The kill() syscall operates on process identifiers (pid). After a process
has exited its pid can be reused by another process. If a caller sends a
signal to a reused pid it will end up signaling the wrong process. This
issue has often surfaced and there has been a push to address this problem [1].
This patch uses file descriptors (fd) from proc/<pid> as stable handles on
struct pid. Even if a pid is recycled the handle will not change. The fd
can be used to send signals to the process it refers to.
Thus, the new syscall pidfd_send_signal() is introduced to solve this
problem. Instead of pids it operates on process fds (pidfd).
/* prototype and argument /*
long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags);
/* syscall number 424 */
The syscall number was chosen to be 424 to align with Arnd's rework in his
y2038 to minimize merge conflicts (cf. [25]).
In addition to the pidfd and signal argument it takes an additional
siginfo_t and flags argument. If the siginfo_t argument is NULL then
pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it
is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo().
The flags argument is added to allow for future extensions of this syscall.
It currently needs to be passed as 0. Failing to do so will cause EINVAL.
/* pidfd_send_signal() replaces multiple pid-based syscalls */
The pidfd_send_signal() syscall currently takes on the job of
rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a
positive pid is passed to kill(2). It will however be possible to also
replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended.
/* sending signals to threads (tid) and process groups (pgid) */
Specifically, the pidfd_send_signal() syscall does currently not operate on
process groups or threads. This is left for future extensions.
In order to extend the syscall to allow sending signal to threads and
process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and
PIDFD_TYPE_TID) should be added. This implies that the flags argument will
determine what is signaled and not the file descriptor itself. Put in other
words, grouping in this api is a property of the flags argument not a
property of the file descriptor (cf. [13]). Clarification for this has been
requested by Eric (cf. [19]).
When appropriate extensions through the flags argument are added then
pidfd_send_signal() can additionally replace the part of kill(2) which
operates on process groups as well as the tgkill(2) and
rt_tgsigqueueinfo(2) syscalls.
How such an extension could be implemented has been very roughly sketched
in [14], [15], and [16]. However, this should not be taken as a commitment
to a particular implementation. There might be better ways to do it.
Right now this is intentionally left out to keep this patchset as simple as
possible (cf. [4]).
/* naming */
The syscall had various names throughout iterations of this patchset:
- procfd_signal()
- procfd_send_signal()
- taskfd_send_signal()
In the last round of reviews it was pointed out that given that if the
flags argument decides the scope of the signal instead of different types
of fds it might make sense to either settle for "procfd_" or "pidfd_" as
prefix. The community was willing to accept either (cf. [17] and [18]).
Given that one developer expressed strong preference for the "pidfd_"
prefix (cf. [13]) and with other developers less opinionated about the name
we should settle for "pidfd_" to avoid further bikeshedding.
The "_send_signal" suffix was chosen to reflect the fact that the syscall
takes on the job of multiple syscalls. It is therefore intentional that the
name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the
fomer because it might imply that pidfd_send_signal() is a replacement for
kill(2), and not the latter because it is a hassle to remember the correct
spelling - especially for non-native speakers - and because it is not
descriptive enough of what the syscall actually does. The name
"pidfd_send_signal" makes it very clear that its job is to send signals.
/* zombies */
Zombies can be signaled just as any other process. No special error will be
reported since a zombie state is an unreliable state (cf. [3]). However,
this can be added as an extension through the @flags argument if the need
ever arises.
/* cross-namespace signals */
The patch currently enforces that the signaler and signalee either are in
the same pid namespace or that the signaler's pid namespace is an ancestor
of the signalee's pid namespace. This is done for the sake of simplicity
and because it is unclear to what values certain members of struct
siginfo_t would need to be set to (cf. [5], [6]).
/* compat syscalls */
It became clear that we would like to avoid adding compat syscalls
(cf. [7]). The compat syscall handling is now done in kernel/signal.c
itself by adding __copy_siginfo_from_user_generic() which lets us avoid
compat syscalls (cf. [8]). It should be noted that the addition of
__copy_siginfo_from_user_any() is caused by a bug in the original
implementation of rt_sigqueueinfo(2) (cf. 12).
With upcoming rework for syscall handling things might improve
significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain
any additional callers.
/* testing */
This patch was tested on x64 and x86.
/* userspace usage */
An asciinema recording for the basic functionality can be found under [9].
With this patch a process can be killed via:
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info,
unsigned int flags)
{
#ifdef __NR_pidfd_send_signal
return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags);
#else
return -ENOSYS;
#endif
}
int main(int argc, char *argv[])
{
int fd, ret, saved_errno, sig;
if (argc < 3)
exit(EXIT_FAILURE);
fd = open(argv[1], O_DIRECTORY | O_CLOEXEC);
if (fd < 0) {
printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]);
exit(EXIT_FAILURE);
}
sig = atoi(argv[2]);
printf("Sending signal %d to process %s\n", sig, argv[1]);
ret = do_pidfd_send_signal(fd, sig, NULL, 0);
saved_errno = errno;
close(fd);
errno = saved_errno;
if (ret < 0) {
printf("%s - Failed to send signal %d to process %s\n",
strerror(errno), sig, argv[1]);
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
/* Q&A
* Given that it seems the same questions get asked again by people who are
* late to the party it makes sense to add a Q&A section to the commit
* message so it's hopefully easier to avoid duplicate threads.
*
* For the sake of progress please consider these arguments settled unless
* there is a new point that desperately needs to be addressed. Please make
* sure to check the links to the threads in this commit message whether
* this has not already been covered.
*/
Q-01: (Florian Weimer [20], Andrew Morton [21])
What happens when the target process has exited?
A-01: Sending the signal will fail with ESRCH (cf. [22]).
Q-02: (Andrew Morton [21])
Is the task_struct pinned by the fd?
A-02: No. A reference to struct pid is kept. struct pid - as far as I
understand - was created exactly for the reason to not require to
pin struct task_struct (cf. [22]).
Q-03: (Andrew Morton [21])
Does the entire procfs directory remain visible? Just one entry
within it?
A-03: The same thing that happens right now when you hold a file descriptor
to /proc/<pid> open (cf. [22]).
Q-04: (Andrew Morton [21])
Does the pid remain reserved?
A-04: No. This patchset guarantees a stable handle not that pids are not
recycled (cf. [22]).
Q-05: (Andrew Morton [21])
Do attempts to signal that fd return errors?
A-05: See {Q,A}-01.
Q-06: (Andrew Morton [22])
Is there a cleaner way of obtaining the fd? Another syscall perhaps.
A-06: Userspace can already trivially retrieve file descriptors from procfs
so this is something that we will need to support anyway. Hence,
there's no immediate need to add another syscalls just to make
pidfd_send_signal() not dependent on the presence of procfs. However,
adding a syscalls to get such file descriptors is planned for a
future patchset (cf. [22]).
Q-07: (Andrew Morton [21] and others)
This fd-for-a-process sounds like a handy thing and people may well
think up other uses for it in the future, probably unrelated to
signals. Are the code and the interface designed to permit such
future applications?
A-07: Yes (cf. [22]).
Q-08: (Andrew Morton [21] and others)
Now I think about it, why a new syscall? This thing is looking
rather like an ioctl?
A-08: This has been extensively discussed. It was agreed that a syscall is
preferred for a variety or reasons. Here are just a few taken from
prior threads. Syscalls are safer than ioctl()s especially when
signaling to fds. Processes are a core kernel concept so a syscall
seems more appropriate. The layout of the syscall with its four
arguments would require the addition of a custom struct for the
ioctl() thereby causing at least the same amount or even more
complexity for userspace than a simple syscall. The new syscall will
replace multiple other pid-based syscalls (see description above).
The file-descriptors-for-processes concept introduced with this
syscall will be extended with other syscalls in the future. See also
[22], [23] and various other threads already linked in here.
Q-09: (Florian Weimer [24])
What happens if you use the new interface with an O_PATH descriptor?
A-09:
pidfds opened as O_PATH fds cannot be used to send signals to a
process (cf. [2]). Signaling processes through pidfds is the
equivalent of writing to a file. Thus, this is not an operation that
operates "purely at the file descriptor level" as required by the
open(2) manpage. See also [4].
/* References */
[1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/
[2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/
[3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/
[4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/
[5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/
[6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/
[7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/
[8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/
[9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy
[11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/
[12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/
[13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/
[14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/
[15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/
[16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/
[17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/
[18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/
[19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/
[20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/
[21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/
[22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/
[23]: https://lwn.net/Articles/773459/
[24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/
[25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Jann Horn <jannh@google.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Florian Weimer <fweimer@redhat.com>
Signed-off-by: Christian Brauner <christian@brauner.io>
Reviewed-by: Tycho Andersen <tycho@tycho.ws>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Aleksa Sarai <cyphar@cyphar.com>
If we have fixed user buffers, we can map them into the kernel when we
setup the io_uring. That avoids the need to do get_user_pages() for
each and every IO.
To utilize this feature, the application must call io_uring_register()
after having setup an io_uring instance, passing in
IORING_REGISTER_BUFFERS as the opcode. The argument must be a pointer to
an iovec array, and the nr_args should contain how many iovecs the
application wishes to map.
If successful, these buffers are now mapped into the kernel, eligible
for IO. To use these fixed buffers, the application must use the
IORING_OP_READ_FIXED and IORING_OP_WRITE_FIXED opcodes, and then
set sqe->index to the desired buffer index. sqe->addr..sqe->addr+seq->len
must point to somewhere inside the indexed buffer.
The application may register buffers throughout the lifetime of the
io_uring instance. It can call io_uring_register() with
IORING_UNREGISTER_BUFFERS as the opcode to unregister the current set of
buffers, and then register a new set. The application need not
unregister buffers explicitly before shutting down the io_uring
instance.
It's perfectly valid to setup a larger buffer, and then sometimes only
use parts of it for an IO. As long as the range is within the originally
mapped region, it will work just fine.
For now, buffers must not be file backed. If file backed buffers are
passed in, the registration will fail with -1/EOPNOTSUPP. This
restriction may be relaxed in the future.
RLIMIT_MEMLOCK is used to check how much memory we can pin. A somewhat
arbitrary 1G per buffer size is also imposed.
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The submission queue (SQ) and completion queue (CQ) rings are shared
between the application and the kernel. This eliminates the need to
copy data back and forth to submit and complete IO.
IO submissions use the io_uring_sqe data structure, and completions
are generated in the form of io_uring_cqe data structures. The SQ
ring is an index into the io_uring_sqe array, which makes it possible
to submit a batch of IOs without them being contiguous in the ring.
The CQ ring is always contiguous, as completion events are inherently
unordered, and hence any io_uring_cqe entry can point back to an
arbitrary submission.
Two new system calls are added for this:
io_uring_setup(entries, params)
Sets up an io_uring instance for doing async IO. On success,
returns a file descriptor that the application can mmap to
gain access to the SQ ring, CQ ring, and io_uring_sqes.
io_uring_enter(fd, to_submit, min_complete, flags, sigset, sigsetsize)
Initiates IO against the rings mapped to this fd, or waits for
them to complete, or both. The behavior is controlled by the
parameters passed in. If 'to_submit' is non-zero, then we'll
try and submit new IO. If IORING_ENTER_GETEVENTS is set, the
kernel will wait for 'min_complete' events, if they aren't
already available. It's valid to set IORING_ENTER_GETEVENTS
and 'min_complete' == 0 at the same time, this allows the
kernel to return already completed events without waiting
for them. This is useful only for polling, as for IRQ
driven IO, the application can just check the CQ ring
without entering the kernel.
With this setup, it's possible to do async IO with a single system
call. Future developments will enable polled IO with this interface,
and polled submission as well. The latter will enable an application
to do IO without doing ANY system calls at all.
For IRQ driven IO, an application only needs to enter the kernel for
completions if it wants to wait for them to occur.
Each io_uring is backed by a workqueue, to support buffered async IO
as well. We will only punt to an async context if the command would
need to wait for IO on the device side. Any data that can be accessed
directly in the page cache is done inline. This avoids the slowness
issue of usual threadpools, since cached data is accessed as quickly
as a sync interface.
Sample application: http://git.kernel.dk/cgit/fio/plain/t/io_uring.c
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This series finally gets us to the point of having system calls with
64-bit time_t on all architectures, after a long time of incremental
preparation patches.
There was actually one conversion that I missed during the summer,
i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes
and review comments.
The following system calls are now added on all 32-bit architectures
using the same system call numbers:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
Each one of these corresponds directly to an existing system call
that includes a 'struct timespec' argument, or a structure containing
a timespec or (in case of clock_adjtime) timeval. Not included here
are new versions of getitimer/setitimer and getrusage/waitid, which
are planned for the future but only needed to make a consistent API
rather than for correct operation beyond y2038. These four system
calls are based on 'timeval', and it has not been finally decided
what the replacement kernel interface will use instead.
So far, I have done a lot of build testing across most architectures,
which has found a number of bugs. Runtime testing so far included
testing LTP on 32-bit ARM with the existing system calls, to ensure
we do not regress for existing binaries, and a test with a 32-bit
x86 build of LTP against a modified version of the musl C library
that has been adapted to the new system call interface [3].
This library can be used for testing on all architectures supported
by musl-1.1.21, but it is not how the support is getting integrated
into the official musl release. Official musl support is planned
but will require more invasive changes to the library.
Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/
Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/
Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcXf7/AAoJEGCrR//JCVInPSUP/RhsQSCKMGtONB/vVICQhwep
PybhzBSpHWFxszzTi6BEPN1zS9B069G9mDollRBYZCckyPqL/Bv6sI/vzQZdNk01
Q6Nw92OnNE1QP8owZ5TjrZhpbtopWdqIXjsbGZlloUemvuJP2JwvKovQUcn5CPTQ
jbnqU04CVyFFJYVxAnGJ+VSeWNrjW/cm/m+rhLFjUcwW7Y3aodxsPqPP6+K9hY9P
yIWfcH42WBeEWGm1RSBOZOScQl4SGCPUAhFydl/TqyEQagyegJMIyMOv9wZ5AuTT
xK644bDVmNsrtJDZDpx+J8hytXCk1LrnKzkHR/uK80iUIraF/8D7PlaPgTmEEjko
XcrywEkvkXTVU3owCm2/sbV+8fyFKzSPipnNfN1JNxEX71A98kvMRtPjDueQq/GA
Yh81rr2YLF2sUiArkc2fNpENT7EGhrh1q6gviK3FB8YDgj1kSgPK5wC/X0uolC35
E7iC2kg4NaNEIjhKP/WKluCaTvjRbvV+0IrlJLlhLTnsqbA57ZKCCteiBrlm7wQN
4csUtCyxchR9Ac2o/lj+Mf53z68Zv74haIROp18K2dL7ZpVcOPnA3XHeauSAdoyp
wy2Ek6ilNvlNB+4x+mRntPoOsyuOUGv7JXzB9JvweLWUd9G7tvYeDJQp/0YpDppb
K4UWcKnhtEom0DgK08vY
=IZVb
-----END PGP SIGNATURE-----
Merge tag 'y2038-new-syscalls' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground into timers/2038
Pull y2038 - time64 system calls from Arnd Bergmann:
This series finally gets us to the point of having system calls with 64-bit
time_t on all architectures, after a long time of incremental preparation
patches.
There was actually one conversion that I missed during the summer,
i.e. Deepa's timex series, which I now updated based the 5.0-rc1 changes
and review comments.
The following system calls are now added on all 32-bit architectures using
the same system call numbers:
403 clock_gettime64
404 clock_settime64
405 clock_adjtime64
406 clock_getres_time64
407 clock_nanosleep_time64
408 timer_gettime64
409 timer_settime64
410 timerfd_gettime64
411 timerfd_settime64
412 utimensat_time64
413 pselect6_time64
414 ppoll_time64
416 io_pgetevents_time64
417 recvmmsg_time64
418 mq_timedsend_time64
419 mq_timedreceiv_time64
420 semtimedop_time64
421 rt_sigtimedwait_time64
422 futex_time64
423 sched_rr_get_interval_time64
Each one of these corresponds directly to an existing system call that
includes a 'struct timespec' argument, or a structure containing a timespec
or (in case of clock_adjtime) timeval. Not included here are new versions
of getitimer/setitimer and getrusage/waitid, which are planned for the
future but only needed to make a consistent API rather than for correct
operation beyond y2038. These four system calls are based on 'timeval', and
it has not been finally decided what the replacement kernel interface will
use instead.
So far, I have done a lot of build testing across most architectures, which
has found a number of bugs. Runtime testing so far included testing LTP on
32-bit ARM with the existing system calls, to ensure we do not regress for
existing binaries, and a test with a 32-bit x86 build of LTP against a
modified version of the musl C library that has been adapted to the new
system call interface [3]. This library can be used for testing on all
architectures supported by musl-1.1.21, but it is not how the support is
getting integrated into the official musl release. Official musl support is
planned but will require more invasive changes to the library.
Link: https://lore.kernel.org/lkml/20190110162435.309262-1-arnd@arndb.de/T/
Link: https://lore.kernel.org/lkml/20190118161835.2259170-1-arnd@arndb.de/
Link: https://git.linaro.org/people/arnd/musl-y2038.git/ [2]
The system call tables have diverged a bit over the years, and a number
of the recent additions never made it into all architectures, for one
reason or another.
This is an attempt to clean it up as far as we can without breaking
compatibility, doing a number of steps:
- Add system calls that have not yet been integrated into all
architectures but that we definitely want there. This includes
{,f}statfs64() and get{eg,eu,g,p,u,pp}id() on alpha, which have
been missing traditionally.
- The s390 compat syscall handling is cleaned up to be more like
what we do on other architectures, while keeping the 31-bit
pointer extension. This was merged as a shared branch by the
s390 maintainers and is included here in order to base the other
patches on top.
- Add the separate ipc syscalls on all architectures that
traditionally only had sys_ipc(). This version is done without
support for IPC_OLD that is we have in sys_ipc. The
new semtimedop_time64 syscall will only be added here, not
in sys_ipc
- Add syscall numbers for a couple of syscalls that we probably
don't need everywhere, in particular pkey_* and rseq,
for the purpose of symmetry: if it's in asm-generic/unistd.h,
it makes sense to have it everywhere. I expect that any future
system calls will get assigned on all platforms together, even
when they appear to be specific to a single architecture.
- Prepare for having the same system call numbers for any future
calls. In combination with the generated tables, this hopefully
makes it easier to add new calls across all architectures
together.
All of the above are technically separate from the y2038 work,
but are done as preparation before we add the new 64-bit time_t
system calls everywhere, providing a common baseline set of system
calls.
I expect that glibc and other libraries that want to use 64-bit
time_t will require linux-5.1 kernel headers for building in
the future, and at a much later point may also require linux-5.1
or a later version as the minimum kernel at runtime. Having a
common baseline then allows the removal of many architecture or
kernel version specific workarounds.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJcXf6XAAoJEGCrR//JCVInIm4P/AlkMmQRa/B2ziWMW6PifPoI
v18r44017rA1BPENyZvumJUdM5mDvNofOW8F2DYQ7Uiys2YtXenwe/Cf8LHn2n6c
TMXGQryQpvNmfDCyU+0UjF8m2+poFMrL4aRTXtjODh1YTsPNgeDC+KFMCAAtZmZd
cVbXFudtbdYKD/pgCX4SI1CWAMBiXe2e+ukPdJVr+iqusCMTApf+GOuyvDBZY9s/
vURb+tIS87HZ/jehWfZFSuZt+Gu7b3ijUXNC8v9qSIxNYekw62vBNl6F09HE79uB
Bv4OujAODqKvI9gGyydBzLJNzaMo0ryQdusyqcJHT7MY/8s+FwcYAXyTlQ3DbbB4
2u/c+58OwJ9Zk12p4LXZRA47U+vRhQt2rO4+zZWs2txNNJY89ZvCm/Z04KOiu5Xz
1Nnj607KGzthYRs2gs68AwzGGyf0uykIQ3RcaJLIBlX1Nd8BWO0ZgAguCvkXbQMX
XNXJTd92HmeuKKpiO0n/M4/mCeP0cafBRPCZbKlHyTl0Jeqd/HBQEO9Z8Ifwyju3
mXz9JCR9VlPCkX605keATbjtPGZf3XQtaXlQnezitDudXk8RJ33EpPcbhx76wX7M
Rux37ByqEOzk4wMGX9YQyNU7z7xuVg4sJAa2LlJqYeKXHtym+u3gG7SGP5AsYjmk
6mg2+9O2yZuLhQtOtrwm
=s4wf
-----END PGP SIGNATURE-----
Merge tag 'y2038-syscall-cleanup' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd/playground into timers/2038
Pull preparatory work for y2038 changes from Arnd Bergmann:
System call unification and cleanup
The system call tables have diverged a bit over the years, and a number of
the recent additions never made it into all architectures, for one reason
or another.
This is an attempt to clean it up as far as we can without breaking
compatibility, doing a number of steps:
- Add system calls that have not yet been integrated into all architectures
but that we definitely want there. This includes {,f}statfs64() and
get{eg,eu,g,p,u,pp}id() on alpha, which have been missing traditionally.
- The s390 compat syscall handling is cleaned up to be more like what we
do on other architectures, while keeping the 31-bit pointer
extension. This was merged as a shared branch by the s390 maintainers
and is included here in order to base the other patches on top.
- Add the separate ipc syscalls on all architectures that traditionally
only had sys_ipc(). This version is done without support for IPC_OLD
that is we have in sys_ipc. The new semtimedop_time64 syscall will only
be added here, not in sys_ipc
- Add syscall numbers for a couple of syscalls that we probably don't need
everywhere, in particular pkey_* and rseq, for the purpose of symmetry:
if it's in asm-generic/unistd.h, it makes sense to have it everywhere. I
expect that any future system calls will get assigned on all platforms
together, even when they appear to be specific to a single architecture.
- Prepare for having the same system call numbers for any future calls. In
combination with the generated tables, this hopefully makes it easier to
add new calls across all architectures together.
All of the above are technically separate from the y2038 work, but are done
as preparation before we add the new 64-bit time_t system calls everywhere,
providing a common baseline set of system calls.
I expect that glibc and other libraries that want to use 64-bit time_t will
require linux-5.1 kernel headers for building in the future, and at a much
later point may also require linux-5.1 or a later version as the minimum
kernel at runtime. Having a common baseline then allows the removal of many
architecture or kernel version specific workarounds.
This adds 21 new system calls on each ABI that has 32-bit time_t
today. All of these have the exact same semantics as their existing
counterparts, and the new ones all have macro names that end in 'time64'
for clarification.
This gets us to the point of being able to safely use a C library
that has 64-bit time_t in user space. There are still a couple of
loose ends to tie up in various areas of the code, but this is the
big one, and should be entirely uncontroversial at this point.
In particular, there are four system calls (getitimer, setitimer,
waitid, and getrusage) that don't have a 64-bit counterpart yet,
but these can all be safely implemented in the C library by wrapping
around the existing system calls because the 32-bit time_t they
pass only counts elapsed time, not time since the epoch. They
will be dealt with later.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
The time, stime, utime, utimes, and futimesat system calls are only
used on older architectures, and we do not provide y2038 safe variants
of them, as they are replaced by clock_gettime64, clock_settime64,
and utimensat_time64.
However, for consistency it seems better to have the 32-bit architectures
that still use them call the "time32" entry points (leaving the
traditional handlers for the 64-bit architectures), like we do for system
calls that now require two versions.
Note: We used to always define __ARCH_WANT_SYS_TIME and
__ARCH_WANT_SYS_UTIME and only set __ARCH_WANT_COMPAT_SYS_TIME and
__ARCH_WANT_SYS_UTIME32 for compat mode on 64-bit kernels. Now this is
reversed: only 64-bit architectures set __ARCH_WANT_SYS_TIME/UTIME, while
we need __ARCH_WANT_SYS_TIME32/UTIME32 for 32-bit architectures and compat
mode. The resulting asm/unistd.h changes look a bit counterintuitive.
This is only a cleanup patch and it should not change any behavior.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
This is the big flip, where all 32-bit architectures set COMPAT_32BIT_TIME
and use the _time32 system calls from the former compat layer instead
of the system calls that take __kernel_timespec and similar arguments.
The temporary redirects for __kernel_timespec, __kernel_itimerspec
and __kernel_timex can get removed with this.
It would be easy to split this commit by architecture, but with the new
generated system call tables, it's easy enough to do it all at once,
which makes it a little easier to check that the changes are the same
in each table.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
A lot of system calls that pass a time_t somewhere have an implementation
using a COMPAT_SYSCALL_DEFINEx() on 64-bit architectures, and have
been reworked so that this implementation can now be used on 32-bit
architectures as well.
The missing step is to redefine them using the regular SYSCALL_DEFINEx()
to get them out of the compat namespace and make it possible to build them
on 32-bit architectures.
Any system call that ends in 'time' gets a '32' suffix on its name for
that version, while the others get a '_time32' suffix, to distinguish
them from the normal version, which takes a 64-bit time argument in the
future.
In this step, only 64-bit architectures are changed, doing this rename
first lets us avoid touching the 32-bit architectures twice.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
x32 has always followed the time64 calling conventions of these
syscalls, which required a special hack in compat_get_timespec
aka get_old_timespec32 to continue working.
Since we now have the time64 syscalls, use those explicitly.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The IPC system call handling is highly inconsistent across architectures,
some use sys_ipc, some use separate calls, and some use both. We also
have some architectures that require passing IPC_64 in the flags, and
others that set it implicitly.
For the addition of a y2038 safe semtimedop() system call, I chose to only
support the separate entry points, but that requires first supporting
the regular ones with their own syscall numbers.
The IPC_64 is now implied by the new semctl/shmctl/msgctl system
calls even on the architectures that require passing it with the ipc()
multiplexer.
I'm not adding the new semtimedop() or semop() on 32-bit architectures,
those will get implemented using the new semtimedop_time64() version
that gets added along with the other time64 calls.
Three 64-bit architectures (powerpc, s390 and sparc) get semtimedop().
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
While in the native case entry into the kernel happens on the trampoline
stack, PV Xen kernels get entered with the current thread stack right
away. Hence source and destination stacks are identical in that case,
and special care is needed.
Other than in sync_regs() the copying done on the INT80 path isn't
NMI / #MC safe, as either of these events occurring in the middle of the
stack copying would clobber data on the (source) stack.
There is similar code in interrupt_entry() and nmi(), but there is no fixup
required because those code paths are unreachable in XEN PV guests.
[ tglx: Sanitized subject, changelog, Fixes tag and stable mail address. Sigh ]
Fixes: 7f2590a110 ("x86/entry/64: Use a per-CPU trampoline stack for IDT entries")
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: xen-devel@lists.xenproject.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/5C3E1128020000780020DFAD@prv1-mh.provo.novell.com
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label".
The jump label is controlled by HAVE_JUMP_LABEL, which is defined
like this:
#if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL)
# define HAVE_JUMP_LABEL
#endif
We can improve this by testing 'asm goto' support in Kconfig, then
make JUMP_LABEL depend on CC_HAS_ASM_GOTO.
Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will
match to the real kernel capability.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 mm updates from Ingo Molnar:
"The main changes in this cycle were:
- Update and clean up x86 fault handling, by Andy Lutomirski.
- Drop usage of __flush_tlb_all() in kernel_physical_mapping_init()
and related fallout, by Dan Williams.
- CPA cleanups and reorganization by Peter Zijlstra: simplify the
flow and remove a few warts.
- Other misc cleanups"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
x86/mm/dump_pagetables: Use DEFINE_SHOW_ATTRIBUTE()
x86/mm/cpa: Rename @addrinarray to @numpages
x86/mm/cpa: Better use CLFLUSHOPT
x86/mm/cpa: Fold cpa_flush_range() and cpa_flush_array() into a single cpa_flush() function
x86/mm/cpa: Make cpa_data::numpages invariant
x86/mm/cpa: Optimize cpa_flush_array() TLB invalidation
x86/mm/cpa: Simplify the code after making cpa->vaddr invariant
x86/mm/cpa: Make cpa_data::vaddr invariant
x86/mm/cpa: Add __cpa_addr() helper
x86/mm/cpa: Add ARRAY and PAGES_ARRAY selftests
x86/mm: Drop usage of __flush_tlb_all() in kernel_physical_mapping_init()
x86/mm: Validate kernel_physical_mapping_init() PTE population
generic/pgtable: Introduce set_pte_safe()
generic/pgtable: Introduce {p4d,pgd}_same()
generic/pgtable: Make {pmd, pud}_same() unconditionally available
x86/fault: Clean up the page fault oops decoder a bit
x86/fault: Decode page fault OOPSes better
x86/vsyscall/64: Use X86_PF constants in the simulated #PF error code
x86/oops: Show the correct CS value in show_regs()
x86/fault: Don't try to recover from an implicit supervisor access
...
Pull x86 asm updates from Ingo Molnar:
"Two changes:
- Remove (some) remnants of the vDSO's fake section table mechanism
that were left behind when the vDSO build process reverted to using
"objdump -S" to strip the userspace image.
- Remove hardcoded POPCNT mnemonics now that the minimum binutils
version supports the symbolic form"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Remove a stale/misleading comment from the linker script
x86/vdso: Remove obsolete "fake section table" reservation
x86: Use POPCNT mnemonics in arch_hweight.h
Pull x86 fixes from Ingo Molnar:
"The biggest part is a series of reverts for the macro based GCC
inlining workarounds. It caused regressions in distro build and other
kernel tooling environments, and the GCC project was very receptive to
fixing the underlying inliner weaknesses - so as time ran out we
decided to do a reasonably straightforward revert of the patches. The
plan is to rely on the 'asm inline' GCC 9 feature, which might be
backported to GCC 8 and could thus become reasonably widely available
on modern distros.
Other than those reverts, there's misc fixes from all around the
place.
I wish our final x86 pull request for v4.20 was smaller..."
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs"
Revert "x86/objtool: Use asm macros to work around GCC inlining bugs"
Revert "x86/refcount: Work around GCC inlining bug"
Revert "x86/alternatives: Macrofy lock prefixes to work around GCC inlining bugs"
Revert "x86/bug: Macrofy the BUG table section handling, to work around GCC inlining bugs"
Revert "x86/paravirt: Work around GCC inlining bugs when compiling paravirt ops"
Revert "x86/extable: Macrofy inline assembly code to work around GCC inlining bugs"
Revert "x86/cpufeature: Macrofy inline assembly code to work around GCC inlining bugs"
Revert "x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs"
x86/mtrr: Don't copy uninitialized gentry fields back to userspace
x86/fsgsbase/64: Fix the base write helper functions
x86/mm/cpa: Fix cpa_flush_array() TLB invalidation
x86/vdso: Pass --eh-frame-hdr to the linker
x86/mm: Fix decoy address handling vs 32-bit builds
x86/intel_rdt: Ensure a CPU remains online for the region's pseudo-locking sequence
x86/dump_pagetables: Fix LDT remap address marker
x86/mm: Fix guard hole handling
This reverts commit 5bdcd510c2.
The macro based workarounds for GCC's inlining bugs caused regressions: distcc
and other distro build setups broke, and the fixes are not easy nor will they
solve regressions on already existing installations.
So we are reverting this patch and the 8 followup patches.
What makes this revert easier is that GCC9 will likely include the new 'asm inline'
syntax that makes inlining of assembly blocks a lot more robust.
This is a superior method to any macro based hackeries - and might even be
backported to GCC8, which would make all modern distros get the inlining
fixes as well.
Many thanks to Masahiro Yamada and others for helping sort out these problems.
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Richard Biener <rguenther@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit
379d98ddf4 ("x86: vdso: Use $LD instead of $CC to link")
accidentally broke unwinding from userspace, because ld would strip the
.eh_frame sections when linking.
Originally, the compiler would implicitly add --eh-frame-hdr when
invoking the linker, but when this Makefile was converted from invoking
ld via the compiler, to invoking it directly (like vmlinux does),
the flag was missed. (The EH_FRAME section is important for the VDSO
shared libraries, but not for vmlinux.)
Fix the problem by explicitly specifying --eh-frame-hdr, which restores
parity with the old method.
See relevant bug reports for additional info:
https://bugzilla.kernel.org/show_bug.cgi?id=201741https://bugzilla.redhat.com/show_bug.cgi?id=1659295
Fixes: 379d98ddf4 ("x86: vdso: Use $LD instead of $CC to link")
Reported-by: Florian Weimer <fweimer@redhat.com>
Reported-by: Carlos O'Donell <carlos@redhat.com>
Reported-by: "H. J. Lu" <hjl.tools@gmail.com>
Signed-off-by: Alistair Strachan <astrachan@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Carlos O'Donell <carlos@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: kernel-team@android.com
Cc: Laura Abbott <labbott@redhat.com>
Cc: stable <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: X86 ML <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181214223637.35954-1-astrachan@google.com
Pull x86 fixes from Ingo Molnar:
"Three fixes: a boot parameter re-(re-)fix, a retpoline build artifact
fix and an LLVM workaround"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Drop implicit common-page-size linker flag
x86/build: Fix compiler support check for CONFIG_RETPOLINE
x86/boot: Clear RSDP address in boot_params for broken loaders
GNU linker's -z common-page-size's default value is based on the target
architecture. arch/x86/entry/vdso/Makefile sets it to the architecture
default, which is implicit and redundant. Drop it.
Fixes: 2aae950b21 ("x86_64: Add vDSO for x86-64 with gettimeofday/clock_gettime/getcpu")
Reported-by: Dmitry Golovin <dima@golovin.in>
Reported-by: Bill Wendling <morbo@google.com>
Suggested-by: Dmitry Golovin <dima@golovin.in>
Suggested-by: Rui Ueyama <ruiu@google.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Fangrui Song <maskray@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181206191231.192355-1-ndesaulniers@google.com
Link: https://bugs.llvm.org/show_bug.cgi?id=38774
Link: https://github.com/ClangBuiltLinux/linux/issues/31
These interrupt functions are already non-attachable by kprobes.
Blacklist them explicitly so that they can show up in
/sys/kernel/debug/kprobes/blacklist and tools like BCC can use this
additional information.
Signed-off-by: Andrea Righi <righi.andrea@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David S. Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yonghong Song <yhs@fb.com>
Link: http://lkml.kernel.org/r/20181206095648.GA8249@Dell
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Once upon a time, vdso2c aggressively stripped data from the vDSO
image when generating the final userspace image. This included
stripping the .altinstructions and .altinstr_replacement sections.
Eventually, the stripping process reverted to "objdump -S" and no
longer removed the aforementioned sections, but the comment remained.
Keeping the .alt* sections at the end of the PT_LOAD segment is no
longer necessary, but there's no harm in doing so and it's a helpful
reminder that they don't need to be included in the final vDSO image,
i.e. someone may want to take another stab at zapping/stripping the
unneeded sections.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: da861e18ec ("x86, vdso: Get rid of the fake section mechanism")
Link: http://lkml.kernel.org/r/20181204212600.28090-3-sean.j.christopherson@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At one point the vDSO image was manually stripped down by vdso2c in an
attempt to minimize the size of the image mapped into userspace. Part
of that stripping process involved building a fake section table so as
not to break userspace processes that parse the section table. Memory
for the fake section table was reserved in the .rodata section so that
vdso2c could simply copy the entire PT_LOAD segment into the userspace
image after building the fake table.
Eventually, the entire fake section table approach was dropped in favor
of stripping the vdso "the old fashioned way", i.e. via objdump -S.
But, the reservation in .rodata for the fake table was left behind.
Remove the reserveration along with a few other related defines and
section entries.
Removing the fake section table placeholder zaps a whopping 0x340 bytes
from the 64-bit vDSO image, which drops the current image's size to
under 4k, i.e. reduces the effective size of the userspace vDSO mapping
by a full page.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: da861e18ec ("x86, vdso: Get rid of the fake section mechanism")
Link: http://lkml.kernel.org/r/20181204212600.28090-2-sean.j.christopherson@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Go over arch/x86/ and fix common typos in comments,
and a typo in an actual function argument name.
No change in functionality intended.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rather than hardcoding 6 with a comment, use the defined constants.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/e023f20352b0d05a8b0205629897917262d2ad68.1542841400.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Introduces the stackleak gcc plugin ported from grsecurity by Alexander
Popov, with x86 and arm64 support.
-----BEGIN PGP SIGNATURE-----
Comment: Kees Cook <kees@outflux.net>
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlvQvn4WHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJpSfD/sErFreuPT1beSw994Lr9Zx4k9v
ERsuXxWBENaJOJXbOOHMfVEcEeG/1uhPSp7hlw/dpHfh0anATTrcYqm8RNKbfK+k
o06+JK14OJfpm5Ghq/7OizhdNLCMT8wMU3XZtWfy65VSJGjEFx8Y48vMeQtpWtUK
ylSzi9JV6j2iUBF9oibtiT53+yqsqAtX80X1G7HRCgv9kxuKMhZr+Q5oGV6+ViyQ
Azj8mNn06iRnhHKd17WxDJr0GjSibzz4weS/9XgP3t3EcNWJo1EgBlD2KV3tOfP5
nzmqfqTqrcjxs/tyjdh6vVCSlYucNtyCQGn63qyShQYSg6mZwclR2fY8YSTw6PWw
GfYWFOWru9z+qyQmwFkQ9bSQS2R+JIT0oBCj9VmtF9XmPCy7K2neJsQclzSPBiCW
wPgXVQS4IA4684O5CmDOVMwmDpGvhdBNUR6cqSzGLxQOHY1csyXubMNUsqU3g9xk
Ob4pEy/xrrIw4WpwHcLHSEW5gV1/OLhsT0fGRJJiC947L3cN5s9EZp7FLbIS0zlk
qzaXUcLmn6AgcfkYwg5cI3RMLaN2V0eDCMVTWZJ1wbrmUV9chAaOnTPTjNqLOTht
v3b1TTxXG4iCpMmOFf59F8pqgAwbBDlfyNSbySZ/Pq5QH69udz3Z9pIUlYQnSJHk
u6q++2ReDpJXF81rBw==
=Ks6B
-----END PGP SIGNATURE-----
Merge tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull stackleak gcc plugin from Kees Cook:
"Please pull this new GCC plugin, stackleak, for v4.20-rc1. This plugin
was ported from grsecurity by Alexander Popov. It provides efficient
stack content poisoning at syscall exit. This creates a defense
against at least two classes of flaws:
- Uninitialized stack usage. (We continue to work on improving the
compiler to do this in other ways: e.g. unconditional zero init was
proposed to GCC and Clang, and more plugin work has started too).
- Stack content exposure. By greatly reducing the lifetime of valid
stack contents, exposures via either direct read bugs or unknown
cache side-channels become much more difficult to exploit. This
complements the existing buddy and heap poisoning options, but
provides the coverage for stacks.
The x86 hooks are included in this series (which have been reviewed by
Ingo, Dave Hansen, and Thomas Gleixner). The arm64 hooks have already
been merged through the arm64 tree (written by Laura Abbott and
reviewed by Mark Rutland and Will Deacon).
With VLAs having been removed this release, there is no need for
alloca() protection, so it has been removed from the plugin"
* tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
arm64: Drop unneeded stackleak_check_alloca()
stackleak: Allow runtime disabling of kernel stack erasing
doc: self-protection: Add information about STACKLEAK feature
fs/proc: Show STACKLEAK metrics in the /proc file system
lkdtm: Add a test for STACKLEAK
gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack
x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
Return vm_fault_t codes directly from the appropriate mm routines instead
of converting from errnos ourselves. Fixes a minor bug where we'd return
SIGBUS instead of the correct OOM code if we ran out of memory allocating
page tables.
Link: http://lkml.kernel.org/r/20180828145728.11873-5-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull siginfo updates from Eric Biederman:
"I have been slowly sorting out siginfo and this is the culmination of
that work.
The primary result is in several ways the signal infrastructure has
been made less error prone. The code has been updated so that manually
specifying SEND_SIG_FORCED is never necessary. The conversion to the
new siginfo sending functions is now complete, which makes it
difficult to send a signal without filling in the proper siginfo
fields.
At the tail end of the patchset comes the optimization of decreasing
the size of struct siginfo in the kernel from 128 bytes to about 48
bytes on 64bit. The fundamental observation that enables this is by
definition none of the known ways to use struct siginfo uses the extra
bytes.
This comes at the cost of a small user space observable difference.
For the rare case of siginfo being injected into the kernel only what
can be copied into kernel_siginfo is delivered to the destination, the
rest of the bytes are set to 0. For cases where the signal and the
si_code are known this is safe, because we know those bytes are not
used. For cases where the signal and si_code combination is unknown
the bits that won't fit into struct kernel_siginfo are tested to
verify they are zero, and the send fails if they are not.
I made an extensive search through userspace code and I could not find
anything that would break because of the above change. If it turns out
I did break something it will take just the revert of a single change
to restore kernel_siginfo to the same size as userspace siginfo.
Testing did reveal dependencies on preferring the signo passed to
sigqueueinfo over si->signo, so bit the bullet and added the
complexity necessary to handle that case.
Testing also revealed bad things can happen if a negative signal
number is passed into the system calls. Something no sane application
will do but something a malicious program or a fuzzer might do. So I
have fixed the code that performs the bounds checks to ensure negative
signal numbers are handled"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (80 commits)
signal: Guard against negative signal numbers in copy_siginfo_from_user32
signal: Guard against negative signal numbers in copy_siginfo_from_user
signal: In sigqueueinfo prefer sig not si_signo
signal: Use a smaller struct siginfo in the kernel
signal: Distinguish between kernel_siginfo and siginfo
signal: Introduce copy_siginfo_from_user and use it's return value
signal: Remove the need for __ARCH_SI_PREABLE_SIZE and SI_PAD_SIZE
signal: Fail sigqueueinfo if si_signo != sig
signal/sparc: Move EMT_TAGOVF into the generic siginfo.h
signal/unicore32: Use force_sig_fault where appropriate
signal/unicore32: Generate siginfo in ucs32_notify_die
signal/unicore32: Use send_sig_fault where appropriate
signal/arc: Use force_sig_fault where appropriate
signal/arc: Push siginfo generation into unhandled_exception
signal/ia64: Use force_sig_fault where appropriate
signal/ia64: Use the force_sig(SIGSEGV,...) in ia64_rt_sigreturn
signal/ia64: Use the generic force_sigsegv in setup_frame
signal/arm/kvm: Use send_sig_mceerr
signal/arm: Use send_sig_fault where appropriate
signal/arm: Use force_sig_fault where appropriate
...
Pull x86 vdso updates from Ingo Molnar:
"Two main changes:
- Cleanups, simplifications and CLOCK_TAI support (Thomas Gleixner)
- Improve code generation (Andy Lutomirski)"
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Rearrange do_hres() to improve code generation
x86/vdso: Document vgtod_ts better
x86/vdso: Remove "memory" clobbers in the vDSO syscall fallbacks
x66/vdso: Add CLOCK_TAI support
x86/vdso: Move cycle_last handling into the caller
x86/vdso: Simplify the invalid vclock case
x86/vdso: Replace the clockid switch case
x86/vdso: Collapse coarse functions
x86/vdso: Collapse high resolution functions
x86/vdso: Introduce and use vgtod_ts
x86/vdso: Use unsigned int consistently for vsyscall_gtod_data:: Seq
x86/vdso: Enforce 64bit clocksource
x86/time: Implement clocksource_arch_init()
clocksource: Provide clocksource_arch_init()
Pull x86 pti updates from Ingo Molnar:
"The main changes:
- Make the IBPB barrier more strict and add STIBP support (Jiri
Kosina)
- Micro-optimize and clean up the entry code (Andy Lutomirski)
- ... plus misc other fixes"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Propagate information about RSB filling mitigation to sysfs
x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigation
x86/speculation: Apply IBPB more strictly to avoid cross-process data leak
x86/speculation: Add RETPOLINE_AMD support to the inline asm CALL_NOSPEC variant
x86/CPU: Fix unused variable warning when !CONFIG_IA32_EMULATION
x86/pti/64: Remove the SYSCALL64 entry trampoline
x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch space
x86/entry/64: Document idtentry
Pull x86 paravirt updates from Ingo Molnar:
"Two main changes:
- Remove no longer used parts of the paravirt infrastructure and put
large quantities of paravirt ops under a new config option
PARAVIRT_XXL=y, which is selected by XEN_PV only. (Joergen Gross)
- Enable PV spinlocks on Hyperv (Yi Sun)"
* 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Enable PV qspinlock for Hyper-V
x86/hyperv: Add GUEST_IDLE_MSR support
x86/paravirt: Clean up native_patch()
x86/paravirt: Prevent redefinition of SAVE_FLAGS macro
x86/xen: Make xen_reservation_lock static
x86/paravirt: Remove unneeded mmu related paravirt ops bits
x86/paravirt: Move the Xen-only pv_mmu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the pv_irq_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move the Xen-only pv_cpu_ops under the PARAVIRT_XXL umbrella
x86/paravirt: Move items in pv_info under PARAVIRT_XXL umbrella
x86/paravirt: Introduce new config option PARAVIRT_XXL
x86/paravirt: Remove unused paravirt bits
x86/paravirt: Use a single ops structure
x86/paravirt: Remove clobbers from struct paravirt_patch_site
x86/paravirt: Remove clobbers parameter from paravirt patch functions
x86/paravirt: Make paravirt_patch_call() and paravirt_patch_jmp() static
x86/xen: Add SPDX identifier in arch/x86/xen files
x86/xen: Link platform-pci-unplug.o only if CONFIG_XEN_PVHVM
x86/xen: Move pv specific parts of arch/x86/xen/mmu.c to mmu_pv.c
x86/xen: Move pv irq related functions under CONFIG_XEN_PV umbrella
Pull x86 asm updates from Ingo Molnar:
"The main changes in this cycle were the fsgsbase related preparatory
patches from Chang S. Bae - but there's also an optimized
memcpy_flushcache() and a cleanup for the __cmpxchg_double() assembly
glue"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fsgsbase/64: Clean up various details
x86/segments: Introduce the 'CPUNODE' naming to better document the segment limit CPU/node NR trick
x86/vdso: Initialize the CPU/node NR segment descriptor earlier
x86/vdso: Introduce helper functions for CPU and node number
x86/segments/64: Rename the GDT PER_CPU entry to CPU_NUMBER
x86/fsgsbase/64: Factor out FS/GS segment loading from __switch_to()
x86/fsgsbase/64: Convert the ELF core dump code to the new FSGSBASE helpers
x86/fsgsbase/64: Make ptrace use the new FS/GS base helpers
x86/fsgsbase/64: Introduce FS/GS base helper functions
x86/fsgsbase/64: Fix ptrace() to read the FS/GS base accurately
x86/asm: Use CC_SET()/CC_OUT() in __cmpxchg_double()
x86/asm: Optimize memcpy_flushcache()
Pull locking and misc x86 updates from Ingo Molnar:
"Lots of changes in this cycle - in part because locking/core attracted
a number of related x86 low level work which was easier to handle in a
single tree:
- Linux Kernel Memory Consistency Model updates (Alan Stern, Paul E.
McKenney, Andrea Parri)
- lockdep scalability improvements and micro-optimizations (Waiman
Long)
- rwsem improvements (Waiman Long)
- spinlock micro-optimization (Matthew Wilcox)
- qspinlocks: Provide a liveness guarantee (more fairness) on x86.
(Peter Zijlstra)
- Add support for relative references in jump tables on arm64, x86
and s390 to optimize jump labels (Ard Biesheuvel, Heiko Carstens)
- Be a lot less permissive on weird (kernel address) uaccess faults
on x86: BUG() when uaccess helpers fault on kernel addresses (Jann
Horn)
- macrofy x86 asm statements to un-confuse the GCC inliner. (Nadav
Amit)
- ... and a handful of other smaller changes as well"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
locking/lockdep: Make global debug_locks* variables read-mostly
locking/lockdep: Fix debug_locks off performance problem
locking/pvqspinlock: Extend node size when pvqspinlock is configured
locking/qspinlock_stat: Count instances of nested lock slowpaths
locking/qspinlock, x86: Provide liveness guarantee
x86/asm: 'Simplify' GEN_*_RMWcc() macros
locking/qspinlock: Rework some comments
locking/qspinlock: Re-order code
locking/lockdep: Remove duplicated 'lock_class_ops' percpu array
x86/defconfig: Enable CONFIG_USB_XHCI_HCD=y
futex: Replace spin_is_locked() with lockdep
locking/lockdep: Make class->ops a percpu counter and move it under CONFIG_DEBUG_LOCKDEP=y
x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs
x86/cpufeature: Macrofy inline assembly code to work around GCC inlining bugs
x86/extable: Macrofy inline assembly code to work around GCC inlining bugs
x86/paravirt: Work around GCC inlining bugs when compiling paravirt ops
x86/bug: Macrofy the BUG table section handling, to work around GCC inlining bugs
x86/alternatives: Macrofy lock prefixes to work around GCC inlining bugs
x86/refcount: Work around GCC inlining bug
x86/objtool: Use asm macros to work around GCC inlining bugs
...
Commit:
16561f27f9 ("x86/entry: Add some paranoid entry/exit CR3 handling comments")
... added some comments. This improves them a bit:
- When I first read the new comments, it was unclear to me whether
they were referring to the case where paranoid_entry interrupted
other entry code or where paranoid_entry was itself interrupted.
Clarify it.
- Remove the EBX comment. We no longer use EBX as a SWAPGS
indicator.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/c47daa1888dc2298e7e1d3f82bd76b776ea33393.1539542111.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Even if not on an entry stack, the CS's high bits must be
initialized because they are unconditionally evaluated in
PARANOID_EXIT_TO_KERNEL_MODE.
Failing to do so broke the boot on Galileo Gen2 and IOT2000 boards.
[ bp: Make the commit message tone passive and impartial. ]
Fixes: b92a165df1 ("x86/entry/32: Handle Entry from Kernel-Mode on Entry-Stack")
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Joerg Roedel <jroedel@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: Andrea Arcangeli <aarcange@redhat.com>
CC: Andy Lutomirski <luto@kernel.org>
CC: Boris Ostrovsky <boris.ostrovsky@oracle.com>
CC: Brian Gerst <brgerst@gmail.com>
CC: Dave Hansen <dave.hansen@intel.com>
CC: David Laight <David.Laight@aculab.com>
CC: Denys Vlasenko <dvlasenk@redhat.com>
CC: Eduardo Valentin <eduval@amazon.com>
CC: Greg KH <gregkh@linuxfoundation.org>
CC: Ingo Molnar <mingo@kernel.org>
CC: Jiri Kosina <jkosina@suse.cz>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Juergen Gross <jgross@suse.com>
CC: Linus Torvalds <torvalds@linux-foundation.org>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Will Deacon <will.deacon@arm.com>
CC: aliguori@amazon.com
CC: daniel.gruss@iaik.tugraz.at
CC: hughd@google.com
CC: keescook@google.com
CC: linux-mm <linux-mm@kvack.org>
CC: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/f271c747-1714-5a5b-a71f-ae189a093b8d@siemens.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Andi Kleen was just asking me about the NMI CR3 handling and why
we restore it unconditionally. I was *sure* we had documented it
well. We did not.
Add some documentation. We have common entry code where the CR3
value is stashed, but three places in two big code paths where we
restore it. I put bulk of the comments in this common path and
then refer to it from the other spots.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@kernel.org
Cc: bp@alien8.de
Cc: "H. Peter Anvin" <hpa@zytor.come
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20181012232118.3EAAE77B@viggo.jf.intel.com
So:
- use 'extern' consistently for APIs
- fix weird header guard
- clarify code comments
- reorder APIs by type
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1537312139-5580-2-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have a special segment descriptor entry in the GDT, whose sole purpose is to
encode the CPU and node numbers in its limit (size) field. There are user-space
instructions that allow the reading of the limit field, which gives us a really
fast way to read the CPU and node IDs from the vDSO for example.
But the naming of related functionality does not make this clear, at all:
VDSO_CPU_SIZE
VDSO_CPU_MASK
__CPU_NUMBER_SEG
GDT_ENTRY_CPU_NUMBER
vdso_encode_cpu_node
vdso_read_cpu_node
There's a number of problems:
- The 'VDSO_CPU_SIZE' doesn't really make it clear that these are number
of bits, nor does it make it clear which 'CPU' this refers to, i.e.
that this is about a GDT entry whose limit encodes the CPU and node number.
- Furthermore, the 'CPU_NUMBER' naming is actively misleading as well,
because the segment limit encodes not just the CPU number but the
node ID as well ...
So use a better nomenclature all around: name everything related to this trick
as 'CPUNODE', to make it clear that this is something special, and add
_BITS to make it clear that these are number of bits, and propagate this to
every affected name:
VDSO_CPU_SIZE => VDSO_CPUNODE_BITS
VDSO_CPU_MASK => VDSO_CPUNODE_MASK
__CPU_NUMBER_SEG => __CPUNODE_SEG
GDT_ENTRY_CPU_NUMBER => GDT_ENTRY_CPUNODE
vdso_encode_cpu_node => vdso_encode_cpunode
vdso_read_cpu_node => vdso_read_cpunode
This, beyond being less confusing, also makes it easier to grep for all related
functionality:
$ git grep -i cpunode arch/x86
Also, while at it, fix "return is not a function" style sloppiness in vdso_encode_cpunode().
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1537312139-5580-2-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the CPU/node NR segment descriptor (GDT_ENTRY_CPU_NUMBER) is
initialized relatively late during CPU init, from the vCPU code, which
has a number of disadvantages, such as hotplug CPU notifiers and SMP
cross-calls.
Instead just initialize it much earlier, directly in cpu_init().
This reduces complexity and increases robustness.
[ mingo: Wrote new changelog. ]
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1537312139-5580-9-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clean up the CPU/node number related code a bit, to make it more apparent
how we are encoding/extracting the CPU and node fields from the
segment limit.
No change in functionality intended.
[ mingo: Wrote new changelog. ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/1537312139-5580-8-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The old 'per CPU' naming was misleading: 64-bit kernels don't use this
GDT entry for per CPU data, but to store the CPU (and node) ID.
[ mingo: Wrote new changelog. ]
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/1537312139-5580-7-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As described in:
77b0bf55bc: ("kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs")
GCC's inlining heuristics are broken with common asm() patterns used in
kernel code, resulting in the effective disabling of inlining.
The workaround is to set an assembly macro and call it from the inline
assembly block - which is also a minor cleanup for the jump-label code.
As a result the code size is slightly increased, but inlining decisions
are better:
text data bss dec hex filename
18163528 10226300 2957312 31347140 1de51c4 ./vmlinux before
18163608 10227348 2957312 31348268 1de562c ./vmlinux after (+1128)
And functions such as intel_pstate_adjust_policy_max(),
kvm_cpu_accept_dm_intr(), kvm_register_readl() are inlined.
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181005202718.229565-4-namit@vmware.com
Link: https://lore.kernel.org/lkml/20181003213100.189959-11-namit@vmware.com/T/#u
Signed-off-by: Ingo Molnar <mingo@kernel.org>
vgetcyc() is full of barriers, so fetching values out of the vvar
page before vgetcyc() for use after vgetcyc() results in poor code
generation. Put vgetcyc() first to avoid this problem.
Also, pull the tv_sec division into the loop and put all the ts
writes together. The old code wrote ts->tv_sec on each iteration
before the syscall fallback check and then added in the offset
afterwards, which forced the compiler to pointlessly copy base->sec
to ts->tv_sec on each iteration. The new version seems to generate
sensible code.
Saves several cycles. With this patch applied, the result is faster
than before the clock_gettime() rewrite.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/3c05644d010b72216aa286a6d20b5078d5fae5cd.1538762487.git.luto@kernel.org
When a vDSO clock function falls back to the syscall, no special
barriers or ordering is needed, and the syscall fallbacks don't
clobber any memory that is not explicitly listed in the asm
constraints. Remove the "memory" clobber.
This causes minor changes to the generated code, but otherwise has
no obvious performance impact. I think it's nice to have, though,
since it may help the optimizer in the future.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3a7438f5fb2422ed881683d2ccffd7f987b2dc44.1538689401.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the storage array in place it's now trivial to support CLOCK_TAI in
the vdso. Extend the base time storage array and add the update code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Matt Rickard <matt@softrans.com.au>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.823878601@linutronix.de
Dereferencing gtod->cycle_last all over the place and foing the cycles <
last comparison in the vclock read functions generates horrible code. Doing
it at the call site is much better and gains a few cycles both for TSC and
pvclock.
Caveat: This adds the comparison to the hyperv vclock as well, but I have
no way to test that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.741440803@linutronix.de
The code flow for the vclocks is convoluted as it requires the vclocks
which can be invalidated separately from the vsyscall_gtod_data sequence to
store the fact in a separate variable. That's inefficient.
Restructure the code so the vclock readout returns cycles and the
conversion to nanoseconds is handled at the call site.
If the clock gets invalidated or vclock is already VCLOCK_NONE, return
U64_MAX as the cycle value, which is invalid for all clocks and leave the
sequence loop immediately in that case by calling the fallback function
directly.
This allows to remove the gettimeofday fallback as it now uses the
clock_gettime() fallback and does the nanoseconds to microseconds
conversion in the same way as it does when the vclock is functional. It
does not make a difference whether the division by 1000 happens in the
kernel fallback or in userspace.
Generates way better code and gains a few cycles back.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.657928937@linutronix.de
Now that the time getter functions use the clockid as index into the
storage array for the base time access, the switch case can be replaced.
- Check for clockid >= MAX_CLOCKS and for negative clockid (CPU/FD) first
and call the fallback function right away.
- After establishing that clockid is < MAX_CLOCKS, convert the clockid to a
bitmask
- Check for the supported high resolution and coarse functions by anding
the bitmask of supported clocks and check whether a bit is set.
This completely avoids jump tables, reduces the number of conditionals and
makes the VDSO extensible for other clock ids.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.574315796@linutronix.de
do_realtime_coarse() and do_monotonic_coarse() are now the same except for
the storage array index. Hand the index in as an argument and collapse the
functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.490733779@linutronix.de
do_realtime() and do_monotonic() are now the same except for the storage
array index. Hand the index in as an argument and collapse the functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.407955860@linutronix.de
It's desired to support more clocks in the VDSO, e.g. CLOCK_TAI. This
results either in indirect calls due to the larger switch case, which then
requires retpolines or when the compiler is forced to avoid jump tables it
results in even more conditionals.
To avoid both variants which are bad for performance the high resolution
functions and the coarse grained functions will be collapsed into one for
each. That requires to store the clock specific base time in an array.
Introcude struct vgtod_ts for storage and convert the data store, the
update function and the individual clock functions over to use it.
The new storage does not longer use gtod_long_t for seconds depending on 32
or 64 bit compile because this needs to be the full 64bit value even for
32bit when a Y2038 function is added. No point in keeping the distinction
alive in the internal representation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.324679401@linutronix.de
The sequence count in vgtod_data is unsigned int, but the call sites use
unsigned long, which is a pointless exercise. Fix the call sites and
replace 'unsigned' with unsinged 'int' while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.236250416@linutronix.de
All VDSO clock sources are TSC based and use CLOCKSOURCE_MASK(64). There is
no point in masking with all FF. Get rid of it and enforce the mask in the
sanity checker.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: devel@linuxdriverproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/20180917130707.151963007@linutronix.de
When I added the missing memory outputs, I failed to update the
index of the first argument (ebx) on 32-bit builds, which broke the
fallbacks. Somehow I must have screwed up my testing or gotten
lucky.
Add another test to cover gettimeofday() as well.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 715bd9d12f ("x86/vdso: Fix asm constraints on vDSO syscall fallbacks")
Link: http://lkml.kernel.org/r/21bd45ab04b6d838278fa5bebfa9163eceffa13c.1538608971.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When I fixed the vDSO build to use inline retpolines, I messed up
the Makefile logic and made it unconditional. It should have
depended on CONFIG_RETPOLINE and on the availability of compiler
support. This broke the build on some older compilers.
Reported-by: nikola.ciprich@linuxbox.cz
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jason.vas.dias@gmail.com
Cc: stable@vger.kernel.org
Fixes: 2e549b2ee0 ("x86/vdso: Fix vDSO build if a retpoline is emitted")
Link: http://lkml.kernel.org/r/08a1f29f2c238dd1f493945e702a521f8a5aa3ae.1538540801.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The syscall fallbacks in the vDSO have incorrect asm constraints.
They are not marked as writing to their outputs -- instead, they are
marked as clobbering "memory", which is useless. In particular, gcc
is smart enough to know that the timespec parameter hasn't escaped,
so a memory clobber doesn't clobber it. And passing a pointer as an
asm *input* does not tell gcc that the pointed-to value is changed.
Add in the fact that the asm instructions weren't volatile, and gcc
was free to omit them entirely unless their sole output (the return
value) is used. Which it is (phew!), but that stops happening with
some upcoming patches.
As a trivial example, the following code:
void test_fallback(struct timespec *ts)
{
vdso_fallback_gettime(CLOCK_MONOTONIC, ts);
}
compiles to:
00000000000000c0 <test_fallback>:
c0: c3 retq
To add insult to injury, the RCX and R11 clobbers on 64-bit
builds were missing.
The "memory" clobber is also unnecessary -- no ordering with respect to
other memory operations is needed, but that's going to be fixed in a
separate not-for-stable patch.
Fixes: 2aae950b21 ("x86_64: Add vDSO for x86-64 with gettimeofday/clock_gettime/getcpu")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/2c0231690551989d2fafa60ed0e7b5cc8b403908.1538422295.git.luto@kernel.org
The SYSCALL64 trampoline has a couple of nice properties:
- The usual sequence of SWAPGS followed by two GS-relative accesses to
set up RSP is somewhat slow because the GS-relative accesses need
to wait for SWAPGS to finish. The trampoline approach allows
RIP-relative accesses to set up RSP, which avoids the stall.
- The trampoline avoids any percpu access before CR3 is set up,
which means that no percpu memory needs to be mapped in the user
page tables. This prevents using Meltdown to read any percpu memory
outside the cpu_entry_area and prevents using timing leaks
to directly locate the percpu areas.
The downsides of using a trampoline may outweigh the upsides, however.
It adds an extra non-contiguous I$ cache line to system calls, and it
forces an indirect jump to transfer control back to the normal kernel
text after CR3 is set up. The latter is because x86 lacks a 64-bit
direct jump instruction that could jump from the trampoline to the entry
text. With retpolines enabled, the indirect jump is extremely slow.
Change the code to map the percpu TSS into the user page tables to allow
the non-trampoline SYSCALL64 path to work under PTI. This does not add a
new direct information leak, since the TSS is readable by Meltdown from the
cpu_entry_area alias regardless. It does allow a timing attack to locate
the percpu area, but KASLR is more or less a lost cause against local
attack on CPUs vulnerable to Meltdown regardless. As far as I'm concerned,
on current hardware, KASLR is only useful to mitigate remote attacks that
try to attack the kernel without first gaining RCE against a vulnerable
user process.
On Skylake, with CONFIG_RETPOLINE=y and KPTI on, this reduces syscall
overhead from ~237ns to ~228ns.
There is a possible alternative approach: Move the trampoline within 2G of
the entry text and make a separate copy for each CPU. This would allow a
direct jump to rejoin the normal entry path. There are pro's and con's for
this approach:
+ It avoids a pipeline stall
- It executes from an extra page and read from another extra page during
the syscall. The latter is because it needs to use a relative
addressing mode to find sp1 -- it's the same *cacheline*, but accessed
using an alias, so it's an extra TLB entry.
- Slightly more memory. This would be one page per CPU for a simple
implementation and 64-ish bytes per CPU or one page per node for a more
complex implementation.
- More code complexity.
The current approach is chosen for simplicity and because the alternative
does not provide a significant benefit, which makes it worth.
[ tglx: Added the alternative discussion to the changelog ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/8c7c6e483612c3e4e10ca89495dc160b1aa66878.1536015544.git.luto@kernel.org
In the non-trampoline SYSCALL64 path, a percpu variable is used to
temporarily store the user RSP value.
Instead of a separate variable, use the otherwise unused sp2 slot in the
TSS. This will improve cache locality, as the sp1 slot is already used in
the same code to find the kernel stack. It will also simplify a future
change to make the non-trampoline path work in PTI mode.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/08e769a0023dbad4bac6f34f3631dbaf8ad59f4f.1536015544.git.luto@kernel.org
The idtentry macro is complicated and magical. Document what it
does to help future readers and to allow future patches to adjust
the code and docs at the same time.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/6e56c3ad94879e41afe345750bc28ccc0e820ea8.1536015544.git.luto@kernel.org
The STACKLEAK feature (initially developed by PaX Team) has the following
benefits:
1. Reduces the information that can be revealed through kernel stack leak
bugs. The idea of erasing the thread stack at the end of syscalls is
similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel
crypto, which all comply with FDP_RIP.2 (Full Residual Information
Protection) of the Common Criteria standard.
2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712,
CVE-2010-2963). That kind of bugs should be killed by improving C
compilers in future, which might take a long time.
This commit introduces the code filling the used part of the kernel
stack with a poison value before returning to userspace. Full
STACKLEAK feature also contains the gcc plugin which comes in a
separate commit.
The STACKLEAK feature is ported from grsecurity/PaX. More information at:
https://grsecurity.net/https://pax.grsecurity.net/
This code is modified from Brad Spengler/PaX Team's code in the last
public patch of grsecurity/PaX based on our understanding of the code.
Changes or omissions from the original code are ours and don't reflect
the original grsecurity/PaX code.
Performance impact:
Hardware: Intel Core i7-4770, 16 GB RAM
Test #1: building the Linux kernel on a single core
0.91% slowdown
Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P
4.2% slowdown
So the STACKLEAK description in Kconfig includes: "The tradeoff is the
performance impact: on a single CPU system kernel compilation sees a 1%
slowdown, other systems and workloads may vary and you are advised to
test this feature on your expected workload before deploying it".
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
All functions in arch/x86/xen/irq.c and arch/x86/xen/xen-asm*.S are
specific to PV guests. Include them in the kernel with CONFIG_XEN_PV only.
Make the PV specific code in arch/x86/entry/entry_*.S dependent on
CONFIG_XEN_PV instead of CONFIG_XEN.
The HVM specific code should depend on CONFIG_XEN_PVHVM.
While at it reformat the Makefile to make it more readable.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel@lists.xenproject.org
Cc: virtualization@lists.linux-foundation.org
Cc: akataria@vmware.com
Cc: rusty@rustcorp.com.au
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20180828074026.820-2-jgross@suse.com
Currently, if the vDSO ends up containing an indirect branch or
call, GCC will emit the "external thunk" style of retpoline, and it
will fail to link.
Fix it by building the vDSO with inline retpoline thunks.
I haven't seen any reports of this triggering on an unpatched
kernel.
Fixes: commit 76b043848f ("x86/retpoline: Add initial retpoline support")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Matt Rickard <matt@softrans.com.au>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jason Vas Dias <jason.vas.dias@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/c76538cd3afbe19c6246c2d1715bc6a60bd63985.1534448381.git.luto@kernel.org
- verify depmod is installed before modules_install
- support build salt in case build ids must be unique between builds
- allow users to specify additional host compiler flags via HOST*FLAGS,
and rename internal variables to KBUILD_HOST*FLAGS
- update buildtar script to drop vax support, add arm64 support
- update builddeb script for better debarch support
- document the pit-fall of if_changed usage
- fix parallel build of UML with O= option
- make 'samples' target depend on headers_install to fix build errors
- remove deprecated host-progs variable
- add a new coccinelle script for refcount_t vs atomic_t check
- improve double-test coccinelle script
- misc cleanups and fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJbdFZ0AAoJED2LAQed4NsGcHYP/23txxk3GRP7O4UkfPw9Rtky
MHiXTgcoy2vbG+l12BgzWX+qFii8XTUe3dQtK4HnGQFUIBtEBV/hpZPJtxfgGSev
Zou5cv1kr5rNzTkCn//TG3O6/WIkTBCe2hahDCtmGDI3kd/cPK4dHbU/q6KpaqIJ
qzZYBXIvCeu2GM8idQoCRrwdMpgu1pBz1gz2sDje1yHH2toI7T6cXHRLQDgx+HPq
LIP7W9GUsoDdXjecvPD51LiW89E6BUxETBh5Ft9r9uzwB5ylQQMcw6Qyu2DiYDUX
PPsHCMiolYV+Ttcy+vj/67KOvKmEaFotssck+RD/xDCF17zKhRkup+YM8kPLHTVZ
TcAUZadbnT6U/s2W6GFwvVbN/P7cc3aif+aNCC/Pl23yagp3pydlSCocYxQgiVR7
/rx48haYDEgu/MJ1X0dOpSO0ErY7zu2OoAlNerW+D9QizwbP+WtZO/CJH8SxQRuN
dQ1xmyNrie+ODgi9tbc4eBrsb+1rioX927TP5MbJcfXt5CTsxDmIqop5XwyYIoQN
ZWWlzC8Ii3P2trAVpBgM2IEbngSxwr6T9Wbf1ScJnPKr/o1rq+pBk49cYstTz3kQ
OwJ8gPwUrkW4R+hlD7L6mL/WcrKzZBQS0Ij1QW2kVSEhRrsKo99psE1/rGehnHu9
KGB0LYYCqGSOHR4zOjg0
=VjfG
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- verify depmod is installed before modules_install
- support build salt in case build ids must be unique between builds
- allow users to specify additional host compiler flags via HOST*FLAGS,
and rename internal variables to KBUILD_HOST*FLAGS
- update buildtar script to drop vax support, add arm64 support
- update builddeb script for better debarch support
- document the pit-fall of if_changed usage
- fix parallel build of UML with O= option
- make 'samples' target depend on headers_install to fix build errors
- remove deprecated host-progs variable
- add a new coccinelle script for refcount_t vs atomic_t check
- improve double-test coccinelle script
- misc cleanups and fixes
* tag 'kbuild-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (41 commits)
coccicheck: return proper error code on fail
Coccinelle: doubletest: reduce side effect false positives
kbuild: remove deprecated host-progs variable
kbuild: make samples really depend on headers_install
um: clean up archheaders recipe
kbuild: add %asm-generic to no-dot-config-targets
um: fix parallel building with O= option
scripts: Add Python 3 support to tracing/draw_functrace.py
builddeb: Add automatic support for sh{3,4}{,eb} architectures
builddeb: Add automatic support for riscv* architectures
builddeb: Add automatic support for m68k architecture
builddeb: Add automatic support for or1k architecture
builddeb: Add automatic support for sparc64 architecture
builddeb: Add automatic support for mips{,64}r6{,el} architectures
builddeb: Add automatic support for mips64el architecture
builddeb: Add automatic support for ppc64 and powerpcspe architectures
builddeb: Introduce functions to simplify kconfig tests in set_debarch
builddeb: Drop check for 32-bit s390
builddeb: Change architecture detection fallback to use dpkg-architecture
builddeb: Skip architecture detection when KBUILD_DEBARCH is set
...
Pull x86 PTI updates from Thomas Gleixner:
"The Speck brigade sadly provides yet another large set of patches
destroying the perfomance which we carefully built and preserved
- PTI support for 32bit PAE. The missing counter part to the 64bit
PTI code implemented by Joerg.
- A set of fixes for the Global Bit mechanics for non PCID CPUs which
were setting the Global Bit too widely and therefore possibly
exposing interesting memory needlessly.
- Protection against userspace-userspace SpectreRSB
- Support for the upcoming Enhanced IBRS mode, which is preferred
over IBRS. Unfortunately we dont know the performance impact of
this, but it's expected to be less horrible than the IBRS
hammering.
- Cleanups and simplifications"
* 'x86/pti' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/mm/pti: Move user W+X check into pti_finalize()
x86/relocs: Add __end_rodata_aligned to S_REL
x86/mm/pti: Clone kernel-image on PTE level for 32 bit
x86/mm/pti: Don't clear permissions in pti_clone_pmd()
x86/mm/pti: Fix 32 bit PCID check
x86/mm/init: Remove freed kernel image areas from alias mapping
x86/mm/init: Add helper for freeing kernel image pages
x86/mm/init: Pass unconverted symbol addresses to free_init_pages()
mm: Allow non-direct-map arguments to free_reserved_area()
x86/mm/pti: Clear Global bit more aggressively
x86/speculation: Support Enhanced IBRS on future CPUs
x86/speculation: Protect against userspace-userspace spectreRSB
x86/kexec: Allocate 8k PGDs for PTI
Revert "perf/core: Make sure the ring-buffer is mapped in all page-tables"
x86/mm: Remove in_nmi() warning from vmalloc_fault()
x86/entry/32: Check for VM86 mode in slow-path check
perf/core: Make sure the ring-buffer is mapped in all page-tables
x86/pti: Check the return value of pti_user_pagetable_walk_pmd()
x86/pti: Check the return value of pti_user_pagetable_walk_p4d()
x86/entry/32: Add debug code to check entry/exit CR3
...
Pull x86 vdso update from Thomas Gleixner:
"Use LD to link the VDSO libs instead of indirecting trough CC which
causes build failures with Clang"
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: vdso: Use $LD instead of $CC to link
Pull x86 asm updates from Thomas Gleixner:
"The lowlevel and ASM code updates for x86:
- Make stack trace unwinding more reliable
- ASM instruction updates for better code generation
- Various cleanups"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/64: Add two more instruction suffixes
x86/asm/64: Use 32-bit XOR to zero registers
x86/build/vdso: Simplify 'cmd_vdso2c'
x86/build/vdso: Remove unused vdso-syms.lds
x86/stacktrace: Enable HAVE_RELIABLE_STACKTRACE for the ORC unwinder
x86/unwind/orc: Detect the end of the stack
x86/stacktrace: Do not fail for ORC with regs on stack
x86/stacktrace: Clarify the reliable success paths
x86/stacktrace: Remove STACKTRACE_DUMP_ONCE
x86/stacktrace: Do not unwind after user regs
x86/asm: Use CC_SET/CC_OUT in percpu_cmpxchg8b_double() to micro-optimize code generation
The vdso{32,64}.so can fail to link with CC=clang when clang tries to find
a suitable GCC toolchain to link these libraries with.
/usr/bin/ld: arch/x86/entry/vdso/vclock_gettime.o:
access beyond end of merged section (782)
This happens because the host environment leaked into the cross compiler
environment due to the way clang searches for suitable GCC toolchains.
Clang is a retargetable compiler, and each invocation of it must provide
--target=<something> --gcc-toolchain=<something> to allow it to find the
correct binutils for cross compilation. These flags had been added to
KBUILD_CFLAGS, but the vdso code uses CC and not KBUILD_CFLAGS (for various
reasons) which breaks clang's ability to find the correct linker when cross
compiling.
Most of the time this goes unnoticed because the host linker is new enough
to work anyway, or is incompatible and skipped, but this cannot be reliably
assumed.
This change alters the vdso makefile to just use LD directly, which
bypasses clang and thus the searching problem. The makefile will just use
${CROSS_COMPILE}ld instead, which is always what we want. This matches the
method used to link vmlinux.
This drops references to DISABLE_LTO; this option doesn't seem to be set
anywhere, and not knowing what its possible values are, it's not clear how
to convert it from CC to LD flag.
Signed-off-by: Alistair Strachan <astrachan@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: kernel-team@android.com
Cc: joel@joelfernandes.org
Cc: Andi Kleen <andi.kleen@intel.com>
Link: https://lkml.kernel.org/r/20180803173931.117515-1-astrachan@google.com
error_entry and error_exit communicate the user vs. kernel status of
the frame using %ebx. This is unnecessary -- the information is in
regs->cs. Just use regs->cs.
This makes error_entry simpler and makes error_exit more robust.
It also fixes a nasty bug. Before all the Spectre nonsense, the
xen_failsafe_callback entry point returned like this:
ALLOC_PT_GPREGS_ON_STACK
SAVE_C_REGS
SAVE_EXTRA_REGS
ENCODE_FRAME_POINTER
jmp error_exit
And it did not go through error_entry. This was bogus: RBX
contained garbage, and error_exit expected a flag in RBX.
Fortunately, it generally contained *nonzero* garbage, so the
correct code path was used. As part of the Spectre fixes, code was
added to clear RBX to mitigate certain speculation attacks. Now,
depending on kernel configuration, RBX got zeroed and, when running
some Wine workloads, the kernel crashes. This was introduced by:
commit 3ac6d8c787 ("x86/entry/64: Clear registers for exceptions/interrupts, to reduce speculation attack surface")
With this patch applied, RBX is no longer needed as a flag, and the
problem goes away.
I suspect that malicious userspace could use this bug to crash the
kernel even without the offending patch applied, though.
[ Historical note: I wrote this patch as a cleanup before I was aware
of the bug it fixed. ]
[ Note to stable maintainers: this should probably get applied to all
kernels. If you're nervous about that, a more conservative fix to
add xorl %ebx,%ebx; incl %ebx before the jump to error_exit should
also fix the problem. ]
Reported-and-tested-by: M. Vefa Bicakci <m.v.b@runbox.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Fixes: 3ac6d8c787 ("x86/entry/64: Clear registers for exceptions/interrupts, to reduce speculation attack surface")
Link: http://lkml.kernel.org/r/b5010a090d3586b2d6e06c7ad3ec5542d1241c45.1532282627.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The SWITCH_TO_KERNEL_STACK macro only checks for CPL == 0 to go down the
slow and paranoid entry path. The problem is that this check also returns
true when coming from VM86 mode. This is not a problem by itself, as the
paranoid path handles VM86 stack-frames just fine, but it is not necessary
as the normal code path handles VM86 mode as well (and faster).
Extend the check to include VM86 mode. This also makes an optimization of
the paranoid path possible.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1532103744-31902-3-git-send-email-joro@8bytes.org
Add code to check whether the kernel is entered and left with the correct
CR3 and make it depend on CONFIG_DEBUG_ENTRY. This is needed because there
is no NX protection of user-addresses in the kernel-CR3 on x86-32 and that
type of bug would not be detected otherwise.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-40-git-send-email-joro@8bytes.org
The NMI handler is special, as it needs to leave with the same CR3 as it
was entered with. This is required because the NMI can happen within kernel
context but with user CR3 already loaded, i.e. after switching to user CR3
but before returning to user space.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-14-git-send-email-joro@8bytes.org
The common exception entry code now handles the entry-from-sysenter stack
situation and makes sure to leave with the same stack as it entered the
kernel.
So there is no need anymore for the special handling in the debug entry
code.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-12-git-send-email-joro@8bytes.org
It is possible that the kernel is entered from kernel-mode and on the
entry-stack. The most common way this happens is when an exception is
triggered while loading the user-space segment registers on the
kernel-to-userspace exit path.
The segment loading needs to be done after the entry-stack switch, because
the stack-switch needs kernel %fs for per_cpu access.
When this happens, make sure to leave the kernel with the entry-stack
again, so that the interrupted code-path runs on the right stack when
switching to the user-cr3.
Detect this condition on kernel-entry by checking CS.RPL and %esp, and if
it happens, copy over the complete content of the entry stack to the
task-stack. This needs to be done because once the exception handler is
entereed, the task might be scheduled out or even migrated to a different
CPU, so this cannot rely on the entry-stack contents. Leave a marker in the
stack-frame to detect this condition on the exit path.
On the exit path the copy is reversed, copy all of the remaining task-stack
back to the entry-stack and switch to it.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-11-git-send-email-joro@8bytes.org
Use the entry-stack as a trampoline to enter the kernel. The entry-stack is
already in the cpu_entry_area and will be mapped to userspace when PTI is
enabled.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-8-git-send-email-joro@8bytes.org
Use a separate return path when returning to the kernel.
This allows to put the PTI cr3-switch and the switch to the entry-stack
into the return-to-user path without further checking.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-7-git-send-email-joro@8bytes.org
NMI will no longer use most of the shared return path, because NMI needs
special handling when the CR3 switches for PTI are added. Prepare for that
change.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-6-git-send-email-joro@8bytes.org
The stack address doesn't need to be stored in tss.sp0 if the stack is
switched manually like on sysenter. Rename the offset so that it still
makes sense when its location is changed in later patches.
This stackk will also be used for all kernel-entry points, not just
sysenter. Reflect that and the fact that it is the offset to the task-stack
location in the name as well.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-3-git-send-email-joro@8bytes.org
The vDSO needs to have a unique build id in a similar manner
to the kernel and modules. Use the build salt macro.
Acked-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Sadly, other than claimed in:
a368d7fd2a ("x86/entry/64: Add instruction suffix")
... there are two more instances which want to be adjusted.
As said there, omitting suffixes from instructions in AT&T mode is bad
practice when operand size cannot be determined by the assembler from
register operands, and is likely going to be warned about by upstream
gas in the future (mine does already).
Add the other missing suffixes here as well.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5B3A02DD02000078001CFB78@prv1-mh.provo.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
No reason to use 'define' directive here. Just use the = operator.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1530582614-5173-3-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
8bb2610bc4 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80")
was busted: my original patch had a minor conflict with
some of the nospec changes, but "git apply" is very clever
and silently accepted the patch by making the same changes
to a different function in the same file. There was obviously
a huge offset, but "git apply" for some reason doesn't feel
any need to say so.
Move the changes to the correct function. Now the
test_syscall_vdso_32 selftests passes.
If anyone cares to observe the original problem, try applying the
patch at:
https://lore.kernel.org/lkml/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org/raw
to the kernel at 316d097c4c:
- "git am" and "git apply" accept the patch without any complaints at all
- "patch -p1" at least prints out a message about the huge offset.
Reported-by: zhijianx.li@intel.com
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org #v4.17+
Fixes: 8bb2610bc4 ("x86/entry/64/compat: Preserve r8-r11 in int $0x80")
Link: http://lkml.kernel.org/r/6012b922485401bc42676e804171ded262fc2ef2.1530078306.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Omitting suffixes from instructions in AT&T mode is bad practice when
operand size cannot be determined by the assembler from register
operands, and is likely going to be warned about by upstream GAS in the
future (mine does already).
Add the single missing 'l' suffix here.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5B30C24702000078001CD6A6@prv1-mh.provo.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When delivering a signal to a task that is using rseq, we call into
__rseq_handle_notify_resume() so that the registers pushed in the
sigframe are updated to reflect the state of the restartable sequence
(for example, ensuring that the signal returns to the abort handler if
necessary).
However, if the rseq management fails due to an unrecoverable fault when
accessing userspace or certain combinations of RSEQ_CS_* flags, then we
will attempt to deliver a SIGSEGV. This has the potential for infinite
recursion if the rseq code continuously fails on signal delivery.
Avoid this problem by using force_sigsegv() instead of force_sig(), which
is explicitly designed to reset the SEGV handler to SIG_DFL in the case
of a recursive fault. In doing so, remove rseq_signal_deliver() from the
internal rseq API and have an optional struct ksignal * parameter to
rseq_handle_notify_resume() instead.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: peterz@infradead.org
Cc: paulmck@linux.vnet.ibm.com
Cc: boqun.feng@gmail.com
Link: https://lkml.kernel.org/r/1529664307-983-1-git-send-email-will.deacon@arm.com
The existing UNWIND_HINT_EMPTY annotations happen to be good indicators
of where entry code calls into C code for the first time. So also use
them to mark the end of the stack for the ORC unwinder.
Use that information to set unwind->error if the ORC unwinder doesn't
unwind all the way to the end. This will be needed for enabling
HAVE_RELIABLE_STACKTRACE for the ORC unwinder so we can use it with the
livepatch consistency model.
Thanks to Jiri Slaby for teaching the ORCs about the unwind hints.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/lkml/20180518064713.26440-5-jslaby@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As we move stuff around, some doc references are broken. Fix some of
them via this script:
./scripts/documentation-file-ref-check --fix
Manually checked if the produced result is valid, removing a few
false-positives.
Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Stephen Boyd <sboyd@kernel.org>
Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com>
Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Jonathan Corbet <corbet@lwn.net>
The changes to automatically test for working stack protector compiler
support in the Kconfig files removed the special STACKPROTECTOR_AUTO
option that picked the strongest stack protector that the compiler
supported.
That was all a nice cleanup - it makes no sense to have the AUTO case
now that the Kconfig phase can just determine the compiler support
directly.
HOWEVER.
It also meant that doing "make oldconfig" would now _disable_ the strong
stackprotector if you had AUTO enabled, because in a legacy config file,
the sane stack protector configuration would look like
CONFIG_HAVE_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_NONE is not set
# CONFIG_CC_STACKPROTECTOR_REGULAR is not set
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_STACKPROTECTOR_AUTO=y
and when you ran this through "make oldconfig" with the Kbuild changes,
it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had
been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just
CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version
used to be disabled (because it was really enabled by AUTO), and would
disable it in the new config, resulting in:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
That's dangerously subtle - people could suddenly find themselves with
the weaker stack protector setup without even realizing.
The solution here is to just rename not just the old RECULAR stack
protector option, but also the strong one. This does that by just
removing the CC_ prefix entirely for the user choices, because it really
is not about the compiler support (the compiler support now instead
automatially impacts _visibility_ of the options to users).
This results in "make oldconfig" actually asking the user for their
choice, so that we don't have any silent subtle security model changes.
The end result would generally look like this:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_STACKPROTECTOR=y
CONFIG_STACKPROTECTOR_STRONG=y
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
where the "CC_" versions really are about internal compiler
infrastructure, not the user selections.
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wire up the rseq system call on x86 32/64.
This provides an ABI improving the speed of a user-space getcpu
operation on x86 by removing the need to perform a function call, "lsl"
instruction, or system call on the fast path, as well as improving the
speed of user-space operations on per-cpu data.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Andrew Hunter <ahh@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: linux-api@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20180602124408.8430-8-mathieu.desnoyers@efficios.com
Call the rseq_handle_notify_resume() function on return to userspace if
TIF_NOTIFY_RESUME thread flag is set.
Perform fixup on the pre-signal frame when a signal is delivered on top
of a restartable sequence critical section.
Check that system calls are not invoked from within rseq critical
sections by invoking rseq_signal() from syscall_return_slowpath().
With CONFIG_DEBUG_RSEQ, such behavior results in termination of the
process with SIGSEGV.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Andrew Hunter <ahh@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: linux-api@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20180602124408.8430-7-mathieu.desnoyers@efficios.com
Pull x86 build updates from Ingo Molnar:
"A handful of build system (Makefile, linker script) cleanups by
Masahiro Yamada"
* 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/build/vdso: Put generated linker scripts to $(obj)/
x86/build/vdso: Remove unnecessary export in Makefile
x86/build/vdso: Remove unused $(vobjs-nox32) in Makefile
x86/build: Remove no-op macro VMLINUX_SYMBOL()
Pull siginfo updates from Eric Biederman:
"This set of changes close the known issues with setting si_code to an
invalid value, and with not fully initializing struct siginfo. There
remains work to do on nds32, arc, unicore32, powerpc, arm, arm64, ia64
and x86 to get the code that generates siginfo into a simpler and more
maintainable state. Most of that work involves refactoring the signal
handling code and thus careful code review.
Also not included is the work to shrink the in kernel version of
struct siginfo. That depends on getting the number of places that
directly manipulate struct siginfo under control, as it requires the
introduction of struct kernel_siginfo for the in kernel things.
Overall this set of changes looks like it is making good progress, and
with a little luck I will be wrapping up the siginfo work next
development cycle"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits)
signal/sh: Stop gcc warning about an impossible case in do_divide_error
signal/mips: Report FPE_FLTUNK for undiagnosed floating point exceptions
signal/um: More carefully relay signals in relay_signal.
signal: Extend siginfo_layout with SIL_FAULT_{MCEERR|BNDERR|PKUERR}
signal: Remove unncessary #ifdef SEGV_PKUERR in 32bit compat code
signal/signalfd: Add support for SIGSYS
signal/signalfd: Remove __put_user from signalfd_copyinfo
signal/xtensa: Use force_sig_fault where appropriate
signal/xtensa: Consistenly use SIGBUS in do_unaligned_user
signal/um: Use force_sig_fault where appropriate
signal/sparc: Use force_sig_fault where appropriate
signal/sparc: Use send_sig_fault where appropriate
signal/sh: Use force_sig_fault where appropriate
signal/s390: Use force_sig_fault where appropriate
signal/riscv: Replace do_trap_siginfo with force_sig_fault
signal/riscv: Use force_sig_fault where appropriate
signal/parisc: Use force_sig_fault where appropriate
signal/parisc: Use force_sig_mceerr where appropriate
signal/openrisc: Use force_sig_fault where appropriate
signal/nios2: Use force_sig_fault where appropriate
...
Pull aio updates from Al Viro:
"Majority of AIO stuff this cycle. aio-fsync and aio-poll, mostly.
The only thing I'm holding back for a day or so is Adam's aio ioprio -
his last-minute fixup is trivial (missing stub in !CONFIG_BLOCK case),
but let it sit in -next for decency sake..."
* 'work.aio-1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits)
aio: sanitize the limit checking in io_submit(2)
aio: fold do_io_submit() into callers
aio: shift copyin of iocb into io_submit_one()
aio_read_events_ring(): make a bit more readable
aio: all callers of aio_{read,write,fsync,poll} treat 0 and -EIOCBQUEUED the same way
aio: take list removal to (some) callers of aio_complete()
aio: add missing break for the IOCB_CMD_FDSYNC case
random: convert to ->poll_mask
timerfd: convert to ->poll_mask
eventfd: switch to ->poll_mask
pipe: convert to ->poll_mask
crypto: af_alg: convert to ->poll_mask
net/rxrpc: convert to ->poll_mask
net/iucv: convert to ->poll_mask
net/phonet: convert to ->poll_mask
net/nfc: convert to ->poll_mask
net/caif: convert to ->poll_mask
net/bluetooth: convert to ->poll_mask
net/sctp: convert to ->poll_mask
net/tipc: convert to ->poll_mask
...
Since commit bfad381c0d ("x86/vdso: Improve the fake section
headers"), $(vobjs-nox32) is empty. Therefore, $(vobjs64-for-x32)
is the same as $(vobjs-y).
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1526352744-28229-2-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
commit da861e18ec ("x86, vdso: Get rid of the fake section mechanism")
left this file behind; nothing is using it anymore.
Signed-off-by: Jann Horn <jannh@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@amacapital.net
Link: http://lkml.kernel.org/r/20180504175935.104085-1-jannh@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is the io_getevents equivalent of ppoll/pselect and allows to
properly mix signals and aio completions (especially with IOCB_CMD_POLL)
and atomically executes the following sequence:
sigset_t origmask;
pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ret = io_getevents(ctx, min_nr, nr, events, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);
Note that unlike many other signal related calls we do not pass a sigmask
size, as that would get us to 7 arguments, which aren't easily supported
by the syscall infrastructure. It seems a lot less painful to just add a
new syscall variant in the unlikely case we're going to increase the
sigset size.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
32-bit user code that uses int $80 doesn't care about r8-r11. There is,
however, some 64-bit user code that intentionally uses int $0x80 to invoke
32-bit system calls. From what I've seen, basically all such code assumes
that r8-r15 are all preserved, but the kernel clobbers r8-r11. Since I
doubt that there's any code that depends on int $0x80 zeroing r8-r11,
change the kernel to preserve them.
I suspect that very little user code is broken by the old clobber, since
r8-r11 are only rarely allocated by gcc, and they're clobbered by function
calls, so they only way we'd see a problem is if the same function that
invokes int $0x80 also spills something important to one of these
registers.
The current behavior seems to date back to the historical commit
"[PATCH] x86-64 merge for 2.6.4". Before that, all regs were
preserved. I can't find any explanation of why this change was made.
Update the test_syscall_vdso_32 testcase as well to verify the new
behavior, and it strengthens the test to make sure that the kernel doesn't
accidentally permute r8..r15.
Suggested-by: Denys Vlasenko <dvlasenk@redhat.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Link: https://lkml.kernel.org/r/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org
Call clear_siginfo to ensure every stack allocated siginfo is properly
initialized before being passed to the signal sending functions.
Note: It is not safe to depend on C initializers to initialize struct
siginfo on the stack because C is allowed to skip holes when
initializing a structure.
The initialization of struct siginfo in tracehook_report_syscall_exit
was moved from the helper user_single_step_siginfo into
tracehook_report_syscall_exit itself, to make it clear that the local
variable siginfo gets fully initialized.
In a few cases the scope of struct siginfo has been reduced to make it
clear that siginfo siginfo is not used on other paths in the function
in which it is declared.
Instances of using memset to initialize siginfo have been replaced
with calls clear_siginfo for clarity.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
- pass HOSTLDFLAGS when compiling single .c host programs
- build genksyms lexer and parser files instead of using shipped
versions
- rename *-asn1.[ch] to *.asn1.[ch] for suffix consistency
- let the top .gitignore globally ignore artifacts generated by
flex, bison, and asn1_compiler
- let the top Makefile globally clean artifacts generated by
flex, bison, and asn1_compiler
- use safer .SECONDARY marker instead of .PRECIOUS to prevent
intermediate files from being removed
- support -fmacro-prefix-map option to make __FILE__ a relative path
- fix # escaping to prepare for the future GNU Make release
- clean up deb-pkg by using debian tools instead of handrolled
source/changes generation
- improve rpm-pkg portability by supporting kernel-install as a
fallback of new-kernel-pkg
- extend Kconfig listnewconfig target to provide more information
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJa0krLAAoJED2LAQed4NsGyCAP/3Vsb8A4sea7sE3LV6/aFUJp
WcAm6PXcip1MXy7GI5yxFciwen3Z3ghQUer7fJKDcHR5c4mRSfKaqWp+TLHd6uux
7I4pV0FNx2PapcPu5T7wNZHN96p3xZC0Z66sq9BCZ/+gNyYmZLIDcBUSIOEk0nzJ
IsvD46zy6R6KtEnycShKVscg4JyPXJIw1UBqsPDEFHg5l16ARkghND7e5zTW62Fi
2MqQxNXAksIKpxxoxPH/fIcNp1kFKVxYBH2CW4LQtOjC3GmrozdeV5PUc7yTezPc
dpqOuEcIAbMH91bkvhhF+ZBi34YrxRoT4S8B3G9iCXRz+2LRZZaitqO4dAH8Kjbn
0KjkqzNc5TosJXQ8RPTcQlRBi+JmE1bHxICvTx3XNJcqJMqIH0vs3ez/LJKOwhB4
DbAROoxQNfVcOdouHcx2EuCSdHn24BEyzaGFhi04LACpbRLxr8IJS7hSGXRloBYp
K3ydRvG/dCZjFRTS+xWWSi3Nzjih2mCctQlH3D4nf4M3vtCX+/k5B9IMEYFfHlvL
KoNlK4/1vP/dAJZj0iOqd2ksCA1G6iLoHrFp3E5pdtmb4sVe2Ez3gMt+pxz3htR9
XvjuHOzkWE9eiihs1NsFgQuyP/o3UmNKpDDW0irQ06IFEPXkA/y1mVmeTU3qtrII
ZDiwGozIkMMEy/MLkcjE
=tD6R
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v4.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull more Kbuild updates from Masahiro Yamada:
- pass HOSTLDFLAGS when compiling single .c host programs
- build genksyms lexer and parser files instead of using shipped
versions
- rename *-asn1.[ch] to *.asn1.[ch] for suffix consistency
- let the top .gitignore globally ignore artifacts generated by flex,
bison, and asn1_compiler
- let the top Makefile globally clean artifacts generated by flex,
bison, and asn1_compiler
- use safer .SECONDARY marker instead of .PRECIOUS to prevent
intermediate files from being removed
- support -fmacro-prefix-map option to make __FILE__ a relative path
- fix # escaping to prepare for the future GNU Make release
- clean up deb-pkg by using debian tools instead of handrolled
source/changes generation
- improve rpm-pkg portability by supporting kernel-install as a
fallback of new-kernel-pkg
- extend Kconfig listnewconfig target to provide more information
* tag 'kbuild-v4.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
kconfig: extend output of 'listnewconfig'
kbuild: rpm-pkg: use kernel-install as a fallback for new-kernel-pkg
Kbuild: fix # escaping in .cmd files for future Make
kbuild: deb-pkg: split generating packaging and build
kbuild: use -fmacro-prefix-map to make __FILE__ a relative path
kbuild: mark $(targets) as .SECONDARY and remove .PRECIOUS markers
kbuild: rename *-asn1.[ch] to *.asn1.[ch]
kbuild: clean up *-asn1.[ch] patterns from top-level Makefile
.gitignore: move *-asn1.[ch] patterns to the top-level .gitignore
kbuild: add %.dtb.S and %.dtb to 'targets' automatically
kbuild: add %.lex.c and %.tab.[ch] to 'targets' automatically
genksyms: generate lexer and parser during build instead of shipping
kbuild: clean up *.lex.c and *.tab.[ch] patterns from top-level Makefile
.gitignore: move *.lex.c *.tab.[ch] patterns to the top-level .gitignore
kbuild: use HOSTLDFLAGS for single .c executables
Pull x86 fixes from Thomas Gleixner:
"A set of fixes and updates for x86:
- Address a swiotlb regression which was caused by the recent DMA
rework and made driver fail because dma_direct_supported() returned
false
- Fix a signedness bug in the APIC ID validation which caused invalid
APIC IDs to be detected as valid thereby bloating the CPU possible
space.
- Fix inconsisten config dependcy/select magic for the MFD_CS5535
driver.
- Fix a corruption of the physical address space bits when encryption
has reduced the address space and late cpuinfo updates overwrite
the reduced bit information with the original value.
- Dominiks syscall rework which consolidates the architecture
specific syscall functions so all syscalls can be wrapped with the
same macros. This allows to switch x86/64 to struct pt_regs based
syscalls. Extend the clearing of user space controlled registers in
the entry patch to the lower registers"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Fix signedness bug in APIC ID validity checks
x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption
x86/olpc: Fix inconsistent MFD_CS5535 configuration
swiotlb: Use dma_direct_supported() for swiotlb_ops
syscalls/x86: Adapt syscall_wrapper.h to the new syscall stub naming convention
syscalls/core, syscalls/x86: Rename struct pt_regs-based sys_*() to __x64_sys_*()
syscalls/core, syscalls/x86: Clean up compat syscall stub naming convention
syscalls/core, syscalls/x86: Clean up syscall stub naming convention
syscalls/x86: Extend register clearing on syscall entry to lower registers
syscalls/x86: Unconditionally enable 'struct pt_regs' based syscalls on x86_64
syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32
syscalls/core: Prepare CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y for compat syscalls
syscalls/x86: Use 'struct pt_regs' based syscall calling convention for 64-bit syscalls
syscalls/core: Introduce CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y
x86/syscalls: Don't pointlessly reload the system call number
x86/mm: Fix documentation of module mapping range with 4-level paging
x86/cpuid: Switch to 'static const' specifier
Pull x86 pti updates from Thomas Gleixner:
"Another series of PTI related changes:
- Remove the manual stack switch for user entries from the idtentry
code. This debloats entry by 5k+ bytes of text.
- Use the proper types for the asm/bootparam.h defines to prevent
user space compile errors.
- Use PAGE_GLOBAL for !PCID systems to gain back performance
- Prevent setting of huge PUD/PMD entries when the entries are not
leaf entries otherwise the entries to which the PUD/PMD points to
and are populated get lost"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pgtable: Don't set huge PUD/PMD on non-leaf entries
x86/pti: Leave kernel text global for !PCID
x86/pti: Never implicitly clear _PAGE_GLOBAL for kernel image
x86/pti: Enable global pages for shared areas
x86/mm: Do not forbid _PAGE_RW before init for __ro_after_init
x86/mm: Comment _PAGE_GLOBAL mystery
x86/mm: Remove extra filtering in pageattr code
x86/mm: Do not auto-massage page protections
x86/espfix: Document use of _PAGE_GLOBAL
x86/mm: Introduce "default" kernel PTE mask
x86/mm: Undo double _PAGE_PSE clearing
x86/mm: Factor out pageattr _PAGE_GLOBAL setting
x86/entry/64: Drop idtentry's manual stack switch for user entries
x86/uapi: Fix asm/bootparam.h userspace compilation errors
For non-paranoid entries, idtentry knows how to switch from the
kernel stack to the user stack, as does error_entry. This results
in pointless duplication and code bloat. Make idtentry stop
thinking about stacks for non-paranoid entries.
This reduces text size by 5377 bytes.
This goes back to the following commit:
7f2590a110 ("x86/entry/64: Use a per-CPU trampoline stack for IDT entries")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/90aab80c1f906e70742eaa4512e3c9b5e62d59d4.1522794757.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This rename allows us to have a coherent syscall stub naming convention on
64-bit x86 (0xffffffff prefix removed):
810f0af0 t kernel_waitid # common (32/64) kernel helper
<inline> __do_sys_waitid # inlined helper doing actual work
810f0be0 t __se_sys_waitid # C func calling inlined helper
<inline> __do_compat_sys_waitid # inlined helper doing actual work
810f0d80 t __se_compat_sys_waitid # compat C func calling inlined helper
810f2080 T __x64_sys_waitid # x64 64-bit-ptregs -> C stub
810f20b0 T __ia32_sys_waitid # ia32 32-bit-ptregs -> C stub[*]
810f2470 T __ia32_compat_sys_waitid # ia32 32-bit-ptregs -> compat C stub
810f2490 T __x32_compat_sys_waitid # x32 64-bit-ptregs -> compat C stub
[*] This stub is unused, as the syscall table links
__ia32_compat_sys_waitid instead of __ia32_sys_waitid as we need
a compat variant here.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180409105145.5364-4-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tidy the naming convention for compat syscall subs. Hints which describe
the purpose of the stub go in front and receive a double underscore to
denote that they are generated on-the-fly by the COMPAT_SYSCALL_DEFINEx()
macro.
For the generic case, this means:
t kernel_waitid # common C function (see kernel/exit.c)
__do_compat_sys_waitid # inlined helper doing the actual work
# (takes original parameters as declared)
T __se_compat_sys_waitid # sign-extending C function calling inlined
# helper (takes parameters of type long,
# casts them to unsigned long and then to
# the declared type)
T compat_sys_waitid # alias to __se_compat_sys_waitid()
# (taking parameters as declared), to
# be included in syscall table
For x86, the naming is as follows:
t kernel_waitid # common C function (see kernel/exit.c)
__do_compat_sys_waitid # inlined helper doing the actual work
# (takes original parameters as declared)
t __se_compat_sys_waitid # sign-extending C function calling inlined
# helper (takes parameters of type long,
# casts them to unsigned long and then to
# the declared type)
T __ia32_compat_sys_waitid # IA32_EMULATION 32-bit-ptregs -> C stub,
# calls __se_compat_sys_waitid(); to be
# included in syscall table
T __x32_compat_sys_waitid # x32 64-bit-ptregs -> C stub, calls
# __se_compat_sys_waitid(); to be included
# in syscall table
If only one of IA32_EMULATION and x32 is enabled, __se_compat_sys_waitid()
may be inlined into the stub __{ia32,x32}_compat_sys_waitid().
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180409105145.5364-3-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tidy the naming convention for compat syscall subs. Hints which describe
the purpose of the stub go in front and receive a double underscore to
denote that they are generated on-the-fly by the SYSCALL_DEFINEx() macro.
For the generic case, this means (0xffffffff prefix removed):
810f08d0 t kernel_waitid # common C function (see kernel/exit.c)
<inline> __do_sys_waitid # inlined helper doing the actual work
# (takes original parameters as declared)
810f1aa0 T __se_sys_waitid # sign-extending C function calling inlined
# helper (takes parameters of type long;
# casts them to the declared type)
810f1aa0 T sys_waitid # alias to __se_sys_waitid() (taking
# parameters as declared), to be included
# in syscall table
For x86, the naming is as follows:
810efc70 t kernel_waitid # common C function (see kernel/exit.c)
<inline> __do_sys_waitid # inlined helper doing the actual work
# (takes original parameters as declared)
810efd60 t __se_sys_waitid # sign-extending C function calling inlined
# helper (takes parameters of type long;
# casts them to the declared type)
810f1140 T __ia32_sys_waitid # IA32_EMULATION 32-bit-ptregs -> C stub,
# calls __se_sys_waitid(); to be included
# in syscall table
810f1110 T sys_waitid # x86 64-bit-ptregs -> C stub, calls
# __se_sys_waitid(); to be included in
# syscall table
For x86, sys_waitid() will be re-named to __x64_sys_waitid in a follow-up
patch.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180409105145.5364-2-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
GNU Make automatically deletes intermediate files that are updated
in a chain of pattern rules.
Example 1) %.dtb.o <- %.dtb.S <- %.dtb <- %.dts
Example 2) %.o <- %.c <- %.c_shipped
A couple of makefiles mark such targets as .PRECIOUS to prevent Make
from deleting them, but the correct way is to use .SECONDARY.
.SECONDARY
Prerequisites of this special target are treated as intermediate
files but are never automatically deleted.
.PRECIOUS
When make is interrupted during execution, it may delete the target
file it is updating if the file was modified since make started.
If you mark the file as precious, make will never delete the file
if interrupted.
Both can avoid deletion of intermediate files, but the difference is
the behavior when Make is interrupted; .SECONDARY deletes the target,
but .PRECIOUS does not.
The use of .PRECIOUS is relatively rare since we do not want to keep
partially constructed (possibly corrupted) targets.
Another difference is that .PRECIOUS works with pattern rules whereas
.SECONDARY does not.
.PRECIOUS: $(obj)/%.lex.c
works, but
.SECONDARY: $(obj)/%.lex.c
has no effect. However, for the reason above, I do not want to use
.PRECIOUS which could cause obscure build breakage.
The targets specified as .SECONDARY must be explicit. $(targets)
contains all targets that need to include .*.cmd files. So, the
intermediates you want to keep are mostly in there. Therefore, mark
$(targets) as .SECONDARY. It means primary targets are also marked
as .SECONDARY, but I do not see any drawback for this.
I replaced some .SECONDARY / .PRECIOUS markers with 'targets'. This
will make Kbuild search for non-existing .*.cmd files, but this is
not a noticeable performance issue.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Frank Rowand <frowand.list@gmail.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
To reduce the chance that random user space content leaks down the call
chain in registers, also clear lower registers on syscall entry:
For 64-bit syscalls, extend the register clearing in PUSH_AND_CLEAR_REGS
to %dx and %cx. This should not hurt at all, also on the other callers
of that macro. We do not need to clear %rdi and %rsi for syscall entry,
as those registers are used to pass the parameters to do_syscall_64().
For the 32-bit compat syscalls, do_int80_syscall_32() and
do_fast_syscall_32() each only take one parameter. Therefore, extend the
register clearing to %dx, %cx, and %si in entry_SYSCALL_compat and
entry_INT80_compat.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180405095307.3730-8-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Extend ARCH_HAS_SYSCALL_WRAPPER for i386 emulation and for x32 on 64-bit
x86.
For x32, all we need to do is to create an additional stub for each
compat syscall which decodes the parameters in x86-64 ordering, e.g.:
asmlinkage long __compat_sys_x32_xyzzy(struct pt_regs *regs)
{
return c_SyS_xyzzy(regs->di, regs->si, regs->dx);
}
For i386 emulation, we need to teach compat_sys_*() to take struct
pt_regs as its only argument, e.g.:
asmlinkage long __compat_sys_ia32_xyzzy(struct pt_regs *regs)
{
return c_SyS_xyzzy(regs->bx, regs->cx, regs->dx);
}
In addition, we need to create additional stubs for common syscalls
(that is, for syscalls which have the same parameters on 32-bit and
64-bit), e.g.:
asmlinkage long __sys_ia32_xyzzy(struct pt_regs *regs)
{
return c_sys_xyzzy(regs->bx, regs->cx, regs->dx);
}
This approach avoids leaking random user-provided register content down
the call chain.
This patch is based on an original proof-of-concept
| From: Linus Torvalds <torvalds@linux-foundation.org>
| Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
and was split up and heavily modified by me, in particular to base it on
ARCH_HAS_SYSCALL_WRAPPER.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180405095307.3730-6-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Let's make use of ARCH_HAS_SYSCALL_WRAPPER=y on pure 64-bit x86-64 systems:
Each syscall defines a stub which takes struct pt_regs as its only
argument. It decodes just those parameters it needs, e.g:
asmlinkage long sys_xyzzy(const struct pt_regs *regs)
{
return SyS_xyzzy(regs->di, regs->si, regs->dx);
}
This approach avoids leaking random user-provided register content down
the call chain.
For example, for sys_recv() which is a 4-parameter syscall, the assembly
now is (in slightly reordered fashion):
<sys_recv>:
callq <__fentry__>
/* decode regs->di, ->si, ->dx and ->r10 */
mov 0x70(%rdi),%rdi
mov 0x68(%rdi),%rsi
mov 0x60(%rdi),%rdx
mov 0x38(%rdi),%rcx
[ SyS_recv() is automatically inlined by the compiler,
as it is not [yet] used anywhere else ]
/* clear %r9 and %r8, the 5th and 6th args */
xor %r9d,%r9d
xor %r8d,%r8d
/* do the actual work */
callq __sys_recvfrom
/* cleanup and return */
cltq
retq
The only valid place in an x86-64 kernel which rightfully calls
a syscall function on its own -- vsyscall -- needs to be modified
to pass struct pt_regs onwards as well.
To keep the syscall table generation working independent of
SYSCALL_PTREGS being enabled, the stubs are named the same as the
"original" syscall stubs, i.e. sys_*().
This patch is based on an original proof-of-concept
| From: Linus Torvalds <torvalds@linux-foundation.org>
| Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
and was split up and heavily modified by me, in particular to base it on
ARCH_HAS_SYSCALL_WRAPPER, to limit it to 64-bit-only for the time being,
and to update the vsyscall to the new calling convention.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180405095307.3730-4-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have it in a register in the low-level asm, just pass it in as an
argument rather than have do_syscall_64() load it back in from the
ptregs pointer.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180405095307.3730-2-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Here is the big set of char/misc driver patches for 4.17-rc1.
There are a lot of little things in here, nothing huge, but all
important to the different hardware types involved:
- thunderbolt driver updates
- parport updates (people still care...)
- nvmem driver updates
- mei updates (as always)
- hwtracing driver updates
- hyperv driver updates
- extcon driver updates
- and a handfull of even smaller driver subsystem and individual
driver updates
All of these have been in linux-next with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWsShSQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykNqwCfUbfvopswb1PesHCLABDBsFQChgoAniDa6pS9
kI8TN5MdLN85UU27Mkb6
=BzFR
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc updates from Greg KH:
"Here is the big set of char/misc driver patches for 4.17-rc1.
There are a lot of little things in here, nothing huge, but all
important to the different hardware types involved:
- thunderbolt driver updates
- parport updates (people still care...)
- nvmem driver updates
- mei updates (as always)
- hwtracing driver updates
- hyperv driver updates
- extcon driver updates
- ... and a handful of even smaller driver subsystem and individual
driver updates
All of these have been in linux-next with no reported issues"
* tag 'char-misc-4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (149 commits)
hwtracing: Add HW tracing support menu
intel_th: Add ACPI glue layer
intel_th: Allow forcing host mode through drvdata
intel_th: Pick up irq number from resources
intel_th: Don't touch switch routing in host mode
intel_th: Use correct method of finding hub
intel_th: Add SPDX GPL-2.0 header to replace GPLv2 boilerplate
stm class: Make dummy's master/channel ranges configurable
stm class: Add SPDX GPL-2.0 header to replace GPLv2 boilerplate
MAINTAINERS: Bestow upon myself the care for drivers/hwtracing
hv: add SPDX license id to Kconfig
hv: add SPDX license to trace
Drivers: hv: vmbus: do not mark HV_PCIE as perf_device
Drivers: hv: vmbus: respect what we get from hv_get_synint_state()
/dev/mem: Avoid overwriting "err" in read_mem()
eeprom: at24: use SPDX identifier instead of GPL boiler-plate
eeprom: at24: simplify the i2c functionality checking
eeprom: at24: fix a line break
eeprom: at24: tweak newlines
eeprom: at24: refactor at24_probe()
...
Pull removal of in-kernel calls to syscalls from Dominik Brodowski:
"System calls are interaction points between userspace and the kernel.
Therefore, system call functions such as sys_xyzzy() or
compat_sys_xyzzy() should only be called from userspace via the
syscall table, but not from elsewhere in the kernel.
At least on 64-bit x86, it will likely be a hard requirement from
v4.17 onwards to not call system call functions in the kernel: It is
better to use use a different calling convention for system calls
there, where struct pt_regs is decoded on-the-fly in a syscall wrapper
which then hands processing over to the actual syscall function. This
means that only those parameters which are actually needed for a
specific syscall are passed on during syscall entry, instead of
filling in six CPU registers with random user space content all the
time (which may cause serious trouble down the call chain). Those
x86-specific patches will be pushed through the x86 tree in the near
future.
Moreover, rules on how data may be accessed may differ between kernel
data and user data. This is another reason why calling sys_xyzzy() is
generally a bad idea, and -- at most -- acceptable in arch-specific
code.
This patchset removes all in-kernel calls to syscall functions in the
kernel with the exception of arch/. On top of this, it cleans up the
three places where many syscalls are referenced or prototyped, namely
kernel/sys_ni.c, include/linux/syscalls.h and include/linux/compat.h"
* 'syscalls-next' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/linux: (109 commits)
bpf: whitelist all syscalls for error injection
kernel/sys_ni: remove {sys_,sys_compat} from cond_syscall definitions
kernel/sys_ni: sort cond_syscall() entries
syscalls/x86: auto-create compat_sys_*() prototypes
syscalls: sort syscall prototypes in include/linux/compat.h
net: remove compat_sys_*() prototypes from net/compat.h
syscalls: sort syscall prototypes in include/linux/syscalls.h
kexec: move sys_kexec_load() prototype to syscalls.h
x86/sigreturn: use SYSCALL_DEFINE0
x86: fix sys_sigreturn() return type to be long, not unsigned long
x86/ioport: add ksys_ioperm() helper; remove in-kernel calls to sys_ioperm()
mm: add ksys_readahead() helper; remove in-kernel calls to sys_readahead()
mm: add ksys_mmap_pgoff() helper; remove in-kernel calls to sys_mmap_pgoff()
mm: add ksys_fadvise64_64() helper; remove in-kernel call to sys_fadvise64_64()
fs: add ksys_fallocate() wrapper; remove in-kernel calls to sys_fallocate()
fs: add ksys_p{read,write}64() helpers; remove in-kernel calls to syscalls
fs: add ksys_truncate() wrapper; remove in-kernel calls to sys_truncate()
fs: add ksys_sync_file_range helper(); remove in-kernel calls to syscall
kernel: add ksys_setsid() helper; remove in-kernel call to sys_setsid()
kernel: add ksys_unshare() helper; remove in-kernel calls to sys_unshare()
...
While sys32_quotactl() is only needed on x86, it can use the recommended
COMPAT_SYSCALL_DEFINEx() machinery for its setup.
Acked-by: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
compat_sys_x86_waitpid() is not needed, as it takes the same parameters
(int, *int, int) as the native syscall.
Suggested-by: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: x86@kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Pull x86 and PTI fixes from Ingo Molnar:
"Misc fixes:
- fix EFI pagetables freeing
- fix vsyscall pagetable setting on Xen PV guests
- remove ancient CONFIG_X86_PPRO_FENCE=y - x86 is TSO again
- fix two binutils (ld) development version related incompatibilities
- clean up breakpoint handling
- fix an x86 self-test"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/64: Don't use IST entry for #BP stack
x86/efi: Free efi_pgd with free_pages()
x86/vsyscall/64: Use proper accessor to update P4D entry
x86/cpu: Remove the CONFIG_X86_PPRO_FENCE=y quirk
x86/boot/64: Verify alignment of the LOAD segment
x86/build/64: Force the linker to use 2MB page size
selftests/x86/ptrace_syscall: Fix for yet more glibc interference
There's nothing IST-worthy about #BP/int3. We don't allow kprobes
in the small handful of places in the kernel that run at CPL0 with
an invalid stack, and 32-bit kernels have used normal interrupt
gates for #BP forever.
Furthermore, we don't allow kprobes in places that have usergs while
in kernel mode, so "paranoid" is also unnecessary.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Writing to it directly does not work for Xen PV guests.
Fixes: 49275fef98 ("x86/vsyscall/64: Explicitly set _PAGE_USER in the pagetable hierarchy")
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180319143154.3742-1-boris.ostrovsky@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There were only a few Pentium Pro multiprocessors systems where this
errata applied. They are more than 20 years old now, and we've slowly
dropped places which put the workarounds in and discouraged anyone
from enabling the workaround.
Get rid of it for good.
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jon Mason <jdmason@kudzu.us>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Muli Ben-Yehuda <mulix@mulix.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20180319103826.12853-2-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86/pti updates from Thomas Gleixner:
"Yet another pile of melted spectrum related updates:
- Drop native vsyscall support finally as it causes more trouble than
benefit.
- Make microcode loading more robust. There were a few issues
especially related to late loading which are now surfacing because
late loading of the IB* microcodes addressing spectre issues has
become more widely used.
- Simplify and robustify the syscall handling in the entry code
- Prevent kprobes on the entry trampoline code which lead to kernel
crashes when the probe hits before CR3 is updated
- Don't check microcode versions when running on hypervisors as they
are considered as lying anyway.
- Fix the 32bit objtool build and a coment typo"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kprobes: Fix kernel crash when probing .entry_trampoline code
x86/pti: Fix a comment typo
x86/microcode: Synchronize late microcode loading
x86/microcode: Request microcode on the BSP
x86/microcode/intel: Look into the patch cache first
x86/microcode: Do not upload microcode if CPUs are offline
x86/microcode/intel: Writeback and invalidate caches before updating microcode
x86/microcode/intel: Check microcode revision before updating sibling threads
x86/microcode: Get rid of struct apply_microcode_ctx
x86/spectre_v2: Don't check microcode versions when running under hypervisors
x86/vsyscall/64: Drop "native" vsyscalls
x86/entry/64/compat: Save one instruction in entry_INT80_compat()
x86/entry: Do not special-case clone(2) in compat entry
x86/syscalls: Use COMPAT_SYSCALL_DEFINEx() macros for x86-only compat syscalls
x86/syscalls: Use proper syscall definition for sys_ioperm()
x86/entry: Remove stale syscall prototype
x86/syscalls/32: Simplify $entry == $compat entries
objtool: Fix 32-bit build
Since Linux v3.2, vsyscalls have been deprecated and slow. From v3.2
on, Linux had three vsyscall modes: "native", "emulate", and "none".
"emulate" is the default. All known user programs work correctly in
emulate mode, but vsyscalls turn into page faults and are emulated.
This is very slow. In "native" mode, the vsyscall page is easily
usable as an exploit gadget, but vsyscalls are a bit faster -- they
turn into normal syscalls. (This is in contrast to vDSO functions,
which can be much faster than syscalls.) In "none" mode, there are
no vsyscalls.
For all practical purposes, "native" was really just a chicken bit
in case something went wrong with the emulation. It's been over six
years, and nothing has gone wrong. Delete it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/519fee5268faea09ae550776ce969fa6e88668b0.1520449896.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As %rdi is never user except in the following push, there is no
need to restore %rdi to the original value.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@amacapital.net
Cc: viro@zeniv.linux.org.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the CPU renaming registers on its own, and all the overhead of the
syscall entry/exit, it is doubtful whether the compiled output of
mov %r8, %rax
mov %rcx, %r8
mov %rax, %rcx
jmpq sys_clone
is measurably slower than the hand-crafted version of
xchg %r8, %rcx
So get rid of this special case.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@amacapital.net
Cc: viro@zeniv.linux.org.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the compat entry point is equivalent to the native entry point, it
does not need to be specified explicitly.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@amacapital.net
Cc: viro@zeniv.linux.org.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 2016 version of Hyper-V offers the option to operate the guest VM
per-vcpu stimer's in Direct Mode, which means the timer interupts on its
own vector rather than queueing a VMbus message. Direct Mode reduces
timer processing overhead in both the hypervisor and the guest, and
avoids having timer interrupts pollute the VMbus interrupt stream for
the synthetic NIC and storage. This patch enables Direct Mode by
default on stimer0 when running on a version of Hyper-V that supports
it.
In prep for coming support of Hyper-V on ARM64, the arch independent
portion of the code contains calls to routines that will be populated
on ARM64 but are not needed and do nothing on x86.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Omitting suffixes from instructions in AT&T mode is bad practice when
operand size cannot be determined by the assembler from register
operands, and is likely going to be warned about by upstream gas in the
future (mine does already). Add the single missing suffix here.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/5A93F96902000078001ABAC8@prv-mh.provo.novell.com
On 64-bit, the stack pointer is always aligned on interrupt, so instead
of setting the LSB of the pt_regs address, we can just add 1 to it.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180221024214.lhl5jfgw33c4vz3m@treble
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Open-code the two instances which called switch_to_thread_stack(). This
allows us to remove the wrapper around DO_SWITCH_TO_THREAD_STACK.
While at it, update the UNWIND hint to reflect where the IRET frame is,
and update the commentary to reflect what we are actually doing here.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180220210113.6725-7-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Moving ASM_CLAC to interrupt_entry means two instructions (addq / pushq
and call interrupt_entry) are not covered by it. However, it offers a
noticeable size reduction (-.2k):
text data bss dec hex filename
16882 0 0 16882 41f2 entry_64.o-orig
16623 0 0 16623 40ef entry_64.o
Suggested-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180220210113.6725-6-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is now trivial to call interrupt_entry() and then the actual worker.
Therefore, remove the interrupt macro and open code it all.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180220210113.6725-5-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We can also move the CLD, SWAPGS, and the switch_to_thread_stack() call
to the interrupt_entry() helper function. As we do not want call depths
of two, convert switch_to_thread_stack() to a macro.
However, switch_to_thread_stack() has another user in entry_64_compat.S,
which currently expects it to be a function. To keep the code changes
in this patch minimal, create a wrapper function.
The switch to a macro means that there is some binary code duplication
if CONFIG_IA32_EMULATION=y is enabled. Therefore, the size reduction
differs whether CONFIG_IA32_EMULATION is enabled or not:
CONFIG_IA32_EMULATION=y (-0.13k):
text data bss dec hex filename
17158 0 0 17158 4306 entry_64.o-orig
17028 0 0 17028 4284 entry_64.o
CONFIG_IA32_EMULATION=n (-0.27k):
text data bss dec hex filename
17158 0 0 17158 4306 entry_64.o-orig
16882 0 0 16882 41f2 entry_64.o
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180220210113.6725-4-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Moving the switch to IRQ stack from the interrupt macro to the helper
function requires some trickery: All ENTER_IRQ_STACK really cares about
is where the "original" stack -- meaning the GP registers etc. -- is
stored. Therefore, we need to offset the stored RSP value by 8 whenever
ENTER_IRQ_STACK is called from within a function. In such cases, and
after switching to the IRQ stack, we need to push the "original" return
address (i.e. the return address from the call to the interrupt entry
function) to the IRQ stack.
This trickery allows us to carve another .85k from the text size (it
would be more except for the additional unwind hints):
text data bss dec hex filename
18006 0 0 18006 4656 entry_64.o-orig
17158 0 0 17158 4306 entry_64.o
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180220210113.6725-3-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The PUSH_AND_CLEAR_REGS macro is able to insert the GP registers
"above" the original return address. This allows us to move a sizeable
part of the interrupt entry macro to an interrupt entry helper function:
text data bss dec hex filename
21088 0 0 21088 5260 entry_64.o-orig
18006 0 0 18006 4656 entry_64.o
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180220210113.6725-2-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit 1dde7415e9. By putting
the RSB filling out of line and calling it, we waste one RSB slot for
returning from the function itself, which means one fewer actual function
call we can make if we're doing the Skylake abomination of call-depth
counting.
It also changed the number of RSB stuffings we do on vmexit from 32,
which was correct, to 16. Let's just stop with the bikeshedding; it
didn't actually *fix* anything anyway.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: arjan.van.de.ven@intel.com
Cc: bp@alien8.de
Cc: dave.hansen@intel.com
Cc: jmattson@google.com
Cc: karahmed@amazon.de
Cc: kvm@vger.kernel.org
Cc: pbonzini@redhat.com
Cc: rkrcmar@redhat.com
Link: http://lkml.kernel.org/r/1519037457-7643-4-git-send-email-dwmw@amazon.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On some x86 CPU microarchitectures using 'xorq' to clear general-purpose
registers is slower than 'xorl'. As 'xorl' is sufficient to clear all
64 bits of these registers due to zero-extension [*], switch the x86
64-bit entry code to use 'xorl'.
No change in functionality and no change in code size.
[*] According to Intel 64 and IA-32 Architecture Software Developer's
Manual, section 3.4.1.1, the result of 32-bit operands are "zero-
extended to a 64-bit result in the destination general-purpose
register." The AMD64 Architecture Programmer’s Manual Volume 3,
Appendix B.1, describes the same behaviour.
Suggested-by: Denys Vlasenko <dvlasenk@redhat.com>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180214175924.23065-3-linux@dominikbrodowski.net
[ Improved on the changelog a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Play a little trick in the generic PUSH_AND_CLEAR_REGS macro
to insert the GP registers "above" the original return address.
This allows us to (re-)insert the macro in error_entry() and
paranoid_entry() and to remove it from the idtentry macro. This
reduces the static footprint significantly:
text data bss dec hex filename
24307 0 0 24307 5ef3 entry_64.o-orig
20987 0 0 20987 51fb entry_64.o
Co-developed-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180214175924.23065-2-linux@dominikbrodowski.net
[ Small tweaks to comments. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 PTI and Spectre related fixes and updates from Ingo Molnar:
"Here's the latest set of Spectre and PTI related fixes and updates:
Spectre:
- Add entry code register clearing to reduce the Spectre attack
surface
- Update the Spectre microcode blacklist
- Inline the KVM Spectre helpers to get close to v4.14 performance
again.
- Fix indirect_branch_prediction_barrier()
- Fix/improve Spectre related kernel messages
- Fix array_index_nospec_mask() asm constraint
- KVM: fix two MSR handling bugs
PTI:
- Fix a paranoid entry PTI CR3 handling bug
- Fix comments
objtool:
- Fix paranoid_entry() frame pointer warning
- Annotate WARN()-related UD2 as reachable
- Various fixes
- Add Add Peter Zijlstra as objtool co-maintainer
Misc:
- Various x86 entry code self-test fixes
- Improve/simplify entry code stack frame generation and handling
after recent heavy-handed PTI and Spectre changes. (There's two
more WIP improvements expected here.)
- Type fix for cache entries
There's also some low risk non-fix changes I've included in this
branch to reduce backporting conflicts:
- rename a confusing x86_cpu field name
- de-obfuscate the naming of single-TLB flushing primitives"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
x86/entry/64: Fix CR3 restore in paranoid_exit()
x86/cpu: Change type of x86_cache_size variable to unsigned int
x86/spectre: Fix an error message
x86/cpu: Rename cpu_data.x86_mask to cpu_data.x86_stepping
selftests/x86/mpx: Fix incorrect bounds with old _sigfault
x86/mm: Rename flush_tlb_single() and flush_tlb_one() to __flush_tlb_one_[user|kernel]()
x86/speculation: Add <asm/msr-index.h> dependency
nospec: Move array_index_nospec() parameter checking into separate macro
x86/speculation: Fix up array_index_nospec_mask() asm constraint
x86/debug: Use UD2 for WARN()
x86/debug, objtool: Annotate WARN()-related UD2 as reachable
objtool: Fix segfault in ignore_unreachable_insn()
selftests/x86: Disable tests requiring 32-bit support on pure 64-bit systems
selftests/x86: Do not rely on "int $0x80" in single_step_syscall.c
selftests/x86: Do not rely on "int $0x80" in test_mremap_vdso.c
selftests/x86: Fix build bug caused by the 5lvl test which has been moved to the VM directory
selftests/x86/pkeys: Remove unused functions
selftests/x86: Clean up and document sscanf() usage
selftests/x86: Fix vDSO selftest segfault for vsyscall=none
x86/entry/64: Remove the unused 'icebp' macro
...
Josh Poimboeuf noticed the following bug:
"The paranoid exit code only restores the saved CR3 when it switches back
to the user GS. However, even in the kernel GS case, it's possible that
it needs to restore a user CR3, if for example, the paranoid exception
occurred in the syscall exit path between SWITCH_TO_USER_CR3_STACK and
SWAPGS."
Josh also confirmed via targeted testing that it's possible to hit this bug.
Fix the bug by also restoring CR3 in the paranoid_exit_no_swapgs branch.
The reason we haven't seen this bug reported by users yet is probably because
"paranoid" entry points are limited to the following cases:
idtentry double_fault do_double_fault has_error_code=1 paranoid=2
idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
idtentry machine_check do_mce has_error_code=0 paranoid=1
Amongst those entry points only machine_check is one that will interrupt an
IRQS-off critical section asynchronously - and machine check events are rare.
The other main asynchronous entries are NMI entries, which can be very high-freq
with perf profiling, but they are special: they don't use the 'idtentry' macro but
are open coded and restore user CR3 unconditionally so don't have this bug.
Reported-and-tested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180214073910.boevmg65upbk3vqb@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For boot-time switching between paging modes, we need to be able to
adjust virtual mask shifts.
The change doesn't affect the kernel image size much:
text data bss dec hex filename
8628892 4734340 1368064 14731296 e0c820 vmlinux.before
8628966 4734340 1368064 14731370 e0c86a vmlinux.after
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180214111656.88514-9-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
That macro was touched around 2.5.8 times, judging by the full history
linux repo, but it was unused even then. Get rid of it already.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux@dominikbrodowski.net
Link: http://lkml.kernel.org/r/20180212201318.GD14640@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the following commit:
f09d160992d1 ("x86/entry/64: Get rid of the ALLOC_PT_GPREGS_ON_STACK and SAVE_AND_CLEAR_REGS macros")
... one of my suggested improvements triggered a frame pointer warning:
arch/x86/entry/entry_64.o: warning: objtool: paranoid_entry()+0x11: call without frame pointer save/setup
The warning is correct for the build-time code, but it's actually not
relevant at runtime because of paravirt patching. The paravirt swapgs
call gets replaced with either a SWAPGS instruction or NOPs at runtime.
Go back to the previous behavior by removing the ELF function annotation
for paranoid_entry() and adding an unwind hint, which effectively
silences the warning.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kbuild-all@01.org
Cc: tipbuild@zytor.com
Fixes: f09d160992d1 ("x86/entry/64: Get rid of the ALLOC_PT_GPREGS_ON_STACK and SAVE_AND_CLEAR_REGS macros")
Link: http://lkml.kernel.org/r/20180212174503.5acbymg5z6p32snu@treble
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Previously, error_entry() and paranoid_entry() saved the GP registers
onto stack space previously allocated by its callers. Combine these two
steps in the callers, and use the generic PUSH_AND_CLEAR_REGS macro
for that.
This adds a significant amount ot text size. However, Ingo Molnar points
out that:
"these numbers also _very_ significantly over-represent the
extra footprint. The assumptions that resulted in
us compressing the IRQ entry code have changed very
significantly with the new x86 IRQ allocation code we
introduced in the last year:
- IRQ vectors are usually populated in tightly clustered
groups.
With our new vector allocator code the typical per CPU
allocation percentage on x86 systems is ~3 device vectors
and ~10 fixed vectors out of ~220 vectors - i.e. a very
low ~6% utilization (!). [...]
The days where we allocated a lot of vectors on every
CPU and the compression of the IRQ entry code text
mattered are over.
- Another issue is that only a small minority of vectors
is frequent enough to actually matter to cache utilization
in practice: 3-4 key IPIs and 1-2 device IRQs at most - and
those vectors tend to be tightly clustered as well into about
two groups, and are probably already on 2-3 cache lines in
practice.
For the common case of 'cache cold' IRQs it's the depth of
the call chain and the fragmentation of the resulting I$
that should be the main performance limit - not the overall
size of it.
- The CPU side cost of IRQ delivery is still very expensive
even in the best, most cached case, as in 'over a thousand
cycles'. So much stuff is done that maybe contemporary x86
IRQ entry microcode already prefetches the IDT entry and its
expected call target address."[*]
[*] http://lkml.kernel.org/r/20180208094710.qnjixhm6hybebdv7@gmail.com
The "testb $3, CS(%rsp)" instruction in the idtentry macro does not need
modification. Previously, %rsp was manually decreased by 15*8; with
this patch, %rsp is decreased by 15 pushq instructions.
[jpoimboe@redhat.com: unwind hint improvements]
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180211104949.12992-7-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
entry_SYSCALL_64_after_hwframe() and nmi() can be converted to use
PUSH_AND_CLEAN_REGS instead of opencoded variants thereof. Due to
the interleaving, the additional XOR-based clearing of R8 and R9
in entry_SYSCALL_64_after_hwframe() should not have any noticeable
negative implications.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180211104949.12992-6-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Those instances where ALLOC_PT_GPREGS_ON_STACK is called just before
SAVE_AND_CLEAR_REGS can trivially be replaced by PUSH_AND_CLEAN_REGS.
This macro uses PUSH instead of MOV and should therefore be faster, at
least on newer CPUs.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180211104949.12992-5-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Same as is done for syscalls, interleave XOR with PUSH instructions
for exceptions/interrupts, in order to minimize the cost of the
additional instructions required for register clearing.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180211104949.12992-4-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All current code paths call SAVE_C_REGS and then immediately
SAVE_EXTRA_REGS. Therefore, merge these two macros and order the MOV
sequeneces properly.
While at it, remove the macros to save all except specific registers,
as these macros have been unused for a long time.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Link: http://lkml.kernel.org/r/20180211104949.12992-2-linux@dominikbrodowski.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ARM:
- Include icache invalidation optimizations, improving VM startup time
- Support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- A small fix for power-management notifiers, and some cosmetic changes
PPC:
- Add MMIO emulation for vector loads and stores
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- Improve the handling of escalation interrupts with the XIVE interrupt
controller
- Support decrement register migration
- Various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- Exitless interrupts for emulated devices
- Cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- Hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
features
- Show vcpu id in its anonymous inode name
- Many fixes and cleanups
- Per-VCPU MSR bitmaps (already merged through x86/pti branch)
- Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
/9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
=C/uD
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- icache invalidation optimizations, improving VM startup time
- support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- a small fix for power-management notifiers, and some cosmetic
changes
PPC:
- add MMIO emulation for vector loads and stores
- allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- improve the handling of escalation interrupts with the XIVE
interrupt controller
- support decrement register migration
- various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- exitless interrupts for emulated devices
- cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
AVX512 features
- show vcpu id in its anonymous inode name
- many fixes and cleanups
- per-VCPU MSR bitmaps (already merged through x86/pti branch)
- stable KVM clock when nesting on Hyper-V (merged through
x86/hyperv)"
* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
KVM: PPC: Book3S HV: Branch inside feature section
KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
KVM: PPC: Book3S PR: Fix broken select due to misspelling
KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
KVM: PPC: Book3S HV: Drop locks before reading guest memory
kvm: x86: remove efer_reload entry in kvm_vcpu_stat
KVM: x86: AMD Processor Topology Information
x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
kvm: embed vcpu id to dentry of vcpu anon inode
kvm: Map PFN-type memory regions as writable (if possible)
x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
KVM: arm/arm64: Fixup userspace irqchip static key optimization
KVM: arm/arm64: Fix userspace_irqchip_in_use counting
KVM: arm/arm64: Fix incorrect timer_is_pending logic
MAINTAINERS: update KVM/s390 maintainers
MAINTAINERS: add Halil as additional vfio-ccw maintainer
MAINTAINERS: add David as a reviewer for KVM/s390
...
The comment is confusing since the path is taken when
CONFIG_PAGE_TABLE_ISOLATION=y is disabled (while the comment says it is not
taken).
Signed-off-by: Nadav Amit <namit@vmware.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: nadav.amit@gmail.com
Link: http://lkml.kernel.org/r/20180209170638.15161-1-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At entry userspace may have populated registers with values that could
otherwise be useful in a speculative execution attack. Clear them to
minimize the kernel's attack surface.
Originally-From: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/151787989697.7847.4083702787288600552.stgit@dwillia2-desk3.amr.corp.intel.com
[ Made small improvements to the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clear the 'extra' registers on entering the 64-bit kernel for exceptions
and interrupts. The common registers are not cleared since they are
likely clobbered well before they can be exploited in a speculative
execution attack.
Originally-From: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/151787989146.7847.15749181712358213254.stgit@dwillia2-desk3.amr.corp.intel.com
[ Made small improvements to the changelog and the code comments. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At entry userspace may have (maliciously) populated the extra registers
outside the syscall calling convention with arbitrary values that could
be useful in a speculative execution (Spectre style) attack.
Clear these registers to minimize the kernel's attack surface.
Note, this only clears the extra registers and not the unused
registers for syscalls less than 6 arguments, since those registers are
likely to be clobbered well before their values could be put to use
under speculation.
Note, Linus found that the XOR instructions can be executed with
minimized cost if interleaved with the PUSH instructions, and Ingo's
analysis found that R10 and R11 should be included in the register
clearing beyond the typical 'extra' syscall calling convention
registers.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/151787988577.7847.16733592218894189003.stgit@dwillia2-desk3.amr.corp.intel.com
[ Made small improvements to the changelog and the code comments. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are two places where core serialization is needed by membarrier:
1) When returning from the membarrier IPI,
2) After scheduler updates curr to a thread with a different mm, before
going back to user-space, since the curr->mm is used by membarrier to
check whether it needs to send an IPI to that CPU.
x86-32 uses IRET as return from interrupt, and both IRET and SYSEXIT to go
back to user-space. The IRET instruction is core serializing, but not
SYSEXIT.
x86-64 uses IRET as return from interrupt, which takes care of the IPI.
However, it can return to user-space through either SYSRETL (compat
code), SYSRETQ, or IRET. Given that SYSRET{L,Q} is not core serializing,
we rely instead on write_cr3() performed by switch_mm() to provide core
serialization after changing the current mm, and deal with the special
case of kthread -> uthread (temporarily keeping current mm into
active_mm) by adding a sync_core() in that specific case.
Use the new sync_core_before_usermode() to guarantee this.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Avi Kivity <avi@scylladb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: David Sehr <sehr@google.com>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maged Michael <maged.michael@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/20180129202020.8515-10-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull spectre/meltdown updates from Thomas Gleixner:
"The next round of updates related to melted spectrum:
- The initial set of spectre V1 mitigations:
- Array index speculation blocker and its usage for syscall,
fdtable and the n180211 driver.
- Speculation barrier and its usage in user access functions
- Make indirect calls in KVM speculation safe
- Blacklisting of known to be broken microcodes so IPBP/IBSR are not
touched.
- The initial IBPB support and its usage in context switch
- The exposure of the new speculation MSRs to KVM guests.
- A fix for a regression in x86/32 related to the cpu entry area
- Proper whitelisting for known to be safe CPUs from the mitigations.
- objtool fixes to deal proper with retpolines and alternatives
- Exclude __init functions from retpolines which speeds up the boot
process.
- Removal of the syscall64 fast path and related cleanups and
simplifications
- Removal of the unpatched paravirt mode which is yet another source
of indirect unproteced calls.
- A new and undisputed version of the module mismatch warning
- A couple of cleanup and correctness fixes all over the place
Yet another step towards full mitigation. There are a few things still
missing like the RBS underflow mitigation for Skylake and other small
details, but that's being worked on.
That said, I'm taking a belated christmas vacation for a week and hope
that everything is magically solved when I'm back on Feb 12th"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
KVM/SVM: Allow direct access to MSR_IA32_SPEC_CTRL
KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL
KVM/VMX: Emulate MSR_IA32_ARCH_CAPABILITIES
KVM/x86: Add IBPB support
KVM/x86: Update the reverse_cpuid list to include CPUID_7_EDX
x86/speculation: Fix typo IBRS_ATT, which should be IBRS_ALL
x86/pti: Mark constant arrays as __initconst
x86/spectre: Simplify spectre_v2 command line parsing
x86/retpoline: Avoid retpolines for built-in __init functions
x86/kvm: Update spectre-v1 mitigation
KVM: VMX: make MSR bitmaps per-VCPU
x86/paravirt: Remove 'noreplace-paravirt' cmdline option
x86/speculation: Use Indirect Branch Prediction Barrier in context switch
x86/cpuid: Fix up "virtual" IBRS/IBPB/STIBP feature bits on Intel
x86/spectre: Fix spelling mistake: "vunerable"-> "vulnerable"
x86/spectre: Report get_user mitigation for spectre_v1
nl80211: Sanitize array index in parse_txq_params
vfs, fdtable: Prevent bounds-check bypass via speculative execution
x86/syscall: Sanitize syscall table de-references under speculation
x86/get_user: Use pointer masking to limit speculation
...
Pull livepatching updates from Jiri Kosina:
- handle 'infinitely'-long sleeping tasks, from Miroslav Benes
- remove 'immediate' feature, as it turns out it doesn't provide the
originally expected semantics, and brings more issues than value
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching:
livepatch: add locking to force and signal functions
livepatch: Remove immediate feature
livepatch: force transition to finish
livepatch: send a fake signal to all blocking tasks
Hyper-V supports Live Migration notification. This is supposed to be used
in conjunction with TSC emulation: when a VM is migrated to a host with
different TSC frequency for some short period the host emulates the
accesses to TSC and sends an interrupt to notify about the event. When the
guest is done updating everything it can disable TSC emulation and
everything will start working fast again.
These notifications weren't required until now as Hyper-V guests are not
supposed to use TSC as a clocksource: in Linux the TSC is even marked as
unstable on boot. Guests normally use 'tsc page' clocksource and host
updates its values on migrations automatically.
Things change when with nested virtualization: even when the PV
clocksources (kvm-clock or tsc page) are passed through to the nested
guests the TSC frequency and frequency changes need to be know..
Hyper-V Top Level Functional Specification (as of v5.0b) wrongly specifies
EAX:BIT(12) of CPUID:0x40000009 as the feature identification bit. The
right one to check is EAX:BIT(13) of CPUID:0x40000003. I was assured that
the fix in on the way.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: devel@linuxdriverproject.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Cathy Avery <cavery@redhat.com>
Cc: Mohammed Gamal <mmorsy@redhat.com>
Link: https://lkml.kernel.org/r/20180124132337.30138-4-vkuznets@redhat.com
The TS_COMPAT bit is very hot and is accessed from code paths that mostly
also touch thread_info::flags. Move it into struct thread_info to improve
cache locality.
The only reason it was in thread_struct is that there was a brief period
during which arch-specific fields were not allowed in struct thread_info.
Linus suggested further changing:
ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);
to:
if (unlikely(ti->status & (TS_COMPAT|TS_I386_REGS_POKED)))
ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);
on the theory that frequently dirtying the cacheline even in pure 64-bit
code that never needs to modify status hurts performance. That could be a
reasonable followup patch, but I suspect it matters less on top of this
patch.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/03148bcc1b217100e6e8ecf6a5468c45cf4304b6.1517164461.git.luto@kernel.org
With the fast path removed there is no point in splitting the push of the
normal and the extra register set. Just push the extra regs right away.
[ tglx: Split out from 'x86/entry/64: Remove the SYSCALL64 fast path' ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/462dff8d4d64dfbfc851fbf3130641809d980ecd.1517164461.git.luto@kernel.org
The SYCALLL64 fast path was a nice, if small, optimization back in the good
old days when syscalls were actually reasonably fast. Now there is PTI to
slow everything down, and indirect branches are verboten, making everything
messier. The retpoline code in the fast path is particularly nasty.
Just get rid of the fast path. The slow path is barely slower.
[ tglx: Split out the 'push all extra regs' part ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/462dff8d4d64dfbfc851fbf3130641809d980ecd.1517164461.git.luto@kernel.org
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJabj6pAAoJEHm+PkMAQRiGs8cIAJQFkCWnbz86e3vG4DuWhyA8
CMGHCQdUOxxFGa/ixhIiuetbC0x+JVHAjV2FwVYbAQfaZB3pfw2iR1ncQxpAP1AI
oLU9vBEqTmwKMPc9CM5rRfnLFWpGcGwUNzgPdxD5yYqGDtcM8K840mF6NdkYe5AN
xU8rv1wlcFPF4A5pvHCH0pvVmK4VxlVFk/2H67TFdxBs4PyJOnSBnf+bcGWgsKO6
hC8XIVtcKCH2GfFxt5d0Vgc5QXJEpX1zn2mtCa1MwYRjN2plgYfD84ha0xE7J0B0
oqV/wnjKXDsmrgVpncr3txd4+zKJFNkdNRE4eLAIupHo2XHTG4HvDJ5dBY2NhGU=
=sOml
-----END PGP SIGNATURE-----
Merge tag 'v4.15' into x86/pti, to be able to merge dependent changes
Time has come to switch PTI development over to a v4.15 base - we'll still
try to make sure that all PTI fixes backport cleanly to v4.14 and earlier.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86/pti updates from Thomas Gleixner:
"Another set of melted spectrum related changes:
- Code simplifications and cleanups for RSB and retpolines.
- Make the indirect calls in KVM speculation safe.
- Whitelist CPUs which are known not to speculate from Meltdown and
prepare for the new CPUID flag which tells the kernel that a CPU is
not affected.
- A less rigorous variant of the module retpoline check which merily
warns when a non-retpoline protected module is loaded and reflects
that fact in the sysfs file.
- Prepare for Indirect Branch Prediction Barrier support.
- Prepare for exposure of the Speculation Control MSRs to guests, so
guest OSes which depend on those "features" can use them. Includes
a blacklist of the broken microcodes. The actual exposure of the
MSRs through KVM is still being worked on"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Simplify indirect_branch_prediction_barrier()
x86/retpoline: Simplify vmexit_fill_RSB()
x86/cpufeatures: Clean up Spectre v2 related CPUID flags
x86/cpu/bugs: Make retpoline module warning conditional
x86/bugs: Drop one "mitigation" from dmesg
x86/nospec: Fix header guards names
x86/alternative: Print unadorned pointers
x86/speculation: Add basic IBPB (Indirect Branch Prediction Barrier) support
x86/cpufeature: Blacklist SPEC_CTRL/PRED_CMD on early Spectre v2 microcodes
x86/pti: Do not enable PTI on CPUs which are not vulnerable to Meltdown
x86/msr: Add definitions for new speculation control MSRs
x86/cpufeatures: Add AMD feature bits for Speculation Control
x86/cpufeatures: Add Intel feature bits for Speculation Control
x86/cpufeatures: Add CPUID_7_EDX CPUID leaf
module/retpoline: Warn about missing retpoline in module
KVM: VMX: Make indirect call speculation safe
KVM: x86: Make indirect calls in emulator speculation safe
Pull x86 pti fixes from Thomas Gleixner:
"A small set of fixes for the meltdown/spectre mitigations:
- Make kprobes aware of retpolines to prevent probes in the retpoline
thunks.
- Make the machine check exception speculation protected. MCE used to
issue an indirect call directly from the ASM entry code. Convert
that to a direct call into a C-function and issue the indirect call
from there so the compiler can add the retpoline protection,
- Make the vmexit_fill_RSB() assembly less stupid
- Fix a typo in the PTI documentation"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/retpoline: Optimize inline assembler for vmexit_fill_RSB
x86/pti: Document fix wrong index
kprobes/x86: Disable optimizing on the function jumps to indirect thunk
kprobes/x86: Blacklist indirect thunk functions for kprobes
retpoline: Introduce start/end markers of indirect thunk
x86/mce: Make machine check speculation protected
The machine check idtentry uses an indirect branch directly from the low
level code. This evades the speculation protection.
Replace it by a direct call into C code and issue the indirect call there
so the compiler can apply the proper speculation protection.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by:Borislav Petkov <bp@alien8.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Niced-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801181626290.1847@nanos
Pull x86 pti bits and fixes from Thomas Gleixner:
"This last update contains:
- An objtool fix to prevent a segfault with the gold linker by
changing the invocation order. That's not just for gold, it's a
general robustness improvement.
- An improved error message for objtool which spares tearing hairs.
- Make KASAN fail loudly if there is not enough memory instead of
oopsing at some random place later
- RSB fill on context switch to prevent RSB underflow and speculation
through other units.
- Make the retpoline/RSB functionality work reliably for both Intel
and AMD
- Add retpoline to the module version magic so mismatch can be
detected
- A small (non-fix) update for cpufeatures which prevents cpu feature
clashing for the upcoming extra mitigation bits to ease
backporting"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
module: Add retpoline tag to VERMAGIC
x86/cpufeature: Move processor tracing out of scattered features
objtool: Improve error message for bad file argument
objtool: Fix seg fault with gold linker
x86/retpoline: Add LFENCE to the retpoline/RSB filling RSB macros
x86/retpoline: Fill RSB on context switch for affected CPUs
x86/kasan: Panic if there is not enough memory to boot
On context switch from a shallow call stack to a deeper one, as the CPU
does 'ret' up the deeper side it may encounter RSB entries (predictions for
where the 'ret' goes to) which were populated in userspace.
This is problematic if neither SMEP nor KPTI (the latter of which marks
userspace pages as NX for the kernel) are active, as malicious code in
userspace may then be executed speculatively.
Overwrite the CPU's return prediction stack with calls which are predicted
to return to an infinite loop, to "capture" speculation if this
happens. This is required both for retpoline, and also in conjunction with
IBRS for !SMEP && !KPTI.
On Skylake+ the problem is slightly different, and an *underflow* of the
RSB may cause errant branch predictions to occur. So there it's not so much
overwrite, as *filling* the RSB to attempt to prevent it getting
empty. This is only a partial solution for Skylake+ since there are many
other conditions which may result in the RSB becoming empty. The full
solution on Skylake+ is to use IBRS, which will prevent the problem even
when the RSB becomes empty. With IBRS, the RSB-stuffing will not be
required on context switch.
[ tglx: Added missing vendor check and slighty massaged comments and
changelog ]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515779365-9032-1-git-send-email-dwmw@amazon.co.uk
Pull x86 pti updates from Thomas Gleixner:
"This contains:
- a PTI bugfix to avoid setting reserved CR3 bits when PCID is
disabled. This seems to cause issues on a virtual machine at least
and is incorrect according to the AMD manual.
- a PTI bugfix which disables the perf BTS facility if PTI is
enabled. The BTS AUX buffer is not globally visible and causes the
CPU to fault when the mapping disappears on switching CR3 to user
space. A full fix which restores BTS on PTI is non trivial and will
be worked on.
- PTI bugfixes for EFI and trusted boot which make sure that the user
space visible page table entries have the NX bit cleared
- removal of dead code in the PTI pagetable setup functions
- add PTI documentation
- add a selftest for vsyscall to verify that the kernel actually
implements what it advertises.
- a sysfs interface to expose vulnerability and mitigation
information so there is a coherent way for users to retrieve the
status.
- the initial spectre_v2 mitigations, aka retpoline:
+ The necessary ASM thunk and compiler support
+ The ASM variants of retpoline and the conversion of affected ASM
code
+ Make LFENCE serializing on AMD so it can be used as speculation
trap
+ The RSB fill after vmexit
- initial objtool support for retpoline
As I said in the status mail this is the most of the set of patches
which should go into 4.15 except two straight forward patches still on
hold:
- the retpoline add on of LFENCE which waits for ACKs
- the RSB fill after context switch
Both should be ready to go early next week and with that we'll have
covered the major holes of spectre_v2 and go back to normality"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
x86,perf: Disable intel_bts when PTI
security/Kconfig: Correct the Documentation reference for PTI
x86/pti: Fix !PCID and sanitize defines
selftests/x86: Add test_vsyscall
x86/retpoline: Fill return stack buffer on vmexit
x86/retpoline/irq32: Convert assembler indirect jumps
x86/retpoline/checksum32: Convert assembler indirect jumps
x86/retpoline/xen: Convert Xen hypercall indirect jumps
x86/retpoline/hyperv: Convert assembler indirect jumps
x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
x86/retpoline/entry: Convert entry assembler indirect jumps
x86/retpoline/crypto: Convert crypto assembler indirect jumps
x86/spectre: Add boot time option to select Spectre v2 mitigation
x86/retpoline: Add initial retpoline support
objtool: Allow alternatives to be ignored
objtool: Detect jumps to retpoline thunks
x86/pti: Make unpoison of pgd for trusted boot work for real
x86/alternatives: Fix optimize_nops() checking
sysfs/cpu: Fix typos in vulnerability documentation
x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
...
The switch to the user space page tables in the low level ASM code sets
unconditionally bit 12 and bit 11 of CR3. Bit 12 is switching the base
address of the page directory to the user part, bit 11 is switching the
PCID to the PCID associated with the user page tables.
This fails on a machine which lacks PCID support because bit 11 is set in
CR3. Bit 11 is reserved when PCID is inactive.
While the Intel SDM claims that the reserved bits are ignored when PCID is
disabled, the AMD APM states that they should be cleared.
This went unnoticed as the AMD APM was not checked when the code was
developed and reviewed and test systems with Intel CPUs never failed to
boot. The report is against a Centos 6 host where the guest fails to boot,
so it's not yet clear whether this is a virt issue or can happen on real
hardware too, but thats irrelevant as the AMD APM clearly ask for clearing
the reserved bits.
Make sure that on non PCID machines bit 11 is not set by the page table
switching code.
Andy suggested to rename the related bits and masks so they are clearly
describing what they should be used for, which is done as well for clarity.
That split could have been done with alternatives but the macro hell is
horrible and ugly. This can be done on top if someone cares to remove the
extra orq. For now it's a straight forward fix.
Fixes: 6fd166aae7 ("x86/mm: Use/Fix PCID to optimize user/kernel switches")
Reported-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable <stable@vger.kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801140009150.2371@nanos
Convert indirect jumps in core 32/64bit entry assembler code to use
non-speculative sequences when CONFIG_RETPOLINE is enabled.
Don't use CALL_NOSPEC in entry_SYSCALL_64_fastpath because the return
address after the 'call' instruction must be *precisely* at the
.Lentry_SYSCALL_64_after_fastpath label for stub_ptregs_64 to work,
and the use of alternatives will mess that up unless we play horrid
games to prepend with NOPs and make the variants the same length. It's
not worth it; in the case where we ALTERNATIVE out the retpoline, the
first instruction at __x86.indirect_thunk.rax is going to be a bare
jmp *%rax anyway.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515707194-20531-7-git-send-email-dwmw@amazon.co.uk
Pull x86 page table isolation fixes from Thomas Gleixner:
"A couple of urgent fixes for PTI:
- Fix a PTE mismatch between user and kernel visible mapping of the
cpu entry area (differs vs. the GLB bit) and causes a TLB mismatch
MCE on older AMD K8 machines
- Fix the misplaced CR3 switch in the SYSCALL compat entry code which
causes access to unmapped kernel memory resulting in double faults.
- Fix the section mismatch of the cpu_tss_rw percpu storage caused by
using a different mechanism for declaration and definition.
- Two fixes for dumpstack which help to decode entry stack issues
better
- Enable PTI by default in Kconfig. We should have done that earlier,
but it slipped through the cracks.
- Exclude AMD from the PTI enforcement. Not necessarily a fix, but if
AMD is so confident that they are not affected, then we should not
burden users with the overhead"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/process: Define cpu_tss_rw in same section as declaration
x86/pti: Switch to kernel CR3 at early in entry_SYSCALL_compat()
x86/dumpstack: Print registers for first stack frame
x86/dumpstack: Fix partial register dumps
x86/pti: Make sure the user/kernel PTEs match
x86/cpu, x86/pti: Do not enable PTI on AMD processors
x86/pti: Enable PTI by default
The preparation for PTI which added CR3 switching to the entry code
misplaced the CR3 switch in entry_SYSCALL_compat().
With PTI enabled the entry code tries to access a per cpu variable after
switching to kernel GS. This fails because that variable is not mapped to
user space. This results in a double fault and in the worst case a kernel
crash.
Move the switch ahead of the access and clobber RSP which has been saved
already.
Fixes: 8a09317b89 ("x86/mm/pti: Prepare the x86/entry assembly code for entry/exit CR3 switching")
Reported-by: Lars Wendler <wendler.lars@web.de>
Reported-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>,
Cc: Dave Hansen <dave.hansen@linux.intel.com>,
Cc: Peter Zijlstra <peterz@infradead.org>,
Cc: Greg KH <gregkh@linuxfoundation.org>, ,
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>,
Cc: Juergen Gross <jgross@suse.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801031949200.1957@nanos
Pull x86 page table isolation updates from Thomas Gleixner:
"This is the final set of enabling page table isolation on x86:
- Infrastructure patches for handling the extra page tables.
- Patches which map the various bits and pieces which are required to
get in and out of user space into the user space visible page
tables.
- The required changes to have CR3 switching in the entry/exit code.
- Optimizations for the CR3 switching along with documentation how
the ASID/PCID mechanism works.
- Updates to dump pagetables to cover the user space page tables for
W+X scans and extra debugfs files to analyze both the kernel and
the user space visible page tables
The whole functionality is compile time controlled via a config switch
and can be turned on/off on the command line as well"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
x86/ldt: Make the LDT mapping RO
x86/mm/dump_pagetables: Allow dumping current pagetables
x86/mm/dump_pagetables: Check user space page table for WX pages
x86/mm/dump_pagetables: Add page table directory to the debugfs VFS hierarchy
x86/mm/pti: Add Kconfig
x86/dumpstack: Indicate in Oops whether PTI is configured and enabled
x86/mm: Clarify the whole ASID/kernel PCID/user PCID naming
x86/mm: Use INVPCID for __native_flush_tlb_single()
x86/mm: Optimize RESTORE_CR3
x86/mm: Use/Fix PCID to optimize user/kernel switches
x86/mm: Abstract switching CR3
x86/mm: Allow flushing for future ASID switches
x86/pti: Map the vsyscall page if needed
x86/pti: Put the LDT in its own PGD if PTI is on
x86/mm/64: Make a full PGD-entry size hole in the memory map
x86/events/intel/ds: Map debug buffers in cpu_entry_area
x86/cpu_entry_area: Add debugstore entries to cpu_entry_area
x86/mm/pti: Map ESPFIX into user space
x86/mm/pti: Share entry text PMD
x86/entry: Align entry text section to PMD boundary
...
Most NMI/paranoid exceptions will not in fact change pagetables and would
thus not require TLB flushing, however RESTORE_CR3 uses flushing CR3
writes.
Restores to kernel PCIDs can be NOFLUSH, because we explicitly flush the
kernel mappings and now that we track which user PCIDs need flushing we can
avoid those too when possible.
This does mean RESTORE_CR3 needs an additional scratch_reg, luckily both
sites have plenty available.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We can use PCID to retain the TLBs across CR3 switches; including those now
part of the user/kernel switch. This increases performance of kernel
entry/exit at the cost of more expensive/complicated TLB flushing.
Now that we have two address spaces, one for kernel and one for user space,
we need two PCIDs per mm. We use the top PCID bit to indicate a user PCID
(just like we use the PFN LSB for the PGD). Since we do TLB invalidation
from kernel space, the existing code will only invalidate the kernel PCID,
we augment that by marking the corresponding user PCID invalid, and upon
switching back to userspace, use a flushing CR3 write for the switch.
In order to access the user_pcid_flush_mask we use PER_CPU storage, which
means the previously established SWAPGS vs CR3 ordering is now mandatory
and required.
Having to do this memory access does require additional registers, most
sites have a functioning stack and we can spill one (RAX), sites without
functional stack need to otherwise provide the second scratch register.
Note: PCID is generally available on Intel Sandybridge and later CPUs.
Note: Up until this point TLB flushing was broken in this series.
Based-on-code-from: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make VSYSCALLs work fully in PTI mode by mapping them properly to the user
space visible page tables.
[ tglx: Hide unused functions (Patch by Arnd Bergmann) ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PAGE_TABLE_ISOLATION needs to switch to a different CR3 value when it
enters the kernel and switch back when it exits. This essentially needs to
be done before leaving assembly code.
This is extra challenging because the switching context is tricky: the
registers that can be clobbered can vary. It is also hard to store things
on the stack because there is an established ABI (ptregs) or the stack is
entirely unsafe to use.
Establish a set of macros that allow changing to the user and kernel CR3
values.
Interactions with SWAPGS:
Previous versions of the PAGE_TABLE_ISOLATION code relied on having
per-CPU scratch space to save/restore a register that can be used for the
CR3 MOV. The %GS register is used to index into our per-CPU space, so
SWAPGS *had* to be done before the CR3 switch. That scratch space is gone
now, but the semantic that SWAPGS must be done before the CR3 MOV is
retained. This is good to keep because it is not that hard to do and it
allows to do things like add per-CPU debugging information.
What this does in the NMI code is worth pointing out. NMIs can interrupt
*any* context and they can also be nested with NMIs interrupting other
NMIs. The comments below ".Lnmi_from_kernel" explain the format of the
stack during this situation. Changing the format of this stack is hard.
Instead of storing the old CR3 value on the stack, this depends on the
*regular* register save/restore mechanism and then uses %r14 to keep CR3
during the NMI. It is callee-saved and will not be clobbered by the C NMI
handlers that get called.
[ PeterZ: ESPFIX optimization ]
Based-on-code-from: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 PTI preparatory patches from Thomas Gleixner:
"Todays Advent calendar window contains twentyfour easy to digest
patches. The original plan was to have twenty three matching the date,
but a late fixup made that moot.
- Move the cpu_entry_area mapping out of the fixmap into a separate
address space. That's necessary because the fixmap becomes too big
with NRCPUS=8192 and this caused already subtle and hard to
diagnose failures.
The top most patch is fresh from today and cures a brain slip of
that tall grumpy german greybeard, who ignored the intricacies of
32bit wraparounds.
- Limit the number of CPUs on 32bit to 64. That's insane big already,
but at least it's small enough to prevent address space issues with
the cpu_entry_area map, which have been observed and debugged with
the fixmap code
- A few TLB flush fixes in various places plus documentation which of
the TLB functions should be used for what.
- Rename the SYSENTER stack to CPU_ENTRY_AREA stack as it is used for
more than sysenter now and keeping the name makes backtraces
confusing.
- Prevent LDT inheritance on exec() by moving it to arch_dup_mmap(),
which is only invoked on fork().
- Make vysycall more robust.
- A few fixes and cleanups of the debug_pagetables code. Check
PAGE_PRESENT instead of checking the PTE for 0 and a cleanup of the
C89 initialization of the address hint array which already was out
of sync with the index enums.
- Move the ESPFIX init to a different place to prepare for PTI.
- Several code moves with no functional change to make PTI
integration simpler and header files less convoluted.
- Documentation fixes and clarifications"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/cpu_entry_area: Prevent wraparound in setup_cpu_entry_area_ptes() on 32bit
init: Invoke init_espfix_bsp() from mm_init()
x86/cpu_entry_area: Move it out of the fixmap
x86/cpu_entry_area: Move it to a separate unit
x86/mm: Create asm/invpcid.h
x86/mm: Put MMU to hardware ASID translation in one place
x86/mm: Remove hard-coded ASID limit checks
x86/mm: Move the CR3 construction functions to tlbflush.h
x86/mm: Add comments to clarify which TLB-flush functions are supposed to flush what
x86/mm: Remove superfluous barriers
x86/mm: Use __flush_tlb_one() for kernel memory
x86/microcode: Dont abuse the TLB-flush interface
x86/uv: Use the right TLB-flush API
x86/entry: Rename SYSENTER_stack to CPU_ENTRY_AREA_entry_stack
x86/doc: Remove obvious weirdnesses from the x86 MM layout documentation
x86/mm/64: Improve the memory map documentation
x86/ldt: Prevent LDT inheritance on exec
x86/ldt: Rework locking
arch, mm: Allow arch_dup_mmap() to fail
x86/vsyscall/64: Warn and fail vsyscall emulation in NATIVE mode
...
If the kernel oopses while on the trampoline stack, it will print
"<SYSENTER>" even if SYSENTER is not involved. That is rather confusing.
The "SYSENTER" stack is used for a lot more than SYSENTER now. Give it a
better string to display in stack dumps, and rename the kernel code to
match.
Also move the 32-bit code over to the new naming even though it still uses
the entry stack only for SYSENTER.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If something goes wrong with pagetable setup, vsyscall=native will
accidentally fall back to emulation. Make it warn and fail so that we
notice.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kernel is very erratic as to which pagetables have _PAGE_USER set. The
vsyscall page gets lucky: it seems that all of the relevant pagetables are
among the apparently arbitrary ones that set _PAGE_USER. Rather than
relying on chance, just explicitly set _PAGE_USER.
This will let us clean up pagetable setup to stop setting _PAGE_USER. The
added code can also be reused by pagetable isolation to manage the
_PAGE_USER bit in the usermode tables.
[ tglx: Folded paravirt fix from Juergen Gross ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 syscall entry code changes for PTI from Ingo Molnar:
"The main changes here are Andy Lutomirski's changes to switch the
x86-64 entry code to use the 'per CPU entry trampoline stack'. This,
besides helping fix KASLR leaks (the pending Page Table Isolation
(PTI) work), also robustifies the x86 entry code"
* 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
x86/cpufeatures: Make CPU bugs sticky
x86/paravirt: Provide a way to check for hypervisors
x86/paravirt: Dont patch flush_tlb_single
x86/entry/64: Make cpu_entry_area.tss read-only
x86/entry: Clean up the SYSENTER_stack code
x86/entry/64: Remove the SYSENTER stack canary
x86/entry/64: Move the IST stacks into struct cpu_entry_area
x86/entry/64: Create a per-CPU SYSCALL entry trampoline
x86/entry/64: Return to userspace from the trampoline stack
x86/entry/64: Use a per-CPU trampoline stack for IDT entries
x86/espfix/64: Stop assuming that pt_regs is on the entry stack
x86/entry/64: Separate cpu_current_top_of_stack from TSS.sp0
x86/entry: Remap the TSS into the CPU entry area
x86/entry: Move SYSENTER_stack to the beginning of struct tss_struct
x86/dumpstack: Handle stack overflow on all stacks
x86/entry: Fix assumptions that the HW TSS is at the beginning of cpu_tss
x86/kasan/64: Teach KASAN about the cpu_entry_area
x86/mm/fixmap: Generalize the GDT fixmap mechanism, introduce struct cpu_entry_area
x86/entry/gdt: Put per-CPU GDT remaps in ascending order
x86/dumpstack: Add get_stack_info() support for the SYSENTER stack
...
The TSS is a fairly juicy target for exploits, and, now that the TSS
is in the cpu_entry_area, it's no longer protected by kASLR. Make it
read-only on x86_64.
On x86_32, it can't be RO because it's written by the CPU during task
switches, and we use a task gate for double faults. I'd also be
nervous about errata if we tried to make it RO even on configurations
without double fault handling.
[ tglx: AMD confirmed that there is no problem on 64-bit with TSS RO. So
it's probably safe to assume that it's a non issue, though Intel
might have been creative in that area. Still waiting for
confirmation. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.733700132@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The existing code was a mess, mainly because C arrays are nasty. Turn
SYSENTER_stack into a struct, add a helper to find it, and do all the
obvious cleanups this enables.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.653244723@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Handling SYSCALL is tricky: the SYSCALL handler is entered with every
single register (except FLAGS), including RSP, live. It somehow needs
to set RSP to point to a valid stack, which means it needs to save the
user RSP somewhere and find its own stack pointer. The canonical way
to do this is with SWAPGS, which lets us access percpu data using the
%gs prefix.
With PAGE_TABLE_ISOLATION-like pagetable switching, this is
problematic. Without a scratch register, switching CR3 is impossible, so
%gs-based percpu memory would need to be mapped in the user pagetables.
Doing that without information leaks is difficult or impossible.
Instead, use a different sneaky trick. Map a copy of the first part
of the SYSCALL asm at a different address for each CPU. Now RIP
varies depending on the CPU, so we can use RIP-relative memory access
to access percpu memory. By putting the relevant information (one
scratch slot and the stack address) at a constant offset relative to
RIP, we can make SYSCALL work without relying on %gs.
A nice thing about this approach is that we can easily switch it on
and off if we want pagetable switching to be configurable.
The compat variant of SYSCALL doesn't have this problem in the first
place -- there are plenty of scratch registers, since we don't care
about preserving r8-r15. This patch therefore doesn't touch SYSCALL32
at all.
This patch actually seems to be a small speedup. With this patch,
SYSCALL touches an extra cache line and an extra virtual page, but
the pipeline no longer stalls waiting for SWAPGS. It seems that, at
least in a tight loop, the latter outweights the former.
Thanks to David Laight for an optimization tip.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.403607157@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
By itself, this is useless. It gives us the ability to run some final code
before exit that cannnot run on the kernel stack. This could include a CR3
switch a la PAGE_TABLE_ISOLATION or some kernel stack erasing, for
example. (Or even weird things like *changing* which kernel stack gets
used as an ASLR-strengthening mechanism.)
The SYSRET32 path is not covered yet. It could be in the future or
we could just ignore it and force the slow path if needed.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.306546484@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Historically, IDT entries from usermode have always gone directly
to the running task's kernel stack. Rearrange it so that we enter on
a per-CPU trampoline stack and then manually switch to the task's stack.
This touches a couple of extra cachelines, but it gives us a chance
to run some code before we touch the kernel stack.
The asm isn't exactly beautiful, but I think that fully refactoring
it can wait.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.225330557@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This has a secondary purpose: it puts the entry stack into a region
with a well-controlled layout. A subsequent patch will take
advantage of this to streamline the SYSCALL entry code to be able to
find it more easily.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.962042855@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This will simplify future changes that want scratch variables early in
the SYSENTER handler -- they'll be able to spill registers to the
stack. It also lets us get rid of a SWAPGS_UNSAFE_STACK user.
This does not depend on CONFIG_IA32_EMULATION=y because we'll want the
stack space even without IA32 emulation.
As far as I can tell, the reason that this wasn't done from day 1 is
that we use IST for #DB and #BP, which is IMO rather nasty and causes
a lot more problems than it solves. But, since #DB uses IST, we don't
actually need a real stack for SYSENTER (because SYSENTER with TF set
will invoke #DB on the IST stack rather than the SYSENTER stack).
I want to remove IST usage from these vectors some day, and this patch
is a prerequisite for that as well.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.312726423@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 1d3e53e862 ("x86/entry/64: Refactor IRQ stacks and make them
NMI-safe") added DEBUG_ENTRY_ASSERT_IRQS_OFF macro that acceses eflags
using 'pushfq' instruction when testing for IF bit. On PV Xen guests
looking at IF flag directly will always see it set, resulting in 'ud2'.
Introduce SAVE_FLAGS() macro that will use appropriate save_fl pv op when
running paravirt.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20171204150604.899457242@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull misc x86 fixes from Ingo Molnar:
- make CR4 handling irq-safe, which bug vmware guests ran into
- don't crash on early IRQs in Xen guests
- don't crash secondary CPU bringup if #UD assisted WARN()ings are
triggered
- make X86_BUG_FXSAVE_LEAK optional on newer AMD CPUs that have the fix
- fix AMD Fam17h microcode loading
- fix broadcom_postcore_init() if ACPI is disabled
- fix resume regression in __restore_processor_context()
- fix Sparse warnings
- fix a GCC-8 warning
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Change time() prototype to match __vdso_time()
x86: Fix Sparse warnings about non-static functions
x86/power: Fix some ordering bugs in __restore_processor_context()
x86/PCI: Make broadcom_postcore_init() check acpi_disabled
x86/microcode/AMD: Add support for fam17h microcode loading
x86/cpufeatures: Make X86_BUG_FXSAVE_LEAK detectable in CPUID on AMD
x86/idt: Load idt early in start_secondary
x86/xen: Support early interrupts in xen pv guests
x86/tlb: Disable interrupts when changing CR4
x86/tlb: Refactor CR4 setting and shadow write
gcc-8 warns that time() is an alias for __vdso_time() but the two
have different prototypes:
arch/x86/entry/vdso/vclock_gettime.c:327:5: error: 'time' alias between functions of incompatible types 'int(time_t *)' {aka 'int(long int *)'} and 'time_t(time_t *)' {aka 'long int(long int *)'} [-Werror=attribute-alias]
int time(time_t *t)
^~~~
arch/x86/entry/vdso/vclock_gettime.c:318:16: note: aliased declaration here
I could not figure out whether this is intentional, but I see that
changing it to return time_t avoids the warning.
Returning 'int' from time() is also a bit questionable, as it causes an
overflow in y2038 even on 64-bit architectures that use a 64-bit time_t
type. On 32-bit architecture with 64-bit time_t, time() should always
be implement by the C library by calling a (to be added) clock_gettime()
variant that takes a sufficiently wide argument.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: http://lkml.kernel.org/r/20171204150203.852959-1-arnd@arndb.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Live patching consistency model is of LEAVE_PATCHED_SET and
SWITCH_THREAD. This means that all tasks in the system have to be marked
one by one as safe to call a new patched function. Safe means when a
task is not (sleeping) in a set of patched functions. That is, no
patched function is on the task's stack. Another clearly safe place is
the boundary between kernel and userspace. The patching waits for all
tasks to get outside of the patched set or to cross the boundary. The
transition is completed afterwards.
The problem is that a task can block the transition for quite a long
time, if not forever. It could sleep in a set of patched functions, for
example. Luckily we can force the task to leave the set by sending it a
fake signal, that is a signal with no data in signal pending structures
(no handler, no sign of proper signal delivered). Suspend/freezer use
this to freeze the tasks as well. The task gets TIF_SIGPENDING set and
is woken up (if it has been sleeping in the kernel before) or kicked by
rescheduling IPI (if it was running on other CPU). This causes the task
to go to kernel/userspace boundary where the signal would be handled and
the task would be marked as safe in terms of live patching.
There are tasks which are not affected by this technique though. The
fake signal is not sent to kthreads. They should be handled differently.
They can be woken up so they leave the patched set and their
TIF_PATCH_PENDING can be cleared thanks to stack checking.
For the sake of completeness, if the task is in TASK_RUNNING state but
not currently running on some CPU it doesn't get the IPI, but it would
eventually handle the signal anyway. Second, if the task runs in the
kernel (in TASK_RUNNING state) it gets the IPI, but the signal is not
handled on return from the interrupt. It would be handled on return to
the userspace in the future when the fake signal is sent again. Stack
checking deals with these cases in a better way.
If the task was sleeping in a syscall it would be woken by our fake
signal, it would check if TIF_SIGPENDING is set (by calling
signal_pending() predicate) and return ERESTART* or EINTR. Syscalls with
ERESTART* return values are restarted in case of the fake signal (see
do_signal()). EINTR is propagated back to the userspace program. This
could disturb the program, but...
* each process dealing with signals should react accordingly to EINTR
return values.
* syscalls returning EINTR happen to be quite common situation in the
system even if no fake signal is sent.
* freezer sends the fake signal and does not deal with EINTR anyhow.
Thus EINTR values are returned when the system is resumed.
The very safe marking is done in architectures' "entry" on syscall and
interrupt/exception exit paths, and in a stack checking functions of
livepatch. TIF_PATCH_PENDING is cleared and the next
recalc_sigpending() drops TIF_SIGPENDING. In connection with this, also
call klp_update_patch_state() before do_signal(), so that
recalc_sigpending() in dequeue_signal() can clear TIF_PATCH_PENDING
immediately and thus prevent a double call of do_signal().
Note that the fake signal is not sent to stopped/traced tasks. Such task
prevents the patching to finish till it continues again (is not traced
anymore).
Last, sending the fake signal is not automatic. It is done only when
admin requests it by writing 1 to signal sysfs attribute in livepatch
sysfs directory.
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: x86@kernel.org
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Pull misc x86 fixes from Ingo Molnar:
- topology enumeration fixes
- KASAN fix
- two entry fixes (not yet the big series related to KASLR)
- remove obsolete code
- instruction decoder fix
- better /dev/mem sanity checks, hopefully working better this time
- pkeys fixes
- two ACPI fixes
- 5-level paging related fixes
- UMIP fixes that should make application visible faults more debuggable
- boot fix for weird virtualization environment
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/decoder: Add new TEST instruction pattern
x86/PCI: Remove unused HyperTransport interrupt support
x86/umip: Fix insn_get_code_seg_params()'s return value
x86/boot/KASLR: Remove unused variable
x86/entry/64: Add missing irqflags tracing to native_load_gs_index()
x86/mm/kasan: Don't use vmemmap_populate() to initialize shadow
x86/entry/64: Fix entry_SYSCALL_64_after_hwframe() IRQ tracing
x86/pkeys/selftests: Fix protection keys write() warning
x86/pkeys/selftests: Rename 'si_pkey' to 'siginfo_pkey'
x86/mpx/selftests: Fix up weird arrays
x86/pkeys: Update documentation about availability
x86/umip: Print a warning into the syslog if UMIP-protected instructions are used
x86/smpboot: Fix __max_logical_packages estimate
x86/topology: Avoid wasting 128k for package id array
perf/x86/intel/uncore: Cache logical pkg id in uncore driver
x86/acpi: Reduce code duplication in mp_override_legacy_irq()
x86/acpi: Handle SCI interrupts above legacy space gracefully
x86/boot: Fix boot failure when SMP MP-table is based at 0
x86/mm: Limit mmap() of /dev/mem to valid physical addresses
x86/selftests: Add test for mapping placement for 5-level paging
...
Running this code with IRQs enabled (where dummy_lock is a spinlock):
static void check_load_gs_index(void)
{
/* This will fail. */
load_gs_index(0xffff);
spin_lock(&dummy_lock);
spin_unlock(&dummy_lock);
}
Will generate a lockdep warning. The issue is that the actual write
to %gs would cause an exception with IRQs disabled, and the exception
handler would, as an inadvertent side effect, update irqflag tracing
to reflect the IRQs-off status. native_load_gs_index() would then
turn IRQs back on and return with irqflag tracing still thinking that
IRQs were off. The dummy lock-and-unlock causes lockdep to notice the
error and warn.
Fix it by adding the missing tracing.
Apparently nothing did this in a context where it mattered. I haven't
tried to find a code path that would actually exhibit the warning if
appropriately nasty user code were running.
I suspect that the security impact of this bug is very, very low --
production systems don't run with lockdep enabled, and the warning is
mostly harmless anyway.
Found during a quick audit of the entry code to try to track down an
unrelated bug that Ingo found in some still-in-development code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/e1aeb0e6ba8dd430ec36c8a35e63b429698b4132.1511411918.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When I added entry_SYSCALL_64_after_hwframe(), I left TRACE_IRQS_OFF
before it. This means that users of entry_SYSCALL_64_after_hwframe()
were responsible for invoking TRACE_IRQS_OFF, and the one and only
user (Xen, added in the same commit) got it wrong.
I think this would manifest as a warning if a Xen PV guest with
CONFIG_DEBUG_LOCKDEP=y were used with context tracking. (The
context tracking bit is to cause lockdep to get invoked before we
turn IRQs back on.) I haven't tested that for real yet because I
can't get a kernel configured like that to boot at all on Xen PV.
Move TRACE_IRQS_OFF below the label.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 8a9949bc71 ("x86/xen/64: Rearrange the SYSCALL entries")
Link: http://lkml.kernel.org/r/9150aac013b7b95d62c2336751d5b6e91d2722aa.1511325444.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
One of the most remarkable improvements in this cycle is, Kbuild is
now able to cache the result of shell commands. Some variables are
expensive to compute, for example, $(call cc-option,...) invokes the
compiler. It is not efficient to redo this computation every time,
even when we are not actually building anything. Kbuild creates a
hidden file ".cache.mk" that contains invoked shell commands and
their results. The speed-up should be noticeable.
Summary:
- Fix arch build issues (hexagon, sh)
- Clean up various Makefiles and scripts
- Fix wrong usage of {CFLAGS,LDFLAGS}_MODULE in arch Makefiles
- Cache variables that are expensive to compute
- Improve cc-ldopton and ld-option for Clang
- Optimize output directory creation
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJaDxaLAAoJED2LAQed4NsGIHQP/isMxxaIxIAWU56+ZcII74k7
639VgrKi9n5y25d1dBRTQg+vReHE6E2JbkCqpVOu11t7m0LT7yUK8v3WwyLf1qTN
GxnqZ/WMQU5/AYVqIWo8jN4FGHpivHJ6qbeiNJM9qN4RAkzG0sZUq746VaFZYmIR
Lu0Gf4m4qjifkkhXsQdWT5i7yNTidPqaL6GNb+FcFkEHlVre8jma0kJlgfHxru84
WmETpjQXvHAZ/R61vY6ekAWpqFhw3ecJY96A9npnx+SQVQdSNAdpaU0SK29jB0ON
/SAfpHg9oa/gD0LFOKV6zkjnAkd4TEjrJEiHHhz5gjT/SbS3T1llBIGZ1oV4X7Y0
Vlh9KWlm1FJJI4SIzc9qUaQMp6JtLfEfHKJCc45xVaN3fNrDnR8jl80x5+95ELga
dCkZgnq5u82MtTysCbHBESwDYQaVPyIrh7In+mduglaCqhqj9KoDjoLoiGfCg7SA
3tPflYVd629w5l5GrazJ40jWn1+ggMtgMOVooJNJ+dINCP+GxsUpH84Ww2Pdic+/
qLdud6TeqxrZDGzWXqKNLu8alM8NGgSr101l9gIf1oqSyy63duBpMrxGDoIJS3FU
rFDoFFUhlfkAXNbQHtVGNzKtcpCjURh992j9Fa1+NfMwSce5IHkMwTvPmNSRowi8
0llLjXhD/bxK6FpdvlV8
=zIdO
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
"One of the most remarkable improvements in this cycle is, Kbuild is
now able to cache the result of shell commands. Some variables are
expensive to compute, for example, $(call cc-option,...) invokes the
compiler. It is not efficient to redo this computation every time,
even when we are not actually building anything. Kbuild creates a
hidden file ".cache.mk" that contains invoked shell commands and their
results. The speed-up should be noticeable.
Summary:
- Fix arch build issues (hexagon, sh)
- Clean up various Makefiles and scripts
- Fix wrong usage of {CFLAGS,LDFLAGS}_MODULE in arch Makefiles
- Cache variables that are expensive to compute
- Improve cc-ldopton and ld-option for Clang
- Optimize output directory creation"
* tag 'kbuild-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (30 commits)
kbuild: move coccicheck help from scripts/Makefile.help to top Makefile
sh: decompressor: add shipped files to .gitignore
frv: .gitignore: ignore vmlinux.lds
selinux: remove unnecessary assignment to subdir-
kbuild: specify FORCE in Makefile.headersinst as .PHONY target
kbuild: remove redundant mkdir from ./Kbuild
kbuild: optimize object directory creation for incremental build
kbuild: create object directories simpler and faster
kbuild: filter-out PHONY targets from "targets"
kbuild: remove redundant $(wildcard ...) for cmd_files calculation
kbuild: create directory for make cache only when necessary
sh: select KBUILD_DEFCONFIG depending on ARCH
kbuild: fix linker feature test macros when cross compiling with Clang
kbuild: shrink .cache.mk when it exceeds 1000 lines
kbuild: do not call cc-option before KBUILD_CFLAGS initialization
kbuild: Cache a few more calls to the compiler
kbuild: Add a cache for generated variables
kbuild: add forward declaration of default target to Makefile.asm-generic
kbuild: remove KBUILD_SUBDIR_ASFLAGS and KBUILD_SUBDIR_CCFLAGS
hexagon/kbuild: replace CFLAGS_MODULE with KBUILD_CFLAGS_MODULE
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABAgAGBQJaDdh4AAoJELDendYovxMvPFAH/2QjTys2ydIAdmwke4odpJ7U
xuy7HOQCzOeZ5YsZthzCBsN90VmnDM7X7CcB8weSdjcKlXMSAWD+J1RgkL2iAJhI
8tzIEXECrlNuz4V5mX9TmMgtPCr4qzU3fsts0pZy4fYDq1PVWDefqOwEtbpbWabb
wRSMq/nTb9iASTMgheSC0WfhJneqtJ+J20zrzkGPCBPRFcwfppeP8/7vpkmJslBi
eH/pfchICM4w093T/BfavnsPvhLdjgRuwVzn6+e46s4tLnZAxnLRVQ7SXZXzBORq
/dL/qC0XH3YXdU+XfIs//giZsmLns6SxZaMr4vs6TxFtuzZBKpLtkOKo9zndvxk=
=sZY5
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.15-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
"Xen features and fixes for v4.15-rc1
Apart from several small fixes it contains the following features:
- a series by Joao Martins to add vdso support of the pv clock
interface
- a series by Juergen Gross to add support for Xen pv guests to be
able to run on 5 level paging hosts
- a series by Stefano Stabellini adding the Xen pvcalls frontend
driver using a paravirtualized socket interface"
* tag 'for-linus-4.15-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (34 commits)
xen/pvcalls: fix potential endless loop in pvcalls-front.c
xen/pvcalls: Add MODULE_LICENSE()
MAINTAINERS: xen, kvm: track pvclock-abi.h changes
x86/xen/time: setup vcpu 0 time info page
x86/xen/time: set pvclock flags on xen_time_init()
x86/pvclock: add setter for pvclock_pvti_cpu0_va
ptp_kvm: probe for kvm guest availability
xen/privcmd: remove unused variable pageidx
xen: select grant interface version
xen: update arch/x86/include/asm/xen/cpuid.h
xen: add grant interface version dependent constants to gnttab_ops
xen: limit grant v2 interface to the v1 functionality
xen: re-introduce support for grant v2 interface
xen: support priv-mapping in an HVM tools domain
xen/pvcalls: remove redundant check for irq >= 0
xen/pvcalls: fix unsigned less than zero error check
xen/time: Return -ENODEV from xen_get_wallclock()
xen/pvcalls-front: mark expected switch fall-through
xen: xenbus_probe_frontend: mark expected switch fall-throughs
xen/time: do not decrease steal time after live migration on xen
...
For the out-of-tree build, scripts/Makefile.build creates output
directories, but this operation is not efficient.
scripts/Makefile.lib calculates obj-dirs as follows:
obj-dirs := $(dir $(multi-objs) $(obj-y))
Please notice $(sort ...) is not used here. Usually the result is
as many "./" as objects here.
For a lot of duplicated paths, the following command is invoked.
_dummy := $(foreach d,$(obj-dirs), $(shell [ -d $(d) ] || mkdir -p $(d)))
Then, the costly shell command is run over and over again.
I see many points for optimization:
[1] Use $(sort ...) to cut down duplicated paths before passing them
to system call
[2] Use single $(shell ...) instead of repeating it with $(foreach ...)
This will reduce forking.
[3] We can calculate obj-dirs more simply. Most of objects are already
accumulated in $(targets). So, $(dir $(targets)) is fine and more
comprehensive.
I also removed ugly code in arch/x86/entry/vdso/Makefile. This is now
really unnecessary.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Douglas Anderson <dianders@chromium.org>
Pull x86 cleanups from Ingo Molnar:
"Two changes: Propagate const/__initconst, and use ARRAY_SIZE() some
more"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/events/amd/iommu: Make iommu_pmu const and __initconst
x86: Use ARRAY_SIZE
Pull x86 core updates from Ingo Molnar:
"Note that in this cycle most of the x86 topics interacted at a level
that caused them to be merged into tip:x86/asm - but this should be a
temporary phenomenon, hopefully we'll back to the usual patterns in
the next merge window.
The main changes in this cycle were:
Hardware enablement:
- Add support for the Intel UMIP (User Mode Instruction Prevention)
CPU feature. This is a security feature that disables certain
instructions such as SGDT, SLDT, SIDT, SMSW and STR. (Ricardo Neri)
[ Note that this is disabled by default for now, there are some
smaller enhancements in the pipeline that I'll follow up with in
the next 1-2 days, which allows this to be enabled by default.]
- Add support for the AMD SEV (Secure Encrypted Virtualization) CPU
feature, on top of SME (Secure Memory Encryption) support that was
added in v4.14. (Tom Lendacky, Brijesh Singh)
- Enable new SSE/AVX/AVX512 CPU features: AVX512_VBMI2, GFNI, VAES,
VPCLMULQDQ, AVX512_VNNI, AVX512_BITALG. (Gayatri Kammela)
Other changes:
- A big series of entry code simplifications and enhancements (Andy
Lutomirski)
- Make the ORC unwinder default on x86 and various objtool
enhancements. (Josh Poimboeuf)
- 5-level paging enhancements (Kirill A. Shutemov)
- Micro-optimize the entry code a bit (Borislav Petkov)
- Improve the handling of interdependent CPU features in the early
FPU init code (Andi Kleen)
- Build system enhancements (Changbin Du, Masahiro Yamada)
- ... plus misc enhancements, fixes and cleanups"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (118 commits)
x86/build: Make the boot image generation less verbose
selftests/x86: Add tests for the STR and SLDT instructions
selftests/x86: Add tests for User-Mode Instruction Prevention
x86/traps: Fix up general protection faults caused by UMIP
x86/umip: Enable User-Mode Instruction Prevention at runtime
x86/umip: Force a page fault when unable to copy emulated result to user
x86/umip: Add emulation code for UMIP instructions
x86/cpufeature: Add User-Mode Instruction Prevention definitions
x86/insn-eval: Add support to resolve 16-bit address encodings
x86/insn-eval: Handle 32-bit address encodings in virtual-8086 mode
x86/insn-eval: Add wrapper function for 32 and 64-bit addresses
x86/insn-eval: Add support to resolve 32-bit address encodings
x86/insn-eval: Compute linear address in several utility functions
resource: Fix resource_size.cocci warnings
X86/KVM: Clear encryption attribute when SEV is active
X86/KVM: Decrypt shared per-cpu variables when SEV is active
percpu: Introduce DEFINE_PER_CPU_DECRYPTED
x86: Add support for changing memory encryption attribute in early boot
x86/io: Unroll string I/O when SEV is active
x86/boot: Add early boot support when running with SEV active
...
Right now there is only a pvclock_pvti_cpu0_va() which is defined
on kvmclock since:
commit dac16fba6f
("x86/vdso: Get pvclock data from the vvar VMA instead of the fixmap")
The only user of this interface so far is kvm. This commit adds a
setter function for the pvti page and moves pvclock_pvti_cpu0_va
to pvclock, which is a more generic place to have it; and would
allow other PV clocksources to use it, such as Xen.
While moving pvclock_pvti_cpu0_va into pvclock, rename also this
function to pvclock_get_pvti_cpu0_va (including its call sites)
to be symmetric with the setter (pvclock_set_pvti_cpu0_va).
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Use lockdep to check that IRQs are enabled or disabled as expected. This
way the sanity check only shows overhead when concurrency correctness
debug code is enabled.
It also makes no more sense to fix the IRQ flags when a bug is detected
as the assertion is now pure config-dependent debugging. And to quote
Peter Zijlstra:
The whole if !disabled, disable logic is uber paranoid programming,
but I don't think we've ever seen that WARN trigger, and if it does
(and then burns the kernel) we at least know what happend.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David S . Miller <davem@davemloft.net>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1509980490-4285-8-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The guest physical memory area holding the struct pvclock_wall_clock and
struct pvclock_vcpu_time_info are shared with the hypervisor. It
periodically updates the contents of the memory.
When SEV is active, the encryption attributes from the shared memory pages
must be cleared so that both hypervisor and guest can access the data.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lkml.kernel.org/r/20171020143059.3291-18-brijesh.singh@amd.com
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWfswbQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykvEwCfXU1MuYFQGgMdDmAZXEc+xFXZvqgAoKEcHDNA
6dVh26uchcEQLN/XqUDt
=x306
-----END PGP SIGNATURE-----
Merge tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull initial SPDX identifiers from Greg KH:
"License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the
'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
binding shorthand, which can be used instead of the full boiler plate
text.
This patch is based on work done by Thomas Gleixner and Kate Stewart
and Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset
of the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to
license had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied
to a file was done in a spreadsheet of side by side results from of
the output of two independent scanners (ScanCode & Windriver)
producing SPDX tag:value files created by Philippe Ombredanne.
Philippe prepared the base worksheet, and did an initial spot review
of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537
files assessed. Kate Stewart did a file by file comparison of the
scanner results in the spreadsheet to determine which SPDX license
identifier(s) to be applied to the file. She confirmed any
determination that was not immediately clear with lawyers working with
the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained
>5 lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that
became the concluded license(s).
- when there was disagreement between the two scanners (one detected
a license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply
(and which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases,
confirmation by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.
The Windriver scanner is based on an older version of FOSSology in
part, so they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot
checks in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect
the correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial
patch version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch
license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
applied SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
License cleanup: add SPDX license identifier to uapi header files with a license
License cleanup: add SPDX license identifier to uapi header files with no license
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Convert TESTL to TESTB and save 3 bytes per callsite.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171102120926.4srwerqrr7g72e2k@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Xen PV is fundamentally incompatible with our fancy NMI code: it
doesn't use IST at all, and Xen entries clobber two stack slots
below the hardware frame.
Drop Xen PV support from our NMI code entirely.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/bfbe711b5ae03f672f8848999a8eb2711efc7f98.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of trying to execute any NMI via the bare metal's NMI trap
handler use a Xen specific one for PV domains, like we do for e.g.
debug traps. As in a PV domain the NMI is handled via the normal
kernel stack this is the correct thing to do.
This will enable us to get rid of the very fragile and questionable
dependencies between the bare metal NMI handler and Xen assumptions
believed to be broken anyway.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5baf5c0528d58402441550c5770b98e7961e7680.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All users of RESTORE_EXTRA_REGS, RESTORE_C_REGS and such, and
REMOVE_PT_GPREGS_FROM_STACK are gone. Delete the macros.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/c32672f6e47c561893316d48e06c7656b1039a36.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This gets rid of the last user of the old RESTORE_..._REGS infrastructure.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/652a260f17a160789bc6a41d997f98249b73e2ab.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
They did almost the same thing. Remove a bunch of pointless
instructions (mostly hidden in macros) and reduce cognitive load by
merging them.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1204e20233fcab9130a1ba80b3b1879b5db3fc1f.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
paranoid_exit_restore was a copy of restore_regs_and_return_to_kernel.
Merge them and make the paranoid_exit internal labels local.
Keeping .Lparanoid_exit makes the code a bit shorter because it
allows a 2-byte jnz instead of a 5-byte jnz.
Saves 96 bytes of text.
( This is still a bit suboptimal in a non-CONFIG_TRACE_IRQFLAGS
kernel, but fixing that would make the code rather messy. )
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/510d66a1895cda9473c84b1086f0bb974f22de6a.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The old code restored all the registers with movq instead of pop.
In theory, this was done because some CPUs have higher movq
throughput, but any gain there would be tiny and is almost certainly
outweighed by the higher text size.
This saves 96 bytes of text.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/ad82520a207ccd851b04ba613f4f752b33ac05f7.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
All of the code paths that ended up doing IRET to usermode did
SWAPGS immediately beforehand. Move the SWAPGS into the common
code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/27fd6f45b7cd640de38fb9066fd0349bcd11f8e1.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The only user was the 64-bit opportunistic SYSRET failure path, and
that path didn't really need it. This change makes the
opportunistic SYSRET code a bit more straightforward and gets rid of
the label.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/be3006a7ad3326e3458cf1cc55d416252cbe1986.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I find the '.ifeq <expression>' directive to be confusing. Reading it
quickly seems to suggest its opposite meaning, or that it's missing an
argument.
Improve readability by replacing all of its x86 uses with
'.if <expression> == 0'.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrei Vagin <avagin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/757da028e802c7e98d23fbab8d234b1063e161cf.1508516398.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This fixes the following ORC warning in the 'int3' entry code:
WARNING: can't dereference iret registers at ffff8801c5f17fe0 for ip ffffffff95f0d94b
The ORC metadata had the wrong stack offset for the iret registers.
Their location on the stack is dependent on whether the exception has an
error code.
Reported-and-tested-by: Andrei Vagin <avagin@virtuozzo.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 8c1f75587a ("x86/entry/64: Add unwind hint annotations")
Link: http://lkml.kernel.org/r/931d57f0551ed7979d5e7e05370d445c8e5137f8.1508516398.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Using the ARRAY_SIZE macro improves the readability of the code.
Found with Coccinelle with the following semantic patch:
@r depends on (org || report)@
type T;
T[] E;
position p;
@@
(
(sizeof(E)@p /sizeof(*E))
|
(sizeof(E)@p /sizeof(E[...]))
|
(sizeof(E)@p /sizeof(T))
)
Signed-off-by: Jérémy Lefaure <jeremy.lefaure@lse.epita.fr>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-video@atrey.karlin.mff.cuni.cz
Cc: Martin Mares <mj@ucw.cz>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/20171001193101.8898-13-jeremy.lefaure@lse.epita.fr
On x86-32, Tetsuo Handa and Fengguang Wu reported unwinder warnings
like:
WARNING: kernel stack regs at f60bb9c8 in swapper:1 has bad 'bp' value 0ba00000
And also there were some stack dumps with a bunch of unreliable '?'
symbols after an apic_timer_interrupt symbol, meaning the unwinder got
confused when it tried to read the regs.
The cause of those issues is that, with GCC 4.8 (and possibly older),
there are cases where GCC misaligns the stack pointer in a leaf function
for no apparent reason:
c124a388 <acpi_rs_move_data>:
c124a388: 55 push %ebp
c124a389: 89 e5 mov %esp,%ebp
c124a38b: 57 push %edi
c124a38c: 56 push %esi
c124a38d: 89 d6 mov %edx,%esi
c124a38f: 53 push %ebx
c124a390: 31 db xor %ebx,%ebx
c124a392: 83 ec 03 sub $0x3,%esp
...
c124a3e3: 83 c4 03 add $0x3,%esp
c124a3e6: 5b pop %ebx
c124a3e7: 5e pop %esi
c124a3e8: 5f pop %edi
c124a3e9: 5d pop %ebp
c124a3ea: c3 ret
If an interrupt occurs in such a function, the regs on the stack will be
unaligned, which breaks the frame pointer encoding assumption. So on
32-bit, use the MSB instead of the LSB to encode the regs.
This isn't an issue on 64-bit, because interrupts align the stack before
writing to it.
Reported-and-tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-and-tested-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: LKP <lkp@01.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/279a26996a482ca716605c7dbc7f2db9d8d91e81.1507597785.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 apic updates from Thomas Gleixner:
"This update provides:
- Cleanup of the IDT management including the removal of the extra
tracing IDT. A first step to cleanup the vector management code.
- The removal of the paravirt op adjust_exception_frame. This is a
XEN specific issue, but merged through this branch to avoid nasty
merge collisions
- Prevent dmesg spam about the TSC DEADLINE bug, when the CPU has
disabled the TSC DEADLINE timer in CPUID.
- Adjust a debug message in the ioapic code to print out the
information correctly"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (51 commits)
x86/idt: Fix the X86_TRAP_BP gate
x86/xen: Get rid of paravirt op adjust_exception_frame
x86/eisa: Add missing include
x86/idt: Remove superfluous ALIGNment
x86/apic: Silence "FW_BUG TSC_DEADLINE disabled due to Errata" on CPUs without the feature
x86/idt: Remove the tracing IDT leftovers
x86/idt: Hide set_intr_gate()
x86/idt: Simplify alloc_intr_gate()
x86/idt: Deinline setup functions
x86/idt: Remove unused functions/inlines
x86/idt: Move interrupt gate initialization to IDT code
x86/idt: Move APIC gate initialization to tables
x86/idt: Move regular trap init to tables
x86/idt: Move IST stack based traps to table init
x86/idt: Move debug stack init to table based
x86/idt: Switch early trap init to IDT tables
x86/idt: Prepare for table based init
x86/idt: Move early IDT setup out of 32-bit asm
x86/idt: Move early IDT handler setup to IDT code
x86/idt: Consolidate IDT invalidation
...
Pull syscall updates from Ingo Molnar:
"Improve the security of set_fs(): we now check the address limit on a
number of key platforms (x86, arm, arm64) before returning to
user-space - without adding overhead to the typical system call fast
path"
* 'x86-syscall-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arm64/syscalls: Check address limit on user-mode return
arm/syscalls: Check address limit on user-mode return
x86/syscalls: Check address limit on user-mode return
Pull x86 asm updates from Ingo Molnar:
- Introduce the ORC unwinder, which can be enabled via
CONFIG_ORC_UNWINDER=y.
The ORC unwinder is a lightweight, Linux kernel specific debuginfo
implementation, which aims to be DWARF done right for unwinding.
Objtool is used to generate the ORC unwinder tables during build, so
the data format is flexible and kernel internal: there's no
dependency on debuginfo created by an external toolchain.
The ORC unwinder is almost two orders of magnitude faster than the
(out of tree) DWARF unwinder - which is important for perf call graph
profiling. It is also significantly simpler and is coded defensively:
there has not been a single ORC related kernel crash so far, even
with early versions. (knock on wood!)
But the main advantage is that enabling the ORC unwinder allows
CONFIG_FRAME_POINTERS to be turned off - which speeds up the kernel
measurably:
With frame pointers disabled, GCC does not have to add frame pointer
instrumentation code to every function in the kernel. The kernel's
.text size decreases by about 3.2%, resulting in better cache
utilization and fewer instructions executed, resulting in a broad
kernel-wide speedup. Average speedup of system calls should be
roughly in the 1-3% range - measurements by Mel Gorman [1] have shown
a speedup of 5-10% for some function execution intense workloads.
The main cost of the unwinder is that the unwinder data has to be
stored in RAM: the memory cost is 2-4MB of RAM, depending on kernel
config - which is a modest cost on modern x86 systems.
Given how young the ORC unwinder code is it's not enabled by default
- but given the performance advantages the plan is to eventually make
it the default unwinder on x86.
See Documentation/x86/orc-unwinder.txt for more details.
- Remove lguest support: its intended role was that of a temporary
proof of concept for virtualization, plus its removal will enable the
reduction (removal) of the paravirt API as well, so Rusty agreed to
its removal. (Juergen Gross)
- Clean up and fix FSGS related functionality (Andy Lutomirski)
- Clean up IO access APIs (Andy Shevchenko)
- Enhance the symbol namespace (Jiri Slaby)
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits)
objtool: Handle GCC stack pointer adjustment bug
x86/entry/64: Use ENTRY() instead of ALIGN+GLOBAL for stub32_clone()
x86/fpu/math-emu: Add ENDPROC to functions
x86/boot/64: Extract efi_pe_entry() from startup_64()
x86/boot/32: Extract efi_pe_entry() from startup_32()
x86/lguest: Remove lguest support
x86/paravirt/xen: Remove xen_patch()
objtool: Fix objtool fallthrough detection with function padding
x86/xen/64: Fix the reported SS and CS in SYSCALL
objtool: Track DRAP separately from callee-saved registers
objtool: Fix validate_branch() return codes
x86: Clarify/fix no-op barriers for text_poke_bp()
x86/switch_to/64: Rewrite FS/GS switching yet again to fix AMD CPUs
selftests/x86/fsgsbase: Test selectors 1, 2, and 3
x86/fsgsbase/64: Report FSBASE and GSBASE correctly in core dumps
x86/fsgsbase/64: Fully initialize FS and GS state in start_thread_common
x86/asm: Fix UNWIND_HINT_REGS macro for older binutils
x86/asm/32: Fix regs_get_register() on segment registers
x86/xen/64: Rearrange the SYSCALL entries
x86/asm/32: Remove a bunch of '& 0xffff' from pt_regs segment reads
...
When running as Xen pv-guest the exception frame on the stack contains
%r11 and %rcx additional to the other data pushed by the processor.
Instead of having a paravirt op being called for each exception type
prepend the Xen specific code to each exception entry. When running as
Xen pv-guest just use the exception entry with prepended instructions,
otherwise use the entry without the Xen specific code.
[ tglx: Merged through tip to avoid ugly merge conflict ]
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel@lists.xenproject.org
Cc: boris.ostrovsky@oracle.com
Cc: luto@amacapital.net
Link: http://lkml.kernel.org/r/20170831174249.26853-1-jg@pfupf.net
ALIGN+GLOBAL is effectively what ENTRY() does, so use ENTRY() which is
dedicated for exactly this purpose -- global functions.
Note that stub32_clone() is a C-like leaf function -- it has a standard
call frame -- it only switches one argument and continues by jumping
into C. Since each ENTRY() should be balanced by some END*() marker, we
add a corresponding ENDPROC() to stub32_clone() too.
Besides that, x86's custom GLOBAL macro is going to die very soon.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170824080624.7768-2-jslaby@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The GDT entry related code uses two ways to access entries via
union fields:
- bitfields
- macros which initialize the two 16-bit parts of the entry
by magic shift and mask operations.
Clean it up and only use the bitfields to initialize and access entries.
( The old access patterns were partly done due to GCC optimizing bitfield
accesses in a horrible way - that's mostly fixed these days and clarity
of code in such low level accessors is very important. )
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064958.197673367@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
No more users of the tracing IDT. All exception tracepoints have been moved
into the regular handlers. Get rid of the mess which shouldn't have been
created in the first place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064957.378851687@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make use of the new irqvector tracing static key and remove the duplicated
trace_do_pagefault() implementation.
If irq vector tracing is disabled, then the overhead of this is a single
NOP5, which is a reasonable tradeoff to avoid duplicated code and the
unholy macro mess.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064956.672965407@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Generate irqentry and softirqentry text sections without
any Kconfig dependencies. This will add extra sections, but
there should be no performace impact.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David S . Miller <davem@davemloft.net>
Cc: Francis Deslauriers <francis.deslauriers@efficios.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: linux-arch@vger.kernel.org
Cc: linux-cris-kernel@axis.com
Cc: mathieu.desnoyers@efficios.com
Link: http://lkml.kernel.org/r/150172789110.27216.3955739126693102122.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Xen's raw SYSCALL entries are much less weird than native. Rather
than fudging them to look like native entries, use the Xen-provided
stack frame directly.
This lets us eliminate entry_SYSCALL_64_after_swapgs and two uses of
the SWAPGS_UNSAFE_STACK paravirt hook. The SYSENTER code would
benefit from similar treatment.
This makes one change to the native code path: the compat
instruction that clears the high 32 bits of %rax is moved slightly
later. I'd be surprised if this affects performance at all.
Tested-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/7c88ed36805d36841ab03ec3b48b4122c4418d71.1502164668.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This closes a hole in our SMAP implementation.
This patch comes from grsecurity. Good catch!
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/314cc9f294e8f14ed85485727556ad4f15bb1659.1502159503.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are using the same vector for nested/non-nested posted
interrupts delivery, this may cause interrupts latency in
L1 since we can't kick the L2 vcpu out of vmx-nonroot mode.
This patch introduces a new vector which is only for nested
posted interrupts to solve the problems above.
Signed-off-by: Wincy Van <fanwenyi0529@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add unwind hint annotations to entry_64.S. This will enable the ORC
unwinder to unwind through any location in the entry code including
syscalls, interrupts, and exceptions.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/b9f6d478aadf68ba57c739dcfac34ec0dc021c4c.1499786555.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The OOPS unwinder wants the word at the top of the IRQ stack to
point back to the previous stack at all times when the IRQ stack
is in use. There's currently a one-instruction window in ENTER_IRQ_STACK
during which this isn't the case. Fix it by writing the old RSP to the
top of the IRQ stack before jumping.
This currently writes the pointer to the stack twice, which is a bit
ugly. We could get rid of this by replacing irq_stack_ptr with
irq_stack_ptr_minus_eight (better name welcome). OTOH, there may be
all kinds of odd microarchitectural considerations in play that
affect performance by a few cycles here.
Reported-by: Mike Galbraith <efault@gmx.de>
Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/aae7e79e49914808440ad5310ace138ced2179ca.1499786555.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This will allow IRQ stacks to nest inside NMIs or similar entries
that can happen during IRQ stack setup or teardown.
The new macros won't work correctly if they're invoked with IRQs on.
Add a check under CONFIG_DEBUG_ENTRY to detect that.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
[ Use %r10 instead of %r11 in xen_do_hypervisor_callback to make objtool
and ORC unwinder's lives a little easier. ]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/b0b2ff5fb97d2da2e1d7e1f380190c92545c8bb5.1499786555.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull ARM updates from Russell King:
- add support for ftrace-with-registers, which is needed for kgraft and
other ftrace tools
- support for mremap() for the sigpage/vDSO so that checkpoint/restore
can work
- add timestamps to each line of the register dump output
- remove the unused KTHREAD_SIZE from nommu
- align the ARM bitops APIs with the generic API (using unsigned long
pointers rather than void pointers)
- make the configuration of userspace Thumb support an expert option so
that we can default it on, and avoid some hard to debug userspace
crashes
* 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm:
ARM: 8684/1: NOMMU: Remove unused KTHREAD_SIZE definition
ARM: 8683/1: ARM32: Support mremap() for sigpage/vDSO
ARM: 8679/1: bitops: Align prototypes to generic API
ARM: 8678/1: ftrace: Adds support for CONFIG_DYNAMIC_FTRACE_WITH_REGS
ARM: make configuration of userspace Thumb support an expert option
ARM: 8673/1: Fix __show_regs output timestamps
Ensure the address limit is a user-mode segment before returning to
user-mode. Otherwise a process can corrupt kernel-mode memory and elevate
privileges [1].
The set_fs function sets the TIF_SETFS flag to force a slow path on
return. In the slow path, the address limit is checked to be USER_DS if
needed.
The addr_limit_user_check function is added as a cross-architecture
function to check the address limit.
[1] https://bugs.chromium.org/p/project-zero/issues/detail?id=990
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: kernel-hardening@lists.openwall.com
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Pratyush Anand <panand@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Will Drewry <wad@chromium.org>
Cc: linux-api@vger.kernel.org
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/20170615011203.144108-1-thgarnie@google.com
CRIU restores application mappings on the same place where they
were before Checkpoint. That means, that we need to move vDSO
and sigpage during restore on exactly the same place where
they were before C/R.
Make mremap() code update mm->context.{sigpage,vdso} pointers
during VMA move. Sigpage is used for landing after handling
a signal - if the pointer is not updated during moving, the
application might crash on any signal after mremap().
vDSO pointer on ARM32 is used only for setting auxv at this moment,
update it during mremap() in case of future usage.
Without those updates, current work of CRIU on ARM32 is not reliable.
Historically, we error Checkpointing if we find vDSO page on ARM32
and suggest user to disable CONFIG_VDSO.
But that's not correct - it goes from x86 where signal processing
is ended in vDSO blob. For arm32 it's sigpage, which is not disabled
with `CONFIG_VDSO=n'.
Looks like C/R was working by luck - because userspace on ARM32 at
this moment always sets SA_RESTORER.
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Will Deacon <will.deacon@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Petr Mladek reported the following warning when loading the livepatch
sample module:
WARNING: CPU: 1 PID: 3699 at arch/x86/kernel/stacktrace.c:132 save_stack_trace_tsk_reliable+0x133/0x1a0
...
Call Trace:
__schedule+0x273/0x820
schedule+0x36/0x80
kthreadd+0x305/0x310
? kthread_create_on_cpu+0x80/0x80
? icmp_echo.part.32+0x50/0x50
ret_from_fork+0x2c/0x40
That warning means the end of the stack is no longer recognized as such
for newly forked tasks. The problem was introduced with the following
commit:
ff3f7e2475 ("x86/entry: Fix the end of the stack for newly forked tasks")
... which was completely misguided. It only partially fixed the
reported issue, and it introduced another bug in the process. None of
the other entry code saves the frame pointer before calling into C code,
so it doesn't make sense for ret_from_fork to do so either.
Contrary to what I originally thought, the original issue wasn't related
to newly forked tasks. It was actually related to ftrace. When entry
code calls into a function which then calls into an ftrace handler, the
stack frame looks different than normal.
The original issue will be fixed in the unwinder, in a subsequent patch.
Reported-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jones <davej@codemonkey.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: live-patching@vger.kernel.org
Fixes: ff3f7e2475 ("x86/entry: Fix the end of the stack for newly forked tasks")
Link: http://lkml.kernel.org/r/f350760f7e82f0750c8d1dd093456eb212751caa.1495553739.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull livepatch updates from Jiri Kosina:
- a per-task consistency model is being added for architectures that
support reliable stack dumping (extending this, currently rather
trivial set, is currently in the works).
This extends the nature of the types of patches that can be applied
by live patching infrastructure. The code stems from the design
proposal made [1] back in November 2014. It's a hybrid of SUSE's
kGraft and RH's kpatch, combining advantages of both: it uses
kGraft's per-task consistency and syscall barrier switching combined
with kpatch's stack trace switching. There are also a number of
fallback options which make it quite flexible.
Most of the heavy lifting done by Josh Poimboeuf with help from
Miroslav Benes and Petr Mladek
[1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz
- module load time patch optimization from Zhou Chengming
- a few assorted small fixes
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching:
livepatch: add missing printk newlines
livepatch: Cancel transition a safe way for immediate patches
livepatch: Reduce the time of finding module symbols
livepatch: make klp_mutex proper part of API
livepatch: allow removal of a disabled patch
livepatch: add /proc/<pid>/patch_state
livepatch: change to a per-task consistency model
livepatch: store function sizes
livepatch: use kstrtobool() in enabled_store()
livepatch: move patching functions into patch.c
livepatch: remove unnecessary object loaded check
livepatch: separate enabled and patched states
livepatch/s390: add TIF_PATCH_PENDING thread flag
livepatch/s390: reorganize TIF thread flag bits
livepatch/powerpc: add TIF_PATCH_PENDING thread flag
livepatch/x86: add TIF_PATCH_PENDING thread flag
livepatch: create temporary klp_update_patch_state() stub
x86/entry: define _TIF_ALLWORK_MASK flags explicitly
stacktrace/x86: add function for detecting reliable stack traces
Pull fs/compat.c cleanups from Al Viro:
"More moving of compat syscalls from fs/compat.c to fs/*.c where the
native counterparts live.
And death to compat_sys_getdents64() - the only architecture that used
to need it was ia64, and _that_ has lost biarch support quite a few
years ago"
* 'work.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs/compat.c: trim unused includes
move compat_rw_copy_check_uvector() over to fs/read_write.c
fhandle: move compat syscalls from compat.c
open: move compat syscalls from compat.c
stat: move compat syscalls from compat.c
fcntl: move compat syscalls from compat.c
readdir: move compat syscalls from compat.c
statfs: move compat syscalls from compat.c
utimes: move compat syscalls from compat.c
move compat select-related syscalls to fs/select.c
Remove compat_sys_getdents64()
Pull x86 mm updates from Ingo Molnar:
"The main x86 MM changes in this cycle were:
- continued native kernel PCID support preparation patches to the TLB
flushing code (Andy Lutomirski)
- various fixes related to 32-bit compat syscall returning address
over 4Gb in applications, launched from 64-bit binaries - motivated
by C/R frameworks such as Virtuozzo. (Dmitry Safonov)
- continued Intel 5-level paging enablement: in particular the
conversion of x86 GUP to the generic GUP code. (Kirill A. Shutemov)
- x86/mpx ABI corner case fixes/enhancements (Joerg Roedel)
- ... plus misc updates, fixes and cleanups"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
mm, zone_device: Replace {get, put}_zone_device_page() with a single reference to fix pmem crash
x86/mm: Fix flush_tlb_page() on Xen
x86/mm: Make flush_tlb_mm_range() more predictable
x86/mm: Remove flush_tlb() and flush_tlb_current_task()
x86/vm86/32: Switch to flush_tlb_mm_range() in mark_screen_rdonly()
x86/mm/64: Fix crash in remove_pagetable()
Revert "x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation"
x86/boot/e820: Remove a redundant self assignment
x86/mm: Fix dump pagetables for 4 levels of page tables
x86/mpx, selftests: Only check bounds-vs-shadow when we keep shadow
x86/mpx: Correctly report do_mpx_bt_fault() failures to user-space
Revert "x86/mm/numa: Remove numa_nodemask_from_meminfo()"
x86/espfix: Add support for 5-level paging
x86/kasan: Extend KASAN to support 5-level paging
x86/mm: Add basic defines/helpers for CONFIG_X86_5LEVEL=y
x86/paravirt: Add 5-level support to the paravirt code
x86/mm: Define virtual memory map for 5-level paging
x86/asm: Remove __VIRTUAL_MASK_SHIFT==47 assert
x86/boot: Detect 5-level paging support
x86/mm/numa: Remove numa_nodemask_from_meminfo()
...
Pull x86 vdso updates from Ingo Molnar:
"Add support for vDSO acceleration of the "Hyper-V TSC page", to speed
up clock reading on Hyper-V guests"
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Add VCLOCK_HVCLOCK vDSO clock read method
x86/hyperv: Move TSC reading method to asm/mshyperv.h
x86/hyperv: Implement hv_get_tsc_page()
Pull x86 asm updates from Ingo Molnar:
"The main changes in this cycle were:
- unwinder fixes and enhancements
- improve ftrace interaction with the unwinder
- optimize the code footprint of WARN() and related debugging
constructs
- ... plus misc updates, cleanups and fixes"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/unwind: Dump all stacks in unwind_dump()
x86/unwind: Silence more entry-code related warnings
x86/ftrace: Fix ebp in ftrace_regs_caller that screws up unwinder
x86/unwind: Remove unused 'sp' parameter in unwind_dump()
x86/unwind: Prepend hex mask value with '0x' in unwind_dump()
x86/unwind: Properly zero-pad 32-bit values in unwind_dump()
x86/unwind: Ensure stack pointer is aligned
debug: Avoid setting BUGFLAG_WARNING twice
x86/unwind: Silence entry-related warnings
x86/unwind: Read stack return address in update_stack_state()
x86/unwind: Move common code into update_stack_state()
debug: Fix __bug_table[] in arch linker scripts
debug: Add _ONCE() logic to report_bug()
x86/debug: Define BUG() again for !CONFIG_BUG
x86/debug: Implement __WARN() using UD0
x86/ftrace: Use Makefile logic instead of #ifdef for compiling ftrace_*.o
x86/ftrace: Add -mfentry support to x86_32 with DYNAMIC_FTRACE set
x86/ftrace: Clean up ftrace_regs_caller
x86/ftrace: Add stack frame pointer to ftrace_caller
x86/ftrace: Move the ftrace specific code out of entry_32.S
...
Pul x86/process updates from Ingo Molnar:
"The main change in this cycle was to add the ARCH_[GET|SET]_CPUID
prctl() ABI extension to control the availability of the CPUID
instruction, analogously to the existing PR_GET|SET_TSC ABI that
controls RDTSC.
Motivation: the 'rr' user-space record-and-replay execution debugger
would like to trap and emulate the CPUID instruction - which
instruction is normally unprivileged.
Trapping CPUID is possible on IvyBridge and later Intel CPUs - expose
this hardware capability"
* 'x86-process-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/syscalls/32: Ignore arch_prctl for other architectures
um/arch_prctl: Fix fallout from x86 arch_prctl() rework
x86/arch_prctl: Add ARCH_[GET|SET]_CPUID
x86/cpufeature: Detect CPUID faulting support
x86/syscalls/32: Wire up arch_prctl on x86-32
x86/arch_prctl: Add do_arch_prctl_common()
x86/arch_prctl/64: Rename do_arch_prctl() to do_arch_prctl_64()
x86/arch_prctl/64: Use SYSCALL_DEFINE2 to define sys_arch_prctl()
x86/arch_prctl: Rename 'code' argument to 'option'
x86/msr: Rename MISC_FEATURE_ENABLES to MISC_FEATURES_ENABLES
x86/process: Optimize TIF_NOTSC switch
x86/process: Correct and optimize TIF_BLOCKSTEP switch
x86/process: Optimize TIF checks in __switch_to_xtra()
Unlike normal compat syscall variants, it is needed only for
biarch architectures that have different alignement requirements for
u64 in 32bit and 64bit ABI *and* have __put_user() that won't handle
a store of 64bit value at 32bit-aligned address. We used to have one
such (ia64), but its biarch support has been gone since 2010 (after
being broken in 2008, which went unnoticed since nobody had been using
it).
It had escaped removal at the same time only because back in 2004
a patch that switched several syscalls on amd64 from private wrappers to
generic compat ones had switched to use of compat_sys_getdents64(), which
hadn't needed (or used) a compat wrapper on amd64.
Let's bury it - it's at least 7 years overdue.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
vdso_enabled can be set to arbitrary integer values via the kernel command
line 'vdso32=' parameter or via 'sysctl abi.vsyscall32'.
load_vdso32() only maps VDSO if vdso_enabled == 1, but ARCH_DLINFO_IA32
merily checks for vdso_enabled != 0. As a consequence the AT_SYSINFO_EHDR
auxiliary vector for the VDSO_ENTRY is emitted with a NULL pointer which
causes a segfault when the application tries to use the VDSO.
Restrict the valid arguments on the command line and the sysctl to 0 and 1.
Fixes: b0b49f2673 ("x86, vdso: Remove compat vdso support")
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Cc: Roland McGrath <roland@redhat.com>
Link: http://lkml.kernel.org/r/1491424561-7187-1-git-send-email-minipli@googlemail.com
Link: http://lkml.kernel.org/r/20170410151723.518412863@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The function tracing hook code for ftrace is not an entry point from
userspace and does not belong in the entry_*.S files. It has already been
moved out of entry_64.S.
Move it out of entry_32.S into its own ftrace_32.S file.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20170323143445.645218946@goodmis.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Hook up arch_prctl to call do_arch_prctl() on x86-32, and in 32 bit compat
mode on x86-64. This allows to have arch_prctls that are not specific to 64
bits.
On UML, simply stub out this syscall.
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: linux-kselftest@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Robert O'Callahan <robert@ocallahan.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: user-mode-linux-devel@lists.sourceforge.net
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: user-mode-linux-user@lists.sourceforge.net
Cc: David Matlack <dmatlack@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: linux-fsdevel@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/20170320081628.18952-7-khuey@kylehuey.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Each processor holds a GDT in its per-cpu structure. The sgdt
instruction gives the base address of the current GDT. This address can
be used to bypass KASLR memory randomization. With another bug, an
attacker could target other per-cpu structures or deduce the base of
the main memory section (PAGE_OFFSET).
This patch relocates the GDT table for each processor inside the
fixmap section. The space is reserved based on number of supported
processors.
For consistency, the remapping is done by default on 32 and 64-bit.
Each processor switches to its remapped GDT at the end of
initialization. For hibernation, the main processor returns with the
original GDT and switches back to the remapping at completion.
This patch was tested on both architectures. Hibernation and KVM were
both tested specially for their usage of the GDT.
Thanks to Boris Ostrovsky <boris.ostrovsky@oracle.com> for testing and
recommending changes for Xen support.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Luis R . Rodriguez <mcgrof@kernel.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rafael J . Wysocki <rjw@rjwysocki.net>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: kernel-hardening@lists.openwall.com
Cc: kvm@vger.kernel.org
Cc: lguest@lists.ozlabs.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-pm@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Cc: zijun_hu <zijun_hu@htc.com>
Link: http://lkml.kernel.org/r/20170314170508.100882-2-thgarnie@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hyper-V TSC page clocksource is suitable for vDSO, however, the protocol
defined by the hypervisor is different from VCLOCK_PVCLOCK. Implement the
required support by adding hvclock_page VVAR.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: virtualization@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20170303132142.25595-4-vkuznets@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add the TIF_PATCH_PENDING thread flag to enable the new livepatch
per-task consistency model for x86_64. The bit getting set indicates
the thread has a pending patch which needs to be applied when the thread
exits the kernel.
The bit is placed in the _TIF_ALLWORK_MASK macro, which results in
exit_to_usermode_loop() calling klp_update_patch_state() when it's set.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org> # for the x86 changes
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Pull vfs 'statx()' update from Al Viro.
This adds the new extended stat() interface that internally subsumes our
previous stat interfaces, and allows user mode to specify in more detail
what kind of information it wants.
It also allows for some explicit synchronization information to be
passed to the filesystem, which can be relevant for network filesystems:
is the cached value ok, or do you need open/close consistency, or what?
From David Howells.
Andreas Dilger points out that the first version of the extended statx
interface was posted June 29, 2010:
https://www.spinics.net/lists/linux-fsdevel/msg33831.html
* 'rebased-statx' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.
The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode. This change is propagated to the vfs_getattr*()
function.
Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.
========
OVERVIEW
========
The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.
A number of requests were gathered for features to be included. The
following have been included:
(1) Make the fields a consistent size on all arches and make them large.
(2) Spare space, request flags and information flags are provided for
future expansion.
(3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
__s64).
(4) Creation time: The SMB protocol carries the creation time, which could
be exported by Samba, which will in turn help CIFS make use of
FS-Cache as that can be used for coherency data (stx_btime).
This is also specified in NFSv4 as a recommended attribute and could
be exported by NFSD [Steve French].
(5) Lightweight stat: Ask for just those details of interest, and allow a
netfs (such as NFS) to approximate anything not of interest, possibly
without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
Dilger] (AT_STATX_DONT_SYNC).
(6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
its cached attributes are up to date [Trond Myklebust]
(AT_STATX_FORCE_SYNC).
And the following have been left out for future extension:
(7) Data version number: Could be used by userspace NFS servers [Aneesh
Kumar].
Can also be used to modify fill_post_wcc() in NFSD which retrieves
i_version directly, but has just called vfs_getattr(). It could get
it from the kstat struct if it used vfs_xgetattr() instead.
(There's disagreement on the exact semantics of a single field, since
not all filesystems do this the same way).
(8) BSD stat compatibility: Including more fields from the BSD stat such
as creation time (st_btime) and inode generation number (st_gen)
[Jeremy Allison, Bernd Schubert].
(9) Inode generation number: Useful for FUSE and userspace NFS servers
[Bernd Schubert].
(This was asked for but later deemed unnecessary with the
open-by-handle capability available and caused disagreement as to
whether it's a security hole or not).
(10) Extra coherency data may be useful in making backups [Andreas Dilger].
(No particular data were offered, but things like last backup
timestamp, the data version number and the DOS archive bit would come
into this category).
(11) Allow the filesystem to indicate what it can/cannot provide: A
filesystem can now say it doesn't support a standard stat feature if
that isn't available, so if, for instance, inode numbers or UIDs don't
exist or are fabricated locally...
(This requires a separate system call - I have an fsinfo() call idea
for this).
(12) Store a 16-byte volume ID in the superblock that can be returned in
struct xstat [Steve French].
(Deferred to fsinfo).
(13) Include granularity fields in the time data to indicate the
granularity of each of the times (NFSv4 time_delta) [Steve French].
(Deferred to fsinfo).
(14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags.
Note that the Linux IOC flags are a mess and filesystems such as Ext4
define flags that aren't in linux/fs.h, so translation in the kernel
may be a necessity (or, possibly, we provide the filesystem type too).
(Some attributes are made available in stx_attributes, but the general
feeling was that the IOC flags were to ext[234]-specific and shouldn't
be exposed through statx this way).
(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
Michael Kerrisk].
(Deferred, probably to fsinfo. Finding out if there's an ACL or
seclabal might require extra filesystem operations).
(16) Femtosecond-resolution timestamps [Dave Chinner].
(A __reserved field has been left in the statx_timestamp struct for
this - if there proves to be a need).
(17) A set multiple attributes syscall to go with this.
===============
NEW SYSTEM CALL
===============
The new system call is:
int ret = statx(int dfd,
const char *filename,
unsigned int flags,
unsigned int mask,
struct statx *buffer);
The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat(). There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.
Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):
(1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
respect.
(2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
its attributes with the server - which might require data writeback to
occur to get the timestamps correct.
(3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
network filesystem. The resulting values should be considered
approximate.
mask is a bitmask indicating the fields in struct statx that are of
interest to the caller. The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat(). It should be noted that asking for
more information may entail extra I/O operations.
buffer points to the destination for the data. This must be 256 bytes in
size.
======================
MAIN ATTRIBUTES RECORD
======================
The following structures are defined in which to return the main attribute
set:
struct statx_timestamp {
__s64 tv_sec;
__s32 tv_nsec;
__s32 __reserved;
};
struct statx {
__u32 stx_mask;
__u32 stx_blksize;
__u64 stx_attributes;
__u32 stx_nlink;
__u32 stx_uid;
__u32 stx_gid;
__u16 stx_mode;
__u16 __spare0[1];
__u64 stx_ino;
__u64 stx_size;
__u64 stx_blocks;
__u64 __spare1[1];
struct statx_timestamp stx_atime;
struct statx_timestamp stx_btime;
struct statx_timestamp stx_ctime;
struct statx_timestamp stx_mtime;
__u32 stx_rdev_major;
__u32 stx_rdev_minor;
__u32 stx_dev_major;
__u32 stx_dev_minor;
__u64 __spare2[14];
};
The defined bits in request_mask and stx_mask are:
STATX_TYPE Want/got stx_mode & S_IFMT
STATX_MODE Want/got stx_mode & ~S_IFMT
STATX_NLINK Want/got stx_nlink
STATX_UID Want/got stx_uid
STATX_GID Want/got stx_gid
STATX_ATIME Want/got stx_atime{,_ns}
STATX_MTIME Want/got stx_mtime{,_ns}
STATX_CTIME Want/got stx_ctime{,_ns}
STATX_INO Want/got stx_ino
STATX_SIZE Want/got stx_size
STATX_BLOCKS Want/got stx_blocks
STATX_BASIC_STATS [The stuff in the normal stat struct]
STATX_BTIME Want/got stx_btime{,_ns}
STATX_ALL [All currently available stuff]
stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.
Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution. Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.
The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does. The following
attributes map to FS_*_FL flags and are the same numerical value:
STATX_ATTR_COMPRESSED File is compressed by the fs
STATX_ATTR_IMMUTABLE File is marked immutable
STATX_ATTR_APPEND File is append-only
STATX_ATTR_NODUMP File is not to be dumped
STATX_ATTR_ENCRYPTED File requires key to decrypt in fs
Within the kernel, the supported flags are listed by:
KSTAT_ATTR_FS_IOC_FLAGS
[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]
New flags include:
STATX_ATTR_AUTOMOUNT Object is an automount trigger
These are for the use of GUI tools that might want to mark files specially,
depending on what they are.
Fields in struct statx come in a number of classes:
(0) stx_dev_*, stx_blksize.
These are local system information and are always available.
(1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
stx_size, stx_blocks.
These will be returned whether the caller asks for them or not. The
corresponding bits in stx_mask will be set to indicate whether they
actually have valid values.
If the caller didn't ask for them, then they may be approximated. For
example, NFS won't waste any time updating them from the server,
unless as a byproduct of updating something requested.
If the values don't actually exist for the underlying object (such as
UID or GID on a DOS file), then the bit won't be set in the stx_mask,
even if the caller asked for the value. In such a case, the returned
value will be a fabrication.
Note that there are instances where the type might not be valid, for
instance Windows reparse points.
(2) stx_rdev_*.
This will be set only if stx_mode indicates we're looking at a
blockdev or a chardev, otherwise will be 0.
(3) stx_btime.
Similar to (1), except this will be set to 0 if it doesn't exist.
=======
TESTING
=======
The following test program can be used to test the statx system call:
samples/statx/test-statx.c
Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.
Here's some example output. Firstly, an NFS directory that crosses to
another FSID. Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.
[root@andromeda ~]# /tmp/test-statx -A /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:26 Inode: 1703937 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)
Secondly, the result of automounting on that directory.
[root@andromeda ~]# /tmp/test-statx /warthog/data
statx(/warthog/data) = 0
results=7ff
Size: 4096 Blocks: 8 IO Block: 1048576 directory
Device: 00:27 Inode: 2 Links: 125
Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041
Access: 2016-11-24 09:02:12.219699527+0000
Modify: 2016-11-17 10:44:36.225653653+0000
Change: 2016-11-17 10:44:36.225653653+0000
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Update code that relied on sched.h including various MM types for them.
This will allow us to remove the <linux/mm_types.h> include from <linux/sched.h>.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/task_stack.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task_stack.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Except for the error_exit case, none of the code paths following the
{DIS,EN}ABLE_INTERRUPTS() invocations being modified here make any
assumptions on register values, so all registers can be clobbered
there. In the error_exit case a minor adjustment to register usage
(at once eliminating an instruction) also allows for this to be true.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5894556D02000078001366D3@prv-mh.provo.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The code at .Lrestore_nocheck does not make any assumptions on register
values, so all registers can be clobbered on code paths leading there.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5894542B02000078001366C5@prv-mh.provo.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a non-cooperative userfaultfd monitor copies pages in the
background, it may encounter regions that were already unmapped.
Addition of UFFD_EVENT_UNMAP allows the uffd monitor to track precisely
changes in the virtual memory layout.
Since there might be different uffd contexts for the affected VMAs, we
first should create a temporary representation for the unmap event for
each uffd context and then notify them one by one to the appropriate
userfault file descriptors.
The event notification occurs after the mmap_sem has been released.
[arnd@arndb.de: fix nommu build]
Link: http://lkml.kernel.org/r/20170203165141.3665284-1-arnd@arndb.de
[mhocko@suse.com: fix nommu build]
Link: http://lkml.kernel.org/r/20170202091503.GA22823@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1485542673-24387-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When unwinding a task, the end of the stack is always at the same offset
right below the saved pt_regs, regardless of which syscall was used to
enter the kernel. That convention allows the unwinder to verify that a
stack is sane.
However, newly forked tasks don't always follow that convention, as
reported by the following unwinder warning seen by Dave Jones:
WARNING: kernel stack frame pointer at ffffc90001443f30 in kworker/u8:8:30468 has bad value (null)
The warning was due to the following call chain:
(ftrace handler)
call_usermodehelper_exec_async+0x5/0x140
ret_from_fork+0x22/0x30
The problem is that ret_from_fork() doesn't create a stack frame before
calling other functions. Fix that by carefully using the frame pointer
macros.
In addition to conforming to the end of stack convention, this also
makes related stack traces more sensible by making it clear to the user
that ret_from_fork() was involved.
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/8854cdaab980e9700a81e9ebf0d4238e4bbb68ef.1483978430.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull timer type cleanups from Thomas Gleixner:
"This series does a tree wide cleanup of types related to
timers/timekeeping.
- Get rid of cycles_t and use a plain u64. The type is not really
helpful and caused more confusion than clarity
- Get rid of the ktime union. The union has become useless as we use
the scalar nanoseconds storage unconditionally now. The 32bit
timespec alike storage got removed due to the Y2038 limitations
some time ago.
That leaves the odd union access around for no reason. Clean it up.
Both changes have been done with coccinelle and a small amount of
manual mopping up"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ktime: Get rid of ktime_equal()
ktime: Cleanup ktime_set() usage
ktime: Get rid of the union
clocksource: Use a plain u64 instead of cycle_t
Pull SMP hotplug notifier removal from Thomas Gleixner:
"This is the final cleanup of the hotplug notifier infrastructure. The
series has been reintgrated in the last two days because there came a
new driver using the old infrastructure via the SCSI tree.
Summary:
- convert the last leftover drivers utilizing notifiers
- fixup for a completely broken hotplug user
- prevent setup of already used states
- removal of the notifiers
- treewide cleanup of hotplug state names
- consolidation of state space
There is a sphinx based documentation pending, but that needs review
from the documentation folks"
* 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip/armada-xp: Consolidate hotplug state space
irqchip/gic: Consolidate hotplug state space
coresight/etm3/4x: Consolidate hotplug state space
cpu/hotplug: Cleanup state names
cpu/hotplug: Remove obsolete cpu hotplug register/unregister functions
staging/lustre/libcfs: Convert to hotplug state machine
scsi/bnx2i: Convert to hotplug state machine
scsi/bnx2fc: Convert to hotplug state machine
cpu/hotplug: Prevent overwriting of callbacks
x86/msr: Remove bogus cleanup from the error path
bus: arm-ccn: Prevent hotplug callback leak
perf/x86/intel/cstate: Prevent hotplug callback leak
ARM/imx/mmcd: Fix broken cpu hotplug handling
scsi: qedi: Convert to hotplug state machine
There is no point in having an extra type for extra confusion. u64 is
unambiguous.
Conversion was done with the following coccinelle script:
@rem@
@@
-typedef u64 cycle_t;
@fix@
typedef cycle_t;
@@
-cycle_t
+u64
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
When the state names got added a script was used to add the extra argument
to the calls. The script basically converted the state constant to a
string, but the cleanup to convert these strings into meaningful ones did
not happen.
Replace all the useless strings with 'subsys/xxx/yyy:state' strings which
are used in all the other places already.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Link: http://lkml.kernel.org/r/20161221192112.085444152@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
o STM can hook into the function tracer
o Function filtering now supports more advance glob matching
o Ftrace selftests updates and added tests
o Softirq tag in traces now show only softirqs
o ARM nop added to non traced locations at compile time
o New trace_marker_raw file that allows for binary input
o Optimizations to the ring buffer
o Removal of kmap in trace_marker
o Wakeup and irqsoff tracers now adhere to the set_graph_notrace file
o Other various fixes and clean ups
Note, there are two patches marked for stable. These were discovered
near the end of the 4.9 rc release cycle. By the time I had them tested
it was just a matter of days before 4.9 would be released, and I
figured I would just submit them in the merge window. They are old
bugs and not critical. Nothing non-root could abuse.
-----BEGIN PGP SIGNATURE-----
iQExBAABCAAbBQJYUrFHFBxyb3N0ZWR0QGdvb2RtaXMub3JnAAoJEMm5BfJq2Y3L
2+AIAIr20kSQV/nA5htGAeCTobVk3WUxY6bvjd9mIJDKPP19akNLyREW0G3KnfCr
yhx4aFRZG98fRu/6F8qieRosyN36lADDVYHelMFHMpcTOpE2aZGjaaOuNGxOEA9v
FmMPTX+K3+dzKyFP4l68R3+5JuQ1/AqLTioTWeLW8IDQ2OOVsjD8+0BuXrNKMJDY
o6U4Hk5U/vn+zHc6BmgBzloAXemBd7iJ1t5V3FRRGvm8yv3HU85Twc5ofGeYTWvB
J8PboEywRlIzxg0Kd8mxnMI5PgaKZSEc2ub8E7cY/CZ5PYpDE2xDA2hJmJgfYp00
1VW+DHRpRZfElsCcya6S6P4bs5Y=
=MGZ/
-----END PGP SIGNATURE-----
Merge tag 'trace-v4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
"This release has a few updates:
- STM can hook into the function tracer
- Function filtering now supports more advance glob matching
- Ftrace selftests updates and added tests
- Softirq tag in traces now show only softirqs
- ARM nop added to non traced locations at compile time
- New trace_marker_raw file that allows for binary input
- Optimizations to the ring buffer
- Removal of kmap in trace_marker
- Wakeup and irqsoff tracers now adhere to the set_graph_notrace file
- Other various fixes and clean ups"
* tag 'trace-v4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (42 commits)
selftests: ftrace: Shift down default message verbosity
kprobes/trace: Fix kprobe selftest for newer gcc
tracing/kprobes: Add a helper method to return number of probe hits
tracing/rb: Init the CPU mask on allocation
tracing: Use SOFTIRQ_OFFSET for softirq dectection for more accurate results
tracing/fgraph: Have wakeup and irqsoff tracers ignore graph functions too
fgraph: Handle a case where a tracer ignores set_graph_notrace
tracing: Replace kmap with copy_from_user() in trace_marker writing
ftrace/x86_32: Set ftrace_stub to weak to prevent gcc from using short jumps to it
tracing: Allow benchmark to be enabled at early_initcall()
tracing: Have system enable return error if one of the events fail
tracing: Do not start benchmark on boot up
tracing: Have the reg function allow to fail
ring-buffer: Force rb_end_commit() and rb_set_commit_to_write() inline
ring-buffer: Froce rb_update_write_stamp() to be inlined
ring-buffer: Force inline of hotpath helper functions
tracing: Make __buffer_unlock_commit() always_inline
tracing: Make tracepoint_printk a static_key
ring-buffer: Always inline rb_event_data()
ring-buffer: Make rb_reserve_next_event() always inlined
...