We don't need to take the mutex and zero out wr_cur_bio, as this is
called after the scrub finished.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper scrub_free_wr_ctx is used only once and fits into
scrub_free_ctx as it continues sctx shutdown, no need to keep it
separate.
Signed-off-by: David Sterba <dsterba@suse.com>
The helper scrub_setup_wr_ctx is used only once and fits into
scrub_setup_ctx as it continues intialization, no need to keep it
separate.
Signed-off-by: David Sterba <dsterba@suse.com>
Once we remove the btree_inode we won't have an inode to pass anymore,
just pass the fs_info directly and the inum since we use that to print
out the repair message.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When scrubbing a RAID5 which has recoverable data corruption (only one
data stripe is corrupted), sometimes scrub will report more csum errors
than expected. Sometimes even unrecoverable error will be reported.
The problem can be easily reproduced by the following steps:
1) Create a btrfs with RAID5 data profile with 3 devs
2) Mount it with nospace_cache or space_cache=v2
To avoid extra data space usage.
3) Create a 128K file and sync the fs, unmount it
Now the 128K file lies at the beginning of the data chunk
4) Locate the physical bytenr of data chunk on dev3
Dev3 is the 1st data stripe.
5) Corrupt the first 64K of the data chunk stripe on dev3
6) Mount the fs and scrub it
The correct csum error number should be 16 (assuming using x86_64).
Larger csum error number can be reported in a 1/3 chance.
And unrecoverable error can also be reported in a 1/10 chance.
The root cause of the problem is RAID5/6 recover code has race
condition, due to the fact that full scrub is initiated per device.
While for other mirror based profiles, each mirror is independent with
each other, so race won't cause any big problem.
For example:
Corrupted | Correct | Correct |
| Scrub dev3 (D1) | Scrub dev2 (D2) | Scrub dev1(P) |
------------------------------------------------------------------------
Read out D1 |Read out D2 |Read full stripe |
Check csum |Check csum |Check parity |
Csum mismatch |Csum match, continue |Parity mismatch |
handle_errored_block | |handle_errored_block |
Read out full stripe | | Read out full stripe|
D1 csum error(err++) | | D1 csum error(err++)|
Recover D1 | | Recover D1 |
So D1's csum error is accounted twice, just because
handle_errored_block() doesn't have enough protection, and race can happen.
On even worse case, for example D1's recovery code is re-writing
D1/D2/P, and P's recovery code is just reading out full stripe, then we
can cause unrecoverable error.
This patch will use previously introduced lock_full_stripe() and
unlock_full_stripe() to protect the whole scrub_handle_errored_block()
function for RAID56 recovery.
So no extra csum error nor unrecoverable error.
Reported-by: Goffredo Baroncelli <kreijack@libero.it>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike mirror based profiles, RAID5/6 recovery needs to read out the
whole full stripe.
And if we don't do proper protection, it can easily cause race condition.
Introduce 2 new functions: lock_full_stripe() and unlock_full_stripe()
for RAID5/6.
Which store a rb_tree of mutexes for full stripes, so scrub callers can
use them to lock a full stripe to avoid race.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
This is fixing code pieces where we use div_u64 when passing a u64 divisor.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 3d8da67817 ("Btrfs: fix divide error upon chunk's stripe_len")
changed stripe_len in struct map_lookup to u64, but didn't update
stripe_len in struct scrub_parity.
This updates the type and switches to div64_u64_rem to match u64 divisor.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a helper to clear whole page, with a arch-specific optimized
code. The replaced cases do not seem to be in performace critical code,
but we still might get some percent gain.
Signed-off-by: David Sterba <dsterba@suse.com>
scrub_setup_recheck_block() calls btrfs_map_sblock() and then accesses
bbio without protection of bio_counter.
This can lead to use-after-free if racing with dev replace cancel.
Fix it by increasing bio_counter before calling btrfs_map_sblock() and
decreasing the bio_counter when corresponding recover is finished.
Cc: Liu Bo <bo.li.liu@oracle.com>
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When raid56 dev-replace is cancelled by running scrub, we will free
target device without waiting for in-flight bios, causing the following
NULL pointer deference or general protection failure.
BUG: unable to handle kernel NULL pointer dereference at 00000000000005e0
IP: generic_make_request_checks+0x4d/0x610
CPU: 1 PID: 11676 Comm: kworker/u4:14 Tainted: G O 4.11.0-rc2 #72
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
Workqueue: btrfs-endio-raid56 btrfs_endio_raid56_helper [btrfs]
task: ffff88002875b4c0 task.stack: ffffc90001334000
RIP: 0010:generic_make_request_checks+0x4d/0x610
Call Trace:
? generic_make_request+0xc7/0x360
generic_make_request+0x24/0x360
? generic_make_request+0xc7/0x360
submit_bio+0x64/0x120
? page_in_rbio+0x4d/0x80 [btrfs]
? rbio_orig_end_io+0x80/0x80 [btrfs]
finish_rmw+0x3f4/0x540 [btrfs]
validate_rbio_for_rmw+0x36/0x40 [btrfs]
raid_rmw_end_io+0x7a/0x90 [btrfs]
bio_endio+0x56/0x60
end_workqueue_fn+0x3c/0x40 [btrfs]
btrfs_scrubparity_helper+0xef/0x620 [btrfs]
btrfs_endio_raid56_helper+0xe/0x10 [btrfs]
process_one_work+0x2af/0x720
? process_one_work+0x22b/0x720
worker_thread+0x4b/0x4f0
kthread+0x10f/0x150
? process_one_work+0x720/0x720
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x2e/0x40
RIP: generic_make_request_checks+0x4d/0x610 RSP: ffffc90001337bb8
In btrfs_dev_replace_finishing(), we will call
btrfs_rm_dev_replace_blocked() to wait bios before destroying the target
device when scrub is finished normally.
However when dev-replace is aborted, either due to error or cancelled by
scrub, we didn't wait for bios, this can lead to use-after-free if there
are bios holding the target device.
Furthermore, for raid56 scrub, at least 2 places are calling
btrfs_map_sblock() without protection of bio_counter, leading to the
problem.
This patch fixes the problem:
1) Wait for bio_counter before freeing target device when canceling
replace
2) When calling btrfs_map_sblock() for raid56, use bio_counter to
protect the call.
Cc: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the following situation, scrub will calculate wrong parity to
overwrite the correct one:
RAID5 full stripe:
Before
| Dev 1 | Dev 2 | Dev 3 |
| Data stripe 1 | Data stripe 2 | Parity Stripe |
--------------------------------------------------- 0
| 0x0000 (Bad) | 0xcdcd | 0x0000 |
--------------------------------------------------- 4K
| 0xcdcd | 0xcdcd | 0x0000 |
...
| 0xcdcd | 0xcdcd | 0x0000 |
--------------------------------------------------- 64K
After scrubbing dev3 only:
| Dev 1 | Dev 2 | Dev 3 |
| Data stripe 1 | Data stripe 2 | Parity Stripe |
--------------------------------------------------- 0
| 0xcdcd (Good) | 0xcdcd | 0xcdcd (Bad) |
--------------------------------------------------- 4K
| 0xcdcd | 0xcdcd | 0x0000 |
...
| 0xcdcd | 0xcdcd | 0x0000 |
--------------------------------------------------- 64K
The reason is that after raid56 read rebuild rbio->stripe_pages are all
correctly recovered (0xcd for data stripes).
However when we check and repair parity in
scrub_parity_check_and_repair(), we will append pages in sparity->spages
list to rbio->bio_pages[], which contains old on-disk data.
And when we submit parity data to disk, we calculate parity using
rbio->bio_pages[] first, if rbio->bio_pages[] not found, then fallback
to rbio->stripe_pages[].
The patch fix it by not appending pages from sparity->spages.
So finish_parity_scrub() will use rbio->stripe_pages[] which is correct.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Scrub repairs data by the unit called scrub_block, which may contain
several pages. Scrub always tries to look up a good copy of a whole
block, but if there's no such copy, it tries to do repair page by page.
If we don't set page's io_error when checking this bad copy, in the last
step, we may skip this page when repairing bad copy from good copy.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_inc_block_group_ro is either passed the extent root or the dev
root, but it doesn't do anything with the dev tree. Let's convert
to passing an fs_info and using the extent root.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs updates from Chris Mason:
"Jeff Mahoney and Dave Sterba have a really nice set of cleanups in
here, and Christoph pitched in corrections/improvements to make btrfs
use proper helpers for bio walking instead of doing it by hand.
There are some key fixes as well, including some long standing bugs
that took forever to track down in btrfs_drop_extents and during
balance"
* 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (77 commits)
btrfs: limit async_work allocation and worker func duration
Revert "Btrfs: adjust len of writes if following a preallocated extent"
Btrfs: don't WARN() in btrfs_transaction_abort() for IO errors
btrfs: opencode chunk locking, remove helpers
btrfs: remove root parameter from transaction commit/end routines
btrfs: split btrfs_wait_marked_extents into normal and tree log functions
btrfs: take an fs_info directly when the root is not used otherwise
btrfs: simplify btrfs_wait_cache_io prototype
btrfs: convert extent-tree tracepoints to use fs_info
btrfs: root->fs_info cleanup, access fs_info->delayed_root directly
btrfs: root->fs_info cleanup, add fs_info convenience variables
btrfs: root->fs_info cleanup, update_block_group{,flags}
btrfs: root->fs_info cleanup, lock/unlock_chunks
btrfs: root->fs_info cleanup, btrfs_calc_{trans,trunc}_metadata_size
btrfs: pull node/sector/stripe sizes out of root and into fs_info
btrfs: root->fs_info cleanup, io_ctl_init
btrfs: root->fs_info cleanup, use fs_info->dev_root everywhere
btrfs: struct reada_control.root -> reada_control.fs_info
btrfs: struct btrfsic_state->root should be an fs_info
btrfs: alloc_reserved_file_extent trace point should use extent_root
...
Now we only use the root parameter to print the root objectid in
a tracepoint. We can use the root parameter from the transaction
handle for that. It's also used to join the transaction with
async commits, so we remove the comment that it's just for checking.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are loads of functions in btrfs that accept a root parameter
but only use it to obtain an fs_info pointer. Let's convert those to
just accept an fs_info pointer directly.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In routines where someptr->fs_info is referenced multiple times, we
introduce a convenience variable. This makes the code considerably
more readable.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We track the node sizes per-root, but they never vary from the values
in the superblock. This patch messes with the 80-column style a bit,
but subsequent patches to factor out root->fs_info into a convenience
variable fix it up again.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_map_block supports different types of mappings, which to a large
extent resemble block layer operations. But they don't always do, and
currently btrfs dangerously overlays it's own flag over the block layer
flags. This is just asking for a conflict, so introduce a different
map flags enum inside of btrfs instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove the WRITE_* and READ_SYNC wrappers, and just use the flags
directly. Where applicable this also drops usage of the
bio_set_op_attrs wrapper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
CodingStyle chapter 2:
"[...] never break user-visible strings such as printk messages,
because that breaks the ability to grep for them."
This patch unsplits user-visible strings.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull more btrfs updates from Chris Mason:
"This is part two of my btrfs pull, which is some cleanups and a batch
of fixes.
Most of the code here is from Jeff Mahoney, making the pointers we
pass around internally more consistent and less confusing overall. I
noticed a small problem right before I sent this out yesterday, so I
fixed it up and re-tested overnight"
* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (40 commits)
Btrfs: fix __MAX_CSUM_ITEMS
btrfs: btrfs_abort_transaction, drop root parameter
btrfs: add btrfs_trans_handle->fs_info pointer
btrfs: btrfs_relocate_chunk pass extent_root to btrfs_end_transaction
btrfs: convert nodesize macros to static inlines
btrfs: introduce BTRFS_MAX_ITEM_SIZE
btrfs: cleanup, remove prototype for btrfs_find_root_ref
btrfs: copy_to_sk drop unused root parameter
btrfs: simpilify btrfs_subvol_inherit_props
btrfs: tests, use BTRFS_FS_STATE_DUMMY_FS_INFO instead of dummy root
btrfs: tests, require fs_info for root
btrfs: tests, move initialization into tests/
btrfs: btrfs_test_opt and friends should take a btrfs_fs_info
btrfs: prefix fsid to all trace events
btrfs: plumb fs_info into btrfs_work
btrfs: remove obsolete part of comment in statfs
btrfs: hide test-only member under ifdef
btrfs: Ratelimit "no csum found" info message
btrfs: Add ratelimit to btrfs printing
Btrfs: fix unexpected balance crash due to BUG_ON
...
In order to provide an fsid for trace events, we'll need a btrfs_fs_info
pointer. The most lightweight way to do that for btrfs_work structures
is to associate it with the __btrfs_workqueue structure. Each queued
btrfs_work structure has a workqueue associated with it, so that's
a natural fit. It's a privately defined structures, so we add accessors
to retrieve the fs_info pointer.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs/073 invokes scrub ioctl in a tight loop. In subpage-blocksize
scenario this results in a lot of "scrub: size assumption sectorsize !=
PAGE_SIZE " messages being printed on the console. To reduce the number
of such messages this commit uses btrfs_err_rl() instead of
btrfs_err().
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This should be the easier cases to convert btrfs to
bio_set_op_attrs/bio_op.
They are mostly just cut and replace type of changes.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This has callers of submit_bio/submit_bio_wait set the bio->bi_rw
instead of passing it in. This makes that use the same as
generic_make_request and how we set the other bio fields.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Fixed up fs/ext4/crypto.c
Signed-off-by: Jens Axboe <axboe@fb.com>
After it finishes processing a device extent, the device replace code sets
back the block group to RW mode and then after that it sets the left cursor
to match the logical end address of the block group, so that future writes
into extents belonging to the block group go both the source (old) and
target (new) devices. However from the moment we turn the block group
back to RW mode we have a short time window, that lasts until we update
the left cursor's value, where extents can be allocated from the block
group and written to, in which case they will not be copied/written to
the target (new) device. Fix this by updating the left cursor's value
before turning the block group back to RW mode.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
We were assigning new values to fields of the device replace object
without holding the respective lock after processing each device extent.
This is important for the left cursor field which can be accessed by a
concurrent task running __btrfs_map_block (which, correctly, takes the
device replace lock).
So change these fields while holding the device replace lock.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
When we do a device replace, for each device extent we find from the
source device, we set the corresponding block group to readonly mode to
prevent writes into it from happening while we are copying the device
extent from the source to the target device. However just before we set
the block group to readonly mode some concurrent task might have already
allocated an extent from it or decided it could perform a nocow write
into one of its extents, which can make the device replace process to
miss copying an extent since it uses the extent tree's commit root to
search for extents and only once it finishes searching for all extents
belonging to the block group it does set the left cursor to the logical
end address of the block group - this is a problem if the respective
ordered extents finish while we are searching for extents using the
extent tree's commit root and no transaction commit happens while we
are iterating the tree, since it's the delayed references created by the
ordered extents (when they complete) that insert the extent items into
the extent tree (using the non-commit root of course).
Example:
CPU 1 CPU 2
btrfs_dev_replace_start()
btrfs_scrub_dev()
scrub_enumerate_chunks()
--> finds device extent belonging
to block group X
<transaction N starts>
starts buffered write
against some inode
writepages is run against
that inode forcing dellaloc
to run
btrfs_writepages()
extent_writepages()
extent_write_cache_pages()
__extent_writepage()
writepage_delalloc()
run_delalloc_range()
cow_file_range()
btrfs_reserve_extent()
--> allocates an extent
from block group X
(which is not yet
in RO mode)
btrfs_add_ordered_extent()
--> creates ordered extent Y
flush_epd_write_bio()
--> bio against the extent from
block group X is submitted
btrfs_inc_block_group_ro(bg X)
--> sets block group X to readonly
scrub_chunk(bg X)
scrub_stripe(device extent from srcdev)
--> keeps searching for extent items
belonging to the block group using
the extent tree's commit root
--> it never blocks due to
fs_info->scrub_pause_req as no
one tries to commit transaction N
--> copies all extents found from the
source device into the target device
--> finishes search loop
bio completes
ordered extent Y completes
and creates delayed data
reference which will add an
extent item to the extent
tree when run (typically
at transaction commit time)
--> so the task doing the
scrub/device replace
at CPU 1 misses this
and does not copy this
extent into the new/target
device
btrfs_dec_block_group_ro(bg X)
--> turns block group X back to RW mode
dev_replace->cursor_left is set to the
logical end offset of block group X
So fix this by waiting for all cow and nocow writes after setting a block
group to readonly mode.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
We usually call btrfs_put_bbio() when btrfs_map_block() failed,
btrfs_put_bbio() works right whether bbio is a valid value, or NULL.
But there is a exception, in some case, btrfs_map_block() will return
fail without touching *bbio(keeping its original value), and if bbio
was not initialized yet, invalid memory accessing will happened.
Above case is in scrub_missing_raid56_pages(), and similar case in
scrub_raid56_parity().
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A 'struct bio' is allocated in scrub_missing_raid56_pages(), but it was never
freed anywhere.
Signed-off-by: Scott Talbert <scott.talbert@hgst.com>
Signed-off-by: David Sterba <dsterba@suse.com>
pagev array in scrub_block{} is of size SCRUB_MAX_PAGES_PER_BLOCK.
page_index should be checked with the same to trigger BUG_ON().
Signed-off-by: Ashish Samant <ashish.samant@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The struct 'map_lookup' uses type int for @stripe_len, while
btrfs_chunk_stripe_len() can return a u64 value, and it may end up with
@stripe_len being undefined value and it can lead to 'divide error' in
__btrfs_map_block().
This changes 'map_lookup' to use type u64 for stripe_len, also right now
we only use BTRFS_STRIPE_LEN for stripe_len, so this adds a valid checker for
BTRFS_STRIPE_LEN.
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Reported-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ folded division fix to scrub_raid56_parity ]
Signed-off-by: David Sterba <dsterba@suse.com>
The key variable occupies 17 bytes, the key_start is used once, we can
simply reuse existing 'key' for that purpose. As the key is not a simple
type, compiler doest not do it on itself.
Signed-off-by: David Sterba <dsterba@suse.com>
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.
This promise never materialized. And unlikely will.
We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE. And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.
Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.
Let's stop pretending that pages in page cache are special. They are
not.
The changes are pretty straight-forward:
- <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;
- PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};
- page_cache_get() -> get_page();
- page_cache_release() -> put_page();
This patch contains automated changes generated with coccinelle using
script below. For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.
The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.
There are few places in the code where coccinelle didn't reach. I'll
fix them manually in a separate patch. Comments and documentation also
will be addressed with the separate patch.
virtual patch
@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E
@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT
@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE
@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK
@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)
@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)
@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>