The next patch will change these to be called by opcode::execute.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
We should use the local variables ctxt and c when the emulate_ctxt and
decode appears many times. At least, we need to be consistent about
how we use these in a function.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Small corrections of KVM (spelling, etc.) not directly related to nested VMX.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
If the "nested" module option is enabled, add the "VMX" CPU feature to the
list of CPU features KVM advertises with the KVM_GET_SUPPORTED_CPUID ioctl.
Qemu uses this ioctl, and intersects KVM's list with its own list of desired
cpu features (depending on the -cpu option given to qemu) to determine the
final list of features presented to the guest.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
In the unlikely case that L1 does not capture MSR_IA32_TSC, L0 needs to
emulate this MSR write by L2 by modifying vmcs02.tsc_offset. We also need to
set vmcs12.tsc_offset, for this change to survive the next nested entry (see
prepare_vmcs02()).
Additionally, we also need to modify vmx_adjust_tsc_offset: The semantics
of this function is that the TSC of all guests on this vcpu, L1 and possibly
several L2s, need to be adjusted. To do this, we need to adjust vmcs01's
tsc_offset (this offset will also apply to each L2s we enter). We can't set
vmcs01 now, so we have to remember this adjustment and apply it when we
later exit to L1.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
KVM's "Lazy FPU loading" means that sometimes L0 needs to set CR0.TS, even
if a guest didn't set it. Moreover, L0 must also trap CR0.TS changes and
NM exceptions, even if we have a guest hypervisor (L1) who didn't want these
traps. And of course, conversely: If L1 wanted to trap these events, we
must let it, even if L0 is not interested in them.
This patch fixes some existing KVM code (in update_exception_bitmap(),
vmx_fpu_activate(), vmx_fpu_deactivate()) to do the correct merging of L0's
and L1's needs. Note that handle_cr() was already fixed in the above patch,
and that new code in introduced in previous patches already handles CR0
correctly (see prepare_vmcs02(), prepare_vmcs12(), and nested_vmx_vmexit()).
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
When L2 tries to modify CR0 or CR4 (with mov or clts), and modifies a bit
which L1 asked to shadow (via CR[04]_GUEST_HOST_MASK), we already do the right
thing: we let L1 handle the trap (see nested_vmx_exit_handled_cr() in a
previous patch).
When L2 modifies bits that L1 doesn't care about, we let it think (via
CR[04]_READ_SHADOW) that it did these modifications, while only changing
(in GUEST_CR[04]) the bits that L0 doesn't shadow.
This is needed for corect handling of CR0.TS for lazy FPU loading: L0 may
want to leave TS on, while pretending to allow the guest to change it.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch adds correct handling of IDT_VECTORING_INFO_FIELD for the nested
case.
When a guest exits while delivering an interrupt or exception, we get this
information in IDT_VECTORING_INFO_FIELD in the VMCS. When L2 exits to L1,
there's nothing we need to do, because L1 will see this field in vmcs12, and
handle it itself. However, when L2 exits and L0 handles the exit itself and
plans to return to L2, L0 must inject this event to L2.
In the normal non-nested case, the idt_vectoring_info case is discovered after
the exit, and the decision to inject (though not the injection itself) is made
at that point. However, in the nested case a decision of whether to return
to L2 or L1 also happens during the injection phase (see the previous
patches), so in the nested case we can only decide what to do about the
idt_vectoring_info right after the injection, i.e., in the beginning of
vmx_vcpu_run, which is the first time we know for sure if we're staying in
L2.
Therefore, when we exit L2 (is_guest_mode(vcpu)), we disable the regular
vmx_complete_interrupts() code which queues the idt_vectoring_info for
injection on next entry - because such injection would not be appropriate
if we will decide to exit to L1. Rather, we just save the idt_vectoring_info
and related fields in vmcs12 (which is a convenient place to save these
fields). On the next entry in vmx_vcpu_run (*after* the injection phase,
potentially exiting to L1 to inject an event requested by user space), if
we find ourselves in L1 we don't need to do anything with those values
we saved (as explained above). But if we find that we're in L2, or rather
*still* at L2 (it's not nested_run_pending, meaning that this is the first
round of L2 running after L1 having just launched it), we need to inject
the event saved in those fields - by writing the appropriate VMCS fields.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Similar to the previous patch, but concerning injection of exceptions rather
than external interrupts.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The code in this patch correctly emulates external-interrupt injection
while a nested guest L2 is running.
Because of this code's relative un-obviousness, I include here a longer-than-
usual justification for what it does - much longer than the code itself ;-)
To understand how to correctly emulate interrupt injection while L2 is
running, let's look first at what we need to emulate: How would things look
like if the extra L0 hypervisor layer is removed, and instead of L0 injecting
an interrupt, we had hardware delivering an interrupt?
Now we have L1 running on bare metal with a guest L2, and the hardware
generates an interrupt. Assuming that L1 set PIN_BASED_EXT_INTR_MASK to 1, and
VM_EXIT_ACK_INTR_ON_EXIT to 0 (we'll revisit these assumptions below), what
happens now is this: The processor exits from L2 to L1, with an external-
interrupt exit reason but without an interrupt vector. L1 runs, with
interrupts disabled, and it doesn't yet know what the interrupt was. Soon
after, it enables interrupts and only at that moment, it gets the interrupt
from the processor. when L1 is KVM, Linux handles this interrupt.
Now we need exactly the same thing to happen when that L1->L2 system runs
on top of L0, instead of real hardware. This is how we do this:
When L0 wants to inject an interrupt, it needs to exit from L2 to L1, with
external-interrupt exit reason (with an invalid interrupt vector), and run L1.
Just like in the bare metal case, it likely can't deliver the interrupt to
L1 now because L1 is running with interrupts disabled, in which case it turns
on the interrupt window when running L1 after the exit. L1 will soon enable
interrupts, and at that point L0 will gain control again and inject the
interrupt to L1.
Finally, there is an extra complication in the code: when nested_run_pending,
we cannot return to L1 now, and must launch L2. We need to remember the
interrupt we wanted to inject (and not clear it now), and do it on the
next exit.
The above explanation shows that the relative strangeness of the nested
interrupt injection code in this patch, and the extra interrupt-window
exit incurred, are in fact necessary for accurate emulation, and are not
just an unoptimized implementation.
Let's revisit now the two assumptions made above:
If L1 turns off PIN_BASED_EXT_INTR_MASK (no hypervisor that I know
does, by the way), things are simple: L0 may inject the interrupt directly
to the L2 guest - using the normal code path that injects to any guest.
We support this case in the code below.
If L1 turns on VM_EXIT_ACK_INTR_ON_EXIT, things look very different from the
description above: L1 expects to see an exit from L2 with the interrupt vector
already filled in the exit information, and does not expect to be interrupted
again with this interrupt. The current code does not (yet) support this case,
so we do not allow the VM_EXIT_ACK_INTR_ON_EXIT exit-control to be turned on
by L1.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch contains the logic of whether an L2 exit should be handled by L0
and then L2 should be resumed, or whether L1 should be run to handle this
exit (using the nested_vmx_vmexit() function of the previous patch).
The basic idea is to let L1 handle the exit only if it actually asked to
trap this sort of event. For example, when L2 exits on a change to CR0,
we check L1's CR0_GUEST_HOST_MASK to see if L1 expressed interest in any
bit which changed; If it did, we exit to L1. But if it didn't it means that
it is we (L0) that wished to trap this event, so we handle it ourselves.
The next two patches add additional logic of what to do when an interrupt or
exception is injected: Does L0 need to do it, should we exit to L1 to do it,
or should we resume L2 and keep the exception to be injected later.
We keep a new flag, "nested_run_pending", which can override the decision of
which should run next, L1 or L2. nested_run_pending=1 means that we *must* run
L2 next, not L1. This is necessary in particular when L1 did a VMLAUNCH of L2
and therefore expects L2 to be run (and perhaps be injected with an event it
specified, etc.). Nested_run_pending is especially intended to avoid switching
to L1 in the injection decision-point described above.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch adds a bunch of tests of the validity of the vmcs12 fields,
according to what the VMX spec and our implementation allows. If fields
we cannot (or don't want to) honor are discovered, an entry failure is
emulated.
According to the spec, there are two types of entry failures: If the problem
was in vmcs12's host state or control fields, the VMLAUNCH instruction simply
fails. But a problem is found in the guest state, the behavior is more
similar to that of an exit.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch implements nested_vmx_vmexit(), called when the nested L2 guest
exits and we want to run its L1 parent and let it handle this exit.
Note that this will not necessarily be called on every L2 exit. L0 may decide
to handle a particular exit on its own, without L1's involvement; In that
case, L0 will handle the exit, and resume running L2, without running L1 and
without calling nested_vmx_vmexit(). The logic for deciding whether to handle
a particular exit in L1 or in L0, i.e., whether to call nested_vmx_vmexit(),
will appear in a separate patch below.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Before nested VMX support, the exit handler for a guest executing a VMX
instruction (vmclear, vmlaunch, vmptrld, vmptrst, vmread, vmread, vmresume,
vmwrite, vmon, vmoff), was handle_vmx_insn(). This handler simply threw a #UD
exception. Now that all these exit reasons are properly handled (and emulate
the respective VMX instruction), nothing calls this dummy handler and it can
be removed.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Implement the VMLAUNCH and VMRESUME instructions, allowing a guest
hypervisor to run its own guests.
This patch does not include some of the necessary validity checks on
vmcs12 fields before the entry. These will appear in a separate patch
below.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch contains code to prepare the VMCS which can be used to actually
run the L2 guest, vmcs02. prepare_vmcs02 appropriately merges the information
in vmcs12 (the vmcs that L1 built for L2) and in vmcs01 (our desires for our
own guests).
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Move some of the control field setup to common functions. These functions will
also be needed for running L2 guests - L0's desires (expressed in these
functions) will be appropriately merged with L1's desires.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Move the setting of constant host-state fields (fields that do not change
throughout the life of the guest) from vmx_vcpu_setup to a new common function
vmx_set_constant_host_state(). This function will also be used to set the
host state when running L2 guests.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Implement the VMREAD and VMWRITE instructions. With these instructions, L1
can read and write to the VMCS it is holding. The values are read or written
to the fields of the vmcs12 structure introduced in a previous patch.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
VMX instructions specify success or failure by setting certain RFLAGS bits.
This patch contains common functions to do this, and they will be used in
the following patches which emulate the various VMX instructions.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
In this patch we add to vmcs12 (the VMCS that L1 keeps for L2) all the
standard VMCS fields.
Later patches will enable L1 to read and write these fields using VMREAD/
VMWRITE, and they will be used during a VMLAUNCH/VMRESUME in preparing vmcs02,
a hardware VMCS for running L2.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
We saw in a previous patch that L1 controls its L2 guest with a vcms12.
L0 needs to create a real VMCS for running L2. We call that "vmcs02".
A later patch will contain the code, prepare_vmcs02(), for filling the vmcs02
fields. This patch only contains code for allocating vmcs02.
In this version, prepare_vmcs02() sets *all* of vmcs02's fields each time we
enter from L1 to L2, so keeping just one vmcs02 for the vcpu is enough: It can
be reused even when L1 runs multiple L2 guests. However, in future versions
we'll probably want to add an optimization where vmcs02 fields that rarely
change will not be set each time. For that, we may want to keep around several
vmcs02s of L2 guests that have recently run, so that potentially we could run
these L2s again more quickly because less vmwrites to vmcs02 will be needed.
This patch adds to each vcpu a vmcs02 pool, vmx->nested.vmcs02_pool,
which remembers the vmcs02s last used to run up to VMCS02_POOL_SIZE L2s.
As explained above, in the current version we choose VMCS02_POOL_SIZE=1,
I.e., one vmcs02 is allocated (and loaded onto the processor), and it is
reused to enter any L2 guest. In the future, when prepare_vmcs02() is
optimized not to set all fields every time, VMCS02_POOL_SIZE should be
increased.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch includes a utility function for decoding pointer operands of VMX
instructions issued by L1 (a guest hypervisor)
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
When the guest can use VMX instructions (when the "nested" module option is
on), it should also be able to read and write VMX MSRs, e.g., to query about
VMX capabilities. This patch adds this support.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
An implementation of VMX needs to define a VMCS structure. This structure
is kept in guest memory, but is opaque to the guest (who can only read or
write it with VMX instructions).
This patch starts to define the VMCS structure which our nested VMX
implementation will present to L1. We call it "vmcs12", as it is the VMCS
that L1 keeps for its L2 guest. We will add more content to this structure
in later patches.
This patch also adds the notion (as required by the VMX spec) of L1's "current
VMCS", and finally includes utility functions for mapping the guest-allocated
VMCSs in host memory.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch allows the guest to enable the VMXE bit in CR4, which is a
prerequisite to running VMXON.
Whether to allow setting the VMXE bit now depends on the architecture (svm
or vmx), so its checking has moved to kvm_x86_ops->set_cr4(). This function
now returns an int: If kvm_x86_ops->set_cr4() returns 1, __kvm_set_cr4()
will also return 1, and this will cause kvm_set_cr4() will throw a #GP.
Turning on the VMXE bit is allowed only when the nested VMX feature is
enabled, and turning it off is forbidden after a vmxon.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch allows a guest to use the VMXON and VMXOFF instructions, and
emulates them accordingly. Basically this amounts to checking some
prerequisites, and then remembering whether the guest has enabled or disabled
VMX operation.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This patch adds to kvm_intel a module option "nested". This option controls
whether the guest can use VMX instructions, i.e., whether we allow nested
virtualization. A similar, but separate, option already exists for the
SVM module.
This option currently defaults to 0, meaning that nested VMX must be
explicitly enabled by giving nested=1. When nested VMX matures, the default
should probably be changed to enable nested VMX by default - just like
nested SVM is currently enabled by default.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
During tracing the emulator, we noticed that init_emulate_ctxt()
sometimes took a bit longer time than we expected.
This patch is for mitigating the problem by some degree.
By looking into the function, we soon notice that it clears the whole
decode_cache whose size is about 2.5K bytes now. Furthermore, most of
the bytes are taken for the two read_cache arrays, which are used only
by a few instructions.
Considering the fact that we are not assuming the cache arrays have
been cleared when we store actual data, we do not need to clear the
arrays: 2K bytes elimination. In addition, we can avoid clearing the
fetch_cache and regs arrays.
This patch changes the initialization not to clear the arrays.
On our 64-bit host, init_emulate_ctxt() becomes 0.3 to 0.5us faster with
this patch applied.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Cc: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Use a local pointer to the emulate_ctxt for simplicity. Then, arrange
the hard-to-read mode selection lines neatly.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Avi Kivity <avi@redhat.com>
So far kvm_arch_vcpu_setup is responsible for freeing the vcpu struct if
it fails. Move this confusing resonsibility back into the hands of
kvm_vm_ioctl_create_vcpu. Only kvm_arch_vcpu_setup of x86 is affected,
all other archs cannot fail.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
In VMX, before we bring down a CPU we must VMCLEAR all VMCSs loaded on it
because (at least in theory) the processor might not have written all of its
content back to memory. Since a patch from June 26, 2008, this is done using
a per-cpu "vcpus_on_cpu" linked list of vcpus loaded on each CPU.
The problem is that with nested VMX, we no longer have the concept of a
vcpu being loaded on a cpu: A vcpu has multiple VMCSs (one for L1, a pool for
L2s), and each of those may be have been last loaded on a different cpu.
So instead of linking the vcpus, we link the VMCSs, using a new structure
loaded_vmcs. This structure contains the VMCS, and the information pertaining
to its loading on a specific cpu (namely, the cpu number, and whether it
was already launched on this cpu once). In nested we will also use the same
structure to hold L2 VMCSs, and vmx->loaded_vmcs is a pointer to the
currently active VMCS.
Signed-off-by: Nadav Har'El <nyh@il.ibm.com>
Acked-by: Acked-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Instead of blacklisting known-unsupported cpuid leaves, whitelist known-
supported leaves. This is more conservative and prevents us from reporting
features we don't support. Also whitelist a few more leaves while at it.
Signed-off-by: Avi Kivity <avi@redhat.com>
Acked-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Cleanup the same operation between kvm_mmu_page_unlink_children and
mmu_pte_write_zap_pte
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Parent pte rmap and page rmap are very similar, so use the same arithmetic
for them
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Abstract the operation of rmap to spte_list, then we can use it for the
reverse mapping of parent pte in the later patch
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Fix:
warning: ‘cs_sel’ may be used uninitialized in this function
warning: ‘ss_sel’ may be used uninitialized in this function
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Simply use __copy_to_user/__clear_user to write guest page since we have
already verified the user address when the memslot is set
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Simply return from kvm_mmu_pte_write path if no shadow page is
write-protected, then we can avoid to walk all shadow pages and hold
mmu-lock
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
vmcs_readl() and friends are really short, but gcc thinks they are long because of
the out-of-line exception handlers. Mark them always_inline to clear the
misunderstanding.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
We clean up a failed VMREAD by clearing the output register. Do
it in the exception handler instead of unconditionally. This is
worthwhile since there are more than a hundred call sites.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Dereference it in the actual users.
This not only cleans up the emulator but also makes it easy to convert
the old emulation functions to the new em_xxx() form later.
Note: Remove some inline keywords to let the compiler decide inlining.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Dereference it in the actual users: only do_insn_fetch_byte().
This is consistent with the way __linearize() dereferences it.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The two macros need special care to use:
Assume rc, ctxt, ops and done exist outside of them.
Can goto outside.
Considering the fact that these are used only in decode functions,
moving these right after do_insn_fetch() seems to be a right thing
to improve the readability.
We also rename do_fetch_insn_byte() to do_insn_fetch_byte() to be
consistent.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
* 'stable/bug.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
xen/pci: Use the INT_SRC_OVR IRQ (instead of GSI) to preset the ACPI SCI IRQ.
xen/mmu: Fix for linker errors when CONFIG_SMP is not defined.
In the past we would use the GSI value to preset the ACPI SCI
IRQ which worked great as GSI == IRQ:
ACPI: INT_SRC_OVR (bus 0 bus_irq 9 global_irq 9 low level)
While that is most often seen, there are some oddities:
ACPI: INT_SRC_OVR (bus 0 bus_irq 9 global_irq 20 low level)
which means that GSI 20 (or pin 20) is to be overriden for IRQ 9.
Our code that presets the interrupt for ACPI SCI however would
use the GSI 20 instead of IRQ 9 ending up with:
xen: sci override: global_irq=20 trigger=0 polarity=1
xen: registering gsi 20 triggering 0 polarity 1
xen: --> pirq=20 -> irq=20
xen: acpi sci 20
.. snip..
calling acpi_init+0x0/0xbc @ 1
ACPI: SCI (IRQ9) allocation failed
ACPI Exception: AE_NOT_ACQUIRED, Unable to install System Control Interrupt handler (20110413/evevent-119)
ACPI: Unable to start the ACPI Interpreter
as the ACPI interpreter made a call to 'acpi_gsi_to_irq' which got nine.
It used that value to request an IRQ (request_irq) and since that was not
present it failed.
The fix is to recognize that for interrupts that are overriden (in our
case we only care about the ACPI SCI) we should use the IRQ number
to present the IRQ instead of the using GSI. End result is that we get:
xen: sci override: global_irq=20 trigger=0 polarity=1
xen: registering gsi 20 triggering 0 polarity 1
xen: --> pirq=20 -> irq=9 (gsi=9)
xen: acpi sci 9
which fixes the ACPI interpreter failing on startup.
CC: stable@kernel.org
Reported-by: Liwei <xieliwei@gmail.com>
Tested-by: Liwei <xieliwei@gmail.com>
[http://lists.xensource.com/archives/html/xen-devel/2011-06/msg01727.html]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Simple enough - we use an extern defined symbol which is not
defined when CONFIG_SMP is not defined. This fixes the linker
dying.
CC: stable@kernel.org
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
%rip-relative addressing is relative to the first byte of the next instruction,
so we need to add %rip only after we've fetched any immediate bytes.
Based on original patch by Li Xin <xin.li@intel.com>.
Signed-off-by: Avi Kivity <avi@redhat.com>
Acked-by: Li Xin <xin.li@intel.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Trying to build the Intel SCU Watchdog fails for me with gcc 4.6.0 -
$ gcc --version | head -n 1
gcc (GCC) 4.6.0 20110513 (prerelease)
like this :
CC drivers/watchdog/intel_scu_watchdog.o
In file included from drivers/watchdog/intel_scu_watchdog.c:49:0:
/home/jj/src/linux-2.6/arch/x86/include/asm/apb_timer.h: In function ‘apbt_time_init’:
/home/jj/src/linux-2.6/arch/x86/include/asm/apb_timer.h:65:42: warning: ‘return’ with a value, in function returning void [enabled by default]
drivers/watchdog/intel_scu_watchdog.c: In function ‘intel_scu_watchdog_init’:
drivers/watchdog/intel_scu_watchdog.c:468:2: error: implicit declaration of function ‘sfi_get_mtmr’ [-Werror=implicit-function-declaration]
drivers/watchdog/intel_scu_watchdog.c:468:32: warning: assignment makes pointer from integer without a cast [enabled by default]
cc1: some warnings being treated as errors
make[1]: *** [drivers/watchdog/intel_scu_watchdog.o] Error 1
make: *** [drivers/watchdog/intel_scu_watchdog.o] Error 2
Additionally, linux/types.h is needlessly being included twice in
drivers/watchdog/intel_scu_watchdog.c
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
commit 21a3c96 uses node_start/end_pfn(nid) for detection start/end
of nodes. But, it's not defined in linux/mmzone.h but defined in
/arch/???/include/mmzone.h which is included only under
CONFIG_NEED_MULTIPLE_NODES=y.
Then, we see
mm/page_cgroup.c: In function 'page_cgroup_init':
mm/page_cgroup.c:308: error: implicit declaration of function 'node_start_pfn'
mm/page_cgroup.c:309: error: implicit declaration of function 'node_end_pfn'
So, fixiing page_cgroup.c is an idea...
But node_start_pfn()/node_end_pfn() is a very generic macro and
should be implemented in the same manner for all archs.
(m32r has different implementation...)
This patch removes definitions of node_start/end_pfn() in each archs
and defines a unified one in linux/mmzone.h. It's not under
CONFIG_NEED_MULTIPLE_NODES, now.
A result of macro expansion is here (mm/page_cgroup.c)
for !NUMA
start_pfn = ((&contig_page_data)->node_start_pfn);
end_pfn = ({ pg_data_t *__pgdat = (&contig_page_data); __pgdat->node_start_pfn + __pgdat->node_spanned_pages;});
for NUMA (x86-64)
start_pfn = ((node_data[nid])->node_start_pfn);
end_pfn = ({ pg_data_t *__pgdat = (node_data[nid]); __pgdat->node_start_pfn + __pgdat->node_spanned_pages;});
Changelog:
- fixed to avoid using "nid" twice in node_end_pfn() macro.
Reported-and-acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Reported-and-tested-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6:
x86/PCI/ACPI: fix type mismatch
PCI: fix new kernel-doc warning
PCI: Fix warning in drivers/pci/probe.c on sparc64
* 'stable/bug.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
xen/setup: Fix for incorrect xen_extra_mem_start.
xen: When calling power_off, don't call the halt function.
xen: Fix compile warning when CONFIG_SMP is not defined.
xen: support CONFIG_MAXSMP
xen: partially revert "xen: set max_pfn_mapped to the last pfn mapped"
* 'kvm-updates/3.0' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: Fix register corruption in pvclock_scale_delta
KVM: MMU: fix opposite condition in mapping_level_dirty_bitmap
KVM: VMX: do not overwrite uptodate vcpu->arch.cr3 on KVM_SET_SREGS
KVM: MMU: Fix build warnings in walk_addr_generic()
The 128-bit multiply in pvclock.h was missing an output constraint for
EDX which caused a register corruption to appear. Thanks to Ulrich for
diagnosing the EDX corruption and Avi for providing this fix.
Signed-off-by: Zachary Amsden <zamsden@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The condition is opposite, it always maps huge page for the dirty tracked page
Reported-by: Steve <stefan.bosak@gmail.com>
Signed-off-by: Steve <stefan.bosak@gmail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Only decache guest CR3 value if vcpu->arch.cr3 is stale.
Fixes loadvm with live guest.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Tested-by: Markus Schade <markus.schade@gmail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
On 3.0-rc1 I get
In file included from arch/x86/kvm/mmu.c:2856:
arch/x86/kvm/paging_tmpl.h: In function ‘paging32_walk_addr_generic’:
arch/x86/kvm/paging_tmpl.h:124: warning: ‘ptep_user’ may be used uninitialized in this function
In file included from arch/x86/kvm/mmu.c:2852:
arch/x86/kvm/paging_tmpl.h: In function ‘paging64_walk_addr_generic’:
arch/x86/kvm/paging_tmpl.h:124: warning: ‘ptep_user’ may be used uninitialized in this function
caused by 6e2ca7d180. According to Takuya
Yoshikawa, ptep_user won't be used uninitialized so shut up gcc.
Cc: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Link: http://lkml.kernel.org/r/20110530094604.GC21833@liondog.tnic
Signed-off-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Commit 916f676f8d started reserving boot service code since some systems
require you to keep that code around until SetVirtualAddressMap is called.
However, in some cases those areas will overlap with reserved regions.
The proper medium-term fix is to fix the bootloader to prevent the
conflicts from occurring by moving the kernel to a better position,
but the kernel should check for this possibility, and only reserve regions
which can be reserved.
Signed-off-by: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Link: http://lkml.kernel.org/r/4DF7A005.1050407@gmail.com
Acked-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The earlier attempts (24bdb0b62c)
at fixing this problem caused other problems to surface (PV guests
with no PCI passthrough would have SWIOTLB turned on - which meant
64MB of precious contingous DMA32 memory being eaten up per guest).
The problem was: "on xen we add an extra memory region at the end of
the e820, and on this particular machine this extra memory region
would start below 4g and cross over the 4g boundary:
[0xfee01000-0x192655000)
Unfortunately e820_end_of_low_ram_pfn does not expect an
e820 layout like that so it returns 4g, therefore initial_memory_mapping
will map [0 - 0x100000000), that is a memory range that includes some
reserved memory regions."
The memory range was the IOAPIC regions, and with the 1-1 mapping
turned on, it would map them as RAM, not as MMIO regions. This caused
the hypervisor to complain. Fortunately this is experienced only under
the initial domain so we guard for it.
Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
.. As it won't actually power off the machine.
Reported-by: Sven Köhler <sven.koehler@gmail.com>
Tested-by: Sven Köhler <sven.koehler@gmail.com>
Signed-off-by: Tom Goetz <tom.goetz@virtualcomputer.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The MAXSMP config option requires CPUMASK_OFFSTACK, which in turn
requires we init the memory for the maps while we bring up the cpus.
MAXSMP also increases NR_CPUS to 4096. This increase in size exposed an
issue in the argument construction for multicalls from
xen_flush_tlb_others. The args should only need space for the actual
number of cpus.
Also in 2.6.39 it exposes a bootup problem.
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<ffffffff8157a1d3>] set_cpu_sibling_map+0x123/0x30d
...
Call Trace:
[<ffffffff81039a3f>] ? xen_restore_fl_direct_reloc+0x4/0x4
[<ffffffff819dc4db>] xen_smp_prepare_cpus+0x36/0x135
..
CC: stable@kernel.org
Signed-off-by: Andrew Jones <drjones@redhat.com>
[v2: Updated to compile on 3.0]
[v3: Updated to compile when CONFIG_SMP is not defined]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[ Also from Ben Hutchings <ben@decadent.org.uk> and Vitaliy Ivanov
<vitalivanov@gmail.com> ]
Commit 06ae40ce07 ("x86 idle: EXPORT_SYMBOL(default_idle, pm_idle)
only when APM demands it") removed the export for pm_idle/default_idle
unless the apm module was modularised and CONFIG_APM_CPU_IDLE was set.
But the apm module uses pm_idle/default_idle unconditionally,
CONFIG_APM_CPU_IDLE only affects the bios idle threshold. Adjust the
export accordingly.
[ Used #ifdef instead of #if defined() as it's shorter, and what both
Ben and Vitaliy used.. Andy, you're out-voted ;) - Linus ]
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Len Brown <len.brown@intel.com>
Signed-off-by: Andy Whitcroft <apw@canonical.com>
Signed-off-by: Vitaliy Ivanov <vitalivanov@gmail.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'drm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied/drm-2.6:
drm: Compare only lower 32 bits of framebuffer map offsets
drm/i915: Don't leak in i915_gem_shmem_pread_slow()
drm/radeon/kms: do bounds checking for 3D_LOAD_VBPNTR and bump array limit
drm/radeon/kms: fix mac g5 quirk
x86/uv/x2apic: update for change in pci bridge handling.
alpha, drm: Remove obsolete Alpha support in MGA DRM code
alpha/drm: Cleanup Alpha support in DRM generic code
savage: remove unnecessary if statement
drm/radeon: fix GUI idle IH debug statements
drm/radeon/kms: check modes against max pixel clock
drm: fix fbs in DRM_IOCTL_MODE_GETRESOURCES ioctl
When I added 3448a19da4
I forgot about the special uv handling code for this, so this
patch fixes it up.
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Acked-by: Ingo Molnar
Signed-off-by: Dave Airlie <airlied@redhat.com>
Unconditionally changing the address limit to USER_DS and not restoring
it to its old value in the error path is wrong because it prevents us
using kernel memory on repeated calls to this function. This, in fact,
breaks the fallback of hard coded paths to the init program from being
ever successful if the first candidate fails to load.
With this patch applied switching to USER_DS is delayed until the point
of no return is reached which makes it possible to have a multi-arch
rootfs with one arch specific init binary for each of the (hard coded)
probed paths.
Since the address limit is already set to USER_DS when start_thread()
will be invoked, this redundancy can be safely removed.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes the following build failure:
drivers/built-in.o: In function `early_init_dt_check_for_initrd':
/home/florian/dev/kernel/x86/linux-2.6-x86/drivers/of/fdt.c:571:
undefined reference to `early_init_dt_setup_initrd_arch'
make: *** [.tmp_vmlinux1] Error 1
which happens as soon as we enable initrd support on a x86 devicetree
platform such as Intel CE4100.
Signed-off-by: Florian Fainelli <ffainelli@freebox.fr>
Acked-by: Grant Likely <grant.likely@secretlab.ca>
Cc: Maxime Bizon <mbizon@freebox.fr>
Acked-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: stable@kernel.org # 2.6.39
Link: http://lkml.kernel.org/r/201106061015.50039.ffainelli@freebox.fr
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We only need to set max_pfn_mapped to the last pfn mapped on x86_64 to
make sure that cleanup_highmap doesn't remove important mappings at
_end.
We don't need to do this on x86_32 because cleanup_highmap is not called
on x86_32. Besides lowering max_pfn_mapped on x86_32 has the unwanted
side effect of limiting the amount of memory available for the 1:1
kernel pagetable allocation.
This patch reverts the x86_32 part of the original patch.
CC: stable@kernel.org
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
* 'stable/bug.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
xen: off by one errors in multicalls.c
xen: use the trigger info we already have to choose the irq handler
After a newly plugged CPU sets the cpu_online bit it enables
interrupts and goes idle. The cpu which brought up the new cpu waits
for the cpu_online bit and when it observes it, it sets the cpu_active
bit for this cpu. The cpu_active bit is the relevant one for the
scheduler to consider the cpu as a viable target.
With forced threaded interrupt handlers which imply forced threaded
softirqs we observed the following race:
cpu 0 cpu 1
bringup(cpu1);
set_cpu_online(smp_processor_id(), true);
local_irq_enable();
while (!cpu_online(cpu1));
timer_interrupt()
-> wake_up(softirq_thread_cpu1);
-> enqueue_on(softirq_thread_cpu1, cpu0);
^^^^
cpu_notify(CPU_ONLINE, cpu1);
-> sched_cpu_active(cpu1)
-> set_cpu_active((cpu1, true);
When an interrupt happens before the cpu_active bit is set by the cpu
which brought up the newly onlined cpu, then the scheduler refuses to
enqueue the woken thread which is bound to that newly onlined cpu on
that newly onlined cpu due to the not yet set cpu_active bit and
selects a fallback runqueue. Not really an expected and desirable
behaviour.
So far this has only been observed with forced hard/softirq threading,
but in theory this could happen without forced threaded hard/softirqs
as well. It's probably unobservable as it would take a massive
interrupt storm on the newly onlined cpu which causes the softirq loop
to wake up the softirq thread and an even longer delay of the cpu
which waits for the cpu_online bit.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@kernel.org # 2.6.39
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86/amd-iommu: Fix boot crash with hidden PCI devices
x86/amd-iommu: Use only per-device dma_ops
x86/amd-iommu: Fix 3 possible endless loops
* 'kvm-updates/3.0' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: Initialize kvm before registering the mmu notifier
KVM: x86: use proper port value when checking io instruction permission
KVM: add missing void __user * cast to access_ok() call
Some PCIe cards ship with a PCI-PCIe bridge which is not
visible as a PCI device in Linux. But the device-id of the
bridge is present in the IOMMU tables which causes a boot
crash in the IOMMU driver.
This patch fixes by removing these cards from the IOMMU
handling. This is a pure -stable fix, a real fix to handle
this situation appriatly will follow for the next merge
window.
Cc: stable@kernel.org # > 2.6.32
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Unfortunatly there are systems where the AMD IOMMU does not
cover all devices. This breaks with the current driver as it
initializes the global dma_ops variable. This patch limits
the AMD IOMMU to the devices listed in the IVRS table fixing
DMA for devices not covered by the IOMMU.
Cc: stable@kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
The driver contains several loops counting on an u16 value
where the exit-condition is checked against variables that
can have values up to 0xffff. In this case the loops will
never exit. This patch fixed 3 such loops.
Cc: stable@kernel.org
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Commit f6511935f4 moved the permission check for io instructions
to the ->check_perm callback. It failed to copy the port value from RDX
register for string and "in,out ax,dx" instructions.
Fix it by reading RDX register at decode stage when appropriate.
Fixes FC8.32 installation.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
b->args[] has MC_ARGS elements, so the comparison here should be
">=" instead of ">". Otherwise we read past the end of the array
one space.
CC: stable@kernel.org
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
The flags field of struct resource from linux/ioport.h is "unsigned
long". Change the "type" parameter of coalesce_windows() function to
match that field. This fixes the following warning messages when
compiling with "make C=1 W=1 bzImage modules":
arch/x86/pci/acpi.c: In function ‘coalesce_windows’:
arch/x86/pci/acpi.c:198: warning: conversion to ‘long unsigned int’ from ‘int’ may change the sign of the result
arch/x86/pci/acpi.c:203: warning: conversion to ‘long unsigned int’ from ‘int’ may change the sign of the result
Signed-off-by: Márton Németh <nm127@freemail.hu>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus:
virtio_net: delay TX callbacks
virtio: add api for delayed callbacks
virtio_test: support event index
vhost: support event index
virtio_ring: support event idx feature
virtio ring: inline function to check for events
virtio: event index interface
virtio: add full three-clause BSD text to headers.
virtio balloon: kill tell-host-first logic
virtio console: don't manually set or finalize VIRTIO_CONSOLE_F_MULTIPORT.
drivers, block: virtio_blk: Replace cryptic number with the macro
virtio_blk: allow re-reading config space at runtime
lguest: remove support for VIRTIO_F_NOTIFY_ON_EMPTY.
lguest: fix up compilation after move
lguest: fix timer interrupt setup
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Fix mwait_play_dead() faulting on mwait-incapable cpus
x86 idle: Fix mwait deprecation warning message
Evil merge to remove extra quote noticed by Joe Perches
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Put back -pg to tsc.o and add no GCOV to vread_tsc_64.o
A logic error in mwait_play_dead() causes the kernel to use
mwait even on cpus which don't support it, such as KVM virtual
cpus.
Introduced by:
349c004e3d: x86: A fast way to check capabilities of the current cpu
Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=36222
Reported-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1306758237-9327-1-git-send-email-avi@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Without an IRQ chip set, we now get a WARN_ON and no timer interrupt. This
prevents booting.
Fortunately, the fix is a one-liner: set up the timer IRQ like everything
else.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: stable@kernel.org # .39.x
* 'idle-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-idle-2.6:
x86 idle: deprecate mwait_idle() and "idle=mwait" cmdline param
x86 idle: deprecate "no-hlt" cmdline param
x86 idle APM: deprecate CONFIG_APM_CPU_IDLE
x86 idle floppy: deprecate disable_hlt()
x86 idle: EXPORT_SYMBOL(default_idle, pm_idle) only when APM demands it
x86 idle: clarify AMD erratum 400 workaround
idle governor: Avoid lock acquisition to read pm_qos before entering idle
cpuidle: menu: fixed wrapping timers at 4.294 seconds
mwait_idle() is a C1-only idle loop intended to be more efficient
than HLT on SMP hardware that supports it.
But mwait_idle() has been replaced by the more general
mwait_idle_with_hints(), which handles both C1 and deeper C-states.
ACPI uses only mwait_idle_with_hints(), and never uses mwait_idle().
Deprecate mwait_idle() and the "idle=mwait" cmdline param
to simplify the x86 idle code.
After this change, kernels configured with
(!CONFIG_ACPI=n && !CONFIG_INTEL_IDLE=n) when run on hardware
that support MWAIT will simply use HLT. If MWAIT is desired
on those systems, cpuidle and the cpuidle drivers above
can be used.
cc: x86@kernel.org
cc: stable@kernel.org # .39.x
Signed-off-by: Len Brown <len.brown@intel.com>
We'd rather that modern machines not check if HLT works on
every entry into idle, for the benefit of machines that had
marginal electricals 15-years ago. If those machines are still running
the upstream kernel, they can use "idle=poll". The only difference
will be that they'll now invoke HLT in machine_hlt().
cc: x86@kernel.org # .39.x
Signed-off-by: Len Brown <len.brown@intel.com>
We don't want to export the pm_idle function pointer to modules.
Currently CONFIG_APM_CPU_IDLE w/ CONFIG_APM_MODULE forces us to.
CONFIG_APM_CPU_IDLE is of dubious value, it runs only on 32-bit
uniprocessor laptops that are over 10 years old. It calls into
the BIOS during idle, and is known to cause a number of machines
to fail.
Removing CONFIG_APM_CPU_IDLE and will allow us to stop exporting
pm_idle. Any systems that were calling into the APM BIOS
at run-time will simply use HLT instead.
cc: x86@kernel.org
cc: Jiri Kosina <jkosina@suse.cz>
cc: stable@kernel.org # .39.x
Signed-off-by: Len Brown <len.brown@intel.com>
In the long run, we don't want default_idle() or (pm_idle)() to
be exported outside of process.c. Start by not exporting them
to modules, unless the APM build demands it.
cc: x86@kernel.org
cc: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Len Brown <len.brown@intel.com>
The workaround for AMD erratum 400 uses the term "c1e" falsely suggesting:
1. Intel C1E is somehow involved
2. All AMD processors with C1E are involved
Use the string "amd_c1e" instead of simply "c1e" to clarify that
this workaround is specific to AMD's version of C1E.
Use the string "e400" to clarify that the workaround is specific
to AMD processors with Erratum 400.
This patch is text-substitution only, with no functional change.
cc: x86@kernel.org
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Len Brown <len.brown@intel.com>