The following commit which went into mainline through networking tree
3b13758f51 ("cgroups: Allow dynamically changing net_classid")
conflicts in net/core/netclassid_cgroup.c with the following pending
fix in cgroup/for-4.4-fixes.
1f7dd3e5a6 ("cgroup: fix handling of multi-destination migration from subtree_control enabling")
The former separates out update_classid() from cgrp_attach() and
updates it to walk all fds of all tasks in the target css so that it
can be used from both migration and config change paths. The latter
drops @css from cgrp_attach().
Resolve the conflict by making cgrp_attach() call update_classid()
with the css from the first task. We can revive @tset walking in
cgrp_attach() but given that net_cls is v1 only where there always is
only one target css during migration, this is fine.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Nina Schiff <ninasc@fb.com>
When a file on tmpfs has an ACL or a Default ACL, listxattr should include the
corresponding xattr name.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: linux-mm@kvack.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Use the VFS xattr handler infrastructure and get rid of similar code in
the filesystem. For implementing shmem_xattr_handler_set, we need a
version of simple_xattr_set which removes the attribute when value is
NULL. Use this to implement kernfs_iop_removexattr as well.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: linux-mm@kvack.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
max_possible_pfn will be used for tracking max possible
PFN for memory that isn't present in E820 table and
could be hotplugged later.
By default max_possible_pfn is initialized with max_pfn,
but later it could be updated with highest PFN of
hotpluggable memory ranges declared in ACPI SRAT table
if any present.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akataria@vmware.com
Cc: fujita.tomonori@lab.ntt.co.jp
Cc: konrad.wilk@oracle.com
Cc: pbonzini@redhat.com
Cc: revers@redhat.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1449234426-273049-2-git-send-email-imammedo@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Consider the following v2 hierarchy.
P0 (+memory) --- P1 (-memory) --- A
\- B
P0 has memory enabled in its subtree_control while P1 doesn't. If
both A and B contain processes, they would belong to the memory css of
P1. Now if memory is enabled on P1's subtree_control, memory csses
should be created on both A and B and A's processes should be moved to
the former and B's processes the latter. IOW, enabling controllers
can cause atomic migrations into different csses.
The core cgroup migration logic has been updated accordingly but the
controller migration methods haven't and still assume that all tasks
migrate to a single target css; furthermore, the methods were fed the
css in which subtree_control was updated which is the parent of the
target csses. pids controller depends on the migration methods to
move charges and this made the controller attribute charges to the
wrong csses often triggering the following warning by driving a
counter negative.
WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40()
Modules linked in:
CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29
...
ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000
ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00
ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8
Call Trace:
[<ffffffff81551ffc>] dump_stack+0x4e/0x82
[<ffffffff810de202>] warn_slowpath_common+0x82/0xc0
[<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20
[<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40
[<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0
[<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330
[<ffffffff81188e05>] cgroup_migrate+0xf5/0x190
[<ffffffff81189016>] cgroup_attach_task+0x176/0x200
[<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460
[<ffffffff81189684>] cgroup_procs_write+0x14/0x20
[<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0
[<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190
[<ffffffff81265f88>] __vfs_write+0x28/0xe0
[<ffffffff812666fc>] vfs_write+0xac/0x1a0
[<ffffffff81267019>] SyS_write+0x49/0xb0
[<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76
This patch fixes the bug by removing @css parameter from the three
migration methods, ->can_attach, ->cancel_attach() and ->attach() and
updating cgroup_taskset iteration helpers also return the destination
css in addition to the task being migrated. All controllers are
updated accordingly.
* Controllers which don't care whether there are one or multiple
target csses can be converted trivially. cpu, io, freezer, perf,
netclassid and netprio fall in this category.
* cpuset's current implementation assumes that there's single source
and destination and thus doesn't support v2 hierarchy already. The
only change made by this patchset is how that single destination css
is obtained.
* memory migration path already doesn't do anything on v2. How the
single destination css is obtained is updated and the prep stage of
mem_cgroup_can_attach() is reordered to accomodate the change.
* pids is the only controller which was affected by this bug. It now
correctly handles multi-destination migrations and no longer causes
counter underflow from incorrect accounting.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
There were still a number of references to my old Red Hat email
address in the kernel source. Remove these while keeping the
Red Hat copyright notices intact.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge slub bulk allocator updates from Andrew Morton:
"This missed the merge window because I was waiting for some repairs to
come in. Nothing actually uses the bulk allocator yet and the changes
to other code paths are pretty small. And the net guys are waiting
for this so they can start merging the client code"
More comments from Jesper Dangaard Brouer:
"The kmem_cache_alloc_bulk() call, in mm/slub.c, were included in
previous kernel. The present version contains a bug. Vladimir
Davydov noticed it contained a bug, when kernel is compiled with
CONFIG_MEMCG_KMEM (see commit 03ec0ed57f: "slub: fix kmem cgroup
bug in kmem_cache_alloc_bulk"). Plus the mem cgroup counterpart in
kmem_cache_free_bulk() were missing (see commit 033745189b "slub:
add missing kmem cgroup support to kmem_cache_free_bulk").
I don't consider the fix stable-material because there are no in-tree
users of the API.
But with known bugs (for memcg) I cannot start using the API in the
net-tree"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
slab/slub: adjust kmem_cache_alloc_bulk API
slub: add missing kmem cgroup support to kmem_cache_free_bulk
slub: fix kmem cgroup bug in kmem_cache_alloc_bulk
slub: optimize bulk slowpath free by detached freelist
slub: support for bulk free with SLUB freelists
Adjust kmem_cache_alloc_bulk API before we have any real users.
Adjust API to return type 'int' instead of previously type 'bool'. This
is done to allow future extension of the bulk alloc API.
A future extension could be to allow SLUB to stop at a page boundary, when
specified by a flag, and then return the number of objects.
The advantage of this approach, would make it easier to make bulk alloc
run without local IRQs disabled. With an approach of cmpxchg "stealing"
the entire c->freelist or page->freelist. To avoid overshooting we would
stop processing at a slab-page boundary. Else we always end up returning
some objects at the cost of another cmpxchg.
To keep compatible with future users of this API linking against an older
kernel when using the new flag, we need to return the number of allocated
objects with this API change.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Initial implementation missed support for kmem cgroup support in
kmem_cache_free_bulk() call, add this.
If CONFIG_MEMCG_KMEM is not enabled, the compiler should be smart enough
to not add any asm code.
Incoming bulk free objects can belong to different kmem cgroups, and
object free call can happen at a later point outside memcg context. Thus,
we need to keep the orig kmem_cache, to correctly verify if a memcg object
match against its "root_cache" (s->memcg_params.root_cache).
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The call slab_pre_alloc_hook() interacts with kmemgc and is not allowed to
be called several times inside the bulk alloc for loop, due to the call to
memcg_kmem_get_cache().
This would result in hitting the VM_BUG_ON in __memcg_kmem_get_cache.
As suggested by Vladimir Davydov, change slab_post_alloc_hook() to be able
to handle an array of objects.
A subtle detail is, loop iterator "i" in slab_post_alloc_hook() must have
same type (size_t) as size argument. This helps the compiler to easier
realize that it can remove the loop, when all debug statements inside loop
evaluates to nothing. Note, this is only an issue because the kernel is
compiled with GCC option: -fno-strict-overflow
In slab_alloc_node() the compiler inlines and optimizes the invocation of
slab_post_alloc_hook(s, flags, 1, &object) by removing the loop and access
object directly.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Reported-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make it possible to free a freelist with several objects by adjusting API
of slab_free() and __slab_free() to have head, tail and an objects counter
(cnt).
Tail being NULL indicate single object free of head object. This allow
compiler inline constant propagation in slab_free() and
slab_free_freelist_hook() to avoid adding any overhead in case of single
object free.
This allows a freelist with several objects (all within the same
slab-page) to be free'ed using a single locked cmpxchg_double in
__slab_free() and with an unlocked cmpxchg_double in slab_free().
Object debugging on the free path is also extended to handle these
freelists. When CONFIG_SLUB_DEBUG is enabled it will also detect if
objects don't belong to the same slab-page.
These changes are needed for the next patch to bulk free the detached
freelists it introduces and constructs.
Micro benchmarking showed no performance reduction due to this change,
when debugging is turned off (compiled with CONFIG_SLUB_DEBUG).
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc fixes from Andrew Morton:
"A bunch of fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
slub: mark the dangling ifdef #else of CONFIG_SLUB_DEBUG
slub: avoid irqoff/on in bulk allocation
slub: create new ___slab_alloc function that can be called with irqs disabled
mm: fix up sparse warning in gfpflags_allow_blocking
ocfs2: fix umask ignored issue
PM/OPP: add entry in MAINTAINERS
kernel/panic.c: turn off locks debug before releasing console lock
kernel/signal.c: unexport sigsuspend()
kasan: fix kmemleak false-positive in kasan_module_alloc()
fat: fix fake_offset handling on error path
mm/hugetlbfs: fix bugs in fallocate hole punch of areas with holes
mm/page-writeback.c: initialize m_dirty to avoid compile warning
various: fix pci_set_dma_mask return value checking
mm: loosen MADV_NOHUGEPAGE to enable Qemu postcopy on s390
mm: vmalloc: don't remove inexistent guard hole in remove_vm_area()
tools/vm/page-types.c: support KPF_IDLE
ncpfs: don't allow negative timeouts
configfs: allow dynamic group creation
MAINTAINERS: add Moritz as reviewer for FPGA Manager Framework
slab.h: sprinkle __assume_aligned attributes
The #ifdef of CONFIG_SLUB_DEBUG is located very far from the associated
#else. For readability mark it with a comment.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Duyck <alexander.h.duyck@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the new function that can do allocation while interrupts are disabled.
Avoids irq on/off sequences.
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Duyck <alexander.h.duyck@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bulk alloc needs a function like that because it enables interrupts before
calling __slab_alloc which promptly disables them again using the expensive
local_irq_save().
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Duyck <alexander.h.duyck@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmemleak reports the following leak:
unreferenced object 0xfffffbfff41ea000 (size 20480):
comm "modprobe", pid 65199, jiffies 4298875551 (age 542.568s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff82354f5e>] kmemleak_alloc+0x4e/0xc0
[<ffffffff8152e718>] __vmalloc_node_range+0x4b8/0x740
[<ffffffff81574072>] kasan_module_alloc+0x72/0xc0
[<ffffffff810efe68>] module_alloc+0x78/0xb0
[<ffffffff812f6a24>] module_alloc_update_bounds+0x14/0x70
[<ffffffff812f8184>] layout_and_allocate+0x16f4/0x3c90
[<ffffffff812faa1f>] load_module+0x2ff/0x6690
[<ffffffff813010b6>] SyS_finit_module+0x136/0x170
[<ffffffff8239bbc9>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
kasan_module_alloc() allocates shadow memory for module and frees it on
module unloading. It doesn't store the pointer to allocated shadow memory
because it could be calculated from the shadowed address, i.e.
kasan_mem_to_shadow(addr).
Since kmemleak cannot find pointer to allocated shadow, it thinks that
memory leaked.
Use kmemleak_ignore() to tell kmemleak that this is not a leak and shadow
memory doesn't contain any pointers.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When building kernel with gcc 5.2, the below warning is raised:
mm/page-writeback.c: In function 'balance_dirty_pages.isra.10':
mm/page-writeback.c:1545:17: warning: 'm_dirty' may be used uninitialized in this function [-Wmaybe-uninitialized]
unsigned long m_dirty, m_thresh, m_bg_thresh;
The m_dirty{thresh, bg_thresh} are initialized in the block of "if
(mdtc)", so if mdts is null, they won't be initialized before being used.
Initialize m_dirty to zero, also initialize m_thresh and m_bg_thresh to
keep consistency.
They are used later by if condition: !mdtc || m_dirty <=
dirty_freerun_ceiling(m_thresh, m_bg_thresh)
If mdtc is null, dirty_freerun_ceiling will not be called at all, so the
initialization will not change any behavior other than just ceasing the
compile warning.
(akpm: the patch actually reduces .text size by ~20 bytes on gcc-4.x.y)
[akpm@linux-foundation.org: add comment]
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MADV_NOHUGEPAGE processing is too restrictive. kvm already disables
hugepage but hugepage_madvise() takes the error path when we ask to turn
on the MADV_NOHUGEPAGE bit and the bit is already on. This causes Qemu's
new postcopy migration feature to fail on s390 because its first action is
to madvise the guest address space as NOHUGEPAGE. This patch modifies the
code so that the operation succeeds without error now.
For consistency reasons do the same for MADV_HUGEPAGE.
Signed-off-by: Jason J. Herne <jjherne@linux.vnet.ibm.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 71394fe501 ("mm: vmalloc: add flag preventing guard hole
allocation") missed a spot. Currently remove_vm_area() decreases vm->size
to "remove" the guard hole page, even when it isn't present. All but one
users just free the vm_struct rigth away and never access vm->size anyway.
Don't touch the size in remove_vm_area() and have __vunmap() use the
proper get_vm_area_size() helper.
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
DAX handling of COW faults has wrong locking sequence:
dax_fault does i_mmap_lock_read
do_cow_fault does i_mmap_unlock_write
Ross's commit[1] missed a fix[2] that Kirill added to Matthew's
commit[3].
Original COW locking logic was introduced by Matthew here[4].
This should be applied to v4.3 as well.
[1] 0f90cc6609 mm, dax: fix DAX deadlocks
[2] 52a2b53ffd mm, dax: use i_mmap_unlock_write() in do_cow_fault()
[3] 843172978b dax: fix race between simultaneous faults
[4] 2e4cdab058 mm: allow page fault handlers to perform the COW
Cc: <stable@vger.kernel.org>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Acked-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Yigal Korman <yigal@plexistor.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Merge final patch-bomb from Andrew Morton:
"Various leftovers, mainly Christoph's pci_dma_supported() removals"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
pci: remove pci_dma_supported
usbnet: remove ifdefed out call to dma_supported
kaweth: remove ifdefed out call to dma_supported
sfc: don't call dma_supported
nouveau: don't call pci_dma_supported
netup_unidvb: use pci_set_dma_mask insted of pci_dma_supported
cx23885: use pci_set_dma_mask insted of pci_dma_supported
cx25821: use pci_set_dma_mask insted of pci_dma_supported
cx88: use pci_set_dma_mask insted of pci_dma_supported
saa7134: use pci_set_dma_mask insted of pci_dma_supported
saa7164: use pci_set_dma_mask insted of pci_dma_supported
tw68-core: use pci_set_dma_mask insted of pci_dma_supported
pcnet32: use pci_set_dma_mask insted of pci_dma_supported
lib/string.c: add ULL suffix to the constant definition
hugetlb: trivial comment fix
selftests/mlock2: add ULL suffix to 64-bit constants
selftests/mlock2: add missing #define _GNU_SOURCE
In commit a1c34a3bf0 ("mm: Don't offset memmap for flatmem") Laura
fixed a problem for Srinivas relating to the bottom 2MB of RAM on an ARM
IFC6410 board.
One small wrinkle on ia64 is that it allocates the node_mem_map earlier
in arch code, so it skips the block of code where "offset" is
initialized.
Move initialization of start and offset before the check for the
node_mem_map so that they will always be available in the latter part of
the function.
Tested-by: Laura Abbott <laura@labbott.name>
Fixes: a1c34a3bf0 (mm: Don't offset memmap for flatmem)
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge second patch-bomb from Andrew Morton:
- most of the rest of MM
- procfs
- lib/ updates
- printk updates
- bitops infrastructure tweaks
- checkpatch updates
- nilfs2 update
- signals
- various other misc bits: coredump, seqfile, kexec, pidns, zlib, ipc,
dma-debug, dma-mapping, ...
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (102 commits)
ipc,msg: drop dst nil validation in copy_msg
include/linux/zutil.h: fix usage example of zlib_adler32()
panic: release stale console lock to always get the logbuf printed out
dma-debug: check nents in dma_sync_sg*
dma-mapping: tidy up dma_parms default handling
pidns: fix set/getpriority and ioprio_set/get in PRIO_USER mode
kexec: use file name as the output message prefix
fs, seqfile: always allow oom killer
seq_file: reuse string_escape_str()
fs/seq_file: use seq_* helpers in seq_hex_dump()
coredump: change zap_threads() and zap_process() to use for_each_thread()
coredump: ensure all coredumping tasks have SIGNAL_GROUP_COREDUMP
signal: remove jffs2_garbage_collect_thread()->allow_signal(SIGCONT)
signal: introduce kernel_signal_stop() to fix jffs2_garbage_collect_thread()
signal: turn dequeue_signal_lock() into kernel_dequeue_signal()
signals: kill block_all_signals() and unblock_all_signals()
nilfs2: fix gcc uninitialized-variable warnings in powerpc build
nilfs2: fix gcc unused-but-set-variable warnings
MAINTAINERS: nilfs2: add header file for tracing
nilfs2: add tracepoints for analyzing reading and writing metadata files
...
Pull trivial updates from Jiri Kosina:
"Trivial stuff from trivial tree that can be trivially summed up as:
- treewide drop of spurious unlikely() before IS_ERR() from Viresh
Kumar
- cosmetic fixes (that don't really affect basic functionality of the
driver) for pktcdvd and bcache, from Julia Lawall and Petr Mladek
- various comment / printk fixes and updates all over the place"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
bcache: Really show state of work pending bit
hwmon: applesmc: fix comment typos
Kconfig: remove comment about scsi_wait_scan module
class_find_device: fix reference to argument "match"
debugfs: document that debugfs_remove*() accepts NULL and error values
net: Drop unlikely before IS_ERR(_OR_NULL)
mm: Drop unlikely before IS_ERR(_OR_NULL)
fs: Drop unlikely before IS_ERR(_OR_NULL)
drivers: net: Drop unlikely before IS_ERR(_OR_NULL)
drivers: misc: Drop unlikely before IS_ERR(_OR_NULL)
UBI: Update comments to reflect UBI_METAONLY flag
pktcdvd: drop null test before destroy functions
Let's try to be consistent about data type of page order.
[sfr@canb.auug.org.au: fix build (type of pageblock_order)]
[hughd@google.com: some configs end up with MAX_ORDER and pageblock_order having different types]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh has pointed that compound_head() call can be unsafe in some
context. There's one example:
CPU0 CPU1
isolate_migratepages_block()
page_count()
compound_head()
!!PageTail() == true
put_page()
tail->first_page = NULL
head = tail->first_page
alloc_pages(__GFP_COMP)
prep_compound_page()
tail->first_page = head
__SetPageTail(p);
!!PageTail() == true
<head == NULL dereferencing>
The race is pure theoretical. I don't it's possible to trigger it in
practice. But who knows.
We can fix the race by changing how encode PageTail() and compound_head()
within struct page to be able to update them in one shot.
The patch introduces page->compound_head into third double word block in
front of compound_dtor and compound_order. Bit 0 encodes PageTail() and
the rest bits are pointer to head page if bit zero is set.
The patch moves page->pmd_huge_pte out of word, just in case if an
architecture defines pgtable_t into something what can have the bit 0
set.
hugetlb_cgroup uses page->lru.next in the second tail page to store
pointer struct hugetlb_cgroup. The patch switch it to use page->private
in the second tail page instead. The space is free since ->first_page is
removed from the union.
The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER
limitation, since there's now space in first tail page to store struct
hugetlb_cgroup pointer. But that's out of scope of the patch.
That means page->compound_head shares storage space with:
- page->lru.next;
- page->next;
- page->rcu_head.next;
That's too long list to be absolutely sure, but looks like nobody uses
bit 0 of the word.
page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use
call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future
call_rcu_lazy() is not allowed as it makes use of the bit and we can
get false positive PageTail().
[1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patch halves space occupied by compound_dtor and compound_order in
struct page.
For compound_order, it's trivial long -> short conversion.
For get_compound_page_dtor(), we now use hardcoded table for destructor
lookup and store its index in the struct page instead of direct pointer
to destructor. It shouldn't be a big trouble to maintain the table: we
have only two destructor and NULL currently.
This patch free up one word in tail pages for reuse. This is preparation
for the next patch.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We are going to rework how compound_head() work. It will not use
page->first_page as we have it now.
The only other user of page->first_page beyond compound pages is
zsmalloc.
Let's use page->private instead of page->first_page here. It occupies
the same storage space.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each `struct size_class' contains `struct zs_size_stat': an array of
NR_ZS_STAT_TYPE `unsigned long'. For zsmalloc built with no
CONFIG_ZSMALLOC_STAT this results in a waste of `2 * sizeof(unsigned
long)' per-class.
The patch removes unneeded `struct zs_size_stat' members by redefining
NR_ZS_STAT_TYPE (max stat idx in array).
Since both NR_ZS_STAT_TYPE and zs_stat_type are compile time constants,
GCC can eliminate zs_stat_inc()/zs_stat_dec() calls that use zs_stat_type
larger than NR_ZS_STAT_TYPE: CLASS_ALMOST_EMPTY and CLASS_ALMOST_FULL at
the moment.
./scripts/bloat-o-meter mm/zsmalloc.o.old mm/zsmalloc.o.new
add/remove: 0/0 grow/shrink: 0/3 up/down: 0/-39 (-39)
function old new delta
fix_fullness_group 97 94 -3
insert_zspage 100 86 -14
remove_zspage 141 119 -22
To summarize:
a) each class now uses less memory
b) we avoid a number of dec/inc stats (a minor optimization,
but still).
The gain will increase once we introduce additional stats.
A simple IO test.
iozone -t 4 -R -r 32K -s 60M -I +Z
patched base
" Initial write " 4145599.06 4127509.75
" Rewrite " 4146225.94 4223618.50
" Read " 17157606.00 17211329.50
" Re-read " 17380428.00 17267650.50
" Reverse Read " 16742768.00 16162732.75
" Stride read " 16586245.75 16073934.25
" Random read " 16349587.50 15799401.75
" Mixed workload " 10344230.62 9775551.50
" Random write " 4277700.62 4260019.69
" Pwrite " 4302049.12 4313703.88
" Pread " 6164463.16 6126536.72
" Fwrite " 7131195.00 6952586.00
" Fread " 12682602.25 12619207.50
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't let user to disable shrinker in zsmalloc (once it's been
enabled), so no need to check ->shrinker_enabled in zs_shrinker_count(),
at the moment at least.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A cosmetic change.
Commit c60369f011 ("staging: zsmalloc: prevent mappping in interrupt
context") added in_interrupt() check to zs_map_object() and 'hardirq.h'
include; but in_interrupt() macro is defined in 'preempt.h' not in
'hardirq.h', so include it instead.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In obj_malloc():
if (!class->huge)
/* record handle in the header of allocated chunk */
link->handle = handle;
else
/* record handle in first_page->private */
set_page_private(first_page, handle);
In the hugepage we save handle to private directly.
But in obj_to_head():
if (class->huge) {
VM_BUG_ON(!is_first_page(page));
return *(unsigned long *)page_private(page);
} else
return *(unsigned long *)obj;
It is used as a pointer.
The reason why there is no problem until now is huge-class page is born
with ZS_FULL so it can't be migrated. However, we need this patch for
future work: "VM-aware zsmalloced page migration" to reduce external
fragmentation.
Signed-off-by: Hui Zhu <zhuhui@xiaomi.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make the return type of zpool_get_type const; the string belongs to the
zpool driver and should not be modified. Remove the redundant type field
in the struct zpool; it is private to zpool.c and isn't needed since
->driver->type can be used directly. Add comments indicating strings must
be null-terminated.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of using a fixed-length string for the zswap params, use charp.
This simplifies the code and uses less memory, as most zswap param strings
will be less than the current maximum length.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Seth Jennings <sjennings@variantweb.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On the next line entry variable will be re-initialized so no need to init
it with NULL.
Signed-off-by: Alexey Klimov <alexey.klimov@linaro.org>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "vma" parameter to khugepaged_alloc_page() is unused. It has to
remain unused or the drop read lock 'map_sem' optimisation introduce by
commit 8b1645685a ("mm, THP: don't hold mmap_sem in khugepaged when
allocating THP") wouldn't be safe. So let's remove it.
Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are many places which use mapping_gfp_mask to restrict a more
generic gfp mask which would be used for allocations which are not
directly related to the page cache but they are performed in the same
context.
Let's introduce a helper function which makes the restriction explicit and
easier to track. This patch doesn't introduce any functional changes.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrew stated the following
We have quite a history of remote parts of the kernel using
weird/wrong/inexplicable combinations of __GFP_ flags. I tend
to think that this is because we didn't adequately explain the
interface.
And I don't think that gfp.h really improved much in this area as
a result of this patchset. Could you go through it some time and
decide if we've adequately documented all this stuff?
This patches first moves some GFP flag combinations that are part of the MM
internals to mm/internal.h. The rest of the patch documents the __GFP_FOO
bits under various headings and then documents the flag combinations. It
will not help callers that are brain damaged but the clarity might motivate
some fixes and avoid future mistakes.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The primary purpose of watermarks is to ensure that reclaim can always
make forward progress in PF_MEMALLOC context (kswapd and direct reclaim).
These assume that order-0 allocations are all that is necessary for
forward progress.
High-order watermarks serve a different purpose. Kswapd had no high-order
awareness before they were introduced
(https://lkml.kernel.org/r/413AA7B2.4000907@yahoo.com.au). This was
particularly important when there were high-order atomic requests. The
watermarks both gave kswapd awareness and made a reserve for those atomic
requests.
There are two important side-effects of this. The most important is that
a non-atomic high-order request can fail even though free pages are
available and the order-0 watermarks are ok. The second is that
high-order watermark checks are expensive as the free list counts up to
the requested order must be examined.
With the introduction of MIGRATE_HIGHATOMIC it is no longer necessary to
have high-order watermarks. Kswapd and compaction still need high-order
awareness which is handled by checking that at least one suitable
high-order page is free.
With the patch applied, there was little difference in the allocation
failure rates as the atomic reserves are small relative to the number of
allocation attempts. The expected impact is that there will never be an
allocation failure report that shows suitable pages on the free lists.
The one potential side-effect of this is that in a vanilla kernel, the
watermark checks may have kept a free page for an atomic allocation. Now,
we are 100% relying on the HighAtomic reserves and an early allocation to
have allocated them. If the first high-order atomic allocation is after
the system is already heavily fragmented then it'll fail.
[akpm@linux-foundation.org: simplify __zone_watermark_ok(), per Vlastimil]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
High-order watermark checking exists for two reasons -- kswapd high-order
awareness and protection for high-order atomic requests. Historically the
kernel depended on MIGRATE_RESERVE to preserve min_free_kbytes as
high-order free pages for as long as possible. This patch introduces
MIGRATE_HIGHATOMIC that reserves pageblocks for high-order atomic
allocations on demand and avoids using those blocks for order-0
allocations. This is more flexible and reliable than MIGRATE_RESERVE was.
A MIGRATE_HIGHORDER pageblock is created when an atomic high-order
allocation request steals a pageblock but limits the total number to 1% of
the zone. Callers that speculatively abuse atomic allocations for
long-lived high-order allocations to access the reserve will quickly fail.
Note that SLUB is currently not such an abuser as it reclaims at least
once. It is possible that the pageblock stolen has few suitable
high-order pages and will need to steal again in the near future but there
would need to be strong justification to search all pageblocks for an
ideal candidate.
The pageblocks are unreserved if an allocation fails after a direct
reclaim attempt.
The watermark checks account for the reserved pageblocks when the
allocation request is not a high-order atomic allocation.
The reserved pageblocks can not be used for order-0 allocations. This may
allow temporary wastage until a failed reclaim reassigns the pageblock.
This is deliberate as the intent of the reservation is to satisfy a
limited number of atomic high-order short-lived requests if the system
requires them.
The stutter benchmark was used to evaluate this but while it was running
there was a systemtap script that randomly allocated between 1 high-order
page and 12.5% of memory's worth of order-3 pages using GFP_ATOMIC. This
is much larger than the potential reserve and it does not attempt to be
realistic. It is intended to stress random high-order allocations from an
unknown source, show that there is a reduction in failures without
introducing an anomaly where atomic allocations are more reliable than
regular allocations. The amount of memory reserved varied throughout the
workload as reserves were created and reclaimed under memory pressure.
The allocation failures once the workload warmed up were as follows;
4.2-rc5-vanilla 70%
4.2-rc5-atomic-reserve 56%
The failure rate was also measured while building multiple kernels. The
failure rate was 14% but is 6% with this patch applied.
Overall, this is a small reduction but the reserves are small relative to
the number of allocation requests. In early versions of the patch, the
failure rate reduced by a much larger amount but that required much larger
reserves and perversely made atomic allocations seem more reliable than
regular allocations.
[yalin.wang2010@gmail.com: fix redundant check and a memory leak]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: yalin wang <yalin.wang2010@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MIGRATE_RESERVE preserves an old property of the buddy allocator that
existed prior to fragmentation avoidance -- min_free_kbytes worth of pages
tended to remain contiguous until the only alternative was to fail the
allocation. At the time it was discovered that high-order atomic
allocations relied on this property so MIGRATE_RESERVE was introduced. A
later patch will introduce an alternative MIGRATE_HIGHATOMIC so this patch
deletes MIGRATE_RESERVE and supporting code so it'll be easier to review.
Note that this patch in isolation may look like a false regression if
someone was bisecting high-order atomic allocation failures.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The zonelist cache (zlc) was introduced to skip over zones that were
recently known to be full. This avoided expensive operations such as the
cpuset checks, watermark calculations and zone_reclaim. The situation
today is different and the complexity of zlc is harder to justify.
1) The cpuset checks are no-ops unless a cpuset is active and in general
are a lot cheaper.
2) zone_reclaim is now disabled by default and I suspect that was a large
source of the cost that zlc wanted to avoid. When it is enabled, it's
known to be a major source of stalling when nodes fill up and it's
unwise to hit every other user with the overhead.
3) Watermark checks are expensive to calculate for high-order
allocation requests. Later patches in this series will reduce the cost
of the watermark checking.
4) The most important issue is that in the current implementation it
is possible for a failed THP allocation to mark a zone full for order-0
allocations and cause a fallback to remote nodes.
The last issue could be addressed with additional complexity but as the
benefit of zlc is questionable, it is better to remove it. If stalls due
to zone_reclaim are ever reported then an alternative would be to
introduce deferring logic based on a timeout inside zone_reclaim itself
and leave the page allocator fast paths alone.
The impact on page-allocator microbenchmarks is negligible as they don't
hit the paths where the zlc comes into play. Most page-reclaim related
workloads showed no noticeable difference as a result of the removal.
The impact was noticeable in a workload called "stutter". One part uses a
lot of anonymous memory, a second measures mmap latency and a third copies
a large file. In an ideal world the latency application would not notice
the mmap latency. On a 2-node machine the results of this patch are
stutter
4.3.0-rc1 4.3.0-rc1
baseline nozlc-v4
Min mmap 20.9243 ( 0.00%) 20.7716 ( 0.73%)
1st-qrtle mmap 22.0612 ( 0.00%) 22.0680 ( -0.03%)
2nd-qrtle mmap 22.3291 ( 0.00%) 22.3809 ( -0.23%)
3rd-qrtle mmap 25.2244 ( 0.00%) 25.2396 ( -0.06%)
Max-90% mmap 48.0995 ( 0.00%) 28.3713 ( 41.02%)
Max-93% mmap 52.5557 ( 0.00%) 36.0170 ( 31.47%)
Max-95% mmap 55.8173 ( 0.00%) 47.3163 ( 15.23%)
Max-99% mmap 67.3781 ( 0.00%) 70.1140 ( -4.06%)
Max mmap 24447.6375 ( 0.00%) 12915.1356 ( 47.17%)
Mean mmap 33.7883 ( 0.00%) 27.7944 ( 17.74%)
Best99%Mean mmap 27.7825 ( 0.00%) 25.2767 ( 9.02%)
Best95%Mean mmap 26.3912 ( 0.00%) 23.7994 ( 9.82%)
Best90%Mean mmap 24.9886 ( 0.00%) 23.2251 ( 7.06%)
Best50%Mean mmap 22.0157 ( 0.00%) 22.0261 ( -0.05%)
Best10%Mean mmap 21.6705 ( 0.00%) 21.6083 ( 0.29%)
Best5%Mean mmap 21.5581 ( 0.00%) 21.4611 ( 0.45%)
Best1%Mean mmap 21.3079 ( 0.00%) 21.1631 ( 0.68%)
Note that the maximum stall latency went from 24 seconds to 12 which is
still bad but an improvement. The milage varies considerably 2-node
machine on an earlier test went from 494 seconds to 47 seconds and a
4-node machine that tested an earlier version of this patch went from a
worst case stall time of 6 seconds to 67ms. The nature of the benchmark
is inherently unpredictable as it is hammering the system and the milage
will vary between machines.
There is a secondary impact with potentially more direct reclaim because
zones are now being considered instead of being skipped by zlc. In this
particular test run it did not occur so will not be described. However,
in at least one test the following was observed
1. Direct reclaim rates were higher. This was likely due to direct reclaim
being entered instead of the zlc disabling a zone and busy looping.
Busy looping may have the effect of allowing kswapd to make more
progress and in some cases may be better overall. If this is found then
the correct action is to put direct reclaimers to sleep on a waitqueue
and allow kswapd make forward progress. Busy looping on the zlc is even
worse than when the allocator used to blindly call congestion_wait().
2. There was higher swap activity as direct reclaim was active.
3. Direct reclaim efficiency was lower. This is related to 1 as more
scanning activity also encountered more pages that could not be
immediately reclaimed
In that case, the direct page scan and reclaim rates are noticeable but
it is not considered a problem for a few reasons
1. The test is primarily concerned with latency. The mmap attempts are also
faulted which means there are THP allocation requests. The ZLC could
cause zones to be disabled causing the process to busy loop instead
of reclaiming. This looks like elevated direct reclaim activity but
it's the correct action to take based on what processes requested.
2. The test hammers reclaim and compaction heavily. The number of successful
THP faults is highly variable but affects the reclaim stats. It's not a
realistic or reasonable measure of page reclaim activity.
3. No other page-reclaim intensive workload that was tested showed a problem.
4. If a workload is identified that benefitted from the busy looping then it
should be fixed by having direct reclaimers sleep on a wait queue until
woken by kswapd instead of busy looping. We had this class of problem before
when congestion_waits() with a fixed timeout was a brain damaged decision
but happened to benefit some workloads.
If a workload is identified that relied on the zlc to busy loop then it
should be fixed correctly and have a direct reclaimer sleep on a waitqueue
until woken by kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_WAIT was used to signal that the caller was in atomic context and
could not sleep. Now it is possible to distinguish between true atomic
context and callers that are not willing to sleep. The latter should
clear __GFP_DIRECT_RECLAIM so kswapd will still wake. As clearing
__GFP_WAIT behaves differently, there is a risk that people will clear the
wrong flags. This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly
indicate what it does -- setting it allows all reclaim activity, clearing
them prevents it.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
File-backed pages that will be immediately written are balanced between
zones. This heuristic tries to avoid having a single zone filled with
recently dirtied pages but the checks are unnecessarily expensive. Move
consider_zone_balanced into the alloc_context instead of checking bitmaps
multiple times. The patch also gives the parameter a more meaningful
name.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Overall, the intent of this series is to remove the zonelist cache which
was introduced to avoid high overhead in the page allocator. Once this is
done, it is necessary to reduce the cost of watermark checks.
The series starts with minor micro-optimisations.
Next it notes that GFP flags that affect watermark checks are abused.
__GFP_WAIT historically identified callers that could not sleep and could
access reserves. This was later abused to identify callers that simply
prefer to avoid sleeping and have other options. A patch distinguishes
between atomic callers, high-priority callers and those that simply wish
to avoid sleep.
The zonelist cache has been around for a long time but it is of dubious
merit with a lot of complexity and some issues that are explained. The
most important issue is that a failed THP allocation can cause a zone to
be treated as "full". This potentially causes unnecessary stalls, reclaim
activity or remote fallbacks. The issues could be fixed but it's not
worth it. The series places a small number of other micro-optimisations
on top before examining GFP flags watermarks.
High-order watermarks enforcement can cause high-order allocations to fail
even though pages are free. The watermark checks both protect high-order
atomic allocations and make kswapd aware of high-order pages but there is
a much better way that can be handled using migrate types. This series
uses page grouping by mobility to reserve pageblocks for high-order
allocations with the size of the reservation depending on demand. kswapd
awareness is maintained by examining the free lists. By patch 12 in this
series, there are no high-order watermark checks while preserving the
properties that motivated the introduction of the watermark checks.
This patch (of 10):
No user of zone_watermark_ok_safe() specifies alloc_flags. This patch
removes the unnecessary parameter.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce is_sysrq_oom helper function indicating oom kill triggered
by sysrq to improve readability.
No functional changes.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge patch-bomb from Andrew Morton:
- inotify tweaks
- some ocfs2 updates (many more are awaiting review)
- various misc bits
- kernel/watchdog.c updates
- Some of mm. I have a huge number of MM patches this time and quite a
lot of it is quite difficult and much will be held over to next time.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
selftests: vm: add tests for lock on fault
mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
mm: introduce VM_LOCKONFAULT
mm: mlock: add new mlock system call
mm: mlock: refactor mlock, munlock, and munlockall code
kasan: always taint kernel on report
mm, slub, kasan: enable user tracking by default with KASAN=y
kasan: use IS_ALIGNED in memory_is_poisoned_8()
kasan: Fix a type conversion error
lib: test_kasan: add some testcases
kasan: update reference to kasan prototype repo
kasan: move KASAN_SANITIZE in arch/x86/boot/Makefile
kasan: various fixes in documentation
kasan: update log messages
kasan: accurately determine the type of the bad access
kasan: update reported bug types for kernel memory accesses
kasan: update reported bug types for not user nor kernel memory accesses
mm/kasan: prevent deadlock in kasan reporting
mm/kasan: don't use kasan shadow pointer in generic functions
mm/kasan: MODULE_VADDR is not available on all archs
...
The previous patch introduced a flag that specified pages in a VMA should
be placed on the unevictable LRU, but they should not be made present when
the area is created. This patch adds the ability to set this state via
the new mlock system calls.
We add MLOCK_ONFAULT for mlock2 and MCL_ONFAULT for mlockall.
MLOCK_ONFAULT will set the VM_LOCKONFAULT modifier for VM_LOCKED.
MCL_ONFAULT should be used as a modifier to the two other mlockall flags.
When used with MCL_CURRENT, all current mappings will be marked with
VM_LOCKED | VM_LOCKONFAULT. When used with MCL_FUTURE, the mm->def_flags
will be marked with VM_LOCKED | VM_LOCKONFAULT. When used with both
MCL_CURRENT and MCL_FUTURE, all current mappings and mm->def_flags will be
marked with VM_LOCKED | VM_LOCKONFAULT.
Prior to this patch, mlockall() will unconditionally clear the
mm->def_flags any time it is called without MCL_FUTURE. This behavior is
maintained after adding MCL_ONFAULT. If a call to mlockall(MCL_FUTURE) is
followed by mlockall(MCL_CURRENT), the mm->def_flags will be cleared and
new VMAs will be unlocked. This remains true with or without MCL_ONFAULT
in either mlockall() invocation.
munlock() will unconditionally clear both vma flags. munlockall()
unconditionally clears for VMA flags on all VMAs and in the mm->def_flags
field.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cost of faulting in all memory to be locked can be very high when
working with large mappings. If only portions of the mapping will be used
this can incur a high penalty for locking.
For the example of a large file, this is the usage pattern for a large
statical language model (probably applies to other statical or graphical
models as well). For the security example, any application transacting in
data that cannot be swapped out (credit card data, medical records, etc).
This patch introduces the ability to request that pages are not
pre-faulted, but are placed on the unevictable LRU when they are finally
faulted in. The VM_LOCKONFAULT flag will be used together with VM_LOCKED
and has no effect when set without VM_LOCKED. Setting the VM_LOCKONFAULT
flag for a VMA will cause pages faulted into that VMA to be added to the
unevictable LRU when they are faulted or if they are already present, but
will not cause any missing pages to be faulted in.
Exposing this new lock state means that we cannot overload the meaning of
the FOLL_POPULATE flag any longer. Prior to this patch it was used to
mean that the VMA for a fault was locked. This means we need the new
FOLL_MLOCK flag to communicate the locked state of a VMA. FOLL_POPULATE
will now only control if the VMA should be populated and in the case of
VM_LOCKONFAULT, it will not be set.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the refactored mlock code, introduce a new system call for mlock.
The new call will allow the user to specify what lock states are being
added. mlock2 is trivial at the moment, but a follow on patch will add a
new mlock state making it useful.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mlock() allows a user to control page out of program memory, but this
comes at the cost of faulting in the entire mapping when it is allocated.
For large mappings where the entire area is not necessary this is not
ideal. Instead of forcing all locked pages to be present when they are
allocated, this set creates a middle ground. Pages are marked to be
placed on the unevictable LRU (locked) when they are first used, but they
are not faulted in by the mlock call.
This series introduces a new mlock() system call that takes a flags
argument along with the start address and size. This flags argument gives
the caller the ability to request memory be locked in the traditional way,
or to be locked after the page is faulted in. A new MCL flag is added to
mirror the lock on fault behavior from mlock() in mlockall().
There are two main use cases that this set covers. The first is the
security focussed mlock case. A buffer is needed that cannot be written
to swap. The maximum size is known, but on average the memory used is
significantly less than this maximum. With lock on fault, the buffer is
guaranteed to never be paged out without consuming the maximum size every
time such a buffer is created.
The second use case is focussed on performance. Portions of a large file
are needed and we want to keep the used portions in memory once accessed.
This is the case for large graphical models where the path through the
graph is not known until run time. The entire graph is unlikely to be
used in a given invocation, but once a node has been used it needs to stay
resident for further processing. Given these constraints we have a number
of options. We can potentially waste a large amount of memory by mlocking
the entire region (this can also cause a significant stall at startup as
the entire file is read in). We can mlock every page as we access them
without tracking if the page is already resident but this introduces large
overhead for each access. The third option is mapping the entire region
with PROT_NONE and using a signal handler for SIGSEGV to
mprotect(PROT_READ) and mlock() the needed page. Doing this page at a
time adds a significant performance penalty. Batching can be used to
mitigate this overhead, but in order to safely avoid trying to mprotect
pages outside of the mapping, the boundaries of each mapping to be used in
this way must be tracked and available to the signal handler. This is
precisely what the mm system in the kernel should already be doing.
For mlock(MLOCK_ONFAULT) the user is charged against RLIMIT_MEMLOCK as if
mlock(MLOCK_LOCKED) or mmap(MAP_LOCKED) was used, so when the VMA is
created not when the pages are faulted in. For mlockall(MCL_ONFAULT) the
user is charged as if MCL_FUTURE was used. This decision was made to keep
the accounting checks out of the page fault path.
To illustrate the benefit of this set I wrote a test program that mmaps a
5 GB file filled with random data and then makes 15,000,000 accesses to
random addresses in that mapping. The test program was run 20 times for
each setup. Results are reported for two program portions, setup and
execution. The setup phase is calling mmap and optionally mlock on the
entire region. For most experiments this is trivial, but it highlights
the cost of faulting in the entire region. Results are averages across
the 20 runs in milliseconds.
mmap with mlock(MLOCK_LOCKED) on entire range:
Setup avg: 8228.666
Processing avg: 8274.257
mmap with mlock(MLOCK_LOCKED) before each access:
Setup avg: 0.113
Processing avg: 90993.552
mmap with PROT_NONE and signal handler and batch size of 1 page:
With the default value in max_map_count, this gets ENOMEM as I attempt
to change the permissions, after upping the sysctl significantly I get:
Setup avg: 0.058
Processing avg: 69488.073
mmap with PROT_NONE and signal handler and batch size of 8 pages:
Setup avg: 0.068
Processing avg: 38204.116
mmap with PROT_NONE and signal handler and batch size of 16 pages:
Setup avg: 0.044
Processing avg: 29671.180
mmap with mlock(MLOCK_ONFAULT) on entire range:
Setup avg: 0.189
Processing avg: 17904.899
The signal handler in the batch cases faulted in memory in two steps to
avoid having to know the start and end of the faulting mapping. The first
step covers the page that caused the fault as we know that it will be
possible to lock. The second step speculatively tries to mlock and
mprotect the batch size - 1 pages that follow. There may be a clever way
to avoid this without having the program track each mapping to be covered
by this handeler in a globally accessible structure, but I could not find
it. It should be noted that with a large enough batch size this two step
fault handler can still cause the program to crash if it reaches far
beyond the end of the mapping.
These results show that if the developer knows that a majority of the
mapping will be used, it is better to try and fault it in at once,
otherwise mlock(MLOCK_ONFAULT) is significantly faster.
The performance cost of these patches are minimal on the two benchmarks I
have tested (stream and kernbench). The following are the average values
across 20 runs of stream and 10 runs of kernbench after a warmup run whose
results were discarded.
Avg throughput in MB/s from stream using 1000000 element arrays
Test 4.2-rc1 4.2-rc1+lock-on-fault
Copy: 10,566.5 10,421
Scale: 10,685 10,503.5
Add: 12,044.1 11,814.2
Triad: 12,064.8 11,846.3
Kernbench optimal load
4.2-rc1 4.2-rc1+lock-on-fault
Elapsed Time 78.453 78.991
User Time 64.2395 65.2355
System Time 9.7335 9.7085
Context Switches 22211.5 22412.1
Sleeps 14965.3 14956.1
This patch (of 6):
Extending the mlock system call is very difficult because it currently
does not take a flags argument. A later patch in this set will extend
mlock to support a middle ground between pages that are locked and faulted
in immediately and unlocked pages. To pave the way for the new system
call, the code needs some reorganization so that all the actual entry
point handles is checking input and translating to VMA flags.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we already taint the kernel in some cases. E.g. if we hit some
bug in slub memory we call object_err() which will taint the kernel with
TAINT_BAD_PAGE flag. But for other kind of bugs kernel left untainted.
Always taint with TAINT_BAD_PAGE if kasan found some bug. This is useful
for automated testing.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's recommended to have slub's user tracking enabled with CONFIG_KASAN,
because:
a) User tracking disables slab merging which improves
detecting out-of-bounds accesses.
b) User tracking metadata acts as redzone which also improves
detecting out-of-bounds accesses.
c) User tracking provides additional information about object.
This information helps to understand bugs.
Currently it is not enabled by default. Besides recompiling the kernel
with KASAN and reinstalling it, user also have to change the boot cmdline,
which is not very handy.
Enable slub user tracking by default with KASAN=y, since there is no good
reason to not do this.
[akpm@linux-foundation.org: little fixes, per David]
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use IS_ALIGNED() to determine whether the shadow span two bytes. It
generates less code and more readable. Also add some comments in shadow
check functions.
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current KASAN code can not find the following out-of-bounds bugs:
char *ptr;
ptr = kmalloc(8, GFP_KERNEL);
memset(ptr+7, 0, 2);
the cause of the problem is the type conversion error in
*memory_is_poisoned_n* function. So this patch fix that.
Signed-off-by: Wang Long <long.wanglong@huawei.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the reference to the kasan prototype repository on github, since it
was renamed.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We decided to use KASAN as the short name of the tool and
KernelAddressSanitizer as the full one. Update log messages according to
that.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Makes KASAN accurately determine the type of the bad access. If the shadow
byte value is in the [0, KASAN_SHADOW_SCALE_SIZE) range we can look at
the next shadow byte to determine the type of the access.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the names of the bad access types to better reflect the type of
the access that happended and make these error types "literals" that can
be used for classification and deduplication in scripts.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each access with address lower than
kasan_shadow_to_mem(KASAN_SHADOW_START) is reported as user-memory-access.
This is not always true, the accessed address might not be in user space.
Fix this by reporting such accesses as null-ptr-derefs or
wild-memory-accesses.
There's another reason for this change. For userspace ASan we have a
bunch of systems that analyze error types for the purpose of
classification and deduplication. Sooner of later we will write them to
KASAN as well. Then clearly and explicitly stated error types will bring
value.
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we end up calling kasan_report in real mode, our shadow mapping for
the spinlock variable will show poisoned. This will result in us calling
kasan_report_error with lock_report spin lock held. To prevent this
disable kasan reporting when we are priting error w.r.t kasan.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can't use generic functions like print_hex_dump to access kasan shadow
region. This require us to setup another kasan shadow region for the
address passed (kasan shadow address). Some architectures won't be able
to do that. Hence make a copy of the shadow region row and pass that to
generic functions.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function only disable/enable reporting. In the later patch we will be
adding a kasan early enable/disable. Rename kasan_enabled to properly
reflect its function.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LKP reports that v4.2 commit afa2db2fb6 ("tmpfs: truncate prealloc
blocks past i_size") causes a 14.5% slowdown in the AIM9 creat-clo
benchmark.
creat-clo does just what you'd expect from the name, and creat's O_TRUNC
on 0-length file does indeed get into more overhead now shmem_setattr()
tests "0 <= 0" instead of "0 < 0".
I'm not sure how much we care, but I think it would not be too VW-like to
add in a check for whether any pages (or swap) are allocated: if none are
allocated, there's none to remove from the radix_tree. At first I thought
that check would be good enough for the unmaps too, but no: we should not
skip the unlikely case of unmapping pages beyond the new EOF, which were
COWed from holes which have now been reclaimed, leaving none.
This gives me an 8.5% speedup: on Haswell instead of LKP's Westmere, and
running a debug config before and after: I hope those account for the
lesser speedup.
And probably someone has a benchmark where a thousand threads keep on
stat'ing the same file repeatedly: forestall that report by adjusting v4.3
commit 44a30220bc ("shmem: recalculate file inode when fstat") not to
take the spinlock in shmem_getattr() when there's no work to do.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Ying Huang <ying.huang@linux.intel.com>
Tested-by: Ying Huang <ying.huang@linux.intel.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 424cdc1413 ("memcg: convert threshold to bytes") has fixed a
regression introduced by 3e32cb2e0a ("mm: memcontrol: lockless page
counters") where thresholds were silently converted to use page units
rather than bytes when interpreting the user input.
The fix is not complete, though, as properly pointed out by Ben Hutchings
during stable backport review. The page count is converted to bytes but
unsigned long is used to hold the value which would be obviously not
sufficient for 32b systems with more than 4G thresholds. The same applies
to usage as taken from mem_cgroup_usage which might overflow.
Let's remove this bytes vs. pages internal tracking differences and
handle thresholds in page units internally. Chage mem_cgroup_usage() to
return the value in page units and revert 424cdc1413 because this should
be sufficient for the consistent handling. mem_cgroup_read_u64 as the
only users of mem_cgroup_usage outside of the threshold handling code is
converted to give the proper in bytes result. It is doing that already
for page_counter output so this is more consistent as well.
The value presented to the userspace is still in bytes units.
Fixes: 424cdc1413 ("memcg: convert threshold to bytes")
Fixes: 3e32cb2e0a ("mm: memcontrol: lockless page counters")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
From: Michal Hocko <mhocko@kernel.org>
Subject: memcg-fix-thresholds-for-32b-architectures-fix
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
From: Andrew Morton <akpm@linux-foundation.org>
Subject: memcg-fix-thresholds-for-32b-architectures-fix-fix
don't attempt to inline mem_cgroup_usage()
The compiler ignores the inline anwyay. And __always_inlining it adds 600
bytes of goop to the .o file.
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_counter_try_charge() currently returns 0 on success and -ENOMEM on
failure, which is surprising behavior given the function name.
Make it follow the expected pattern of try_stuff() functions that return a
boolean true to indicate success, or false for failure.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memory.current on the root level doesn't add anything that wouldn't be
more accurate and detailed using system statistics. It already doesn't
include slabs, and it'll be a pain to keep in sync when further memory
types are accounted in the memory controller. Remove it.
Note that this applies to the new unified hierarchy interface only.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
My recent patch "mm, hugetlb: use memory policy when available" added some
bloat to hugetlb.o. This patch aims to get some of the bloat back,
especially when NUMA is not in play.
It does this with an implicit #ifdef and marking some things static that
should have been static in my first patch. It also makes the warnings
only VM_WARN_ON()s. They were responsible for a pretty big chunk of the
bloat.
Doing this gets our NUMA=n text size back to a wee bit _below_ where we
started before the original patch.
It also shaves a bit of space off the NUMA=y case, but not much.
Enforcing the mempolicy definitely takes some text and it's hard to avoid.
size(1) output:
text data bss dec hex filename
30745 3433 2492 36670 8f3e hugetlb.o.nonuma.baseline
31305 3755 2492 37552 92b0 hugetlb.o.nonuma.patch1
30713 3433 2492 36638 8f1e hugetlb.o.nonuma.patch2 (this patch)
25235 473 41276 66984 105a8 hugetlb.o.numa.baseline
25715 475 41276 67466 1078a hugetlb.o.numa.patch1
25491 473 41276 67240 106a8 hugetlb.o.numa.patch2 (this patch)
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I have a hugetlbfs user which is never explicitly allocating huge pages
with 'nr_hugepages'. They only set 'nr_overcommit_hugepages' and then let
the pages be allocated from the buddy allocator at fault time.
This works, but they noticed that mbind() was not doing them any good and
the pages were being allocated without respect for the policy they
specified.
The code in question is this:
> struct page *alloc_huge_page(struct vm_area_struct *vma,
...
> page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
> if (!page) {
> page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
dequeue_huge_page_vma() is smart and will respect the VMA's memory policy.
But, it only grabs _existing_ huge pages from the huge page pool. If the
pool is empty, we fall back to alloc_buddy_huge_page() which obviously
can't do anything with the VMA's policy because it isn't even passed the
VMA.
Almost everybody preallocates huge pages. That's probably why nobody has
ever noticed this. Looking back at the git history, I don't think this
_ever_ worked from when alloc_buddy_huge_page() was introduced in
7893d1d5, 8 years ago.
The fix is to pass vma/addr down in to the places where we actually call
in to the buddy allocator. It's fairly straightforward plumbing. This
has been lightly tested.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are no users of the node_hstates array outside of the
mm/hugetlb.c. So let's make it static.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As far as I can tell, strncpy_from_unsafe never returns -EFAULT. ret is
the result of a __copy_from_user_inatomic(), which is 0 for success and
positive (in this case necessarily 1) for access error - it is never
negative. So we were always returning the length of the, possibly
truncated, destination string.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/cma.c: In function 'cma_alloc':
mm/cma.c:366: warning: 'pfn' may be used uninitialized in this function
The patch actually improves the tracing a bit: if alloc_contig_range()
fails, tracing will display the offending pfn rather than -1.
Cc: Stefan Strogin <stefan.strogin@gmail.com>
Cc: Michal Nazarewicz <mpn@google.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Cc: Thierry Reding <treding@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
clear_page_dirty_for_io() has accumulated writeback and memcg subtleties
since v2.6.16 first introduced page migration; and the set_page_dirty()
which completed its migration of PageDirty, later had to be moderated to
__set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too.
No actual problems seen with this procedure recently, but if you look into
what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually
achieving, it turns out to be nothing more than moving the PageDirty flag,
and its NR_FILE_DIRTY stat from one zone to another.
It would be good to avoid a pile of irrelevant decrementations and
incrementations, and improper event counting, and unnecessary descent of
the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which
radix_tree_replace_slot() left in place anyway).
Do the NR_FILE_DIRTY movement, like the other stats movements, while
interrupts still disabled in migrate_page_move_mapping(); and don't even
bother if the zone is the same. Do the PageDirty movement there under
tree_lock too, where old page is frozen and newpage not yet visible:
bearing in mind that as soon as newpage becomes visible in radix_tree, an
un-page-locked set_page_dirty() might interfere (or perhaps that's just
not possible: anything doing so should already hold an additional
reference to the old page, preventing its migration; but play safe).
But we do still need to transfer PageDirty in migrate_page_copy(), for
those who don't go the mapping route through migrate_page_move_mapping().
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have had trouble in the past from the way in which page migration's
newpage is initialized in dribs and drabs - see commit 8bdd638091 ("mm:
fix direct reclaim writeback regression") which proposed a cleanup.
We have no actual problem now, but I think the procedure would be clearer
(and alternative get_new_page pools safer to implement) if we assert that
newpage is not touched until we are sure that it's going to be used -
except for taking the trylock on it in __unmap_and_move().
So shift the early initializations from move_to_new_page() into
migrate_page_move_mapping(), mapping and NULL-mapping paths. Similarly
migrate_huge_page_move_mapping(), but its NULL-mapping path can just be
deleted: you cannot reach hugetlbfs_migrate_page() with a NULL mapping.
Adjust stages 3 to 8 in the Documentation file accordingly.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hitherto page migration has avoided using a migration entry for a
swapcache page mapped into userspace, apparently for historical reasons.
So any page blessed with swapcache would entail a minor fault when it's
next touched, which page migration otherwise tries to avoid. Swapcache in
an mlocked area is rare, so won't often matter, but still better fixed.
Just rearrange the block in try_to_unmap_one(), to handle TTU_MIGRATION
before checking PageAnon, that's all (apart from some reindenting).
Well, no, that's not quite all: doesn't this by the way fix a soft_dirty
bug, that page migration of a file page was forgetting to transfer the
soft_dirty bit? Probably not a serious bug: if I understand correctly,
soft_dirty afficionados usually have to handle file pages separately
anyway; but we publish the bit in /proc/<pid>/pagemap on file mappings as
well as anonymous, so page migration ought not to perturb it.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__unmap_and_move() contains a long stale comment on page_get_anon_vma()
and PageSwapCache(), with an odd control flow that's hard to follow.
Mostly this reflects our confusion about the lifetime of an anon_vma, in
the early days of page migration, before we could take a reference to one.
Nowadays this seems quite straightforward: cut it all down to essentials.
I cannot see the relevance of swapcache here at all, so don't treat it any
differently: I believe the old comment reflects in part our anon_vma
confusions, and in part the original v2.6.16 page migration technique,
which used actual swap to migrate anon instead of swap-like migration
entries. Why should a swapcache page not be migrated with the aid of
migration entry ptes like everything else? So lose that comment now, and
enable migration entries for swapcache in the next patch.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clean up page migration a little more by calling remove_migration_ptes()
from the same level, on success or on failure, from __unmap_and_move() or
from unmap_and_move_huge_page().
Don't reset page->mapping of a PageAnon old page in move_to_new_page(),
leave that to when the page is freed. Except for here in page migration,
it has been an invariant that a PageAnon (bit set in page->mapping) page
stays PageAnon until it is freed, and I think we're safer to keep to that.
And with the above rearrangement, it's necessary because zap_pte_range()
wants to identify whether a migration entry represents a file or an anon
page, to update the appropriate rss stats without waiting on it.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Clean up page migration a little by moving the trylock of newpage from
move_to_new_page() into __unmap_and_move(), where the old page has been
locked. Adjust unmap_and_move_huge_page() and balloon_page_migrate()
accordingly.
But make one kind-of-functional change on the way: whereas trylock of
newpage used to BUG() if it failed, now simply return -EAGAIN if so.
Cutting out BUG()s is good, right? But, to be honest, this is really to
extend the usefulness of the custom put_new_page feature, allowing a pool
of new pages to be shared perhaps with racing uses.
Use an "else" instead of that "skip_unmap" label.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I don't know of any problem from the way it's used in our current tree,
but there is one defect in page migration's custom put_new_page feature.
An unused newpage is expected to be released with the put_new_page(), but
there was one MIGRATEPAGE_SUCCESS (0) path which released it with
putback_lru_page(): which can be very wrong for a custom pool.
Fixed more easily by resetting put_new_page once it won't be needed, than
by adding a further flag to modify the rc test.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After v4.3's commit 0610c25daa ("memcg: fix dirty page migration")
mem_cgroup_migrate() doesn't have much to offer in page migration: convert
migrate_misplaced_transhuge_page() to set_page_memcg() instead.
Then rename mem_cgroup_migrate() to mem_cgroup_replace_page(), since its
remaining callers are replace_page_cache_page() and shmem_replace_page():
both of whom passed lrucare true, so just eliminate that argument.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit e6c509f854 ("mm: use clear_page_mlock() in page_remove_rmap()")
in v3.7 inadvertently made mlock_migrate_page() impotent: page migration
unmaps the page from userspace before migrating, and that commit clears
PageMlocked on the final unmap, leaving mlock_migrate_page() with
nothing to do. Not a serious bug, the next attempt at reclaiming the
page would fix it up; but a betrayal of page migration's intent - the
new page ought to emerge as PageMlocked.
I don't see how to fix it for mlock_migrate_page() itself; but easily
fixed in remove_migration_pte(), by calling mlock_vma_page() when the vma
is VM_LOCKED - under pte lock as in try_to_unmap_one().
Delete mlock_migrate_page()? Not quite, it does still serve a purpose for
migrate_misplaced_transhuge_page(): where we could replace it by a test,
clear_page_mlock(), mlock_vma_page() sequence; but would that be an
improvement? mlock_migrate_page() is fairly lean, and let's make it
leaner by skipping the irq save/restore now clearly not needed.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KernelThreadSanitizer (ktsan) has shown that the down_read_trylock() of
mmap_sem in try_to_unmap_one() (when going to set PageMlocked on a page
found mapped in a VM_LOCKED vma) is ineffective against races with
exit_mmap()'s munlock_vma_pages_all(), because mmap_sem is not held when
tearing down an mm.
But that's okay, those races are benign; and although we've believed for
years in that ugly down_read_trylock(), it's unsuitable for the job, and
frustrates the good intention of setting PageMlocked when it fails.
It just doesn't matter if here we read vm_flags an instant before or after
a racing mlock() or munlock() or exit_mmap() sets or clears VM_LOCKED: the
syscalls (or exit) work their way up the address space (taking pt locks
after updating vm_flags) to establish the final state.
We do still need to be careful never to mark a page Mlocked (hence
unevictable) by any race that will not be corrected shortly after. The
page lock protects from many of the races, but not all (a page is not
necessarily locked when it's unmapped). But the pte lock we just dropped
is good to cover the rest (and serializes even with
munlock_vma_pages_all(), so no special barriers required): now hold on to
the pte lock while calling mlock_vma_page(). Is that lock ordering safe?
Yes, that's how follow_page_pte() calls it, and how page_remove_rmap()
calls the complementary clear_page_mlock().
This fixes the following case (though not a case which anyone has
complained of), which mmap_sem did not: truncation's preliminary
unmap_mapping_range() is supposed to remove even the anonymous COWs of
filecache pages, and that might race with try_to_unmap_one() on a
VM_LOCKED vma, so that mlock_vma_page() sets PageMlocked just after
zap_pte_range() unmaps the page, causing "Bad page state (mlocked)" when
freed. The pte lock protects against this.
You could say that it also protects against the more ordinary case, racing
with the preliminary unmapping of a filecache page itself: but in our
current tree, that's independently protected by i_mmap_rwsem; and that
race would be why "Bad page state (mlocked)" was seen before commit
48ec833b78 ("Revert mm/memory.c: share the i_mmap_rwsem").
Vlastimil Babka points out another race which this patch protects against.
try_to_unmap_one() might reach its mlock_vma_page() TestSetPageMlocked a
moment after munlock_vma_pages_all() did its Phase 1 TestClearPageMlocked:
leaving PageMlocked and unevictable when it should be evictable. mmap_sem
is ineffective because exit_mmap() does not hold it; page lock ineffective
because __munlock_pagevec() only takes it afterwards, in Phase 2; pte lock
is effective because __munlock_pagevec_fill() takes it to get the page,
after VM_LOCKED was cleared from vm_flags, so visible to try_to_unmap_one.
Kirill Shutemov points out that if the compiler chooses to implement a
"vma->vm_flags &= VM_WHATEVER" or "vma->vm_flags |= VM_WHATEVER" operation
with an intermediate store of unrelated bits set, since I'm here foregoing
its usual protection by mmap_sem, try_to_unmap_one() might catch sight of
a spurious VM_LOCKED in vm_flags, and make the wrong decision. This does
not appear to be an immediate problem, but we may want to define vm_flags
accessors in future, to guard against such a possibility.
While we're here, make a related optimization in try_to_munmap_one(): if
it's doing TTU_MUNLOCK, then there's no point at all in descending the
page tables and getting the pt lock, unless the vma is VM_LOCKED. Yes,
that can change racily, but it can change racily even without the
optimization: it's not critical. Far better not to waste time here.
Stopped short of separating try_to_munlock_one() from try_to_munmap_one()
on this occasion, but that's probably the sensible next step - with a
rename, given that try_to_munlock()'s business is to try to set Mlocked.
Updated the unevictable-lru Documentation, to remove its reference to mmap
semaphore, but found a few more updates needed in just that area.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_mergeable_page() can only return NULL (also in case of errors) or the
pinned mergeable page. It can't return an error different than NULL.
This optimizes away the unnecessary error check.
Add a return after the "out:" label in the callee to make it more
readable.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Petr Holasek <pholasek@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Doing the VM_MERGEABLE check after the page == kpage check won't provide
any meaningful benefit. The !vma->anon_vma check of find_mergeable_vma is
the only superfluous bit in using find_mergeable_vma because the !PageAnon
check of try_to_merge_one_page() implicitly checks for that, but it still
looks cleaner to share the same find_mergeable_vma().
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Petr Holasek <pholasek@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This just uses the helper function to cleanup the assumption on the
hlist_node internals.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Petr Holasek <pholasek@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The stable_nodes can become stale at any time if the underlying pages gets
freed. The stable_node gets collected and removed from the stable rbtree
if that is detected during the rbtree lookups.
Don't fail the lookup if running into stale stable_nodes, just restart the
lookup after collecting the stale stable_nodes. Otherwise the CPU spent
in the preparation stage is wasted and the lookup must be repeated at the
next loop potentially failing a second time in a second stale stable_node.
If we don't prune aggressively we delay the merging of the unstable node
candidates and at the same time we delay the freeing of the stale
stable_nodes. Keeping stale stable_nodes around wastes memory and it
can't provide any benefit.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Petr Holasek <pholasek@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While at it add it to the file and anon walks too.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Petr Holasek <pholasek@redhat.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before the previous patch ("memcg: unify slab and other kmem pages
charging"), __mem_cgroup_from_kmem had to handle two types of kmem - slab
pages and pages allocated with alloc_kmem_pages - memcg in the page
struct. Now we can unify it. Since after it, this function becomes tiny
we can fold it into mem_cgroup_from_kmem.
[hughd@google.com: move mem_cgroup_from_kmem into list_lru.c]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have memcg_kmem_charge and memcg_kmem_uncharge methods for charging and
uncharging kmem pages to memcg, but currently they are not used for
charging slab pages (i.e. they are only used for charging pages allocated
with alloc_kmem_pages). The only reason why the slab subsystem uses
special helpers, memcg_charge_slab and memcg_uncharge_slab, is that it
needs to charge to the memcg of kmem cache while memcg_charge_kmem charges
to the memcg that the current task belongs to.
To remove this diversity, this patch adds an extra argument to
__memcg_kmem_charge that can be a pointer to a memcg or NULL. If it is
not NULL, the function tries to charge to the memcg it points to,
otherwise it charge to the current context. Next, it makes the slab
subsystem use this function to charge slab pages.
Since memcg_charge_kmem and memcg_uncharge_kmem helpers are now used only
in __memcg_kmem_charge and __memcg_kmem_uncharge, they are inlined. Since
__memcg_kmem_charge stores a pointer to the memcg in the page struct, we
don't need memcg_uncharge_slab anymore and can use free_kmem_pages.
Besides, one can now detect which memcg a slab page belongs to by reading
/proc/kpagecgroup.
Note, this patch switches slab to charge-after-alloc design. Since this
design is already used for all other memcg charges, it should not make any
difference.
[hannes@cmpxchg.org: better to have an outer function than a magic parameter for the memcg lookup]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Charging kmem pages proceeds in two steps. First, we try to charge the
allocation size to the memcg the current task belongs to, then we allocate
a page and "commit" the charge storing the pointer to the memcg in the
page struct.
Such a design looks overcomplicated, because there is not much sense in
trying charging the allocation before actually allocating a page: we won't
be able to consume much memory over the limit even if we charge after
doing the actual allocation, besides we already charge user pages post
factum, so being pedantic with kmem pages just looks pointless.
So this patch simplifies the design by merging the "charge" and the
"commit" steps into the same function, which takes the allocated page.
Also, rename the charge and uncharge methods to memcg_kmem_charge and
memcg_kmem_uncharge and make the charge method return error code instead
of bool to conform to mem_cgroup_try_charge.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If kernelcore was not specified, or the kernelcore size is zero
(required_movablecore >= totalpages), or the kernelcore size is larger
than totalpages, there is no ZONE_MOVABLE. We should fill the zone with
both kernel memory and movable memory.
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: <zhongjiang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function incurs in very hot paths and merely does a few loads for
validity check. Lets inline it, such that we can save the function call
overhead.
(akpm: this is cosmetic - the compiler already inlines vmacache_valid_mm())
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Srinivas Kandagatla reported bad page messages when trying to remove the
bottom 2MB on an ARM based IFC6410 board
BUG: Bad page state in process swapper pfn:fffa8
page:ef7fb500 count:0 mapcount:0 mapping: (null) index:0x0
flags: 0x96640253(locked|error|dirty|active|arch_1|reclaim|mlocked)
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
bad because of flags:
flags: 0x200041(locked|active|mlocked)
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 3.19.0-rc3-00007-g412f9ba-dirty #816
Hardware name: Qualcomm (Flattened Device Tree)
unwind_backtrace
show_stack
dump_stack
bad_page
free_pages_prepare
free_hot_cold_page
__free_pages
free_highmem_page
mem_init
start_kernel
Disabling lock debugging due to kernel taint
Removing the lower 2MB made the start of the lowmem zone to no longer be
page block aligned. IFC6410 uses CONFIG_FLATMEM where alloc_node_mem_map
allocates memory for the mem_map. alloc_node_mem_map will offset for
unaligned nodes with the assumption the pfn/page translation functions
will account for the offset. The functions for CONFIG_FLATMEM do not
offset however, resulting in overrunning the memmap array. Just use the
allocated memmap without any offset when running with CONFIG_FLATMEM to
avoid the overrun.
Signed-off-by: Laura Abbott <laura@labbott.name>
Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Reported-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Tested-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Bjorn Andersson <bjorn.andersson@sonymobile.com>
Cc: Santosh Shilimkar <ssantosh@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Arnd Bergman <arnd@arndb.de>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Andy Gross <agross@codeaurora.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With x86_64 (config http://ozlabs.org/~akpm/config-akpm2.txt) and old gcc
(4.4.4), drivers/base/node.c:node_read_meminfo() is using 2344 bytes of
stack. Uninlining node_page_state() reduces this to 440 bytes.
The stack consumption issue is fixed by newer gcc (4.8.4) however with
that compiler this patch reduces the node.o text size from 7314 bytes to
4578.
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make __install_special_mapping() args order match the caller, so the
caller can pass their register args directly to callee with no touch.
For most of architectures, args (at least the first 5th args) are in
registers, so this change will have effect on most of architectures.
For -O2, __install_special_mapping() may be inlined under most of
architectures, but for -Os, it should not. So this change can get a
little better performance for -Os, at least.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(1) For !CONFIG_BUG cases, the bug call is a no-op, so we couldn't
care less and the change is ok.
(2) ppc and mips, which HAVE_ARCH_BUG_ON, do not rely on branch
predictions as it seems to be pointless[1] and thus callers should not
be trying to push an optimization in the first place.
(3) For CONFIG_BUG and !HAVE_ARCH_BUG_ON cases, BUG_ON() contains an
unlikely compiler flag already.
Hence, we can drop unlikely behind BUG_ON().
[1] http://lkml.iu.edu/hypermail/linux/kernel/1101.3/02289.html
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When fget() fails we can return -EBADF directly.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is still a little better to remove it, although it should be skipped
by "-O2".
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>=0A=
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both "child->mm == mm" and "p->mm != mm" checks in oom_kill_process() are
wrong. task->mm can be NULL if the task is the exited group leader. This
means in particular that "kill sharing same memory" loop can miss a
process with a zombie leader which uses the same ->mm.
Note: the process_has_mm(child, p->mm) check is still not 100% correct,
p->mm can be NULL too. This is minor, but probably deserves a fix or a
comment anyway.
[akpm@linux-foundation.org: document process_shares_mm() a bit]
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Kyle Walker <kwalker@redhat.com>
Cc: Stanislav Kozina <skozina@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Purely cosmetic, but the complex "if" condition looks annoying to me.
Especially because it is not consistent with OOM_SCORE_ADJ_MIN check
which adds another if/continue.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Kyle Walker <kwalker@redhat.com>
Cc: Stanislav Kozina <skozina@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fatal_signal_pending() was added to suppress unnecessary "sharing same
memory" message, but it can't 100% help anyway because it can be
false-negative; SIGKILL can be already dequeued.
And worse, it can be false-positive due to exec or coredump. exec is
mostly fine, but coredump is not. It is possible that the group leader
has the pending SIGKILL because its sub-thread originated the coredump, in
this case we must not skip this process.
We could probably add the additional ->group_exit_task check but this
patch just removes the wrong check along with pr_info().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Kyle Walker <kwalker@redhat.com>
Cc: Stanislav Kozina <skozina@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"mm->locked_vm += grow" and vm_stat_account() in acct_stack_growth() are
not safe; multiple threads using the same ->mm can do this at the same
time trying to expans different vma's under down_read(mmap_sem). This
means that one of the "locked_vm += grow" changes can be lost and we can
miss munlock_vma_pages_all() later.
Move this code into the caller(s) under mm->page_table_lock. All other
updates to ->locked_vm hold mmap_sem for writing.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the user set "movablecore=xx" to a large number, corepages will
overflow. Fix the problem.
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Tang Chen <tangchen@cn.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In zone_reclaimable_pages(), `nr' is returned by a function which is
declared as returning "unsigned long", so declare it such. Negative
values are meaningless here.
In zone_pagecache_reclaimable() we should also declare `delta' and
`nr_pagecache_reclaimable' as being unsigned longs because they're used to
store the values returned by zone_page_state() and
zone_unmapped_file_pages() which also happen to return unsigned integers.
[akpm@linux-foundation.org: make zone_pagecache_reclaimable() return ulong rather than long]
Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The oom killer takes task_lock() in a couple of places solely to protect
printing the task's comm.
A process's comm, including current's comm, may change due to
/proc/pid/comm or PR_SET_NAME.
The comm will always be NULL-terminated, so the worst race scenario would
only be during update. We can tolerate a comm being printed that is in
the middle of an update to avoid taking the lock.
Other locations in the kernel have already dropped task_lock() when
printing comm, so this is consistent.
Signed-off-by: David Rientjes <rientjes@google.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction returns prematurely with COMPACT_PARTIAL when contended or has
fatal signal pending. This is ok for the callers, but might be misleading
in the traces, as the usual reason to return COMPACT_PARTIAL is that we
think the allocation should succeed. After this patch we distinguish the
premature ending condition in the mm_compaction_finished and
mm_compaction_end tracepoints.
The contended status covers the following reasons:
- lock contention or need_resched() detected in async compaction
- fatal signal pending
- too many pages isolated in the zone (only for async compaction)
Further distinguishing the exact reason seems unnecessary for now.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some compaction tracepoints convert the integer return values to strings
using the compaction_status_string array. This works for in-kernel
printing, but not userspace trace printing of raw captured trace such as
via trace-cmd report.
This patch converts the private array to appropriate tracepoint macros
that result in proper userspace support.
trace-cmd output before:
transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0
zone=ffffffff81815d7a order=9 ret=
after:
transhuge-stres-4235 [000] 453.149280: mm_compaction_finished: node=0
zone=ffffffff81815d7a order=9 ret=partial
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
oom_kill_process() sends SIGKILL to other thread groups sharing victim's
mm. But printing
"Kill process %d (%s) sharing same memory\n"
lines makes no sense if they already have pending SIGKILL. This patch
reduces the "Kill process" lines by printing that line with info level
only if SIGKILL is not pending.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At the for_each_process() loop in oom_kill_process(), we are comparing
address of OOM victim's mm without holding a reference to that mm. If
there are a lot of processes to compare or a lot of "Kill process %d (%s)
sharing same memory" messages to print, for_each_process() loop could take
very long time.
It is possible that meanwhile the OOM victim exits and releases its mm,
and then mm is allocated with the same address and assigned to some
unrelated process. When we hit such race, the unrelated process will be
killed by error. To make sure that the OOM victim's mm does not go away
until for_each_process() loop finishes, get a reference on the OOM
victim's mm before calling task_unlock(victim).
[oleg@redhat.com: several fixes]
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It was confirmed that a local unprivileged user can consume all memory
reserves and hang up that system using time lag between the OOM killer
sets TIF_MEMDIE on an OOM victim and sends SIGKILL to that victim, for
printk() inside for_each_process() loop at oom_kill_process() can consume
many seconds when there are many thread groups sharing the same memory.
Before starting oom-depleter process:
Node 0 DMA: 3*4kB (UM) 6*8kB (U) 4*16kB (UEM) 0*32kB 0*64kB 1*128kB (M) 2*256kB (EM) 2*512kB (UE) 2*1024kB (EM) 1*2048kB (E) 1*4096kB (M) = 9980kB
Node 0 DMA32: 31*4kB (UEM) 27*8kB (UE) 32*16kB (UE) 13*32kB (UE) 14*64kB (UM) 7*128kB (UM) 8*256kB (UM) 8*512kB (UM) 3*1024kB (U) 4*2048kB (UM) 362*4096kB (UM) = 1503220kB
As of invoking the OOM killer:
Node 0 DMA: 11*4kB (UE) 8*8kB (UEM) 6*16kB (UE) 2*32kB (EM) 0*64kB 1*128kB (U) 3*256kB (UEM) 2*512kB (UE) 3*1024kB (UEM) 1*2048kB (U) 0*4096kB = 7308kB
Node 0 DMA32: 1049*4kB (UEM) 507*8kB (UE) 151*16kB (UE) 53*32kB (UEM) 83*64kB (UEM) 52*128kB (EM) 25*256kB (UEM) 11*512kB (M) 6*1024kB (UM) 1*2048kB (M) 0*4096kB = 44556kB
Between the thread group leader got TIF_MEMDIE and receives SIGKILL:
Node 0 DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 0kB
Node 0 DMA32: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 0kB
The oom-depleter's thread group leader which got TIF_MEMDIE started
memset() in user space after the OOM killer set TIF_MEMDIE, and it was
free to abuse ALLOC_NO_WATERMARKS by TIF_MEMDIE for memset() in user space
until SIGKILL is delivered. If SIGKILL is delivered before TIF_MEMDIE is
set, the oom-depleter can terminate without touching memory reserves.
Although the possibility of hitting this time lag is very small for 3.19
and earlier kernels because TIF_MEMDIE is set immediately before sending
SIGKILL, preemption or long interrupts (an extreme example is SysRq-t) can
step between and allow memory allocations which are not needed for
terminating the OOM victim.
Fixes: 83363b917a ("oom: make sure that TIF_MEMDIE is set under task_lock")
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org> [4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make inactive_anon/file_is_low return bool due to these particular
functions only using either one or zero as their return value.
No functional change.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 6539cc0538 ("mm: memcontrol: fold mem_cgroup_do_charge()"),
the order to pass to mem_cgroup_oom() is calculated by passing the
number of pages to get_order() instead of the expected size in bytes.
AFAICT, it only affects the value displayed in the oom warning message.
This patch fix this.
Michal said:
: We haven't noticed that just because the OOM is enabled only for page
: faults of order-0 (single page) and get_order work just fine. Thanks for
: noticing this. If we ever start triggering OOM on different orders this
: would be broken.
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently kernel prints out results of every single unpoison event, which
i= s not necessary because unpoison is purely a testing feature and
testers can = get little or no information from lots of lines of unpoison
log storm. So this patch ratelimits printk in unpoison_memory().
This patch introduces a file local ratelimit_state, which adds 64 bytes to
memory-failure.o. If we apply pr_info_ratelimited() for 8 callsite below,
2= 56 bytes is added, so it's a win.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
filemap_fdatawait() is a function to wait for on-going writeback to
complete but also consume and clear error status of the mapping set during
writeback.
The latter functionality is critical for applications to detect writeback
error with system calls like fsync(2)/fdatasync(2).
However filemap_fdatawait() is also used by sync(2) or FIFREEZE ioctl,
which don't check error status of individual mappings.
As a result, fsync() may not be able to detect writeback error if events
happen in the following order:
Application System admin
----------------------------------------------------------
write data on page cache
Run sync command
writeback completes with error
filemap_fdatawait() clears error
fsync returns success
(but the data is not on disk)
This patch adds filemap_fdatawait_keep_errors() for call sites where
writeback error is not handled so that they don't clear error status.
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Fengguang Wu <fengguang.wu@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce is_via_compact_memory() helper indicating compacting via
/proc/sys/vm/compact_memory to improve readability.
To catch this situation in __compaction_suitable, use order as parameter
directly instead of using struct compact_control.
This patch has no functional changes.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Delete unnecessary if to let inactive_anon_is_low_global return
directly.
No functional changes.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently there's no easy way to get per-process usage of hugetlb pages,
which is inconvenient because userspace applications which use hugetlb
typically want to control their processes on the basis of how much memory
(including hugetlb) they use. So this patch simply provides easy access
to the info via /proc/PID/status.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Joern Engel <joern@logfs.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Maximal readahead size is limited now by two values:
1) by global 2Mb constant (MAX_READAHEAD in max_sane_readahead())
2) by configurable per-device value* (bdi->ra_pages)
There are devices, which require custom readahead limit.
For instance, for RAIDs it's calculated as number of devices
multiplied by chunk size times 2.
Readahead size can never be larger than bdi->ra_pages * 2 value
(POSIX_FADV_SEQUNTIAL doubles readahead size).
If so, why do we need two limits?
I suggest to completely remove this max_sane_readahead() stuff and
use per-device readahead limit everywhere.
Also, using right readahead size for RAID disks can significantly
increase i/o performance:
before:
dd if=/dev/md2 of=/dev/null bs=100M count=100
100+0 records in
100+0 records out
10485760000 bytes (10 GB) copied, 12.9741 s, 808 MB/s
after:
$ dd if=/dev/md2 of=/dev/null bs=100M count=100
100+0 records in
100+0 records out
10485760000 bytes (10 GB) copied, 8.91317 s, 1.2 GB/s
(It's an 8-disks RAID5 storage).
This patch doesn't change sys_readahead and madvise(MADV_WILLNEED)
behavior introduced by 6d2be915e5 ("mm/readahead.c: fix readahead
failure for memoryless NUMA nodes and limit readahead pages").
Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: onstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a2f3aa0257 ("[PATCH] Fix sparsemem on Cell") fixed an oops
experienced on the Cell architecture when init-time functions,
early_*(), are called at runtime by introducing an 'enum memmap_context'
parameter to memmap_init_zone() and init_currently_empty_zone(). This
parameter is intended to be used to tell whether the call of these two
functions is being made on behalf of a hotplug event, or happening at
boot-time. However, init_currently_empty_zone() does not use this
parameter at all, so remove it.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migration tries up to 10 times to migrate pages that return -EAGAIN until
it gives up. If some pages fail all retries, they are counted towards the
number of failed pages that migrate_pages() returns. They should also be
counted in the /proc/vmstat pgmigrate_fail and in the mm_migrate_pages
tracepoint.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memblock_remove_range() is only used in the mm/memblock.c, so we can make
it static.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The functions used in the patch are in slowpath, which gets called
whenever alloc_super is called during mounts.
Though this should not make difference for the architectures with
sequential numa node ids, for the powerpc which can potentially have
sparse node ids (for e.g., 4 node system having numa ids, 0,1,16,17 is
common), this patch saves some unnecessary allocations for non existing
numa nodes.
Even without that saving, perhaps patch makes code more readable.
[vdavydov@parallels.com: take memcg_aware check outside for_each loop]
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Anton Blanchard <anton@samba.org>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Greg Kurz <gkurz@linux.vnet.ibm.com>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_vaddr_frames() has a comment that's *almost* a docbook comment; add
the missing star so that the tools will find it properly.
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
try_charge() is the main charging logic of memcg. When it hits the limit
but either can't fail the allocation due to __GFP_NOFAIL or the task is
likely to free memory very soon, being OOM killed, has SIGKILL pending or
exiting, it "bypasses" the charge to the root memcg and returns -EINTR.
While this is one approach which can be taken for these situations, it has
several issues.
* It unnecessarily lies about the reality. The number itself doesn't
go over the limit but the actual usage does. memcg is either forced
to or actively chooses to go over the limit because that is the
right behavior under the circumstances, which is completely fine,
but, if at all avoidable, it shouldn't be misrepresenting what's
happening by sneaking the charges into the root memcg.
* Despite trying, we already do over-charge. kmemcg can't deal with
switching over to the root memcg by the point try_charge() returns
-EINTR, so it open-codes over-charing.
* It complicates the callers. Each try_charge() user has to handle
the weird -EINTR exception. memcg_charge_kmem() does the manual
over-charging. mem_cgroup_do_precharge() performs unnecessary
uncharging of root memcg, which BTW is inconsistent with what
memcg_charge_kmem() does but not broken as [un]charging are noops on
root memcg. mem_cgroup_try_charge() needs to switch the returned
cgroup to the root one.
The reality is that in memcg there are cases where we are forced and/or
willing to go over the limit. Each such case needs to be scrutinized and
justified but there definitely are situations where that is the right
thing to do. We alredy do this but with a superficial and inconsistent
disguise which leads to unnecessary complications.
This patch updates try_charge() so that it over-charges and returns 0 when
deemed necessary. -EINTR return is removed along with all special case
handling in the callers.
While at it, remove the local variable @ret, which was initialized to zero
and never changed, along with done: label which just returned the always
zero @ret.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, try_charge() tries to reclaim memory synchronously when the
high limit is breached; however, if the allocation doesn't have
__GFP_WAIT, synchronous reclaim is skipped. If a process performs only
speculative allocations, it can blow way past the high limit. This is
actually easily reproducible by simply doing "find /". slab/slub
allocator tries speculative allocations first, so as long as there's
memory which can be consumed without blocking, it can keep allocating
memory regardless of the high limit.
This patch makes try_charge() always punt the over-high reclaim to the
return-to-userland path. If try_charge() detects that high limit is
breached, it adds the overage to current->memcg_nr_pages_over_high and
schedules execution of mem_cgroup_handle_over_high() which performs
synchronous reclaim from the return-to-userland path.
As long as kernel doesn't have a run-away allocation spree, this should
provide enough protection while making kmemcg behave more consistently.
It also has the following benefits.
- All over-high reclaims can use GFP_KERNEL regardless of the specific
gfp mask in use, e.g. GFP_NOFS, when the limit was breached.
- It copes with prio inversion. Previously, a low-prio task with
small memory.high might perform over-high reclaim with a bunch of
locks held. If a higher prio task needed any of these locks, it
would have to wait until the low prio task finished reclaim and
released the locks. By handing over-high reclaim to the task exit
path this issue can be avoided.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
task_struct->memcg_oom is a sub-struct containing fields which are used
for async memcg oom handling. Most task_struct fields aren't packaged
this way and it can lead to unnecessary alignment paddings. This patch
flattens it.
* task.memcg_oom.memcg -> task.memcg_in_oom
* task.memcg_oom.gfp_mask -> task.memcg_oom_gfp_mask
* task.memcg_oom.order -> task.memcg_oom_order
* task.memcg_oom.may_oom -> task.memcg_may_oom
In addition, task.memcg_may_oom is relocated to where other bitfields are
which reduces the size of task_struct.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before the main loop, vma is already is NULL. There is no need to set it
to NULL again.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
probe_kernel_address() is basically the same as the (later added)
probe_kernel_read().
The return value on EFAULT is a bit different: probe_kernel_address()
returns number-of-bytes-not-copied whereas probe_kernel_read() returns
-EFAULT. All callers have been checked, none cared.
probe_kernel_read() can be overridden by the architecture whereas
probe_kernel_address() cannot. parisc, blackfin and um do this, to insert
additional checking. Hence this patch possibly fixes obscure bugs,
although there are only two probe_kernel_address() callsites outside
arch/.
My first attempt involved removing probe_kernel_address() entirely and
converting all callsites to use probe_kernel_read() directly, but that got
tiresome.
This patch shrinks mm/slab_common.o by 218 bytes. For a single
probe_kernel_address() callsite.
Cc: Steven Miao <realmz6@gmail.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In mlockall syscall wrapper after out-label for goto code just doing
return. Remove goto out statements and return error values directly.
Also instead of rewriting ret variable before every if-check move returns
to 'error'-like path under if-check.
Objdump asm listing showed me reducing by few asm lines. Object file size
descreased from 220592 bytes to 220528 bytes for me (for aarch64).
Signed-off-by: Alexey Klimov <klimov.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Few lines below object is reinitialized by lookup_object() so we don't
need to init it by NULL in the beginning of find_and_get_object().
Signed-off-by: Alexey Klimov <alexey.klimov@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On systems with a KMALLOC_MIN_SIZE of 128 (arm64, some mips and powerpc
configurations defining ARCH_DMA_MINALIGN to 128), the first
kmalloc_caches[] entry to be initialised after slab_early_init = 0 is
"kmalloc-128" with index 7. Depending on the debug kernel configuration,
sizeof(struct kmem_cache) can be larger than 128 resulting in an
INDEX_NODE of 8.
Commit 8fc9cf420b ("slab: make more slab management structure off the
slab") enables off-slab management objects for sizes starting with
PAGE_SIZE >> 5 (128 bytes for a 4KB page configuration) and the creation
of the "kmalloc-128" cache would try to place the management objects
off-slab. However, since KMALLOC_MIN_SIZE is already 128 and
freelist_size == 32 in __kmem_cache_create(), kmalloc_slab(freelist_size)
returns NULL (kmalloc_caches[7] not populated yet). This triggers the
following bug on arm64:
kernel BUG at /work/Linux/linux-2.6-aarch64/mm/slab.c:2283!
Internal error: Oops - BUG: 0 [#1] SMP
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 4.3.0-rc4+ #540
Hardware name: Juno (DT)
PC is at __kmem_cache_create+0x21c/0x280
LR is at __kmem_cache_create+0x210/0x280
[...]
Call trace:
__kmem_cache_create+0x21c/0x280
create_boot_cache+0x48/0x80
create_kmalloc_cache+0x50/0x88
create_kmalloc_caches+0x4c/0xf4
kmem_cache_init+0x100/0x118
start_kernel+0x214/0x33c
This patch introduces an OFF_SLAB_MIN_SIZE definition to avoid off-slab
management objects for sizes equal to or smaller than KMALLOC_MIN_SIZE.
Fixes: 8fc9cf420b ("slab: make more slab management structure off the slab")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org> [3.15+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In slub_order(), the order starts from max(min_order,
get_order(min_objects * size)). When (min_objects * size) has different
order from (min_objects * size + reserved), it will skip this order via a
check in the loop.
This patch optimizes this a little by calculating the start order with
`reserved' in consideration and removing the check in loop.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_order() is more easy to understand.
This patch just replaces it.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In calculate_order(), it tries to calculate the best order by adjusting
the fraction and min_objects. On each iteration on min_objects, fraction
iterates on 16, 8, 4. Which means the acceptable waste increases with
1/16, 1/8, 1/4.
This patch corrects the comment according to the code.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The assignment to NULL within the error condition was written in a 2014
patch to suppress a compiler warning. However it would be cleaner to just
initialize the kmem_cache to NULL and just return it in case of an error
condition.
Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, when kmem_cache_destroy() is called for a global cache, we
print a warning for each per memcg cache attached to it that has active
objects (see shutdown_cache). This is redundant, because it gives no new
information and only clutters the log. If a cache being destroyed has
active objects, there must be a memory leak in the module that created the
cache, and it does not matter if the cache was used by users in memory
cgroups or not.
This patch moves the warning from shutdown_cache(), which is called for
shutting down both global and per memcg caches, to kmem_cache_destroy(),
so that the warning is only printed once if there are objects left in the
cache being destroyed.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, we do not clear pointers to per memcg caches in the
memcg_params.memcg_caches array when a global cache is destroyed with
kmem_cache_destroy.
This is fine if the global cache does get destroyed. However, a cache can
be left on the list if it still has active objects when kmem_cache_destroy
is called (due to a memory leak). If this happens, the entries in the
array will point to already freed areas, which is likely to result in data
corruption when the cache is reused (via slab merging).
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_kmem_cache_create(), do_kmem_cache_shutdown(), and
do_kmem_cache_release() sound awkward for static helper functions that are
not supposed to be used outside slab_common.c. Rename them to
create_cache(), shutdown_cache(), and release_caches(), respectively.
This patch is a pure cleanup and does not introduce any functional
changes.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A good candidate to return a boolean result.
Signed-off-by: Denis Kirjanov <kda@linux-powerpc.org>
Cc: Christoph Lameter <cl@linux.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"The cgroup core saw several significant updates this cycle:
- percpu_rwsem for threadgroup locking is reinstated. This was
temporarily dropped due to down_write latency issues. Oleg's
rework of percpu_rwsem which is scheduled to be merged in this
merge window resolves the issue.
- On the v2 hierarchy, when controllers are enabled and disabled, all
operations are atomic and can fail and revert cleanly. This allows
->can_attach() failure which is necessary for cpu RT slices.
- Tasks now stay associated with the original cgroups after exit
until released. This allows tracking resources held by zombies
(e.g. pids) and makes it easy to find out where zombies came from
on the v2 hierarchy. The pids controller was broken before these
changes as zombies escaped the limits; unfortunately, updating this
behavior required too many invasive changes and I don't think it's
a good idea to backport them, so the pids controller on 4.3, the
first version which included the pids controller, will stay broken
at least until I'm sure about the cgroup core changes.
- Optimization of a couple common tests using static_key"
* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
cgroup: fix race condition around termination check in css_task_iter_next()
blkcg: don't create "io.stat" on the root cgroup
cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
cgroup: replace error handling in cgroup_init() with WARN_ON()s
cgroup: add cgroup_subsys->free() method and use it to fix pids controller
cgroup: keep zombies associated with their original cgroups
cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
cgroup: don't hold css_set_rwsem across css task iteration
cgroup: reorganize css_task_iter functions
cgroup: factor out css_set_move_task()
cgroup: keep css_set and task lists in chronological order
cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
cgroup: make css_sets pin the associated cgroups
cgroup: relocate cgroup_[try]get/put()
cgroup: move check_for_release() invocation
cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
cgroup: make cgroup->nr_populated count the number of populated css_sets
cgroup: remove an unused parameter from cgroup_task_migrate()
cgroup: fix too early usage of static_branch_disable()
cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
...
Here's the "big" driver core updates for 4.4-rc1. Primarily a bunch of
debugfs updates, with a smattering of minor driver core fixes and
updates as well.
All have been in linux-next for a long time.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iEYEABECAAYFAlY6ePQACgkQMUfUDdst+ymNTgCgpP0CZw57GpwF/Hp2L/lMkVeo
Kx8AoKhEi4iqD5fdCQS9qTfomB+2/M6g
=g7ZO
-----END PGP SIGNATURE-----
Merge tag 'driver-core-4.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here's the "big" driver core updates for 4.4-rc1. Primarily a bunch
of debugfs updates, with a smattering of minor driver core fixes and
updates as well.
All have been in linux-next for a long time"
* tag 'driver-core-4.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
debugfs: Add debugfs_create_ulong()
of: to support binding numa node to specified device in devicetree
debugfs: Add read-only/write-only bool file ops
debugfs: Add read-only/write-only size_t file ops
debugfs: Add read-only/write-only x64 file ops
debugfs: Consolidate file mode checks in debugfs_create_*()
Revert "mm: Check if section present during memory block (un)registering"
driver-core: platform: Provide helpers for multi-driver modules
mm: Check if section present during memory block (un)registering
devres: fix a for loop bounds check
CMA: fix CONFIG_CMA_SIZE_MBYTES overflow in 64bit
base/platform: assert that dev_pm_domain callbacks are called unconditionally
sysfs: correctly handle short reads on PREALLOC attrs.
base: soc: siplify ida usage
kobject: move EXPORT_SYMBOL() macros next to corresponding definitions
kobject: explain what kobject's sd field is
debugfs: document that debugfs_remove*() accepts NULL and error values
debugfs: Pass bool pointer to debugfs_create_bool()
ACPI / EC: Fix broken 64bit big-endian users of 'global_lock'
- Improve balloon driver memory hotplug placement.
- Use unpopulated hotplugged memory for foreign pages (if
supported/enabled).
- Support 64 KiB guest pages on arm64.
- CPU hotplug support on arm/arm64.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJWOeSkAAoJEFxbo/MsZsTRph0H/0nE8Tx0GyGtOyCYfBdInTvI
WgjvL8VR1XrweZMVis3668MzhLSYg6b5lvJsoi+L3jlzYRyze43iHXsKfvp+8p0o
TVUhFnlHEHF8ASEtPydAi6HgS7Dn9OQ9LaZ45R1Gk0rHnwJjIQonhTn2jB0yS9Am
Hf4aZXP2NVZphjYcloqNsLH0G6mGLtgq8cS0uKcVO2YIrR4Dr3sfj9qfq9mflf8n
sA/5ifoHRfOUD1vJzYs4YmIBUv270jSsprWK/Mi2oXIxUTBpKRAV1RVCAPW6GFci
HIZjIJkjEPWLsvxWEs0dUFJQGp3jel5h8vFPkDWBYs3+9rILU2DnLWpKGNDHx3k=
=vUfa
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.4-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
- Improve balloon driver memory hotplug placement.
- Use unpopulated hotplugged memory for foreign pages (if
supported/enabled).
- Support 64 KiB guest pages on arm64.
- CPU hotplug support on arm/arm64.
* tag 'for-linus-4.4-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (44 commits)
xen: fix the check of e_pfn in xen_find_pfn_range
x86/xen: add reschedule point when mapping foreign GFNs
xen/arm: don't try to re-register vcpu_info on cpu_hotplug.
xen, cpu_hotplug: call device_offline instead of cpu_down
xen/arm: Enable cpu_hotplug.c
xenbus: Support multiple grants ring with 64KB
xen/grant-table: Add an helper to iterate over a specific number of grants
xen/xenbus: Rename *RING_PAGE* to *RING_GRANT*
xen/arm: correct comment in enlighten.c
xen/gntdev: use types from linux/types.h in userspace headers
xen/gntalloc: use types from linux/types.h in userspace headers
xen/balloon: Use the correct sizeof when declaring frame_list
xen/swiotlb: Add support for 64KB page granularity
xen/swiotlb: Pass addresses rather than frame numbers to xen_arch_need_swiotlb
arm/xen: Add support for 64KB page granularity
xen/privcmd: Add support for Linux 64KB page granularity
net/xen-netback: Make it running on 64KB page granularity
net/xen-netfront: Make it running on 64KB page granularity
block/xen-blkback: Make it running on 64KB page granularity
block/xen-blkfront: Make it running on 64KB page granularity
...
Some generic THP bits are touched - all ACKed by Kirill
- Platform framework updates to prepare for EZChip arrival (still in works)
- ARC Public Mailing list setup finally (linux-snps-arc@lists.infraded.org)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWOJuTAAoJEGnX8d3iisJeTs0P/jFFQLrsRHALWVEJ/i7TCOSK
ud/uekSmPzbUUHkR4BziXsrKZS7Mp+ht2CsXStMLfdk6nJ5X1ydzaRbpXeMPckcV
Cn8/Y0L1bbsjgJV/eOP3CsQfUrzjSBZY/Oo4VBKw5YOcSNGpGXpWLeni8Oyl3KZW
3RO0TnNdQ1V8IJFVl8TkcruoR0KhK+UOqMyQh5Axwy6JBbPYdB319AfcJ6Pl2rmp
JomwVf8igZHU77OJYT4AKmxXpXuZF+ZNM77q5bMoXUZg0YJKyJkKvFAwZw6Z+ypt
inJ7oEmpZyPwvlsa4MUwSzgp/ycxQklvQbEgZBtlYBkJAs9iLxRmRvfqI1JqPF3G
vnAhiZgr8ZRh37A8L0UladBZ8GP2ckEURb6vgJUiJwG7o2hkmEF7lIecoyKYIWpp
+qmtre0iQLPQAVvH5apJsoMJK2Zj1dWOFrGh3tPKcL+QBIafC4GORjKg6Kd642w4
TBC20QU2QH+kDBH4AGlcm7BWDz+bXh5S7NpilNggy2GqOet50du8LiA7GoqTA5GF
POeGGeIKjwHgBQxONqpHj5Hdb6fRtFUmAvicdolkd/da77gbsKqIZj6TrfGnlNkt
Fzn6a+WpeTQBzoyvKMW3KxLpq28qugYyaWfRacS+g2m5fcaRno+U7rjGOdRalINk
ujJ2CGfAmPWCFNJBvxwb
=H+Sl
-----END PGP SIGNATURE-----
Merge tag 'arc-4.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC updates from Vineet Gupta:
- Support for new MM features in ARCv2 cores (THP, PAE40) Some generic
THP bits are touched - all ACKed by Kirill
- Platform framework updates to prepare for EZChip arrival (still in works)
- ARC Public Mailing list setup finally (linux-snps-arc@lists.infraded.org)
* tag 'arc-4.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc: (42 commits)
ARC: mm: PAE40 support
ARC: mm: PAE40: tlbex.S: Explicitify the size of pte_t
ARC: mm: PAE40: switch to using phys_addr_t for physical addresses
ARC: mm: HIGHMEM: populate high memory from DT
ARC: mm: HIGHMEM: kmap API implementation
ARC: mm: preps ahead of HIGHMEM support #2
ARC: mm: preps ahead of HIGHMEM support
ARC: mm: use generic macros _BITUL()/_AC()
ARC: mm: Improve Duplicate PD Fault handler
MAINTAINERS: Add public mailing list for ARC
ARC: Ensure DT mem base is same as what kernel is built with
ARC: boot: Non Master cpus only need to call EARLY_CPU_SETUP once
ARCv2: smp: [plat-*]: No need to explicitly call mcip_init_smp()
ARC: smp: Introduce smp hook @init_irq_cpu called for all cores
ARC: smp: Rename platform hook @init_smp -> @init_cpu_smp
ARCv2: smp: [plat-*]: No need to explicitly call mcip_init_early_smp()
ARC: smp: Introduce smp hook @init_early_smp for Master core
ARC: remove @init_time, @init_irq platform callbacks
ARC: smp: irqchip: handle IPI as percpu irq like timer
ARC: boot: Support Halt-on-reset and Run-on-reset SMP booting modes
...
It turns out that at least some versions of glibc end up reading
/proc/meminfo at every single startup, because glibc wants to know the
amount of memory the machine has. And while that's arguably insane,
it's just how things are.
And it turns out that it's not all that expensive most of the time, but
the vmalloc information statistics (amount of virtual memory used in the
vmalloc space, and the biggest remaining chunk) can be rather expensive
to compute.
The 'get_vmalloc_info()' function actually showed up on my profiles as
4% of the CPU usage of "make test" in the git source repository, because
the git tests are lots of very short-lived shell-scripts etc.
It turns out that apparently this same silly vmalloc info gathering
shows up on the facebook servers too, according to Dave Jones. So it's
not just "make test" for git.
We had two patches to just cache the information (one by me, one by
Ingo) to mitigate this issue, but the whole vmalloc information of of
rather dubious value to begin with, and people who *actually* want to
know what the situation is wrt the vmalloc area should just look at the
much more complete /proc/vmallocinfo instead.
In fact, according to my testing - and perhaps more importantly,
according to that big search engine in the sky: Google - there is
nothing out there that actually cares about those two expensive fields:
VmallocUsed and VmallocChunk.
So let's try to just remove them entirely. Actually, this just removes
the computation and reports the numbers as zero for now, just to try to
be minimally intrusive.
If this breaks anything, we'll obviously have to re-introduce the code
to compute this all and add the caching patches on top. But if given
the option, I'd really prefer to just remove this bad idea entirely
rather than add even more code to work around our historical mistake
that likely nobody really cares about.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull block layer fixes from Jens Axboe:
"A final set of fixes for 4.3.
It is (again) bigger than I would have liked, but it's all been
through the testing mill and has been carefully reviewed by multiple
parties. Each fix is either a regression fix for this cycle, or is
marked stable. You can scold me at KS. The pull request contains:
- Three simple fixes for NVMe, fixing regressions since 4.3. From
Arnd, Christoph, and Keith.
- A single xen-blkfront fix from Cathy, fixing a NULL dereference if
an error is returned through the staste change callback.
- Fixup for some bad/sloppy code in nbd that got introduced earlier
in this cycle. From Markus Pargmann.
- A blk-mq tagset use-after-free fix from Junichi.
- A backing device lifetime fix from Tejun, fixing a crash.
- And finally, a set of regression/stable fixes for cgroup writeback
from Tejun"
* 'for-linus' of git://git.kernel.dk/linux-block:
writeback: remove broken rbtree_postorder_for_each_entry_safe() usage in cgwb_bdi_destroy()
NVMe: Fix memory leak on retried commands
block: don't release bdi while request_queue has live references
nvme: use an integer value to Linux errno values
blk-mq: fix use-after-free in blk_mq_free_tag_set()
nvme: fix 32-bit build warning
writeback: fix incorrect calculation of available memory for memcg domains
writeback: memcg dirty_throttle_control should be initialized with wb->memcg_completions
writeback: bdi_writeback iteration must not skip dying ones
writeback: fix bdi_writeback iteration in wakeup_dirtytime_writeback()
writeback: laptop_mode_timer_fn() needs rcu_read_lock() around bdi_writeback iteration
nbd: Add locking for tasks
xen-blkfront: check for null drvdata in blkback_changed (XenbusStateClosing)
Add add_memory_resource() to add memory using an existing "System RAM"
resource. This is useful if the memory region is being located by
finding a free resource slot with allocate_resource().
Xen guests will make use of this in their balloon driver to hotplug
arbitrary amounts of memory in response to toolstack requests.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Tang Chen <tangchen@cn.fujitsu.com>
Currently a simple program below issues a sendfile(2) system call which
takes about 62 days to complete in my test KVM instance.
int fd;
off_t off = 0;
fd = open("file", O_RDWR | O_TRUNC | O_SYNC | O_CREAT, 0644);
ftruncate(fd, 2);
lseek(fd, 0, SEEK_END);
sendfile(fd, fd, &off, 0xfffffff);
Now you should not ask kernel to do a stupid stuff like copying 256MB in
2-byte chunks and call fsync(2) after each chunk but if you do, sysadmin
should have a way to stop you.
We actually do have a check for fatal_signal_pending() in
generic_perform_write() which triggers in this path however because we
always succeed in writing something before the check is done, we return
value > 0 from generic_perform_write() and thus the information about
signal gets lost.
Fix the problem by doing the signal check before writing anything. That
way generic_perform_write() returns -EINTR, the error gets propagated up
and the sendfile loop terminates early.
Signed-off-by: Jan Kara <jack@suse.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use is_zero_pfn() on pteval only after pte_present() check on pteval
(It might be better idea to introduce is_zero_pte() which checks
pte_present() first).
Otherwise when working on a swap or migration entry and if pte_pfn's
result is equal to zero_pfn by chance, we lose user's data in
__collapse_huge_page_copy(). So if you're unlucky, the application
segfaults and finally you could see below message on exit:
BUG: Bad rss-counter state mm:ffff88007f099300 idx:2 val:3
Fixes: ca0984caa8 ("mm: incorporate zero pages into transparent huge pages")
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org> [4.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This was found during userspace fuzzing test when a large size dma cma
allocation is made by driver(like ion) through userspace.
show_stack+0x10/0x1c
dump_stack+0x74/0xc8
kasan_report_error+0x2b0/0x408
kasan_report+0x34/0x40
__asan_storeN+0x15c/0x168
memset+0x20/0x44
__dma_alloc_coherent+0x114/0x18c
Signed-off-by: Rohit Vaswani <rvaswani@codeaurora.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
a20135ffbc ("writeback: don't drain bdi_writeback_congested on bdi
destruction") added rbtree_postorder_for_each_entry_safe() which is
used to remove all entries; however, according to Cody, the iterator
isn't safe against operations which may rebalance the tree. Fix it by
switching to repeatedly removing rb_first() until empty.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Cody P Schafer <dev@codyps.com>
Fixes: a20135ffbc ("writeback: don't drain bdi_writeback_congested on bdi destruction")
Link: http://lkml.kernel.org/g/1443997973-1700-1-git-send-email-dev@codyps.com
Signed-off-by: Jens Axboe <axboe@fb.com>
ARCHes with special requirements for evicting THP backing TLB entries
can implement this.
Otherwise also, it can help optimize TLB flush in THP regime.
stock flush_tlb_range() typically has optimization to nuke the entire
TLB if flush span is greater than a certain threshhold, which will
likely be true for a single huge page. Thus a single thp flush will
invalidate the entrire TLB which is not desirable.
e.g. see arch/arc: flush_pmd_tlb_range
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20151009100816.GC7873@node
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
- pgtable-generic.c: Fold individual #ifdef for each helper into a top
level #ifdef. Makes code more readable
- Converted the stub helpers for !THP to BUILD_BUG() vs. runtime BUG()
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20151009133450.GA8597@node
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Merge misc fixes from Andrew Morton:
"6 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
sh: add copy_user_page() alias for __copy_user()
lib/Kconfig: ZLIB_DEFLATE must select BITREVERSE
mm, dax: fix DAX deadlocks
memcg: convert threshold to bytes
builddeb: remove debian/files before build
mm, fs: obey gfp_mapping for add_to_page_cache()
The following two locking commits in the DAX code:
commit 843172978b ("dax: fix race between simultaneous faults")
commit 46c043ede4 ("mm: take i_mmap_lock in unmap_mapping_range() for DAX")
introduced a number of deadlocks and other issues which need to be fixed
for the v4.3 kernel. The list of issues in DAX after these commits
(some newly introduced by the commits, some preexisting) can be found
here:
https://lkml.org/lkml/2015/9/25/602 (Subject: "Re: [PATCH] dax: fix deadlock in __dax_fault").
This undoes most of the changes introduced by those two commits,
essentially returning us to the DAX locking scheme that was used in
v4.2.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_counter_memparse() returns pages for the threshold, while
mem_cgroup_usage() returns bytes for memory usage. Convert the
threshold to bytes.
Fixes: 3e32cb2e0a ("memcg: rename cgroup_event to mem_cgroup_event").
Signed-off-by: Shaohua Li <shli@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 6afdb859b7 ("mm: do not ignore mapping_gfp_mask in page cache
allocation paths") has caught some users of hardcoded GFP_KERNEL used in
the page cache allocation paths. This, however, wasn't complete and
there were others which went unnoticed.
Dave Chinner has reported the following deadlock for xfs on loop device:
: With the recent merge of the loop device changes, I'm now seeing
: XFS deadlock on my single CPU, 1GB RAM VM running xfs/073.
:
: The deadlocked is as follows:
:
: kloopd1: loop_queue_read_work
: xfs_file_iter_read
: lock XFS inode XFS_IOLOCK_SHARED (on image file)
: page cache read (GFP_KERNEL)
: radix tree alloc
: memory reclaim
: reclaim XFS inodes
: log force to unpin inodes
: <wait for log IO completion>
:
: xfs-cil/loop1: <does log force IO work>
: xlog_cil_push
: xlog_write
: <loop issuing log writes>
: xlog_state_get_iclog_space()
: <blocks due to all log buffers under write io>
: <waits for IO completion>
:
: kloopd1: loop_queue_write_work
: xfs_file_write_iter
: lock XFS inode XFS_IOLOCK_EXCL (on image file)
: <wait for inode to be unlocked>
:
: i.e. the kloopd, with it's split read and write work queues, has
: introduced a dependency through memory reclaim. i.e. that writes
: need to be able to progress for reads make progress.
:
: The problem, fundamentally, is that mpage_readpages() does a
: GFP_KERNEL allocation, rather than paying attention to the inode's
: mapping gfp mask, which is set to GFP_NOFS.
:
: The didn't used to happen, because the loop device used to issue
: reads through the splice path and that does:
:
: error = add_to_page_cache_lru(page, mapping, index,
: GFP_KERNEL & mapping_gfp_mask(mapping));
This has changed by commit aa4d86163e ("block: loop: switch to VFS
ITER_BVEC").
This patch changes mpage_readpage{s} to follow gfp mask set for the
mapping. There are, however, other places which are doing basically the
same.
lustre:ll_dir_filler is doing GFP_KERNEL from the function which
apparently uses GFP_NOFS for other allocations so let's make this
consistent.
cifs:readpages_get_pages is called from cifs_readpages and
__cifs_readpages_from_fscache called from the same path obeys mapping
gfp.
ramfs_nommu_expand_for_mapping is hardcoding GFP_KERNEL as well
regardless it uses mapping_gfp_mask for the page allocation.
ext4_mpage_readpages is the called from the page cache allocation path
same as read_pages and read_cache_pages
As I've noticed in my previous post I cannot say I would be happy about
sprinkling mapping_gfp_mask all over the place and it sounds like we
should drop gfp_mask argument altogether and use it internally in
__add_to_page_cache_locked that would require all the filesystems to use
mapping gfp consistently which I am not sure is the case here. From a
quick glance it seems that some file system use it all the time while
others are selective.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Dave Chinner <david@fromorbit.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Ming Lei <ming.lei@canonical.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, cgroup_has_tasks() tests whether the target cgroup has any
css_set linked to it. This works because a css_set's refcnt converges
with the number of tasks linked to it and thus there's no css_set
linked to a cgroup if it doesn't have any live tasks.
To help tracking resource usage of zombie tasks, putting the ref of
css_set will be separated from disassociating the task from the
css_set which means that a cgroup may have css_sets linked to it even
when it doesn't have any live tasks.
This patch replaces cgroup_has_tasks() with cgroup_is_populated()
which tests cgroup->nr_populated instead which locally counts the
number of populated css_sets. Unlike cgroup_has_tasks(),
cgroup_is_populated() is recursive - if any of the descendants is
populated, the cgroup is populated too. While this changes the
meaning of the test, all the existing users are okay with the change.
While at it, replace the open-coded ->populated_cnt test in
cgroup_events_show() with cgroup_is_populated().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
The vmstat code uses "schedule_delayed_work_on()" to do the initial
startup of the delayed work on the right CPU, but then once it was
started it would use the non-cpu-specific "schedule_delayed_work()" to
re-schedule it on that CPU.
That just happened to schedule it on the same CPU historically (well, in
almost all situations), but the code _requires_ this work to be per-cpu,
and should say so explicitly rather than depend on the non-cpu-specific
scheduling to schedule on the current CPU.
The timer code is being changed to not be as single-minded in always
running things on the calling CPU.
See also commit 874bbfe600 ("workqueue: make sure delayed work run in
local cpu") that for now maintains the local CPU guarantees just in case
there are other broken users that depended on the accidental behavior.
Cc: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bdi's are initialized in two steps, bdi_init() and bdi_register(), but
destroyed in a single step by bdi_destroy() which, for a bdi embedded
in a request_queue, is called during blk_cleanup_queue() which makes
the queue invisible and starts the draining of remaining usages.
A request_queue's user can access the congestion state of the embedded
bdi as long as it holds a reference to the queue. As such, it may
access the congested state of a queue which finished
blk_cleanup_queue() but hasn't reached blk_release_queue() yet.
Because the congested state was embedded in backing_dev_info which in
turn is embedded in request_queue, accessing the congested state after
bdi_destroy() was called was fine. The bdi was destroyed but the
memory region for the congested state remained accessible till the
queue got released.
a13f35e871 ("writeback: don't embed root bdi_writeback_congested in
bdi_writeback") changed the situation. Now, the root congested state
which is expected to be pinned while request_queue remains accessible
is separately reference counted and the base ref is put during
bdi_destroy(). This means that the root congested state may go away
prematurely while the queue is between bdi_dstroy() and
blk_cleanup_queue(), which was detected by Andrey's KASAN tests.
The root cause of this problem is that bdi doesn't distinguish the two
steps of destruction, unregistration and release, and now the root
congested state actually requires a separate release step. To fix the
issue, this patch separates out bdi_unregister() and bdi_exit() from
bdi_destroy(). bdi_unregister() is called from blk_cleanup_queue()
and bdi_exit() from blk_release_queue(). bdi_destroy() is now just a
simple wrapper calling the two steps back-to-back.
While at it, the prototype of bdi_destroy() is moved right below
bdi_setup_and_register() so that the counterpart operations are
located together.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: a13f35e871 ("writeback: don't embed root bdi_writeback_congested in bdi_writeback")
Cc: stable@vger.kernel.org # v4.2+
Reported-and-tested-by: Andrey Konovalov <andreyknvl@google.com>
Link: http://lkml.kernel.org/g/CAAeHK+zUJ74Zn17=rOyxacHU18SgCfC6bsYW=6kCY5GXJBwGfQ@mail.gmail.com
Reviewed-by: Jan Kara <jack@suse.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
For memcg domains, the amount of available memory was calculated as
min(the amount currently in use + headroom according to memcg,
total clean memory)
This isn't quite correct as what should be capped by the amount of
clean memory is the headroom, not the sum of memory in use and
headroom. For example, if a memcg domain has a significant amount of
dirty memory, the above can lead to a value which is lower than the
current amount in use which doesn't make much sense. In most
circumstances, the above leads to a number which is somewhat but not
drastically lower.
As the amount of memory which can be readily allocated to the memcg
domain is capped by the amount of system-wide clean memory which is
not already assigned to the memcg itself, the number we want is
the amount currently in use +
min(headroom according to memcg, clean memory elsewhere in the system)
This patch updates mem_cgroup_wb_stats() to return the number of
filepages and headroom instead of the calculated available pages.
mdtc_cap_avail() is renamed to mdtc_calc_avail() and performs the
above calculation from file, headroom, dirty and globally clean pages.
v2: Dummy mem_cgroup_wb_stats() implementation wasn't updated leading
to build failure when !CGROUP_WRITEBACK. Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: c2aa723a60 ("writeback: implement memcg writeback domain based throttling")
Signed-off-by: Jens Axboe <axboe@fb.com>
MDTC_INIT() is used to initialize dirty_throttle_control for memcg
domains. It used DTC_INIT_COMMON() to initialized mdtc->wb and
->wb_completions which is incorrect as DTC_INIT_COMMON() sets the
latter to wb->completions instead of wb->memcg_completions. This can
lead to wildly incorrect results when calculating the proportion of
dirty memory the memcg domain should get.
Remove DTC_INIT_COMMON() and update MDTC_INIT() to initialize
mdtc->wb_completions to wb->memcg_completions.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: c2aa723a60 ("writeback: implement memcg writeback domain based throttling")
Signed-off-by: Jens Axboe <axboe@fb.com>
bdi_for_each_wb() is used in several places to wake up or issue
writeback work items to all wb's (bdi_writeback's) on a given bdi.
The iteration is performed by walking bdi->cgwb_tree; however, the
tree only indexes wb's which are currently active.
For example, when a memcg gets associated with a different blkcg, the
old wb is removed from the tree so that the new one can be indexed.
The old wb starts dying from then on but will linger till all its
inodes are drained. As these dying wb's may still host dirty inodes,
writeback operations which affect all wb's must include them.
bdi_for_each_wb() skipping dying wb's led to sync(2) missing and
failing to sync the inodes belonging to those wb's.
This patch adds a RCU protected @bdi->wb_list which lists all wb's
beloinging to that bdi. wb's are added on creation and removed on
release rather than on the start of destruction. bdi_for_each_wb()
usages are replaced with list_for_each[_continue]_rcu() iterations
over @bdi->wb_list and bdi_for_each_wb() and its helpers are removed.
v2: Updated as per Jan. last_wb ref leak in bdi_split_work_to_wbs()
fixed and unnecessary list head severing in cgwb_bdi_destroy()
removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Artem Bityutskiy <dedekind1@gmail.com>
Fixes: ebe41ab0c7 ("writeback: implement bdi_for_each_wb()")
Link: http://lkml.kernel.org/g/1443012552.19983.209.camel@gmail.com
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
laptop_mode_timer_fn() was using bdi_for_each_wb() without the
required RCU locking leading to the following warning.
WARNING: CPU: 0 PID: 0 at include/linux/backing-dev.h:415 laptop_mode_timer_fn+0x106/0x170()
...
Call Trace:
<IRQ> [<ffffffff81480cdc>] dump_stack+0x4e/0x82
[<ffffffff81051912>] warn_slowpath_common+0x82/0xc0
[<ffffffff81051a0a>] warn_slowpath_null+0x1a/0x20
[<ffffffff8115f0e6>] laptop_mode_timer_fn+0x106/0x170
[<ffffffff810ca8e3>] call_timer_fn+0xb3/0x2f0
[<ffffffff810cad25>] run_timer_softirq+0x205/0x370
[<ffffffff81056854>] __do_softirq+0xd4/0x460
[<ffffffff81056d69>] irq_exit+0x89/0xa0
[<ffffffff8185a892>] smp_apic_timer_interrupt+0x42/0x50
[<ffffffff81858a44>] apic_timer_interrupt+0x84/0x90
...
Fix it by adding rcu_read_lock() around the iteration.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: a06fd6b102 ("writeback: make laptop_mode_timer_fn() handle multiple bdi_writeback's")
Reviewed-by: Jan Kara <jack@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This reverts commit 998ef75ddb.
The commit itself does not appear to be buggy per se, but it is exposing
a bug in ext4 (and Ted thinks ext3 too, but we solved that by getting
rid of it). It's too late in the release cycle to really worry about
this, even if Dave Hansen has a patch that may actually fix the
underlying ext4 problem. We can (and should) revisit this for the next
release.
The problem is that moving the prefaulting later now exposes a special
case with partially successful writes that isn't handled correctly. And
the prefaulting likely isn't normally even that much of a performance
issue - it looks like at least one reason Dave saw this in his
performance tests is that he also ran them on Skylake that now supports
the new SMAP code, which makes the normally very cheap user space
prefaulting noticeably more expensive.
Bisected-and-acked-by: Ted Ts'o <tytso@mit.edu>
Analyzed-and-acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Its a bit odd that debugfs_create_bool() takes 'u32 *' as an argument,
when all it needs is a boolean pointer.
It would be better to update this API to make it accept 'bool *'
instead, as that will make it more consistent and often more convenient.
Over that bool takes just a byte.
That required updates to all user sites as well, in the same commit
updating the API. regmap core was also using
debugfs_{read|write}_file_bool(), directly and variable types were
updated for that to be bool as well.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Mark Brown <broonie@kernel.org>
Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If a DMA pool lies at the very top of the dma_addr_t range (as may
happen with an IOMMU involved), the calculated end address of the pool
wraps around to zero, and page lookup always fails.
Tweak the relevant calculation to be overflow-proof.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Sakari Ailus <sakari.ailus@iki.fi>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 733a572e66 ("memcg: make mem_cgroup_read_{stat|event}() iterate
possible cpus instead of online") removed the last use of the per memcg
pcp_counter_lock but forgot to remove the variable.
Kill the vestigial variable.
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_read_stat() returns a page count by summing per cpu page
counters. The summing is racy wrt. updates, so a transient negative
sum is possible. Callers don't want negative values:
- mem_cgroup_wb_stats() doesn't want negative nr_dirty or nr_writeback.
This could confuse dirty throttling.
- oom reports and memory.stat shouldn't show confusing negative usage.
- tree_usage() already avoids negatives.
Avoid returning negative page counts from mem_cgroup_read_stat() and
convert it to unsigned.
[akpm@linux-foundation.org: fix old typo while we're in there]
Signed-off-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org> [4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The problem starts with a file backed dirty page which is charged to a
memcg. Then page migration is used to move oldpage to newpage.
Migration:
- copies the oldpage's data to newpage
- clears oldpage.PG_dirty
- sets newpage.PG_dirty
- uncharges oldpage from memcg
- charges newpage to memcg
Clearing oldpage.PG_dirty decrements the charged memcg's dirty page
count.
However, because newpage is not yet charged, setting newpage.PG_dirty
does not increment the memcg's dirty page count. After migration
completes newpage.PG_dirty is eventually cleared, often in
account_page_cleaned(). At this time newpage is charged to a memcg so
the memcg's dirty page count is decremented which causes underflow
because the count was not previously incremented by migration. This
underflow causes balance_dirty_pages() to see a very large unsigned
number of dirty memcg pages which leads to aggressive throttling of
buffered writes by processes in non root memcg.
This issue:
- can harm performance of non root memcg buffered writes.
- can report too small (even negative) values in
memory.stat[(total_)dirty] counters of all memcg, including the root.
To avoid polluting migrate.c with #ifdef CONFIG_MEMCG checks, introduce
page_memcg() and set_page_memcg() helpers.
Test:
0) setup and enter limited memcg
mkdir /sys/fs/cgroup/test
echo 1G > /sys/fs/cgroup/test/memory.limit_in_bytes
echo $$ > /sys/fs/cgroup/test/cgroup.procs
1) buffered writes baseline
dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k
sync
grep ^dirty /sys/fs/cgroup/test/memory.stat
2) buffered writes with compaction antagonist to induce migration
yes 1 > /proc/sys/vm/compact_memory &
rm -rf /data/tmp/foo
dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k
kill %
sync
grep ^dirty /sys/fs/cgroup/test/memory.stat
3) buffered writes without antagonist, should match baseline
rm -rf /data/tmp/foo
dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k
sync
grep ^dirty /sys/fs/cgroup/test/memory.stat
(speed, dirty residue)
unpatched patched
1) 841 MB/s 0 dirty pages 886 MB/s 0 dirty pages
2) 611 MB/s -33427456 dirty pages 793 MB/s 0 dirty pages
3) 114 MB/s -33427456 dirty pages 891 MB/s 0 dirty pages
Notice that unpatched baseline performance (1) fell after
migration (3): 841 -> 114 MB/s. In the patched kernel, post
migration performance matches baseline.
Fixes: c4843a7593 ("memcg: add per cgroup dirty page accounting")
Signed-off-by: Greg Thelen <gthelen@google.com>
Reported-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org> [4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SunDong reported the following on
https://bugzilla.kernel.org/show_bug.cgi?id=103841
I think I find a linux bug, I have the test cases is constructed. I
can stable recurring problems in fedora22(4.0.4) kernel version,
arch for x86_64. I construct transparent huge page, when the parent
and child process with MAP_SHARE, MAP_PRIVATE way to access the same
huge page area, it has the opportunity to lead to huge page copy on
write failure, and then it will munmap the child corresponding mmap
area, but then the child mmap area with VM_MAYSHARE attributes, child
process munmap this area can trigger VM_BUG_ON in set_vma_resv_flags
functions (vma - > vm_flags & VM_MAYSHARE).
There were a number of problems with the report (e.g. it's hugetlbfs that
triggers this, not transparent huge pages) but it was fundamentally
correct in that a VM_BUG_ON in set_vma_resv_flags() can be triggered that
looks like this
vma ffff8804651fd0d0 start 00007fc474e00000 end 00007fc475e00000
next ffff8804651fd018 prev ffff8804651fd188 mm ffff88046b1b1800
prot 8000000000000027 anon_vma (null) vm_ops ffffffff8182a7a0
pgoff 0 file ffff88106bdb9800 private_data (null)
flags: 0x84400fb(read|write|shared|mayread|maywrite|mayexec|mayshare|dontexpand|hugetlb)
------------
kernel BUG at mm/hugetlb.c:462!
SMP
Modules linked in: xt_pkttype xt_LOG xt_limit [..]
CPU: 38 PID: 26839 Comm: map Not tainted 4.0.4-default #1
Hardware name: Dell Inc. PowerEdge R810/0TT6JF, BIOS 2.7.4 04/26/2012
set_vma_resv_flags+0x2d/0x30
The VM_BUG_ON is correct because private and shared mappings have
different reservation accounting but the warning clearly shows that the
VMA is shared.
When a private COW fails to allocate a new page then only the process
that created the VMA gets the page -- all the children unmap the page.
If the children access that data in the future then they get killed.
The problem is that the same file is mapped shared and private. During
the COW, the allocation fails, the VMAs are traversed to unmap the other
private pages but a shared VMA is found and the bug is triggered. This
patch identifies such VMAs and skips them.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: SunDong <sund_sky@126.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit description is copied from the original post of this bug:
http://comments.gmane.org/gmane.linux.kernel.mm/135349
Kernels after v3.9 use kmalloc_size(INDEX_NODE + 1) to get the next
larger cache size than the size index INDEX_NODE mapping. In kernels
3.9 and earlier we used malloc_sizes[INDEX_L3 + 1].cs_size.
However, sometimes we can't get the right output we expected via
kmalloc_size(INDEX_NODE + 1), causing a BUG().
The mapping table in the latest kernel is like:
index = {0, 1, 2 , 3, 4, 5, 6, n}
size = {0, 96, 192, 8, 16, 32, 64, 2^n}
The mapping table before 3.10 is like this:
index = {0 , 1 , 2, 3, 4 , 5 , 6, n}
size = {32, 64, 96, 128, 192, 256, 512, 2^(n+3)}
The problem on my mips64 machine is as follows:
(1) When configured DEBUG_SLAB && DEBUG_PAGEALLOC && DEBUG_LOCK_ALLOC
&& DEBUG_SPINLOCK, the sizeof(struct kmem_cache_node) will be "150",
and the macro INDEX_NODE turns out to be "2": #define INDEX_NODE
kmalloc_index(sizeof(struct kmem_cache_node))
(2) Then the result of kmalloc_size(INDEX_NODE + 1) is 8.
(3) Then "if(size >= kmalloc_size(INDEX_NODE + 1)" will lead to "size
= PAGE_SIZE".
(4) Then "if ((size >= (PAGE_SIZE >> 3))" test will be satisfied and
"flags |= CFLGS_OFF_SLAB" will be covered.
(5) if (flags & CFLGS_OFF_SLAB)" test will be satisfied and will go to
"cachep->slabp_cache = kmalloc_slab(slab_size, 0u)", and the result
here may be NULL while kernel bootup.
(6) Finally,"BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));" causes the
BUG info as the following shows (may be only mips64 has this problem):
This patch fixes the problem of kmalloc_size(INDEX_NODE + 1) and removes
the BUG by adding 'size >= 256' check to guarantee that all necessary
small sized slabs are initialized regardless sequence of slab size in
mapping table.
Fixes: e33660165c ("slab: Use common kmalloc_index/kmalloc_size...")
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reported-by: Liuhailong <liu.hailong6@zte.com.cn>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
IS_ERR(_OR_NULL) already contain an 'unlikely' compiler flag and there
is no need to do that again from its callers. Drop it.
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The sane_reclaim() helper is supposed to return false for memcg reclaim
if the legacy hierarchy is used, because the latter lacks dirty
throttling mechanism, and so it did before it was accidentally broken by
commit 33398cf2f3 ("memcg: export struct mem_cgroup"). Fix it.
Fixes: 33398cf2f3 ("memcg: export struct mem_cgroup")
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit bcc5422230 ("mm: hugetlb: introduce page_huge_active")
each hugetlb page maintains its active flag to avoid a race condition
betwe= en multiple calls of isolate_huge_page(), but current kernel
doesn't set the f= lag on a hugepage allocated by migration because the
proper putback routine isn= 't called. This means that users could
still encounter the race referred to by bcc5422230 in this special
case, so this patch fixes it.
Fixes: bcc5422230 ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org> [4.1.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For VM_PFNMAP and VM_MIXEDMAP we use vm_ops->pfn_mkwrite instead of
vm_ops->page_mkwrite to notify abort write access. This means we want
vma->vm_page_prot to be write-protected if the VMA provides this vm_ops.
A theoretical scenario that will cause these missed events is:
On writable mapping with vm_ops->pfn_mkwrite, but without
vm_ops->page_mkwrite: read fault followed by write access to the pfn.
Writable pte will be set up on read fault and write fault will not be
generated.
I found it examining Dave's complaint on generic/080:
http://lkml.kernel.org/g/20150831233803.GO3902@dastard
Although I don't think it's the reason.
It shouldn't be a problem for ext2/ext4 as they provide both pfn_mkwrite
and page_mkwrite.
[akpm@linux-foundation.org: add local vm_ops to avoid 80-cols mess]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Yigal Korman <yigal@plexistor.com>
Acked-by: Boaz Harrosh <boaz@plexistor.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It wasn't explicitly documented but, when a process is being migrated,
cpuset and memcg depend on cgroup_taskset_first() returning the
threadgroup leader; however, this approach is somewhat ghetto and
would no longer work for the planned multi-process migration.
This patch introduces explicit cgroup_taskset_for_each_leader() which
iterates over only the threadgroup leaders and replaces
cgroup_taskset_first() usages for accessing the leader with it.
This prepares both memcg and cpuset for multi-process migration. This
patch also updates the documentation for cgroup_taskset_for_each() to
clarify the iteration rules and removes comments mentioning task
ordering in tasksets.
v2: A previous patch which added threadgroup leader test was dropped.
Patch updated accordingly.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Zefan Li <lizefan@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
cgroup core only recently grew generic notification support. Wire up
"memory.events" so that it triggers a file modified event whenever its
content changes.
v2: Refreshed on top of mem_cgroup relocation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
cftype->mode allows controllers to give arbitrary permissions to
interface knobs. Except for "cgroup.event_control", the existing uses
are spurious.
* Some explicitly specify S_IRUGO | S_IWUSR even though that's the
default.
* "cpuset.memory_pressure" specifies S_IRUGO while also setting a
write callback which returns -EACCES. All it needs to do is simply
not setting a write callback.
"cgroup.event_control" uses cftype->mode to make the file
world-writable. It's a misdesigned interface and we don't want
controllers to be tweaking interface file permissions in general.
This patch removes cftype->mode and all its spurious uses and
implements CFTYPE_WORLD_WRITABLE for "cgroup.event_control" which is
marked as compatibility-only.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
cgroup_on_dfl() tests whether the cgroup's root is the default
hierarchy; however, an individual controller is only interested in
whether the controller is attached to the default hierarchy and never
tests a cgroup which doesn't belong to the hierarchy that the
controller is attached to.
This patch replaces cgroup_on_dfl() tests in controllers with faster
static_key based cgroup_subsys_on_dfl(). This leaves cgroup core as
the only user of cgroup_on_dfl() and the function is moved from the
header file to cgroup.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Revert commit 6dc296e7df "mm: make sure all file VMAs have ->vm_ops
set".
Will Deacon reports that it "causes some mmap regressions in LTP, which
appears to use a MAP_PRIVATE mmap of /dev/zero as a way to get anonymous
pages in some of its tests (specifically mmap10 [1])".
William Shuman reports Oracle crashes.
So revert the patch while we work out what to do.
Reported-by: William Shuman <wshuman3@gmail.com>
Reported-by: Will Deacon <will.deacon@arm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The shadow which correspond 16 bytes memory may span 2 or 3 bytes. If
the memory is aligned on 8, then the shadow takes only 2 bytes. So we
check "shadow_first_bytes" is enough, and need not to call
"memory_is_poisoned_1(addr + 15);". But the code "if
(likely(!last_byte))" is wrong judgement.
e.g. addr=0, so last_byte = 15 & KASAN_SHADOW_MASK = 7, then the code
will continue to call "memory_is_poisoned_1(addr + 15);"
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Michal Marek <mmarek@suse.cz>
Cc: <zhongjiang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge fourth patch-bomb from Andrew Morton:
- sys_membarier syscall
- seq_file interface changes
- a few misc fixups
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
revert "ocfs2/dlm: use list_for_each_entry instead of list_for_each"
mm/early_ioremap: add explicit #include of asm/early_ioremap.h
fs/seq_file: convert int seq_vprint/seq_printf/etc... returns to void
selftests: enhance membarrier syscall test
selftests: add membarrier syscall test
sys_membarrier(): system-wide memory barrier (generic, x86)
MODSIGN: fix a compilation warning in extract-cert
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV8WvjAAoJEAhfPr2O5OEV5wIP/AjmqOau99ms4FvOQ932sO57
kKDM4CYeTBkYY2Xz2eGStgxhcEj538JTf6SXdrceEEYJHb/GNCb2iBM1TnB4YciF
rqhFv+n3R8h4Yn5KmhEhYzEfO7HUoyHPrOhcmTLzDoTO5wyrhAlPZxDWHohmfU84
uQ8WyGPYLxwm8hdZ+/NkB8PXsGbWN65EoKzN6tt2kA6HUP52UxE0Cw7Qu7Iu5zmO
y/x03mMbjhCBFFE41EeM76J+xKBhuaS4cyf8g08DJy5Zpf6ic8bKFmVg1tAFOZRD
mCETLrUlPYhglHqOoVS25bCI5kCw9xTAyjPZdQnwCTwgHl5gG3E4oJYKASrmZlps
igMSmLJEpQilsLy1Ze+K+Ci8EILmZzwbi21X0sbjq74Jd+tJZ+C8ZuWHVmPEF9j7
iHtZNIRzkzufNBJZn3DsmlGBb/Xc/UqfZVnJAB9gu3Ktav6dmtEIHrGRPpL19iYH
WtJWLt/Bpyb318K+fnxL8SzUqUxZJ4+8DrMtlgTqHmIRwVQ4CczyeWi0utQmBXEF
CaNp00S2V9N1hn8OIc+gaf7LTYJn0LkHFsskoiUZ5aZQd9ai0ql0IT1xLe0r8lMi
+ieB0Vp4wJtaodWIXOPeFugDqQXIb0Mh2M8J9FIJ116FLIai6btzO2iyVCtlR9Bg
1uPztCfJ/nusPPHnE26R
=TEFw
-----END PGP SIGNATURE-----
Merge tag 'media/v4.3-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-media
Pull media updates from Mauro Carvalho Chehab:
"A series of patches that move part of the code used to allocate memory
from the media subsystem to the mm subsystem"
[ The mm parts have been acked by VM people, and the series was
apparently in -mm for a while - Linus ]
* tag 'media/v4.3-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-media:
[media] drm/exynos: Convert g2d_userptr_get_dma_addr() to use get_vaddr_frames()
[media] media: vb2: Remove unused functions
[media] media: vb2: Convert vb2_dc_get_userptr() to use frame vector
[media] media: vb2: Convert vb2_vmalloc_get_userptr() to use frame vector
[media] media: vb2: Convert vb2_dma_sg_get_userptr() to use frame vector
[media] vb2: Provide helpers for mapping virtual addresses
[media] media: omap_vout: Convert omap_vout_uservirt_to_phys() to use get_vaddr_pfns()
[media] mm: Provide new get_vaddr_frames() helper
[media] vb2: Push mmap_sem down to memops
Commit 6b0f68e32e ("mm: add utility for early copy from unmapped ram")
introduces a function copy_from_early_mem() into mm/early_ioremap.c
which itself calls early_memremap()/early_memunmap(). However, since
early_memunmap() has not been declared yet at this point in the .c file,
nor by any explicitly included header files, we are depending on a
transitive include of asm/early_ioremap.h to declare it, which is
fragile.
So instead, include this header explicitly.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull blk-cg updates from Jens Axboe:
"A bit later in the cycle, but this has been in the block tree for a a
while. This is basically four patchsets from Tejun, that improve our
buffered cgroup writeback. It was dependent on the other cgroup
changes, but they went in earlier in this cycle.
Series 1 is set of 5 patches that has cgroup writeback updates:
- bdi_writeback iteration fix which could lead to some wb's being
skipped or repeated during e.g. sync under memory pressure.
- Simplification of wb work wait mechanism.
- Writeback tracepoints updated to report cgroup.
Series 2 is is a set of updates for the CFQ cgroup writeback handling:
cfq has always charged all async IOs to the root cgroup. It didn't
have much choice as writeback didn't know about cgroups and there
was no way to tell who to blame for a given writeback IO.
writeback finally grew support for cgroups and now tags each
writeback IO with the appropriate cgroup to charge it against.
This patchset updates cfq so that it follows the blkcg each bio is
tagged with. Async cfq_queues are now shared across cfq_group,
which is per-cgroup, instead of per-request_queue cfq_data. This
makes all IOs follow the weight based IO resource distribution
implemented by cfq.
- Switched from GFP_ATOMIC to GFP_NOWAIT as suggested by Jeff.
- Other misc review points addressed, acks added and rebased.
Series 3 is the blkcg policy cleanup patches:
This patchset contains assorted cleanups for blkcg_policy methods
and blk[c]g_policy_data handling.
- alloc/free added for blkg_policy_data. exit dropped.
- alloc/free added for blkcg_policy_data.
- blk-throttle's async percpu allocation is replaced with direct
allocation.
- all methods now take blk[c]g_policy_data instead of blkcg_gq or
blkcg.
And finally, series 4 is a set of patches cleaning up the blkcg stats
handling:
blkcg's stats have always been somwhat of a mess. This patchset
tries to improve the situation a bit.
- The following patches added to consolidate blkcg entry point and
blkg creation. This is in itself is an improvement and helps
colllecting common stats on bio issue.
- per-blkg stats now accounted on bio issue rather than request
completion so that bio based and request based drivers can behave
the same way. The issue was spotted by Vivek.
- cfq-iosched implements custom recursive stats and blk-throttle
implements custom per-cpu stats. This patchset make blkcg core
support both by default.
- cfq-iosched and blk-throttle keep track of the same stats
multiple times. Unify them"
* 'for-4.3/blkcg' of git://git.kernel.dk/linux-block: (45 commits)
blkcg: use CGROUP_WEIGHT_* scale for io.weight on the unified hierarchy
blkcg: s/CFQ_WEIGHT_*/CFQ_WEIGHT_LEGACY_*/
blkcg: implement interface for the unified hierarchy
blkcg: misc preparations for unified hierarchy interface
blkcg: separate out tg_conf_updated() from tg_set_conf()
blkcg: move body parsing from blkg_conf_prep() to its callers
blkcg: mark existing cftypes as legacy
blkcg: rename subsystem name from blkio to io
blkcg: refine error codes returned during blkcg configuration
blkcg: remove unnecessary NULL checks from __cfqg_set_weight_device()
blkcg: reduce stack usage of blkg_rwstat_recursive_sum()
blkcg: remove cfqg_stats->sectors
blkcg: move io_service_bytes and io_serviced stats into blkcg_gq
blkcg: make blkg_[rw]stat_recursive_sum() to be able to index into blkcg_gq
blkcg: make blkcg_[rw]stat per-cpu
blkcg: add blkg_[rw]stat->aux_cnt and replace cfq_group->dead_stats with it
blkcg: consolidate blkg creation in blkcg_bio_issue_check()
blk-throttle: improve queue bypass handling
blkcg: move root blkg lookup optimization from throtl_lookup_tg() to __blkg_lookup()
blkcg: inline [__]blkg_lookup()
...
Let's use helper rather than direct check of vma->vm_ops to distinguish
anonymous VMA.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We rely on vma->vm_ops == NULL to detect anonymous VMA: see
vma_is_anonymous(), but some drivers doesn't set ->vm_ops.
As a result we can end up with anonymous page in private file mapping.
That should not lead to serious misbehaviour, but nevertheless is wrong.
Let's fix by setting up dummy ->vm_ops for file mmapping if f_op->mmap()
didn't set its own.
The patch also adds sanity check into __vma_link_rb(). It will help
catch broken VMAs which inserted directly into mm_struct via
insert_vm_struct().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the additional "vm_flags_t vm_flags" argument to do_mmap_pgoff(),
rename it to do_mmap(), and re-introduce do_mmap_pgoff() as a simple
wrapper on top of do_mmap(). Perhaps we should update the callers of
do_mmap_pgoff() and kill it later.
This way mpx_mmap() can simply call do_mmap(vm_flags => VM_MPX) and do not
play with vm internals.
After this change mmap_region() has a single user outside of mmap.c,
arch/tile/mm/elf.c:arch_setup_additional_pages(). It would be nice to
change arch/tile/ and unexport mmap_region().
[kirill@shutemov.name: fix build]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Knowing the portion of memory that is not used by a certain application or
memory cgroup (idle memory) can be useful for partitioning the system
efficiently, e.g. by setting memory cgroup limits appropriately.
Currently, the only means to estimate the amount of idle memory provided
by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
access bit for all pages mapped to a particular process by writing 1 to
clear_refs, wait for some time, and then count smaps:Referenced. However,
this method has two serious shortcomings:
- it does not count unmapped file pages
- it affects the reclaimer logic
To overcome these drawbacks, this patch introduces two new page flags,
Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
A page's Idle flag can only be set from userspace by setting bit in
/sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
and it is cleared whenever the page is accessed either through page tables
(it is cleared in page_referenced() in this case) or using the read(2)
system call (mark_page_accessed()). Thus by setting the Idle flag for
pages of a particular workload, which can be found e.g. by reading
/proc/PID/pagemap, waiting for some time to let the workload access its
working set, and then reading the bitmap file, one can estimate the amount
of pages that are not used by the workload.
The Young page flag is used to avoid interference with the memory
reclaimer. A page's Young flag is set whenever the Access bit of a page
table entry pointing to the page is cleared by writing to the bitmap file.
If page_referenced() is called on a Young page, it will add 1 to its
return value, therefore concealing the fact that the Access bit was
cleared.
Note, since there is no room for extra page flags on 32 bit, this feature
uses extended page flags when compiled on 32 bit.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: kpageidle requires an MMU]
[akpm@linux-foundation.org: decouple from page-flags rework]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the scope of the idle memory tracking feature, which is introduced by
the following patch, we need to clear the referenced/accessed bit not only
in primary, but also in secondary ptes. The latter is required in order
to estimate wss of KVM VMs. At the same time we want to avoid flushing
tlb, because it is quite expensive and it won't really affect the final
result.
Currently, there is no function for clearing pte young bit that would meet
our requirements, so this patch introduces one. To achieve that we have
to add a new mmu-notifier callback, clear_young, since there is no method
for testing-and-clearing a secondary pte w/o flushing tlb. The new method
is not mandatory and currently only implemented by KVM.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is only used in mem_cgroup_try_charge, so fold it in and zap it.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hwpoison allows to filter pages by memory cgroup ino. Currently, it
calls try_get_mem_cgroup_from_page to obtain the cgroup from a page and
then its ino using cgroup_ino, but now we have a helper method for
that, page_cgroup_ino, so use it instead.
This patch also loosens the hwpoison memcg filter dependency rules - it
makes it depend on CONFIG_MEMCG instead of CONFIG_MEMCG_SWAP, because
hwpoison memcg filter does not require anything (nor it used to) from
CONFIG_MEMCG_SWAP side.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset introduces a new user API for tracking user memory pages
that have not been used for a given period of time. The purpose of this
is to provide the userspace with the means of tracking a workload's
working set, i.e. the set of pages that are actively used by the
workload. Knowing the working set size can be useful for partitioning the
system more efficiently, e.g. by tuning memory cgroup limits
appropriately, or for job placement within a compute cluster.
==== USE CASES ====
The unified cgroup hierarchy has memory.low and memory.high knobs, which
are defined as the low and high boundaries for the workload working set
size. However, the working set size of a workload may be unknown or
change in time. With this patch set, one can periodically estimate the
amount of memory unused by each cgroup and tune their memory.low and
memory.high parameters accordingly, therefore optimizing the overall
memory utilization.
Another use case is balancing workloads within a compute cluster. Knowing
how much memory is not really used by a workload unit may help take a more
optimal decision when considering migrating the unit to another node
within the cluster.
Also, as noted by Minchan, this would be useful for per-process reclaim
(https://lwn.net/Articles/545668/). With idle tracking, we could reclaim idle
pages only by smart user memory manager.
==== USER API ====
The user API consists of two new files:
* /sys/kernel/mm/page_idle/bitmap. This file implements a bitmap where each
bit corresponds to a page, indexed by PFN. When the bit is set, the
corresponding page is idle. A page is considered idle if it has not been
accessed since it was marked idle. To mark a page idle one should set the
bit corresponding to the page by writing to the file. A value written to the
file is OR-ed with the current bitmap value. Only user memory pages can be
marked idle, for other page types input is silently ignored. Writing to this
file beyond max PFN results in the ENXIO error. Only available when
CONFIG_IDLE_PAGE_TRACKING is set.
This file can be used to estimate the amount of pages that are not
used by a particular workload as follows:
1. mark all pages of interest idle by setting corresponding bits in the
/sys/kernel/mm/page_idle/bitmap
2. wait until the workload accesses its working set
3. read /sys/kernel/mm/page_idle/bitmap and count the number of bits set
* /proc/kpagecgroup. This file contains a 64-bit inode number of the
memory cgroup each page is charged to, indexed by PFN. Only available when
CONFIG_MEMCG is set.
This file can be used to find all pages (including unmapped file pages)
accounted to a particular cgroup. Using /sys/kernel/mm/page_idle/bitmap, one
can then estimate the cgroup working set size.
For an example of using these files for estimating the amount of unused
memory pages per each memory cgroup, please see the script attached
below.
==== REASONING ====
The reason to introduce the new user API instead of using
/proc/PID/{clear_refs,smaps} is that the latter has two serious
drawbacks:
- it does not count unmapped file pages
- it affects the reclaimer logic
The new API attempts to overcome them both. For more details on how it
is achieved, please see the comment to patch 6.
==== PATCHSET STRUCTURE ====
The patch set is organized as follows:
- patch 1 adds page_cgroup_ino() helper for the sake of
/proc/kpagecgroup and patches 2-3 do related cleanup
- patch 4 adds /proc/kpagecgroup, which reports cgroup ino each page is
charged to
- patch 5 introduces a new mmu notifier callback, clear_young, which is
a lightweight version of clear_flush_young; it is used in patch 6
- patch 6 implements the idle page tracking feature, including the
userspace API, /sys/kernel/mm/page_idle/bitmap
- patch 7 exports idle flag via /proc/kpageflags
==== SIMILAR WORKS ====
Originally, the patch for tracking idle memory was proposed back in 2011
by Michel Lespinasse (see http://lwn.net/Articles/459269/). The main
difference between Michel's patch and this one is that Michel implemented
a kernel space daemon for estimating idle memory size per cgroup while
this patch only provides the userspace with the minimal API for doing the
job, leaving the rest up to the userspace. However, they both share the
same idea of Idle/Young page flags to avoid affecting the reclaimer logic.
==== PERFORMANCE EVALUATION ====
SPECjvm2008 (https://www.spec.org/jvm2008/) was used to evaluate the
performance impact introduced by this patch set. Three runs were carried
out:
- base: kernel without the patch
- patched: patched kernel, the feature is not used
- patched-active: patched kernel, 1 minute-period daemon is used for
tracking idle memory
For tracking idle memory, idlememstat utility was used:
https://github.com/locker/idlememstat
testcase base patched patched-active
compiler 537.40 ( 0.00)% 532.26 (-0.96)% 538.31 ( 0.17)%
compress 305.47 ( 0.00)% 301.08 (-1.44)% 300.71 (-1.56)%
crypto 284.32 ( 0.00)% 282.21 (-0.74)% 284.87 ( 0.19)%
derby 411.05 ( 0.00)% 413.44 ( 0.58)% 412.07 ( 0.25)%
mpegaudio 189.96 ( 0.00)% 190.87 ( 0.48)% 189.42 (-0.28)%
scimark.large 46.85 ( 0.00)% 46.41 (-0.94)% 47.83 ( 2.09)%
scimark.small 412.91 ( 0.00)% 415.41 ( 0.61)% 421.17 ( 2.00)%
serial 204.23 ( 0.00)% 213.46 ( 4.52)% 203.17 (-0.52)%
startup 36.76 ( 0.00)% 35.49 (-3.45)% 35.64 (-3.05)%
sunflow 115.34 ( 0.00)% 115.08 (-0.23)% 117.37 ( 1.76)%
xml 620.55 ( 0.00)% 619.95 (-0.10)% 620.39 (-0.03)%
composite 211.50 ( 0.00)% 211.15 (-0.17)% 211.67 ( 0.08)%
time idlememstat:
17.20user 65.16system 2:15:23elapsed 1%CPU (0avgtext+0avgdata 8476maxresident)k
448inputs+40outputs (1major+36052minor)pagefaults 0swaps
==== SCRIPT FOR COUNTING IDLE PAGES PER CGROUP ====
#! /usr/bin/python
#
import os
import stat
import errno
import struct
CGROUP_MOUNT = "/sys/fs/cgroup/memory"
BUFSIZE = 8 * 1024 # must be multiple of 8
def get_hugepage_size():
with open("/proc/meminfo", "r") as f:
for s in f:
k, v = s.split(":")
if k == "Hugepagesize":
return int(v.split()[0]) * 1024
PAGE_SIZE = os.sysconf("SC_PAGE_SIZE")
HUGEPAGE_SIZE = get_hugepage_size()
def set_idle():
f = open("/sys/kernel/mm/page_idle/bitmap", "wb", BUFSIZE)
while True:
try:
f.write(struct.pack("Q", pow(2, 64) - 1))
except IOError as err:
if err.errno == errno.ENXIO:
break
raise
f.close()
def count_idle():
f_flags = open("/proc/kpageflags", "rb", BUFSIZE)
f_cgroup = open("/proc/kpagecgroup", "rb", BUFSIZE)
with open("/sys/kernel/mm/page_idle/bitmap", "rb", BUFSIZE) as f:
while f.read(BUFSIZE): pass # update idle flag
idlememsz = {}
while True:
s1, s2 = f_flags.read(8), f_cgroup.read(8)
if not s1 or not s2:
break
flags, = struct.unpack('Q', s1)
cgino, = struct.unpack('Q', s2)
unevictable = (flags >> 18) & 1
huge = (flags >> 22) & 1
idle = (flags >> 25) & 1
if idle and not unevictable:
idlememsz[cgino] = idlememsz.get(cgino, 0) + \
(HUGEPAGE_SIZE if huge else PAGE_SIZE)
f_flags.close()
f_cgroup.close()
return idlememsz
if __name__ == "__main__":
print "Setting the idle flag for each page..."
set_idle()
raw_input("Wait until the workload accesses its working set, "
"then press Enter")
print "Counting idle pages..."
idlememsz = count_idle()
for dir, subdirs, files in os.walk(CGROUP_MOUNT):
ino = os.stat(dir)[stat.ST_INO]
print dir + ": " + str(idlememsz.get(ino, 0) / 1024) + " kB"
==== END SCRIPT ====
This patch (of 8):
Add page_cgroup_ino() helper to memcg.
This function returns the inode number of the closest online ancestor of
the memory cgroup a page is charged to. It is required for exporting
information about which page is charged to which cgroup to userspace,
which will be introduced by a following patch.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the zpool and compressor parameters to be changeable at runtime.
When changed, a new pool is created with the requested zpool/compressor,
and added as the current pool at the front of the pool list. Previous
pools remain in the list only to remove existing compressed pages from.
The old pool(s) are removed once they become empty.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Acked-by: Seth Jennings <sjennings@variantweb.net>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add dynamic creation of pools. Move the static crypto compression per-cpu
transforms into each pool. Add a pointer to zswap_entry to the pool it's
in.
This is required by the following patch which enables changing the zswap
zpool and compressor params at runtime.
[akpm@linux-foundation.org: fix merge snafus]
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Acked-by: Seth Jennings <sjennings@variantweb.net>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This series makes creation of the zpool and compressor dynamic, so that
they can be changed at runtime. This makes using/configuring zswap
easier, as before this zswap had to be configured at boot time, using boot
params.
This uses a single list to track both the zpool and compressor together,
although Seth had mentioned an alternative which is to track the zpools
and compressors using separate lists. In the most common case, only a
single zpool and single compressor, using one list is slightly simpler
than using two lists, and for the uncommon case of multiple zpools and/or
compressors, using one list is slightly less simple (and uses slightly
more memory, probably) than using two lists.
This patch (of 4):
Add zpool_has_pool() function, indicating if the specified type of zpool
is available (i.e. zsmalloc or zbud). This allows checking if a pool is
available, without actually trying to allocate it, similar to
crypto_has_alg().
This is used by a following patch to zswap that enables the dynamic
runtime creation of zswap zpools.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Acked-by: Seth Jennings <sjennings@variantweb.net>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge second patch-bomb from Andrew Morton:
"Almost all of the rest of MM. There was an unusually large amount of
MM material this time"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (141 commits)
zpool: remove no-op module init/exit
mm: zbud: constify the zbud_ops
mm: zpool: constify the zpool_ops
mm: swap: zswap: maybe_preload & refactoring
zram: unify error reporting
zsmalloc: remove null check from destroy_handle_cache()
zsmalloc: do not take class lock in zs_shrinker_count()
zsmalloc: use class->pages_per_zspage
zsmalloc: consider ZS_ALMOST_FULL as migrate source
zsmalloc: partial page ordering within a fullness_list
zsmalloc: use shrinker to trigger auto-compaction
zsmalloc: account the number of compacted pages
zsmalloc/zram: introduce zs_pool_stats api
zsmalloc: cosmetic compaction code adjustments
zsmalloc: introduce zs_can_compact() function
zsmalloc: always keep per-class stats
zsmalloc: drop unused variable `nr_to_migrate'
mm/memblock.c: fix comment in __next_mem_range()
mm/page_alloc.c: fix type information of memoryless node
memory-hotplug: fix comments in zone_spanned_pages_in_node() and zone_spanned_pages_in_node()
...
Remove zpool_init() and zpool_exit(); they do nothing other than print
"loaded" and "unloaded".
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The structure zbud_ops is not modified so make the pointer to it a
pointer to const.
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The structure zpool_ops is not modified so make the pointer to it a
pointer to const.
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zswap_get_swap_cache_page and read_swap_cache_async have pretty much the
same code with only significant difference in return value and usage of
swap_readpage.
I a helper __read_swap_cache_async() with the common code. Behavior
change: now zswap_get_swap_cache_page will use radix_tree_maybe_preload
instead radix_tree_preload. Looks like, this wasn't changed only by the
reason of code duplication.
Signed-off-by: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Seth Jennings <sjennings@variantweb.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can pass a NULL cache pointer to kmem_cache_destroy(), because it
NULL-checks its argument now. Remove redundant test from
destroy_handle_cache().
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can avoid taking class ->lock around zs_can_compact() in
zs_shrinker_count(), because the number that we return back is outdated
in general case, by design. We have different sources that are able to
change class's state right after we return from zs_can_compact() --
ongoing I/O operations, manually triggered compaction, or two of them
happening simultaneously.
We re-do this calculations during compaction on a per class basis
anyway.
zs_unregister_shrinker() will not return until we have an active
shrinker, so classes won't unexpectedly disappear while
zs_shrinker_count() iterates them.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to recalcurate pages_per_zspage in runtime. Just use
class->pages_per_zspage to avoid unnecessary runtime overhead.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no reason to prevent select ZS_ALMOST_FULL as migration source
if we cannot find source from ZS_ALMOST_EMPTY.
With this patch, zs_can_compact will return more exact result.
Signed-off-by: Minchan Kim <minchan.kim@lge.com>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We want to see more ZS_FULL pages and less ZS_ALMOST_{FULL, EMPTY}
pages. Put a page with higher ->inuse count first within its
->fullness_list, which will give us better chances to fill up this page
with new objects (find_get_zspage() return ->fullness_list head for new
object allocation), so some zspages will become ZS_ALMOST_FULL/ZS_FULL
quicker.
It performs a trivial and cheap ->inuse compare which does not slow down
zsmalloc and in the worst case keeps the list pages in no particular
order.
A more expensive solution could sort fullness_list by ->inuse count.
[minchan@kernel.org: code adjustments]
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Perform automatic pool compaction by a shrinker when system is getting
tight on memory.
User-space has a very little knowledge regarding zsmalloc fragmentation
and basically has no mechanism to tell whether compaction will result in
any memory gain. Another issue is that user space is not always aware
of the fact that system is getting tight on memory. Which leads to very
uncomfortable scenarios when user space may start issuing compaction
'randomly' or from crontab (for example). Fragmentation is not always
necessarily bad, allocated and unused objects, after all, may be filled
with the data later, w/o the need of allocating a new zspage. On the
other hand, we obviously don't want to waste memory when the system
needs it.
Compaction now has a relatively quick pool scan so we are able to
estimate the number of pages that will be freed easily, which makes it
possible to call this function from a shrinker->count_objects()
callback. We also abort compaction as soon as we detect that we can't
free any pages any more, preventing wasteful objects migrations.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction returns back to zram the number of migrated objects, which is
quite uninformative -- we have objects of different sizes so user space
cannot obtain any valuable data from that number. Change compaction to
operate in terms of pages and return back to compaction issuer the
number of pages that were freed during compaction. So from now on we
will export more meaningful value in zram<id>/mm_stat -- the number of
freed (compacted) pages.
This requires:
(a) a rename of `num_migrated' to 'pages_compacted'
(b) a internal API change -- return first_page's fullness_group from
putback_zspage(), so we know when putback_zspage() did
free_zspage(). It helps us to account compaction stats correctly.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
`zs_compact_control' accounts the number of migrated objects but it has
a limited lifespan -- we lose it as soon as zs_compaction() returns back
to zram. It worked fine, because (a) zram had it's own counter of
migrated objects and (b) only zram could trigger compaction. However,
this does not work for automatic pool compaction (not issued by zram).
To account objects migrated during auto-compaction (issued by the
shrinker) we need to store this number in zs_pool.
Define a new `struct zs_pool_stats' structure to keep zs_pool's stats
there. It provides only `num_migrated', as of this writing, but it
surely can be extended.
A new zsmalloc zs_pool_stats() symbol exports zs_pool's stats back to
caller.
Use zs_pool_stats() in zram and remove `num_migrated' from zram_stats.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change zs_object_copy() argument order to be (DST, SRC) rather than
(SRC, DST). copy/move functions usually have (to, from) arguments
order.
Rename alloc_target_page() to isolate_target_page(). This function
doesn't allocate anything, it isolates target page, pretty much like
isolate_source_page().
Tweak __zs_compact() comment.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function checks if class compaction will free any pages.
Rephrasing -- do we have enough unused objects to form at least one
ZS_EMPTY page and free it. It aborts compaction if class compaction
will not result in any (further) savings.
EXAMPLE (this debug output is not part of this patch set):
- class size
- number of allocated objects
- number of used objects
- max objects per zspage
- pages per zspage
- estimated number of pages that will be freed
[..]
class-512 objs:544 inuse:540 maxobj-per-zspage:8 pages-per-zspage:1 zspages-to-free:0
... class-512 compaction is useless. break
class-496 objs:660 inuse:570 maxobj-per-zspage:33 pages-per-zspage:4 zspages-to-free:2
class-496 objs:627 inuse:570 maxobj-per-zspage:33 pages-per-zspage:4 zspages-to-free:1
class-496 objs:594 inuse:570 maxobj-per-zspage:33 pages-per-zspage:4 zspages-to-free:0
... class-496 compaction is useless. break
class-448 objs:657 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:4
class-448 objs:648 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:3
class-448 objs:639 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:2
class-448 objs:630 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:1
class-448 objs:621 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:0
... class-448 compaction is useless. break
class-432 objs:728 inuse:685 maxobj-per-zspage:28 pages-per-zspage:3 zspages-to-free:1
class-432 objs:700 inuse:685 maxobj-per-zspage:28 pages-per-zspage:3 zspages-to-free:0
... class-432 compaction is useless. break
class-416 objs:819 inuse:705 maxobj-per-zspage:39 pages-per-zspage:4 zspages-to-free:2
class-416 objs:780 inuse:705 maxobj-per-zspage:39 pages-per-zspage:4 zspages-to-free:1
class-416 objs:741 inuse:705 maxobj-per-zspage:39 pages-per-zspage:4 zspages-to-free:0
... class-416 compaction is useless. break
class-400 objs:690 inuse:674 maxobj-per-zspage:10 pages-per-zspage:1 zspages-to-free:1
class-400 objs:680 inuse:674 maxobj-per-zspage:10 pages-per-zspage:1 zspages-to-free:0
... class-400 compaction is useless. break
class-384 objs:736 inuse:709 maxobj-per-zspage:32 pages-per-zspage:3 zspages-to-free:0
... class-384 compaction is useless. break
[..]
Every "compaction is useless" indicates that we saved CPU cycles.
class-512 has
544 object allocated
540 objects used
8 objects per-page
Even if we have a ALMOST_EMPTY zspage, we still don't have enough room to
migrate all of its objects and free this zspage; so compaction will not
make a lot of sense, it's better to just leave it as is.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Always account per-class `zs_size_stat' stats. This data will help us
make better decisions during compaction. We are especially interested
in OBJ_ALLOCATED and OBJ_USED, which can tell us if class compaction
will result in any memory gain.
For instance, we know the number of allocated objects in the class, the
number of objects being used (so we also know how many objects are not
used) and the number of objects per-page. So we can ensure if we have
enough unused objects to form at least one ZS_EMPTY zspage during
compaction.
We calculate this value on per-class basis so we can calculate a total
number of zspages that can be released. Which is exactly what a
shrinker wants to know.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset tweaks compaction and makes it possible to trigger pool
compaction automatically when system is getting low on memory.
zsmalloc in some cases can suffer from a notable fragmentation and
compaction can release some considerable amount of memory. The problem
here is that currently we fully rely on user space to perform compaction
when needed. However, performing zsmalloc compaction is not always an
obvious thing to do. For example, suppose we have a `idle' fragmented
(compaction was never performed) zram device and system is getting low
on memory due to some 3rd party user processes (gcc LTO, or firefox,
etc.). It's quite unlikely that user space will issue zpool compaction
in this case. Besides, user space cannot tell for sure how badly pool
is fragmented; however, this info is known to zsmalloc and, hence, to a
shrinker.
This patch (of 7):
__zs_compact() does not use `nr_to_migrate', drop it.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For a memoryless node, the output of get_pfn_range_for_nid are all zero.
It will display mem from 0 to -1.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When hot adding a node from add_memory(), we will add memblock first, so
the node is not empty. But when called from cpu_up(), the node should
be empty.
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>\
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We use sysctl_lowmem_reserve_ratio rather than
sysctl_lower_zone_reserve_ratio to determine how aggressive the kernel
is in defending lowmem from the possibility of being captured into
pinned user memory. To avoid misleading, correct it in some comments.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment says that the per-cpu batchsize and zone watermarks are
determined by present_pages which is definitely wrong, they are both
calculated from managed_pages. Fix it.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's no point in initializing vma->vm_pgoff if the insertion attempt
will be failing anyway. Run the checks before performing the
initialization.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 1dfb059b94 ("thp: reduce khugepaged freezing latency") fixed
khugepaged to do not block a system suspend. But the result is that it
could not get interrupted before the given timeout because the condition
for the wait event is "false".
This patch puts back the original approach but it uses
freezable_schedule_timeout_interruptible() instead of
schedule_timeout_interruptible(). It does the right thing. I am pretty
sure that the freezable variant was not used in the original fix only
because it was not available at that time.
The regression has been there for ages. It was not critical. It just
did the allocation throttling a little bit more aggressively.
I found this problem when converting the kthread to kthread worker API
and trying to understand the code.
This bug is thought to have minimal userspace-visible impact. Somebody
could set a high alloc_sleep value by mistake, and then try to fix it
back, but khugepaged would keep sleeping until the high value expires.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We cache isolate_start_pfn before entering isolate_migratepages(). If
pageblock is skipped in isolate_migratepages() due to whatever reason,
cc->migrate_pfn can be far from isolate_start_pfn hence we flush pages
that were freed. For example, the following scenario can be possible:
- assume order-9 compaction, pageblock order is 9
- start_isolate_pfn is 0x200
- isolate_migratepages()
- skip a number of pageblocks
- start to isolate from pfn 0x600
- cc->migrate_pfn = 0x620
- return
- last_migrated_pfn is set to 0x200
- check flushing condition
- current_block_start is set to 0x600
- last_migrated_pfn < current_block_start then do useless flush
This wrong flush would not help the performance and success rate so this
patch tries to fix it. One simple way to know the exact position where
we start to isolate migratable pages is that we cache it in
isolate_migratepages() before entering actual isolation. This patch
implements that and fixes the problem.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_pages_exact_node() was introduced in commit 6484eb3e2a ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE. Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise. In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.
The misleading name has lead to mistakes in the past, see for example
commits 5265047ac3 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f ("mm, mempolicy:
migrate_to_node should only migrate to node").
Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.
To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage. Both functions get described in comments.
It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly. The number of users would be small
anyway.
Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead. This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.
Both differences will be rectified by the next patch.
To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers. Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is merely a politeness: I've not found that shrink_page_list()
leads to deadlock with the page it holds locked across
wait_on_page_writeback(); but nevertheless, why hold others off by
keeping the page locked there?
And while we're at it: remove the mistaken "not " from the commentary on
this Case 3 (and a distracting blank line from Case 2, if I may).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the list_head is empty then we'll have called list_lru_from_kmem for
nothing. Move that call inside of the list_empty if block.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In log_early function, crt_early_log should also count once when
'crt_early_log >= ARRAY_SIZE(early_log)'. Otherwise the reported count
from kmemleak_init is one less than 'actual number'.
Then, in kmemleak_init, if early_log buffer size equal actual number,
kmemleak will init sucessful, so change warning condition to
'crt_early_log > ARRAY_SIZE(early_log)'.
Signed-off-by: Wang Kai <morgan.wang@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__split_vma() doesn't need out_err label, neither need initializing err.
copy_vma() can return NULL directly when kmem_cache_alloc() fails.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>