Commit Graph

6 Commits

Author SHA1 Message Date
Matan Barak
fac9658cab IB/core: Add new ioctl interface
In this ioctl interface, processing the command starts from
properties of the command and fetching the appropriate user objects
before calling the handler.

Parsing and validation is done according to a specifier declared by
the driver's code. In the driver, all supported objects are declared.
These objects are separated to different object namepsaces. Dividing
objects to namespaces is done at initialization by using the higher
bits of the object ids. This initialization can mix objects declared
in different places to one parsing tree using in this ioctl interface.

For each object we list all supported methods. Similarly to objects,
methods are separated to method namespaces too. Namespacing is done
similarly to the objects case. This could be used in order to add
methods to an existing object.

Each method has a specific handler, which could be either a default
handler or a driver specific handler.
Along with the handler, a bunch of attributes are specified as well.
Similarly to objects and method, attributes are namespaced and hashed
by their ids at initialization too. All supported attributes are
subject to automatic fetching and validation. These attributes include
the command, response and the method's related objects' ids.

When these entities (objects, methods and attributes) are used, the
high bits of the entities ids are used in order to calculate the hash
bucket index. Then, these high bits are masked out in order to have a
zero based index. Since we use these high bits for both bucketing and
namespacing, we get a compact representation and O(1) array access.
This is mandatory for efficient dispatching.

Each attribute has a type (PTR_IN, PTR_OUT, IDR and FD) and a length.
Attributes could be validated through some attributes, like:
(*) Minimum size / Exact size
(*) Fops for FD
(*) Object type for IDR

If an IDR/fd attribute is specified, the kernel also states the object
type and the required access (NEW, WRITE, READ or DESTROY).
All uobject/fd management is done automatically by the infrastructure,
meaning - the infrastructure will fail concurrent commands that at
least one of them requires concurrent access (WRITE/DESTROY),
synchronize actions with device removals (dissociate context events)
and take care of reference counting (increase/decrease) for concurrent
actions invocation. The reference counts on the actual kernel objects
shall be handled by the handlers.

 objects
+--------+
|        |
|        |   methods                                                                +--------+
|        |   ns         method      method_spec                           +-----+   |len     |
+--------+  +------+[d]+-------+   +----------------+[d]+------------+    |attr1+-> |type    |
| object +> |method+-> | spec  +-> +  attr_buckets  +-> |default_chain+--> +-----+   |idr_type|
+--------+  +------+   |handler|   |                |   +------------+    |attr2|   |access  |
|        |  |      |   +-------+   +----------------+   |driver chain|    +-----+   +--------+
|        |  |      |                                    +------------+
|        |  +------+
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
+--------+

[d] = Hash ids to groups using the high order bits

The right types table is also chosen by using the high bits from
the ids. Currently we have either default or driver specific groups.

Once validation and object fetching (or creation) completed, we call
the handler:
int (*handler)(struct ib_device *ib_dev, struct ib_uverbs_file *ufile,
               struct uverbs_attr_bundle *ctx);

ctx bundles attributes of different namespaces. Each element there
is an array of attributes which corresponds to one namespaces of
attributes. For example, in the usually used case:

 ctx                               core
+----------------------------+     +------------+
| core:                      +---> | valid      |
+----------------------------+     | cmd_attr   |
| driver:                    |     +------------+
|----------------------------+--+  | valid      |
                                |  | cmd_attr   |
                                |  +------------+
                                |  | valid      |
                                |  | obj_attr   |
                                |  +------------+
                                |
                                |  drivers
                                |  +------------+
                                +> | valid      |
                                   | cmd_attr   |
                                   +------------+
                                   | valid      |
                                   | cmd_attr   |
                                   +------------+
                                   | valid      |
                                   | obj_attr   |
                                   +------------+

Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-08-31 08:35:09 -04:00
Matan Barak
f43dbebfa3 IB/core: Add support to finalize objects in one transaction
The new ioctl based infrastructure either commits or rollbacks
all objects of the method as one transaction. In order to do
that, we introduce a notion of dealing with a collection of
objects that are related to a specific method.

This also requires adding a notion of a method and attribute.
A method contains a hash of attributes, where each bucket
contains several attributes. The attributes are hashed according
to their namespace which resides in the four upper bits of the id.

For example, an object could be a CQ, which has an action of CREATE_CQ.
This action has multiple attributes. For example, the CQ's new handle
and the comp_channel. Each layer in this hierarchy - objects, methods
and attributes is split into namespaces. The basic example for that is
one namespace representing the default entities and another one
representing the driver specific entities.

When declaring these methods and attributes, we actually declare
their specifications. When a method is executed, we actually
allocates some space to hold auxiliary information. This auxiliary
information contains meta-data about the required objects, such
as pointers to their type information, pointers to the uobjects
themselves (if exist), etc.
The specification, along with the auxiliary information we allocated
and filled is given to the finalize_objects function.

Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-08-30 10:30:38 -04:00
Matan Barak
a0aa309c39 IB/core: Add a generic way to execute an operation on a uobject
The ioctl infrastructure treats all user-objects in the same manner.
It gets objects ids from the user-space and by using the object type
and type attributes mentioned in the object specification, it executes
this required method. Passing an object id from the user-space as
an attribute is carried out in three stages. The first is carried out
before the actual handler and the last is carried out afterwards.

The different supported operations are read, write, destroy and create.
In the first stage, the former three actions just fetches the object
from the repository (by using its id) and locks it. The last action
allocates a new uobject. Afterwards, the second stage is carried out
when the handler itself carries out the required modification of the
object. The last stage is carried out after the handler finishes and
commits the result. The former two operations just unlock the object.
Destroy calls the "free object" operation, taking into account the
object's type and releases the uobject as well. Creation just adds the
new uobject to the repository, making the object visible to the
application.

In order to abstract these details from the ioctl infrastructure
layer, we add uverbs_get_uobject_from_context and
uverbs_finalize_object functions which corresponds to the first
and last stages respectively.

Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-08-30 10:30:38 -04:00
Matan Barak
cf8966b347 IB/core: Add support for fd objects
The completion channel we use in verbs infrastructure is FD based.
Previously, we had a separate way to manage this object. Since we
strive for a single way to manage any kind of object in this
infrastructure, we conceptually treat all objects as subclasses
of ib_uobject.

This commit adds the necessary mechanism to support FD based objects
like their IDR counterparts. FD objects release need to be synchronized
with context release. We use the cleanup_mutex on the uverbs_file for
that.

Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-04-05 13:28:04 -04:00
Matan Barak
fd3c7904db IB/core: Change idr objects to use the new schema
This changes only the handlers which deals with idr based objects to
use the new idr allocation, fetching and destruction schema.
This patch consists of the following changes:
(1) Allocation, fetching and destruction is done via idr ops.
(2) Context initializing and release is done through
    uverbs_initialize_ucontext and uverbs_cleanup_ucontext.
(3) Ditching the live flag. Mostly, this is pretty straight
    forward. The only place that is a bit trickier is in
    ib_uverbs_open_qp. Commit [1] added code to check whether
    the uobject is already live and initialized. This mostly
    happens because of a race between open_qp and events.
    We delayed assigning the uobject's pointer in order to
    eliminate this race without using the live variable.

[1] commit a040f95dc8
	("IB/core: Fix XRC race condition in ib_uverbs_open_qp")

Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-04-05 13:28:04 -04:00
Matan Barak
3832125624 IB/core: Add support for idr types
The new ioctl infrastructure supports driver specific objects.
Each such object type has a hot unplug function, allocation size and
an order of destruction.

When a ucontext is created, a new list is created in this ib_ucontext.
This list contains all objects created under this ib_ucontext.
When a ib_ucontext is destroyed, we traverse this list several time
destroying the various objects by the order mentioned in the object
type description. If few object types have the same destruction order,
they are destroyed in an order opposite to their creation.

Adding an object is done in two parts.
First, an object is allocated and added to idr tree. Then, the
command's handlers (in downstream patches) could work on this object
and fill in its required details.
After a successful command, the commit part is called and the user
objects become ucontext visible. If the handler failed, alloc_abort
should be called.

Removing an uboject is done by calling lookup_get with the write flag
and finalizing it with destroy_commit. A major change from the previous
code is that we actually destroy the kernel object itself in
destroy_commit (rather than just the uobject).

We should make sure idr (per-uverbs-file) and list (per-ucontext) could
be accessed concurrently without corrupting them.

Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2017-04-05 13:28:04 -04:00