The recent LBR rework for x86 left a stray flush_branch_stack() user in
the PowerPC code, fix that up.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joel Stanley <joel@jms.id.au>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With LBR call stack feature enable, there are three callchain options.
Enable the 3rd callchain option (LBR callstack) to user space tooling.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/20141105093759.GQ10501@worktop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
"Zero length call" uses the attribute of the call instruction to push
the immediate instruction pointer on to the stack and then pops off
that address into a register. This is accomplished without any matching
return instruction. It confuses the hardware and make the recorded call
stack incorrect.
We can partially resolve this issue by: decode call instructions and
discard any zero length call entry in the LBR stack.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-16-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
LBR callstack is designed for PEBS, It does not work well with
FREEZE_LBRS_ON_PMI for non PEBS event. If FREEZE_LBRS_ON_PMI is set for
non PEBS event, PMIs near call/return instructions may cause superfluous
increase/decrease of LBR_TOS.
This patch modifies __intel_pmu_lbr_enable() to not enable
FREEZE_LBRS_ON_PMI when LBR operates in callstack mode. We currently
don't use LBR callstack to capture kernel space callchain, so disabling
FREEZE_LBRS_ON_PMI should not be a problem.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-15-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use event->attr.branch_sample_type to replace
intel_pmu_needs_lbr_smpl() for avoiding duplicated code that
implicitly enables the LBR.
Currently, branch stack can be enabled by user explicitly requesting
branch sampling or implicit branch sampling to correct PEBS skid.
For user explicitly requested branch sampling, the branch_sample_type
is explicitly set by user. For PEBS case, the branch_sample_type is also
implicitly set to PERF_SAMPLE_BRANCH_ANY in x86_pmu_hw_config.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-11-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the LBR call stack is enabled, it is necessary to save/restore
the LBR stack on context switch. The solution is saving/restoring
the LBR stack to/from task's perf event context.
The LBR stack is saved/restored only when there are events that use
the LBR call stack. If no event uses LBR call stack, the LBR stack
is reset when task is scheduled in.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-10-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When enabling/disabling an event, check if the event uses the LBR
callstack feature, adjust the LBR callstack usage count accordingly.
Later patch will use the usage count to decide if LBR stack should
be saved/restored.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-9-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the LBR call stack is enabled, it is necessary to save/restore
the LBR stack on context switch. We can use pmu specific data to
store LBR stack when task is scheduled out. This patch adds code
that allocates the pmu specific data.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-8-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Haswell has a new feature that utilizes the existing LBR facility to
record call chains. To enable this feature, bits (JCC, NEAR_IND_JMP,
NEAR_REL_JMP, FAR_BRANCH, EN_CALLSTACK) in LBR_SELECT must be set to 1,
bits (NEAR_REL_CALL, NEAR-IND_CALL, NEAR_RET) must be cleared. Due to
a hardware bug of Haswell, this feature doesn't work well with
FREEZE_LBRS_ON_PMI.
When the call stack feature is enabled, the LBR stack will capture
unfiltered call data normally, but as return instructions are executed,
the last captured branch record is flushed from the on-chip registers
in a last-in first-out (LIFO) manner. Thus, branch information relative
to leaf functions will not be captured, while preserving the call stack
information of the main line execution path.
This patch defines a separate lbr_sel map for Haswell. The map contains
a new entry for the call stack feature.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-5-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Previous commit introduces context switch callback, its function
overlaps with the flush branch stack callback. So we can use the
context switch callback to flush LBR stack.
This patch adds code that uses the flush branch callback to
flush the LBR stack when task is being scheduled in. The callback
is enabled only when there are events use the LBR hardware. This
patch also removes all old flush branch stack code.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-4-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The callback is invoked when process is scheduled in or out.
It provides mechanism for later patches to save/store the LBR
stack. For the schedule in case, the callback is invoked at
the same place that flush branch stack callback is invoked.
So it also can replace the flush branch stack callback. To
avoid unnecessary overhead, the callback is enabled only when
there are events use the LBR stack.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: eranian@google.com
Cc: jolsa@redhat.com
Link: http://lkml.kernel.org/r/1415156173-10035-3-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The index of lbr_sel_map is bit value of perf branch_sample_type.
PERF_SAMPLE_BRANCH_MAX is 1024 at present, so each lbr_sel_map uses
4096 bytes. By using bit shift as index, we can reduce lbr_sel_map
size to 40 bytes. This patch defines 'bit shift' for branch types,
and use 'bit shift' to define lbr_sel_maps.
Signed-off-by: Yan, Zheng <zheng.z.yan@intel.com>
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Stephane Eranian <eranian@google.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: jolsa@redhat.com
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/1415156173-10035-2-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The caller of force_ibs_eilvt_setup() is ibs_eilvt_setup()
which does not care about the return values.
So mark it void and clean up the return statements.
Signed-off-by: Aravind Gopalakrishnan <aravind.gopalakrishnan@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <hpa@zytor.com>
Cc: <paulus@samba.org>
Cc: <tglx@linutronix.de>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1422037175-20957-1-git-send-email-aravind.gopalakrishnan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The pci_dev_put() function tests whether its argument is NULL and then
returns immediately. Thus the test around the call is not needed.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/54D0B59C.2060106@users.sourceforge.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While perfmon2 is a sufficiently evil library (it pokes MSRs
directly) that breaking it is fair game, it's still useful, so we
might as well try to support it. This allows users to write 2 to
/sys/devices/cpu/rdpmc to disable all rdpmc protection so that hack
like perfmon2 can continue to work.
At some point, if perf_event becomes fast enough to replace
perfmon2, then this can go.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vince Weaver <vince@deater.net>
Cc: "hillf.zj" <hillf.zj@alibaba-inc.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/caac3c1c707dcca48ecbc35f4def21495856f479.1414190806.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We currently allow any process to use rdpmc. This significantly
weakens the protection offered by PR_TSC_DISABLED, and it could be
helpful to users attempting to exploit timing attacks.
Since we can't enable access to individual counters, use a very
coarse heuristic to limit access to rdpmc: allow access only when
a perf_event is mmapped. This protects seccomp sandboxes.
There is plenty of room to further tighen these restrictions. For
example, this allows rdpmc for any x86_pmu event, but it's only
useful for self-monitoring tasks.
As a side effect, cap_user_rdpmc will now be false for AMD uncore
events. This isn't a real regression, since .event_idx is disabled
for these events anyway for the time being. Whenever that gets
re-added, the cap_user_rdpmc code can be adjusted or refactored
accordingly.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vince Weaver <vince@deater.net>
Cc: "hillf.zj" <hillf.zj@alibaba-inc.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/a2bdb3cf3a1d70c26980d7c6dddfbaa69f3182bf.1414190806.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The code is correct, but only for a rather subtle reason. This
confused me for quite a while when I read switch_mm, so clarify the
code to avoid confusing other people, too.
TBH, I wouldn't be surprised if this code was only correct by
accident.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vince Weaver <vince@deater.net>
Cc: "hillf.zj" <hillf.zj@alibaba-inc.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/0db86397f968996fb772c443c251415b0b430ddd.1414190806.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Context switches and TLB flushes can change individual bits of CR4.
CR4 reads take several cycles, so store a shadow copy of CR4 in a
per-cpu variable.
To avoid wasting a cache line, I added the CR4 shadow to
cpu_tlbstate, which is already touched in switch_mm. The heaviest
users of the cr4 shadow will be switch_mm and __switch_to_xtra, and
__switch_to_xtra is called shortly after switch_mm during context
switch, so the cacheline is likely to be hot.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vince Weaver <vince@deater.net>
Cc: "hillf.zj" <hillf.zj@alibaba-inc.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/3a54dd3353fffbf84804398e00dfdc5b7c1afd7d.1414190806.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CR4 manipulation was split, seemingly at random, between direct
(write_cr4) and using a helper (set/clear_in_cr4). Unfortunately,
the set_in_cr4 and clear_in_cr4 helpers also poke at the boot code,
which only a small subset of users actually wanted.
This patch replaces all cr4 access in functions that don't leave cr4
exactly the way they found it with new helpers cr4_set_bits,
cr4_clear_bits, and cr4_set_bits_and_update_boot.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vince Weaver <vince@deater.net>
Cc: "hillf.zj" <hillf.zj@alibaba-inc.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/495a10bdc9e67016b8fd3945700d46cfd5c12c2f.1414190806.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This fixes a bug in the RCU code I added in ist_enter. It also includes
the sysret stuff discussed here:
http://lkml.kernel.org/g/cover.1421453410.git.luto%40amacapital.net
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUzhZ0AAoJEK9N98ZeDfrksUEH/j7wkUlMGan5h1AQIZQW6gKk
OjlE1a4rfcgKocgkc0ix6UMc8Ks/NAUWKpeHR08eqR+Xi6Yk29cqLkboTEmAdYJ3
jQvKjGu51kiprNjAGqF5wdqxvCT3oBSdm7CWdtY4zHkEr+2W93Ht9PM7xZhj4r+P
ekUC8mIKQrhyhlC7g7VpXLAi3Bk4mO+f499T7XBVsVoywWpgVpOMYMhtUobV1reW
V7/zul/dMerzNLB0t3amvdgCLphHBQTQ0fHBAN62RY78UvSDt36EZFyS65isirsR
LhO4FpWzF5YNMRk8Dep/fB8jYlhsCi40ZIlOtGSE6kNJyLhPt+oLnkpgOwWAMQc=
=uiRw
-----END PGP SIGNATURE-----
Merge tag 'pr-20150201-x86-entry' of git://git.kernel.org/pub/scm/linux/kernel/git/luto/linux into x86/asm
Pull "x86: Entry cleanups and a bugfix for 3.20" from Andy Lutomirski:
" This fixes a bug in the RCU code I added in ist_enter. It also includes
the sysret stuff discussed here:
http://lkml.kernel.org/g/cover.1421453410.git.luto%40amacapital.net "
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUzvgKAAoJEHm+PkMAQRiG8XQH/1qVbHI4pP0KcnzfZUHq/mXq
RuS4aJMwLm/Y6cXFraXBDaPde1A3CPtwtpob2C6giKcfu2zXGunY65haOEeJWNpX
lCbBsLkNC3oDNkygBpVr5Zd6yibaw63WBjjLnpAi7pn2G2Zm2zB8DfILWWWMb7yz
MH8ZXV+/xIYCTkjNWGWA1iMjmdYqu0PQHPeOgLsYQ+u7rxfM1zb/wHEkjqUZS6iu
IaaZv7PV2PnFYnqib/iIPYjAEDvSQ4vN/7b82zlFd2Culm9j/568KCCWUPhJTb2l
X0u4QYs49GnMTWVRa3bgYxS/nTUaE/6DeWs2y2WzqTt0/XDntVUnok0blUeDxGk=
=o2kS
-----END PGP SIGNATURE-----
Merge tag 'v3.19-rc7' into x86/asm, to refresh the branch before pulling in new changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
One more week's worth of fixes. Worth pointing out here are:
- A patch fixing detaching of iommu registrations when a device is removed --
earlier the ops pointer wasn't managed properly
- Another set of Renesas boards get the same GIC setup fixup as others have in
previous -rcs
- Serial port aliases fixups for sunxi. We did the same to tegra but we
caught that in time before the merge window due to more machines being
affected. Here it took longer for anyone to notice.
- A couple more DT tweaks on sunxi
- A follow-up patch for the mvebu coherency disabling in last -rc batch
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJUzl/yAAoJEIwa5zzehBx3/v0P/iU4sCz/HYBwL46lSZZLnFyX
RDFiq+I6nQFM3CG6oRn0gEi+/GbdyQ/Q6kMbver216pSfymZ+agRFaA6oj1o4HRD
FQ2Dtz2ytvdkO8uSUzIV+nLJ//3MMwxmXTnB7SrDuzy6VeJ6GHlxxp39jrPCWtgi
z7eo1bAuEKRQpVqJLBbqaNTsc4+9990zcgz5ChvfCqOvY3rE/AElEF5CMk71TFHW
NTZQGM/HWteehA3/vTODICrd5SqV3peNAe3n6OMnZEEniUCesnug6IamUMwqKWVb
y8rgobVV6ow5F0Cr3Zxc9Ufj8R1yayRQoGOdzDfuQ+zPivi2NbseinQgMUVujXYh
TE/Ea4j+V1bYSY6EA89pAjw2C6e7fIWPOUJbO9hj5Ywc+uzR+ns+GFR2AaBggpFu
4h0ig0ceOkzTgDWW0fNhH6BysvvczErT1CD0l6B+QgUZQadbSCFcGe8k2pNuJvYG
f2lq6zUBIaNY5ZO6gu9inrd8UxjutKZM1p80fZc+tCFrm5YfHLFLwJPqfG7+8iEW
R5OoQ1Jjb5SdO7u1yH2znQtlM9Z1u7bGQ7BkWPfZ0XbkHqiVgCpBUigzlRSgFO0+
1rITIcwKgfdv8Sw4yngO6C3zFzn9Jz/cvGtW+gEjmSDV0BlhWCfWkTWys3ocdO79
JSToPOtd87iekn7nHLBY
=nw2v
-----END PGP SIGNATURE-----
Merge tag 'armsoc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC fixes from Olof Johansson:
"One more week's worth of fixes. Worth pointing out here are:
- A patch fixing detaching of iommu registrations when a device is
removed -- earlier the ops pointer wasn't managed properly
- Another set of Renesas boards get the same GIC setup fixup as
others have in previous -rcs
- Serial port aliases fixups for sunxi. We did the same to tegra but
we caught that in time before the merge window due to more machines
being affected. Here it took longer for anyone to notice.
- A couple more DT tweaks on sunxi
- A follow-up patch for the mvebu coherency disabling in last -rc
batch"
* tag 'armsoc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc:
arm: dma-mapping: Set DMA IOMMU ops in arm_iommu_attach_device()
ARM: shmobile: r8a7790: Instantiate GIC from C board code in legacy builds
ARM: shmobile: r8a73a4: Instantiate GIC from C board code in legacy builds
ARM: mvebu: don't set the PL310 in I/O coherency mode when I/O coherency is disabled
ARM: sunxi: dt: Fix aliases
ARM: dts: sun4i: Add simplefb node with de_fe0-de_be0-lcd0-hdmi pipeline
ARM: dts: sun6i: ippo-q8h-v5: Fix serial0 alias
ARM: dts: sunxi: Fix usb-phy support for sun4i/sun5i
* Instantiate GIC from C board code in legacy builds on r8a7790 and r8a73a4
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJUytABAAoJENfPZGlqN0++qrkP/R2n+rHBNvZTW4p88IZcZ37O
7zRXCkcXLHHVfKp8XHEMrhH/Pc7uIonWgq3SIKHDlK9UwAvfOdLPj2CMGm7bN+Ea
+fgT6Qe1UP9kgbsH1whovsR3CzjLDqxmlhfjTkrmu5UjFNGQuv/iFVkkzViSCDYd
YkSIYxybAlH3Nd7xxNFG54LzjCPauY2V76JM76/3j24m+zxZverY8sN46PtKryGg
/toQzuVeimpz4BtObXZAi7Y7eWvvYUtELGshTTGKBmtRhLWGZDrS+60KpMDVoKtK
f135X2taKm2jIiKPXCPMQTOWsXBls1TuxIGssiIysPU6t5OCSuNd/M1RiKDhZhE3
J4L4vCMq/Gn2XbYe2+O0PNkLxuWepSZ4VRzALZCPhP48CYGrazP63JWTnjROcC61
5bxuUtWMUVHF52hEWf6bXEiAEBNZP7u8kBc02drsscQHM/N3SiFcIxK/nGlIVMjy
Qt01fYR+zZZ2v5OhQHeEe7lBfUMnKA9+QLHR4dJ32oJvyAFiDImLsrEBiVlTDk47
gYJXmqGp2GWgB1H2mDiopHg+ERsavK9P7FL9juYG3OdvFPFuQwktJDSpN+Y0GZMV
wRADV2/ylZBw48DidX86TD3gwtV7gP995nHvQJ2nv+/Kjq58uR4AHwn0wVHPldCE
cDf5IYwdvD0a42id6zb5
=/Oq9
-----END PGP SIGNATURE-----
Merge tag 'renesas-soc-fixes3-for-v3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/horms/renesas into fixes
Merge "Third Round of Renesas ARM Based SoC Fixes for v3.19" from Simon Horman:
* Instantiate GIC from C board code in legacy builds on r8a7790 and r8a73a4
* tag 'renesas-soc-fixes3-for-v3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/horms/renesas:
ARM: shmobile: r8a7790: Instantiate GIC from C board code in legacy builds
ARM: shmobile: r8a73a4: Instantiate GIC from C board code in legacy builds
Signed-off-by: Olof Johansson <olof@lixom.net>
We used to optimize rescheduling and audit on syscall exit. Now
that the full slow path is reasonably fast, remove these
optimizations. Syscall exit auditing is now handled exclusively by
syscall_trace_leave.
This adds something like 10ns to the previously optimized paths on
my computer, presumably due mostly to SAVE_REST / RESTORE_REST.
I think that we should eventually replace both the syscall and
non-paranoid interrupt exit slow paths with a pair of C functions
along the lines of the syscall entry hooks.
Link: http://lkml.kernel.org/r/22f2aa4a0361707a5cfb1de9d45260b39965dead.1421453410.git.luto@amacapital.net
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
The x86_64 entry code currently jumps through complex and
inconsistent hoops to try to minimize the impact of syscall exit
work. For a true fast-path syscall, almost nothing needs to be
done, so returning is just a check for exit work and sysret. For a
full slow-path return from a syscall, the C exit hook is invoked if
needed and we join the iret path.
Using iret to return to userspace is very slow, so the entry code
has accumulated various special cases to try to do certain forms of
exit work without invoking iret. This is error-prone, since it
duplicates assembly code paths, and it's dangerous, since sysret
can malfunction in interesting ways if used carelessly. It's
also inefficient, since a lot of useful cases aren't optimized
and therefore force an iret out of a combination of paranoia and
the fact that no one has bothered to write even more asm code
to avoid it.
I would argue that this approach is backwards. Rather than trying
to avoid the iret path, we should instead try to make the iret path
fast. Under a specific set of conditions, iret is unnecessary. In
particular, if RIP==RCX, RFLAGS==R11, RIP is canonical, RF is not
set, and both SS and CS are as expected, then
movq 32(%rsp),%rsp;sysret does the same thing as iret. This set of
conditions is nearly always satisfied on return from syscalls, and
it can even occasionally be satisfied on return from an irq.
Even with the careful checks for sysret applicability, this cuts
nearly 80ns off of the overhead from syscalls with unoptimized exit
work. This includes tracing and context tracking, and any return
that invokes KVM's user return notifier. For example, the cost of
getpid with CONFIG_CONTEXT_TRACKING_FORCE=y drops from ~360ns to
~280ns on my computer.
This may allow the removal and even eventual conversion to C
of a respectable amount of exit asm.
This may require further tweaking to give the full benefit on Xen.
It may be worthwhile to adjust signal delivery and exec to try hit
the sysret path.
This does not optimize returns to 32-bit userspace. Making the same
optimization for CS == __USER32_CS is conceptually straightforward,
but it will require some tedious code to handle the differences
between sysretl and sysexitl.
Link: http://lkml.kernel.org/r/71428f63e681e1b4aa1a781e3ef7c27f027d1103.1421453410.git.luto@amacapital.net
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
context_tracking_user_exit() has no effect if in_interrupt() returns true,
so ist_enter() didn't work. Fix it by calling exception_enter(), and thus
context_tracking_user_exit(), before incrementing the preempt count.
This also adds an assertion that will catch the problem reliably if
CONFIG_PROVE_RCU=y to help prevent the bug from being reintroduced.
Link: http://lkml.kernel.org/r/261ebee6aee55a4724746d0d7024697013c40a08.1422709102.git.luto@amacapital.net
Fixes: 9592747538 x86, traps: Track entry into and exit from IST context
Reported-and-tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Pull perf fixes from Ingo Molnar:
"Mostly tooling fixes, but also an event groups fix, two PMU driver
fixes and a CPU model variant addition"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Tighten (and fix) the grouping condition
perf/x86/intel: Add model number for Airmont
perf/rapl: Fix crash in rapl_scale()
perf/x86/intel/uncore: Move uncore_box_init() out of driver initialization
perf probe: Fix probing kretprobes
perf symbols: Introduce 'for' method to iterate over the symbols with a given name
perf probe: Do not rely on map__load() filter to find symbols
perf symbols: Introduce method to iterate symbols ordered by name
perf symbols: Return the first entry with a given name in find_by_name method
perf annotate: Fix memory leaks in LOCK handling
perf annotate: Handle ins parsing failures
perf scripting perl: Force to use stdbool
perf evlist: Remove extraneous 'was' on error message
for x86 (bug introduced in 3.19).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJUy2ulAAoJEL/70l94x66D18kIAJhuh2k5Mt3TfP/zfhi2Y6ER
IAZqyFODs8txZ3v432PB8yWWvr2XfJ3gwfjvurLygQJ3jCGZqDrmucbUUXzEaPUk
mPnLpxV0ZEmNweS2HLGPX9HJ6zfsZ1dHRk55Tko9ynAO731q7yPjj6HC0th8wzvE
BRv5y/18rY2zyar+5Azpj5wpOSllq0ynMgjWXGSlaTLbQoyvgZtzbqNY6nsAGrKw
e8hSUPogfGUmZkBHHHVDYKpgHvWS1hARyuGFo8LeKXKPo7qhYxZHCDpch8TXnq2y
21IvQfYddGpcMsaTroA5qyXFigxCX+1j3po6MS3ZH9GGXS5fC3sI8t0EDxKiO6Q=
=O4X0
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"The ARM changes are largish, but not too scary. And a simple fix for
x86 (bug introduced in 3.19)"
(Paolo sayus these are the "Final" fixes. We'll see).
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: check LAPIC presence when building apic_map
arm/arm64: KVM: Use kernel mapping to perform invalidation on page fault
arm/arm64: KVM: Invalidate data cache on unmap
arm/arm64: KVM: Use set/way op trapping to track the state of the caches
We forgot to re-check LAPIC after splitting the loop in commit
173beedc16 (KVM: x86: Software disabled APIC should still deliver
NMIs, 2014-11-02).
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Fixes: 173beedc16
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes memory corruption issues on APM platforms and swapping issues on
DMA-coherent systems.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUyrVCAAoJEEtpOizt6ddy/rgH/1gFfX3zGryDYwbFz2BbnMk8
zJeQfeaOD4TF/6k8UZctrJatoqPgMCmVMAbT7uuZ+zwOYPYDGijGeJOYKS6IcIcj
Lhl0QjbwBUaC58jZhhKGStZTKV2w9L7JK3RFStw+cE2HAAKcZQSVdfnM7ZoyyaRC
qbFqPXLppSSZXD1R+/F17+mM8bogRmdS4we0o7J1KCT6hWbnK1CJkScxXLapbl5Y
tKZSMM+k+L7wvgDnuzepTY+rFna3LSLQXNli0nPX9ByRFR4nMjeJKwm68kOaTU1r
y1naOS3F6kl7S0OiCzyzekM4U330MAVmTyvlT9GHAHCVyjzavGQuuBFHdcdnvvc=
=rJUG
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-fixes-3.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master
Second round of fixes for KVM/ARM for 3.19.
Fixes memory corruption issues on APM platforms and swapping issues on
DMA-coherent systems.
When handling a fault in stage-2, we need to resync I$ and D$, just
to be sure we don't leave any old cache line behind.
That's very good, except that we do so using the *user* address.
Under heavy load (swapping like crazy), we may end up in a situation
where the page gets mapped in stage-2 while being unmapped from
userspace by another CPU.
At that point, the DC/IC instructions can generate a fault, which
we handle with kvm->mmu_lock held. The box quickly deadlocks, user
is unhappy.
Instead, perform this invalidation through the kernel mapping,
which is guaranteed to be present. The box is much happier, and so
am I.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Let's assume a guest has created an uncached mapping, and written
to that page. Let's also assume that the host uses a cache-coherent
IO subsystem. Let's finally assume that the host is under memory
pressure and starts to swap things out.
Before this "uncached" page is evicted, we need to make sure
we invalidate potential speculated, clean cache lines that are
sitting there, or the IO subsystem is going to swap out the
cached view, loosing the data that has been written directly
into memory.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Trying to emulate the behaviour of set/way cache ops is fairly
pointless, as there are too many ways we can end-up missing stuff.
Also, there is some system caches out there that simply ignore
set/way operations.
So instead of trying to implement them, let's convert it to VA ops,
and use them as a way to re-enable the trapping of VM ops. That way,
we can detect the point when the MMU/caches are turned off, and do
a full VM flush (which is what the guest was trying to do anyway).
This allows a 32bit zImage to boot on the APM thingy, and will
probably help bootloaders in general.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Commit 4bb25789ed ("arm: dma-mapping: plumb our iommu mapping ops
into arch_setup_dma_ops") moved the setting of the DMA operations from
arm_iommu_attach_device() to arch_setup_dma_ops() where the DMA
operations to be used are selected based on whether the device is
connected to an IOMMU. However, the IOMMU detection scheme requires the
IOMMU driver to be ported to the new IOMMU of_xlate API. As no driver
has been ported yet, this effectively breaks all IOMMU ARM users that
depend on the IOMMU being handled transparently by the DMA mapping API.
Fix this by restoring the setting of DMA IOMMU ops in
arm_iommu_attach_device() and splitting the rest of the function into a
new internal __arm_iommu_attach_device() function, called by
arch_setup_dma_ops().
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Heiko Stuebner <heiko@sntech.de>
Signed-off-by: Olof Johansson <olof@lixom.net>
The core VM already knows about VM_FAULT_SIGBUS, but cannot return a
"you should SIGSEGV" error, because the SIGSEGV case was generally
handled by the caller - usually the architecture fault handler.
That results in lots of duplication - all the architecture fault
handlers end up doing very similar "look up vma, check permissions, do
retries etc" - but it generally works. However, there are cases where
the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV.
In particular, when accessing the stack guard page, libsigsegv expects a
SIGSEGV. And it usually got one, because the stack growth is handled by
that duplicated architecture fault handler.
However, when the generic VM layer started propagating the error return
from the stack expansion in commit fee7e49d45 ("mm: propagate error
from stack expansion even for guard page"), that now exposed the
existing VM_FAULT_SIGBUS result to user space. And user space really
expected SIGSEGV, not SIGBUS.
To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those
duplicate architecture fault handlers about it. They all already have
the code to handle SIGSEGV, so it's about just tying that new return
value to the existing code, but it's all a bit annoying.
This is the mindless minimal patch to do this. A more extensive patch
would be to try to gather up the mostly shared fault handling logic into
one generic helper routine, and long-term we really should do that
cleanup.
Just from this patch, you can generally see that most architectures just
copied (directly or indirectly) the old x86 way of doing things, but in
the meantime that original x86 model has been improved to hold the VM
semaphore for shorter times etc and to handle VM_FAULT_RETRY and other
"newer" things, so it would be a good idea to bring all those
improvements to the generic case and teach other architectures about
them too.
Reported-and-tested-by: Takashi Iwai <tiwai@suse.de>
Tested-by: Jan Engelhardt <jengelh@inai.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots"
Cc: linux-arch@vger.kernel.org
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As of commit 9a1091ef00 ("irqchip: gic: Support hierarchy irq
domain."), the Lager legacy board support is known to be broken.
The IRQ numbers of the GIC are now virtual, and no longer match the
hardcoded hardware IRQ numbers in the legacy platform board code.
To fix this issue specific to non-multiplatform r8a7790 and Lager:
1) Instantiate the GIC from platform board code and also
2) Skip over the DT arch timer as well as
3) Force delay setup based on DT CPU frequency
With these 3 fixes in place interrupts on Lager are now unbroken.
Partially based on legacy GIC fix by Geert Uytterhoeven, thanks to
him for the initial work.
Signed-off-by: Magnus Damm <damm+renesas@opensource.se>
Acked-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Simon Horman <horms+renesas@verge.net.au>
As of commit 9a1091ef00 ("irqchip: gic: Support hierarchy irq
domain."), the APE6EVM legacy board support is known to be broken.
The IRQ numbers of the GIC are now virtual, and no longer match the
hardcoded hardware IRQ numbers in the legacy platform board code.
To fix this issue specific to non-muliplatform r8a73a4 and APE6EVM:
1) Instantiate the GIC from platform board code and also
2) Skip over the DT arch timer as well as
3) Force delay setup based on DT CPU frequency
With these 3 fixes in place interrupts on APE6EVM are now unbroken.
Partially based on legacy GIC fix by Geert Uytterhoeven, thanks to
him for the initial work.
Signed-off-by: Magnus Damm <damm+renesas@opensource.se>
Acked-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Simon Horman <horms+renesas@verge.net.au>
375/38x. Only switch the PL310 to I/O coherent mode if I/O coherency
is enabled.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCAAGBQJUyRueAAoJEOa/DcumaUyEvqAP/AuTbrPtd7LeiZBvCfEBBs+C
bDT+TjksyMBMZEjQ4OFNQTj4NSLsL4RqfUrfTFkg6RJ0pjviD80saNkfKy8bByPR
WduY4AhSgks07YI79Nu8cKGUO/iEuxztnCZQWi5b5wNideY9z+Ta3k46Z26VfRwc
NCQsT2PLKpVmTnIlhi6ilLHsqRAwsV0An+swEyAZXVBAbfKpoWOHxrfR7wVO9oSa
3dFmnxFcF3/pavtIbL5wIHkGSsjlSi8sdCvieWdf186p8ubuV5TNyuRme0msbaAf
JBJCNorSepP9vNCb2cCaEOcq+/A/f3NZAX256zGHcyvg6B9Ntq324MVj0sZd+dSo
nAeJYQvgwD10HvZGj4kCAL11Fc45chnGoo1iPGuxvzF6nKI5liINMnAmU8VPhnZX
swL3M2k69T14QutS+FbEN/6RGOQAWHZoXQ5YxFwFqei2I7j7g0QJvemwrfFkTwQj
bPyOE2op6fPpgJyGedM5icU8KesCkORNuu0lRWT9v5rU51epwdna3lcProtuBOA2
fq/WXb0mC/poyToIEJJZHOLJU7jZy2D+WMKBpu3imiKYBv29qShT9Mah22msySfY
YY9luHCQMWuT5zVVNFA/SMa8sQbpfxbNngen3iW79WK3LHVP9B6I/dfrn3F/BXXq
qtYwwNYQqf9kuI0nyy1H
=qzYQ
-----END PGP SIGNATURE-----
Merge tag 'mvebu-fixes-3.19-6' of git://git.infradead.org/linux-mvebu into fixes
Merge "mvebu-fixes-6" from Andrew Lunn:
The previous fix for Armada XP, disabling I/O coherency, broke Armada
375/38x. Only switch the PL310 to I/O coherent mode if I/O coherency
is enabled.
* tag 'mvebu-fixes-3.19-6' of git://git.infradead.org/linux-mvebu:
ARM: mvebu: don't set the PL310 in I/O coherency mode when I/O coherency is disabled
Signed-off-by: Olof Johansson <olof@lixom.net>
Since commit f2c3c67f00 (merge commit that adds commit "ARM: mvebu:
completely disable hardware I/O coherency"), we disable I/O coherency
on Armada EBU platforms.
However, we continue to initialize the coherency fabric, because this
coherency fabric is needed on Armada XP for inter-CPU
coherency. Unfortunately, due to this, we also continued to execute
the coherency fabric initialization code for Armada 375/38x, which
switched the PL310 into I/O coherent mode. This has the effect of
disabling the outer cache sync operation: this is needed when I/O
coherency is enabled to work around a PCIe/L2 deadlock. But obviously,
when I/O coherency is disabled, having the outer cache sync operation
is crucial.
Therefore, this commit fixes the armada_375_380_coherency_init() so
that the PL310 is switched to I/O coherent mode only if I/O coherency
is enabled.
Without this fix, all devices using DMA are broken on Armada 375/38x.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Acked-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Tested-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Signed-off-by: Andrew Lunn <andrew@lunn.ch>
Cc: <stable@vger.kernel.org> # v3.8+
The new hw_breakpoint bits are now ready for v3.20, merge them
into the main branch, to avoid conflicts.
Conflicts:
tools/perf/Documentation/perf-record.txt
Signed-off-by: Ingo Molnar <mingo@kernel.org>
of this is an IST rework. When an IST exception interrupts user
space, we will handle it on the per-thread kernel stack instead of
on the IST stack. This sounds messy, but it actually simplifies the
IST entry/exit code, because it eliminates some ugly games we used
to play in order to handle rescheduling, signal delivery, etc on the
way out of an IST exception.
The IST rework introduces proper context tracking to IST exception
handlers. I haven't seen any bug reports, but the old code could
have incorrectly treated an IST exception handler as an RCU extended
quiescent state.
The memory failure change (included in this pull request with
Borislav and Tony's permission) eliminates a bunch of code that
is no longer needed now that user memory failure handlers are
called in process context.
Finally, this includes a few on Denys' uncontroversial and Obviously
Correct (tm) cleanups.
The IST and memory failure changes have been in -next for a while.
LKML references:
IST rework:
http://lkml.kernel.org/r/cover.1416604491.git.luto@amacapital.net
Memory failure change:
http://lkml.kernel.org/r/54ab2ffa301102cd6e@agluck-desk.sc.intel.com
Denys' cleanups:
http://lkml.kernel.org/r/1420927210-19738-1-git-send-email-dvlasenk@redhat.com
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJUtvkFAAoJEK9N98ZeDfrkcfsIAJxZ0UBUCEDvulbqgk/iPGOa
fIpKLMowS7CpKtw6Wdc/YvAIkeHXWm1vU44Hj0TrjSrXCgVF8yCngs/xlXtOjoa1
dosXQqgqVJJ+hyui7chAEWyalLW7bEO8raq/6snhiMrhiuEkVKpEr7Fer4FVVCZL
4VALmNQQsbV+Qq4pXIhuagZC0Nt/XKi/+/cKvhS4p//q1F/TbHTz0FpDUrh0jPMh
18WFy0jWgxdkMRnSp/wJhekvdXX6PwUy5BdES9fjw8LQJZxxFpqN3Fe1kgfyzV0k
yuvEHw1hPt2aBGj3q69wQvDVyyn4OqMpRDBhk4S+GJYmVh7mFyFMN4BDMEy/EY8=
=LXVl
-----END PGP SIGNATURE-----
Merge tag 'pr-20150114-x86-entry' of git://git.kernel.org/pub/scm/linux/kernel/git/luto/linux into x86/asm
Pull x86/entry enhancements from Andy Lutomirski:
" This is my accumulated x86 entry work, part 1, for 3.20. The meat
of this is an IST rework. When an IST exception interrupts user
space, we will handle it on the per-thread kernel stack instead of
on the IST stack. This sounds messy, but it actually simplifies the
IST entry/exit code, because it eliminates some ugly games we used
to play in order to handle rescheduling, signal delivery, etc on the
way out of an IST exception.
The IST rework introduces proper context tracking to IST exception
handlers. I haven't seen any bug reports, but the old code could
have incorrectly treated an IST exception handler as an RCU extended
quiescent state.
The memory failure change (included in this pull request with
Borislav and Tony's permission) eliminates a bunch of code that
is no longer needed now that user memory failure handlers are
called in process context.
Finally, this includes a few on Denys' uncontroversial and Obviously
Correct (tm) cleanups.
The IST and memory failure changes have been in -next for a while.
LKML references:
IST rework:
http://lkml.kernel.org/r/cover.1416604491.git.luto@amacapital.net
Memory failure change:
http://lkml.kernel.org/r/54ab2ffa301102cd6e@agluck-desk.sc.intel.com
Denys' cleanups:
http://lkml.kernel.org/r/1420927210-19738-1-git-send-email-dvlasenk@redhat.com
"
This tree semantically depends on and is based on the following RCU commit:
734d168013 ("rcu: Make rcu_nmi_enter() handle nesting")
... and for that reason won't be pushed upstream before the RCU bits hit Linus's tree.
Signed-off-by: Ingo Molnar <mingo@kernel.org>