Sterba <dsterba@suse.com>
commit a514d63882 ("btrfs: qgroup: Commit transaction in advance to
reduce early EDQUOT") tries to reduce the early EDQUOT problems by
checking the qgroup free against threshold and tries to wake up commit
kthread to free some space.
The problem of that mechanism is, it can only free qgroup per-trans
metadata space, can't do anything to data, nor prealloc qgroup space.
Now since we have the ability to flush qgroup space, and implemented
retry-after-EDQUOT behavior, such mechanism can be completely replaced.
So this patch will cleanup such mechanism in favor of
retry-after-EDQUOT.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When the anonymous block device pool is exhausted, subvolume/snapshot
creation fails with EMFILE (Too many files open). This has been reported
by a user. The allocation happens in the second phase during transaction
commit where it's only way out is to abort the transaction
BTRFS: Transaction aborted (error -24)
WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs]
RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs]
Call Trace:
create_pending_snapshots+0x82/0xa0 [btrfs]
btrfs_commit_transaction+0x275/0x8c0 [btrfs]
btrfs_mksubvol+0x4b9/0x500 [btrfs]
btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs]
btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs]
btrfs_ioctl+0x11a4/0x2da0 [btrfs]
do_vfs_ioctl+0xa9/0x640
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x44/0xa9
---[ end trace 33f2f83f3d5250e9 ]---
BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown
BTRFS info (device sda1): forced readonly
BTRFS warning (device sda1): Skipping commit of aborted transaction.
BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown
[CAUSE]
When the global anonymous block device pool is exhausted, the following
call chain will fail, and lead to transaction abort:
btrfs_ioctl_snap_create_v2()
|- btrfs_ioctl_snap_create_transid()
|- btrfs_mksubvol()
|- btrfs_commit_transaction()
|- create_pending_snapshot()
|- btrfs_get_fs_root()
|- btrfs_init_fs_root()
|- get_anon_bdev()
[FIX]
Although we can't enlarge the anonymous block device pool, at least we
can preallocate anon_dev for subvolume/snapshot in the first phase,
outside of transaction context and exactly at the moment the user calls
the creation ioctl.
Reported-by: Greed Rong <greedrong@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The main function to lookup a root by its id btrfs_get_fs_root takes the
whole key, while only using the objectid. The value of offset is preset
to (u64)-1 but not actually used until btrfs_find_root that does the
actual search.
Switch btrfs_get_fs_root to use only objectid and remove all local
variables that existed just for the lookup. The actual key for search is
set up in btrfs_get_fs_root, reusing another key variable.
Signed-off-by: David Sterba <dsterba@suse.com>
The name BTRFS_ROOT_REF_COWS is not very clear about the meaning.
In fact, that bit can only be set to those trees:
- Subvolume roots
- Data reloc root
- Reloc roots for above roots
All other trees won't get this bit set. So just by the result, it is
obvious that, roots with this bit set can have tree blocks shared with
other trees. Either shared by snapshots, or by reloc roots (an special
snapshot created by relocation).
This patch will rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE to
make it easier to understand, and update all comment mentioning
"reference counted" to follow the rename.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Back in 2014, commit 04216820fe ("Btrfs: fix race between fs trimming
and block group remove/allocation"), I added the 'trimming' member to the
block group structure. Its purpose was to prevent races between trimming
and block group deletion/allocation by pinning the block group in a way
that prevents its logical address and device extents from being reused
while trimming is in progress for a block group, so that if another task
deletes the block group and then another task allocates a new block group
that gets the same logical address and device extents while the trimming
task is still in progress.
After the previous fix for scrub (patch "btrfs: fix a race between scrub
and block group removal/allocation"), scrub now also has the same needs that
trimming has, so the member name 'trimming' no longer makes sense.
Since there is already a 'pinned' member in the block group that refers
to space reservations (pinned bytes), rename the member to 'frozen',
add a comment on top of it to describe its general purpose and rename
the helpers to increment and decrement the counter as well, to match
the new member name.
The next patch in the series will move the helpers into a more suitable
file (from free-space-cache.c to block-group.c).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Nikolay noticed a bunch of test failures with my global rsv steal
patches. At first he thought they were introduced by them, but they've
been failing for a while with 64k nodes.
The problem is with 64k nodes we have a global reserve that calculates
out to 13MiB on a freshly made file system, which only has 8MiB of
metadata space. Because of changes I previously made we no longer
account for the global reserve in the overcommit logic, which means we
correctly allow overcommit to happen even though we are already
overcommitted.
However in some corner cases, for example btrfs/170, we will allocate
the entire file system up with data chunks before we have enough space
pressure to allocate a metadata chunk. Then once the fs is full we
ENOSPC out because we cannot overcommit and the global reserve is taking
up all of the available space.
The most ideal way to deal with this is to change our space reservation
stuff to take into account the height of the tree's that we're
modifying, so that our global reserve calculation does not end up so
obscenely large.
However that is a huge undertaking. Instead fix this by forcing a chunk
allocation if the global reserve is larger than the total metadata
space. This gives us essentially the same behavior that happened
before, we get a chunk allocated and these tests can pass.
This is meant to be a stop-gap measure until we can tackle the "tree
height only" project.
Fixes: 0096420adb ("btrfs: do not account global reserve in can_overcommit")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For unlink transactions and block group removal
btrfs_start_transaction_fallback_global_rsv will first try to start an
ordinary transaction and if it fails it will fall back to reserving the
required amount by stealing from the global reserve. This is problematic
because of all the same reasons we had with previous iterations of the
ENOSPC handling, thundering herd. We get a bunch of failures all at
once, everybody tries to allocate from the global reserve, some win and
some lose, we get an ENSOPC.
Fix this behavior by introducing BTRFS_RESERVE_FLUSH_ALL_STEAL. It's
used to mark unlink reservation. To fix this we need to integrate this
logic into the normal ENOSPC infrastructure. We still go through all of
the normal flushing work, and at the moment we begin to fail all the
tickets we try to satisfy any tickets that are allowed to steal by
stealing from the global reserve. If this works we start the flushing
system over again just like we would with a normal ticket satisfaction.
This serializes our global reserve stealing, so we don't have the
thundering herd problem.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
One run of btrfs/063 triggered the following lockdep warning:
============================================
WARNING: possible recursive locking detected
5.6.0-rc7-custom+ #48 Not tainted
--------------------------------------------
kworker/u24:0/7 is trying to acquire lock:
ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs]
but task is already holding lock:
ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs]
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(sb_internal#2);
lock(sb_internal#2);
*** DEADLOCK ***
May be due to missing lock nesting notation
4 locks held by kworker/u24:0/7:
#0: ffff88817b495948 ((wq_completion)btrfs-endio-write){+.+.}, at: process_one_work+0x557/0xb80
#1: ffff888189ea7db8 ((work_completion)(&work->normal_work)){+.+.}, at: process_one_work+0x557/0xb80
#2: ffff88817d3a46e0 (sb_internal#2){.+.+}, at: start_transaction+0x66c/0x890 [btrfs]
#3: ffff888174ca4da8 (&fs_info->reloc_mutex){+.+.}, at: btrfs_record_root_in_trans+0x83/0xd0 [btrfs]
stack backtrace:
CPU: 0 PID: 7 Comm: kworker/u24:0 Not tainted 5.6.0-rc7-custom+ #48
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
Call Trace:
dump_stack+0xc2/0x11a
__lock_acquire.cold+0xce/0x214
lock_acquire+0xe6/0x210
__sb_start_write+0x14e/0x290
start_transaction+0x66c/0x890 [btrfs]
btrfs_join_transaction+0x1d/0x20 [btrfs]
find_free_extent+0x1504/0x1a50 [btrfs]
btrfs_reserve_extent+0xd5/0x1f0 [btrfs]
btrfs_alloc_tree_block+0x1ac/0x570 [btrfs]
btrfs_copy_root+0x213/0x580 [btrfs]
create_reloc_root+0x3bd/0x470 [btrfs]
btrfs_init_reloc_root+0x2d2/0x310 [btrfs]
record_root_in_trans+0x191/0x1d0 [btrfs]
btrfs_record_root_in_trans+0x90/0xd0 [btrfs]
start_transaction+0x16e/0x890 [btrfs]
btrfs_join_transaction+0x1d/0x20 [btrfs]
btrfs_finish_ordered_io+0x55d/0xcd0 [btrfs]
finish_ordered_fn+0x15/0x20 [btrfs]
btrfs_work_helper+0x116/0x9a0 [btrfs]
process_one_work+0x632/0xb80
worker_thread+0x80/0x690
kthread+0x1a3/0x1f0
ret_from_fork+0x27/0x50
It's pretty hard to reproduce, only one hit so far.
[CAUSE]
This is because we're calling btrfs_join_transaction() without re-using
the current running one:
btrfs_finish_ordered_io()
|- btrfs_join_transaction() <<< Call #1
|- btrfs_record_root_in_trans()
|- btrfs_reserve_extent()
|- btrfs_join_transaction() <<< Call #2
Normally such btrfs_join_transaction() call should re-use the existing
one, without trying to re-start a transaction.
But the problem is, in btrfs_join_transaction() call #1, we call
btrfs_record_root_in_trans() before initializing current::journal_info.
And in btrfs_join_transaction() call #2, we're relying on
current::journal_info to avoid such deadlock.
[FIX]
Call btrfs_record_root_in_trans() after we have initialized
current::journal_info.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At the point we add a root to the dead roots list we have no open inodes
for that root, so we need to hold a ref on that root to keep it from
disappearing.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are going to make root life be controlled soley by refcounting, and
inodes will be one of the things that hold a ref on the root. This
means we need to handle dropping the ino_cache_inode outside of the root
freeing logic, so move it into btrfs_drop_and_free_fs_root() so it is
cleaned up properly on unmount.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's no longer used following 30d40577e3 ("btrfs: reloc: Also queue
orphan reloc tree for cleanup to avoid BUG_ON()"), so just remove it.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the non-prefixed version is a simple wrapper used to hide
the 4th argument of the prefixed version. This doesn't bring much value
in practice and only makes the code harder to follow by adding another
level of indirection. Rectify this by removing the __ prefix and
have only one public function to release bytes from a block reservation.
No semantic changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are new types and helpers that are supposed to be used in new code.
As a preparation to get rid of legacy types and API functions do
the conversion here.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree_log_mutex and reloc_mutex locks are properly nested so we can
simplify error handling and add labels for them. This reduces line count
of the function.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit flips the switch to start tracking/processing pinned extents
on a per-transaction basis. It mostly replaces all references from
btrfs_fs_info::(pinned_extents|freed_extents[]) to
btrfs_transaction::pinned_extents.
Two notable modifications that warrant explicit mention are changing
clean_pinned_extents to get a reference to the previously running
transaction. The other one is removal of call to
btrfs_destroy_pinned_extent since transactions are going to be cleaned
in btrfs_cleanup_one_transaction.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The status of aborted transaction can change between calls and it needs
to be accessed by READ_ONCE. Add a helper that also wraps the unlikely
hint.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all callers of btrfs_get_fs_root are subsequently calling
btrfs_grab_fs_root and handling dropping the ref when they are done
appropriately, go ahead and push btrfs_grab_fs_root up into
btrfs_get_fs_root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We create the snapshot and then use it for a bunch of things, we need to
hold a ref on it while we're messing with it.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All this does is call btrfs_get_fs_root() with check_ref == true. Just
use btrfs_get_fs_root() so we don't have a bunch of different helpers
that do the same thing.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We clean up the delayed references when we abort a transaction but we
leave the pending qgroup extent records behind, leaking memory.
This patch destroys the extent records when we destroy the delayed refs
and makes sure ensure they're gone before releasing the transaction.
Fixes: 3368d001ba ("btrfs: qgroup: Record possible quota-related extent for qgroup.")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
[ Rebased to latest upstream, remove to_qgroup() helper, use
rbtree_postorder_for_each_entry_safe() wrapper ]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we abort a transaction we have the following sequence
if (!trans->dirty && list_empty(&trans->new_bgs))
return;
WRITE_ONCE(trans->transaction->aborted, err);
The idea being if we didn't modify anything with our trans handle then
we don't really need to abort the whole transaction, maybe the other
trans handles are fine and we can carry on.
However in the case of create_snapshot we add a pending_snapshot object
to our transaction and then commit the transaction. We don't actually
modify anything. sync() behaves the same way, attach to an existing
transaction and commit it. This means that if we have an IO error in
the right places we could abort the committing transaction with our
trans->dirty being not set and thus not set transaction->aborted.
This is a problem because in the create_snapshot() case we depend on
pending->error being set to something, or btrfs_commit_transaction
returning an error.
If we are not the trans handle that gets to commit the transaction, and
we're waiting on the commit to happen we get our return value from
cur_trans->aborted. If this was not set to anything because sync() hit
an error in the transaction commit before it could modify anything then
cur_trans->aborted would be 0. Thus we'd return 0 from
btrfs_commit_transaction() in create_snapshot.
This is a problem because we then try to do things with
pending_snapshot->snap, which will be NULL because we didn't create the
snapshot, and then we'll get a NULL pointer dereference like the
following
"BUG: kernel NULL pointer dereference, address: 00000000000001f0"
RIP: 0010:btrfs_orphan_cleanup+0x2d/0x330
Call Trace:
? btrfs_mksubvol.isra.31+0x3f2/0x510
btrfs_mksubvol.isra.31+0x4bc/0x510
? __sb_start_write+0xfa/0x200
? mnt_want_write_file+0x24/0x50
btrfs_ioctl_snap_create_transid+0x16c/0x1a0
btrfs_ioctl_snap_create_v2+0x11e/0x1a0
btrfs_ioctl+0x1534/0x2c10
? free_debug_processing+0x262/0x2a3
do_vfs_ioctl+0xa6/0x6b0
? do_sys_open+0x188/0x220
? syscall_trace_enter+0x1f8/0x330
ksys_ioctl+0x60/0x90
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x4a/0x1b0
In order to fix this we need to make sure anybody who calls
commit_transaction has trans->dirty set so that they properly set the
trans->transaction->aborted value properly so any waiters know bad
things happened.
This was found while I was running generic/475 with my modified
fsstress, it reproduced within a few runs. I ran with this patch all
night and didn't see the problem again.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fsync on a subvolume and create a log root for that volume, and
then later delete that subvolume we'll never clean up its log root. Fix
this by making switch_commit_roots free the log for any dropped roots we
encounter. The extra churn is because we need a btrfs_trans_handle, not
the btrfs_transaction.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The type name is misleading, a single entry is named 'cache' while this
normally means a collection of objects. Rename that everywhere. Also the
identifier was quite long, making function prototypes harder to format.
Suggested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is used only during the final phase of freespace cache
writeout. This is necessary since using the plain btrfs_join_transaction
api is deadlock prone. The deadlock looks like:
T1:
btrfs_commit_transaction
commit_cowonly_roots
btrfs_write_dirty_block_groups
btrfs_wait_cache_io
__btrfs_wait_cache_io
btrfs_wait_ordered_range <-- Triggers ordered IO for freespace
inode and blocks transaction commit
until freespace cache writeout
T2: <-- after T1 has triggered the writeout
finish_ordered_fn
btrfs_finish_ordered_io
btrfs_join_transaction <--- this would block waiting for current
transaction to commit, but since trans
commit is waiting for this writeout to
finish
The special purpose functions prevents it by simply skipping the "wait
for writeout" since it's guaranteed the transaction won't proceed until
we are done.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The state was introduced in commit 4a9d8bdee3 ("Btrfs: make the state
of the transaction more readable"), then in commit 302167c50b
("btrfs: don't end the transaction for delayed refs in throttle") the
state is completely removed.
So we can just clean up the state since it's only compared but never
set.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add an overview of the basic btrfs transaction transitions, including
the following states:
- No transaction states
- Transaction N [[TRANS_STATE_RUNNING]]
- Transaction N [[TRANS_STATE_COMMIT_START]]
- Transaction N [[TRANS_STATE_COMMIT_DOING]]
- Transaction N [[TRANS_STATE_UNBLOCKED]]
- Transaction N [[TRANS_STATE_COMPLETED]]
For each state, the comment will include:
- Basic explaination about current state
- How to go next stage
- What will happen if we call various start_transaction() functions
- Relationship to transaction N+1
This doesn't provide tech details, but serves as a cheat sheet for
reader to get into the code a little easier.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's not used ouside of transaction.c
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A recent patch to btrfs showed that there was at least 1 case where a
nested transaction was committed. Nested transaction in this case means
a code which has a transaction handle calls some function which in turn
obtains a copy of the same transaction handle. In such cases the correct
thing to do is for the lower callee to call btrfs_end_transaction which
contains appropriate checks so as to not commit the transaction which
will result in stale trans handler for the caller.
To catch such cases add an assert in btrfs_commit_transaction ensuring
btrfs_trans_handle::use_count is always 1.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The file ctree.h serves as a header for everything and has become quite
bloated. Split some helpers that are generic and create a new file that
should be the catch-all for code that's not btrfs-specific.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_calc_trunc_metadata_size differs from trans_metadata_size in that
it doesn't take into account any splitting at the levels, because
truncate will never split nodes. However truncate _and_ changing will
never split nodes, so rename btrfs_calc_trunc_metadata_size to
btrfs_calc_metadata_size. Also btrfs_calc_trans_metadata_size is purely
for inserting items, so rename this to btrfs_calc_insert_metadata_size.
Making these clearer will help when I start using them differently in
upcoming patches.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is prep work for moving all of the block group cache code into its
own file.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
The fiemap handler locks a file range that can have unflushed delalloc,
and after locking the range, it tries to attach to a running transaction.
If the running transaction started its commit, that is, it is in state
TRANS_STATE_COMMIT_START, and either the filesystem was mounted with the
flushoncommit option or the transaction is creating a snapshot for the
subvolume that contains the file that fiemap is operating on, we end up
deadlocking. This happens because fiemap is blocked on the transaction,
waiting for it to complete, and the transaction is waiting for the flushed
dealloc to complete, which requires locking the file range that the fiemap
task already locked. The following stack traces serve as an example of
when this deadlock happens:
(...)
[404571.515510] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
[404571.515956] Call Trace:
[404571.516360] ? __schedule+0x3ae/0x7b0
[404571.516730] schedule+0x3a/0xb0
[404571.517104] lock_extent_bits+0x1ec/0x2a0 [btrfs]
[404571.517465] ? remove_wait_queue+0x60/0x60
[404571.517832] btrfs_finish_ordered_io+0x292/0x800 [btrfs]
[404571.518202] normal_work_helper+0xea/0x530 [btrfs]
[404571.518566] process_one_work+0x21e/0x5c0
[404571.518990] worker_thread+0x4f/0x3b0
[404571.519413] ? process_one_work+0x5c0/0x5c0
[404571.519829] kthread+0x103/0x140
[404571.520191] ? kthread_create_worker_on_cpu+0x70/0x70
[404571.520565] ret_from_fork+0x3a/0x50
[404571.520915] kworker/u8:6 D 0 31651 2 0x80004000
[404571.521290] Workqueue: btrfs-flush_delalloc btrfs_flush_delalloc_helper [btrfs]
(...)
[404571.537000] fsstress D 0 13117 13115 0x00004000
[404571.537263] Call Trace:
[404571.537524] ? __schedule+0x3ae/0x7b0
[404571.537788] schedule+0x3a/0xb0
[404571.538066] wait_current_trans+0xc8/0x100 [btrfs]
[404571.538349] ? remove_wait_queue+0x60/0x60
[404571.538680] start_transaction+0x33c/0x500 [btrfs]
[404571.539076] btrfs_check_shared+0xa3/0x1f0 [btrfs]
[404571.539513] ? extent_fiemap+0x2ce/0x650 [btrfs]
[404571.539866] extent_fiemap+0x2ce/0x650 [btrfs]
[404571.540170] do_vfs_ioctl+0x526/0x6f0
[404571.540436] ksys_ioctl+0x70/0x80
[404571.540734] __x64_sys_ioctl+0x16/0x20
[404571.540997] do_syscall_64+0x60/0x1d0
[404571.541279] entry_SYSCALL_64_after_hwframe+0x49/0xbe
(...)
[404571.543729] btrfs D 0 14210 14208 0x00004000
[404571.544023] Call Trace:
[404571.544275] ? __schedule+0x3ae/0x7b0
[404571.544526] ? wait_for_completion+0x112/0x1a0
[404571.544795] schedule+0x3a/0xb0
[404571.545064] schedule_timeout+0x1ff/0x390
[404571.545351] ? lock_acquire+0xa6/0x190
[404571.545638] ? wait_for_completion+0x49/0x1a0
[404571.545890] ? wait_for_completion+0x112/0x1a0
[404571.546228] wait_for_completion+0x131/0x1a0
[404571.546503] ? wake_up_q+0x70/0x70
[404571.546775] btrfs_wait_ordered_extents+0x27c/0x400 [btrfs]
[404571.547159] btrfs_commit_transaction+0x3b0/0xae0 [btrfs]
[404571.547449] ? btrfs_mksubvol+0x4a4/0x640 [btrfs]
[404571.547703] ? remove_wait_queue+0x60/0x60
[404571.547969] btrfs_mksubvol+0x605/0x640 [btrfs]
[404571.548226] ? __sb_start_write+0xd4/0x1c0
[404571.548512] ? mnt_want_write_file+0x24/0x50
[404571.548789] btrfs_ioctl_snap_create_transid+0x169/0x1a0 [btrfs]
[404571.549048] btrfs_ioctl_snap_create_v2+0x11d/0x170 [btrfs]
[404571.549307] btrfs_ioctl+0x133f/0x3150 [btrfs]
[404571.549549] ? mem_cgroup_charge_statistics+0x4c/0xd0
[404571.549792] ? mem_cgroup_commit_charge+0x84/0x4b0
[404571.550064] ? __handle_mm_fault+0xe3e/0x11f0
[404571.550306] ? do_raw_spin_unlock+0x49/0xc0
[404571.550608] ? _raw_spin_unlock+0x24/0x30
[404571.550976] ? __handle_mm_fault+0xedf/0x11f0
[404571.551319] ? do_vfs_ioctl+0xa2/0x6f0
[404571.551659] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[404571.552087] do_vfs_ioctl+0xa2/0x6f0
[404571.552355] ksys_ioctl+0x70/0x80
[404571.552621] __x64_sys_ioctl+0x16/0x20
[404571.552864] do_syscall_64+0x60/0x1d0
[404571.553104] entry_SYSCALL_64_after_hwframe+0x49/0xbe
(...)
If we were joining the transaction instead of attaching to it, we would
not risk a deadlock because a join only blocks if the transaction is in a
state greater then or equals to TRANS_STATE_COMMIT_DOING, and the delalloc
flush performed by a transaction is done before it reaches that state,
when it is in the state TRANS_STATE_COMMIT_START. However a transaction
join is intended for use cases where we do modify the filesystem, and
fiemap only needs to peek at delayed references from the current
transaction in order to determine if extents are shared, and, besides
that, when there is no current transaction or when it blocks to wait for
a current committing transaction to complete, it creates a new transaction
without reserving any space. Such unnecessary transactions, besides doing
unnecessary IO, can cause transaction aborts (-ENOSPC) and unnecessary
rotation of the precious backup roots.
So fix this by adding a new transaction join variant, named join_nostart,
which behaves like the regular join, but it does not create a transaction
when none currently exists or after waiting for a committing transaction
to complete.
Fixes: 03628cdbc6 ("Btrfs: do not start a transaction during fiemap")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When one transaction is finishing its commit, it is possible for another
transaction to start and enter its initial commit phase as well. If the
first ends up getting aborted, we have a small time window where the second
transaction commit does not notice that the previous transaction aborted
and ends up committing, writing a superblock that points to btrees that
reference extent buffers (nodes and leafs) that were not persisted to disk.
The consequence is that after mounting the filesystem again, we will be
unable to load some btree nodes/leafs, either because the content on disk
is either garbage (or just zeroes) or corresponds to the old content of a
previouly COWed or deleted node/leaf, resulting in the well known error
messages "parent transid verify failed on ...".
The following sequence diagram illustrates how this can happen.
CPU 1 CPU 2
<at transaction N>
btrfs_commit_transaction()
(...)
--> sets transaction state to
TRANS_STATE_UNBLOCKED
--> sets fs_info->running_transaction
to NULL
(...)
btrfs_start_transaction()
start_transaction()
wait_current_trans()
--> returns immediately
because
fs_info->running_transaction
is NULL
join_transaction()
--> creates transaction N + 1
--> sets
fs_info->running_transaction
to transaction N + 1
--> adds transaction N + 1 to
the fs_info->trans_list list
--> returns transaction handle
pointing to the new
transaction N + 1
(...)
btrfs_sync_file()
btrfs_start_transaction()
--> returns handle to
transaction N + 1
(...)
btrfs_write_and_wait_transaction()
--> writeback of some extent
buffer fails, returns an
error
btrfs_handle_fs_error()
--> sets BTRFS_FS_STATE_ERROR in
fs_info->fs_state
--> jumps to label "scrub_continue"
cleanup_transaction()
btrfs_abort_transaction(N)
--> sets BTRFS_FS_STATE_TRANS_ABORTED
flag in fs_info->fs_state
--> sets aborted field in the
transaction and transaction
handle structures, for
transaction N only
--> removes transaction from the
list fs_info->trans_list
btrfs_commit_transaction(N + 1)
--> transaction N + 1 was not
aborted, so it proceeds
(...)
--> sets the transaction's state
to TRANS_STATE_COMMIT_START
--> does not find the previous
transaction (N) in the
fs_info->trans_list, so it
doesn't know that transaction
was aborted, and the commit
of transaction N + 1 proceeds
(...)
--> sets transaction N + 1 state
to TRANS_STATE_UNBLOCKED
btrfs_write_and_wait_transaction()
--> succeeds writing all extent
buffers created in the
transaction N + 1
write_all_supers()
--> succeeds
--> we now have a superblock on
disk that points to trees
that refer to at least one
extent buffer that was
never persisted
So fix this by updating the transaction commit path to check if the flag
BTRFS_FS_STATE_TRANS_ABORTED is set on fs_info->fs_state if after setting
the transaction to the TRANS_STATE_COMMIT_START we do not find any previous
transaction in the fs_info->trans_list. If the flag is set, just fail the
transaction commit with -EROFS, as we do in other places. The exact error
code for the previous transaction abort was already logged and reported.
Fixes: 49b25e0540 ("btrfs: enhance transaction abort infrastructure")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move this into transaction.c with the rest of the transaction related
code.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The member num_dirty_bgs of struct btrfs_transaction is not used anymore,
it is set and incremented but nothing reads its value anymore. Its last
read use was removed by commit 64403612b7 ("btrfs: rework
btrfs_check_space_for_delayed_refs"). So just remove that member.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>