- Addition of multiprobes to kprobe and uprobe events
Allows for more than one probe attached to the same location
- Addition of adding immediates to probe parameters
- Clean up of the recordmcount.c code. This brings us closer
to merging recordmcount into objtool, and reuse code.
- Other small clean ups
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXYQoqhQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qlIxAP9VVABbpuvOYqxKuFgyP62ituSXPLkL
gZv4I5Zse4b6/gD/eksFXY/OHo7jp6aQiHvxotUkAiFFE9iHzi0JscdMJgo=
=WqrT
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
- Addition of multiprobes to kprobe and uprobe events (allows for more
than one probe attached to the same location)
- Addition of adding immediates to probe parameters
- Clean up of the recordmcount.c code. This brings us closer to merging
recordmcount into objtool, and reuse code.
- Other small clean ups
* tag 'trace-v5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (33 commits)
selftests/ftrace: Update kprobe event error testcase
tracing/probe: Reject exactly same probe event
tracing/probe: Fix to allow user to enable events on unloaded modules
selftests/ftrace: Select an existing function in kprobe_eventname test
tracing/kprobe: Fix NULL pointer access in trace_porbe_unlink()
tracing: Make sure variable reference alias has correct var_ref_idx
tracing: Be more clever when dumping hex in __print_hex()
ftrace: Simplify ftrace hash lookup code in clear_func_from_hash()
tracing: Add "gfp_t" support in synthetic_events
tracing: Rename tracing_reset() to tracing_reset_cpu()
tracing: Document the stack trace algorithm in the comments
tracing/arm64: Have max stack tracer handle the case of return address after data
recordmcount: Clarify what cleanup() does
recordmcount: Remove redundant cleanup() calls
recordmcount: Kernel style formatting
recordmcount: Kernel style function signature formatting
recordmcount: Rewrite error/success handling
selftests/ftrace: Add syntax error test for multiprobe
selftests/ftrace: Add syntax error test for immediates
selftests/ftrace: Add a testcase for kprobe multiprobe event
...
- add dma-mapping and block layer helpers to take care of IOMMU
merging for mmc plus subsequent fixups (Yoshihiro Shimoda)
- rework handling of the pgprot bits for remapping (me)
- take care of the dma direct infrastructure for swiotlb-xen (me)
- improve the dma noncoherent remapping infrastructure (me)
- better defaults for ->mmap, ->get_sgtable and ->get_required_mask (me)
- cleanup mmaping of coherent DMA allocations (me)
- various misc cleanups (Andy Shevchenko, me)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl2CSucLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYPfrhAAgXZA/EdFPvkkCoDrmgtf3XkudX9gajeCd9g4NZy6
ZBQElTVvm4S0sQj7IXgALnMumDMbbTibW5SQLX5GwQDe+XXBpZ8ajpAnJAXc8a5T
qaFQ4SInr4CgBZf9nZKDkbSBZ1Tu3AQm1c0QI8riRCkrVTuX4L06xpCef4Yh4mgO
rwWEjIioYpQiKZMmu98riXh3ZNfFG3mVJRhKt8B6XJbBgnUnjDOPYGgaUwp6CU20
tFBKL2GaaV0vdLJ5wYhIGXT4DJ8tp9T5n3IYGZv1Ux889RaZEHlCrMxzelYeDbCT
KhZbhcSECGnddsh73t/UX7/KhytuqnfKa9n+Xo6AWuA47xO4c36quOOcTk9M0vE5
TfGDmewgL6WIv4lzokpRn5EkfDhyL33j8eYJrJ8e0ldcOhSQIFk4ciXnf2stWi6O
JrlzzzSid+zXxu48iTfoPdnMr7psTpiMvvRvKfEeMp2FX9Fg6EdMzJYLTEl+COHB
0WwNacZmY3P01+b5EZXEgqKEZevIIdmPKbyM9rPtTjz8BjBwkABHTpN3fWbVBf7/
Ax6OPYyW40xp1fnJuzn89m3pdOxn88FpDdOaeLz892Zd+Qpnro1ayulnFspVtqGM
mGbzA9whILvXNRpWBSQrvr2IjqMRjbBxX3BVACl3MMpOChgkpp5iANNfSDjCftSF
Zu8=
=/wGv
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.4' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- add dma-mapping and block layer helpers to take care of IOMMU merging
for mmc plus subsequent fixups (Yoshihiro Shimoda)
- rework handling of the pgprot bits for remapping (me)
- take care of the dma direct infrastructure for swiotlb-xen (me)
- improve the dma noncoherent remapping infrastructure (me)
- better defaults for ->mmap, ->get_sgtable and ->get_required_mask
(me)
- cleanup mmaping of coherent DMA allocations (me)
- various misc cleanups (Andy Shevchenko, me)
* tag 'dma-mapping-5.4' of git://git.infradead.org/users/hch/dma-mapping: (41 commits)
mmc: renesas_sdhi_internal_dmac: Add MMC_CAP2_MERGE_CAPABLE
mmc: queue: Fix bigger segments usage
arm64: use asm-generic/dma-mapping.h
swiotlb-xen: merge xen_unmap_single into xen_swiotlb_unmap_page
swiotlb-xen: simplify cache maintainance
swiotlb-xen: use the same foreign page check everywhere
swiotlb-xen: remove xen_swiotlb_dma_mmap and xen_swiotlb_dma_get_sgtable
xen: remove the exports for xen_{create,destroy}_contiguous_region
xen/arm: remove xen_dma_ops
xen/arm: simplify dma_cache_maint
xen/arm: use dev_is_dma_coherent
xen/arm: consolidate page-coherent.h
xen/arm: use dma-noncoherent.h calls for xen-swiotlb cache maintainance
arm: remove wrappers for the generic dma remap helpers
dma-mapping: introduce a dma_common_find_pages helper
dma-mapping: always use VM_DMA_COHERENT for generic DMA remap
vmalloc: lift the arm flag for coherent mappings to common code
dma-mapping: provide a better default ->get_required_mask
dma-mapping: remove the dma_declare_coherent_memory export
remoteproc: don't allow modular build
...
* ARM: ITS translation cache; support for 512 vCPUs, various cleanups
and bugfixes
* PPC: various minor fixes and preparation
* x86: bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT), some IPI optimizations
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdf7fdAAoJEL/70l94x66DJzkIAKDcuWXJB4Qtoto6yUvPiHZm
LYkY/Dn1zulb/DhzrBoXFey/jZXwl9kxMYkVTefnrAl0fRwFGX+G1UYnQrtAL6Gr
ifdTYdy3kZhXCnnp99QAantWDswJHo1THwbmHrlmkxS4MdisEaTHwgjaHrDRZ4/d
FAEwW2isSonP3YJfTtsKFFjL9k2D4iMnwZ/R2B7UOaWvgnerZ1GLmOkilvnzGGEV
IQ89IIkWlkKd4SKgq8RkDKlfW5JrLrSdTK2Uf0DvAxV+J0EFkEaR+WlLsqumra0z
Eg3KwNScfQj0DyT0TzurcOxObcQPoMNSFYXLRbUu1+i0CGgm90XpF1IosiuihgU=
=w6I3
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"s390:
- ioctl hardening
- selftests
ARM:
- ITS translation cache
- support for 512 vCPUs
- various cleanups and bugfixes
PPC:
- various minor fixes and preparation
x86:
- bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT)
- some IPI optimizations"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (75 commits)
KVM: X86: Use IPI shorthands in kvm guest when support
KVM: x86: Fix INIT signal handling in various CPU states
KVM: VMX: Introduce exit reason for receiving INIT signal on guest-mode
KVM: VMX: Stop the preemption timer during vCPU reset
KVM: LAPIC: Micro optimize IPI latency
kvm: Nested KVM MMUs need PAE root too
KVM: x86: set ctxt->have_exception in x86_decode_insn()
KVM: x86: always stop emulation on page fault
KVM: nVMX: trace nested VM-Enter failures detected by H/W
KVM: nVMX: add tracepoint for failed nested VM-Enter
x86: KVM: svm: Fix a check in nested_svm_vmrun()
KVM: x86: Return to userspace with internal error on unexpected exit reason
KVM: x86: Add kvm_emulate_{rd,wr}msr() to consolidate VXM/SVM code
KVM: x86: Refactor up kvm_{g,s}et_msr() to simplify callers
doc: kvm: Fix return description of KVM_SET_MSRS
KVM: X86: Tune PLE Window tracepoint
KVM: VMX: Change ple_window type to unsigned int
KVM: X86: Remove tailing newline for tracepoints
KVM: X86: Trace vcpu_id for vmexit
KVM: x86: Manually calculate reserved bits when loading PDPTRS
...
- 52-bit virtual addressing in the kernel
- New ABI to allow tagged user pointers to be dereferenced by syscalls
- Early RNG seeding by the bootloader
- Improve robustness of SMP boot
- Fix TLB invalidation in light of recent architectural clarifications
- Support for i.MX8 DDR PMU
- Remove direct LSE instruction patching in favour of static keys
- Function error injection using kprobes
- Support for the PPTT "thread" flag introduced by ACPI 6.3
- Move PSCI idle code into proper cpuidle driver
- Relaxation of implicit I/O memory barriers
- Build with RELR relocations when toolchain supports them
- Numerous cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl1yYREQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNAM3CAChqDFQkryXoHwdeEcaukMRVNxtxOi4pM4g
5xqkb7PoqRJssIblsuhaXjrSD97yWCgaqCmFe6rKoes++lP4bFcTe22KXPPyPBED
A+tK4nTuKKcZfVbEanUjI+ihXaHJmKZ/kwAxWsEBYZ4WCOe3voCiJVNO2fHxqg1M
8TskZ2BoayTbWMXih0eJg2MCy/xApBq4b3nZG4bKI7Z9UpXiKN1NYtDh98ZEBK4V
d/oNoHsJ2ZvIQsztoBJMsvr09DTCazCijWZiECadm6l41WEPFizngrACiSJLLtYo
0qu4qxgg9zgFlvBCRQmIYSggTuv35RgXSfcOwChmW5DUjHG+f9GK
=Ru4B
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Although there isn't tonnes of code in terms of line count, there are
a fair few headline features which I've noted both in the tag and also
in the merge commits when I pulled everything together.
The part I'm most pleased with is that we had 35 contributors this
time around, which feels like a big jump from the usual small group of
core arm64 arch developers. Hopefully they all enjoyed it so much that
they'll continue to contribute, but we'll see.
It's probably worth highlighting that we've pulled in a branch from
the risc-v folks which moves our CPU topology code out to where it can
be shared with others.
Summary:
- 52-bit virtual addressing in the kernel
- New ABI to allow tagged user pointers to be dereferenced by
syscalls
- Early RNG seeding by the bootloader
- Improve robustness of SMP boot
- Fix TLB invalidation in light of recent architectural
clarifications
- Support for i.MX8 DDR PMU
- Remove direct LSE instruction patching in favour of static keys
- Function error injection using kprobes
- Support for the PPTT "thread" flag introduced by ACPI 6.3
- Move PSCI idle code into proper cpuidle driver
- Relaxation of implicit I/O memory barriers
- Build with RELR relocations when toolchain supports them
- Numerous cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (114 commits)
arm64: remove __iounmap
arm64: atomics: Use K constraint when toolchain appears to support it
arm64: atomics: Undefine internal macros after use
arm64: lse: Make ARM64_LSE_ATOMICS depend on JUMP_LABEL
arm64: asm: Kill 'asm/atomic_arch.h'
arm64: lse: Remove unused 'alt_lse' assembly macro
arm64: atomics: Remove atomic_ll_sc compilation unit
arm64: avoid using hard-coded registers for LSE atomics
arm64: atomics: avoid out-of-line ll/sc atomics
arm64: Use correct ll/sc atomic constraints
jump_label: Don't warn on __exit jump entries
docs/perf: Add documentation for the i.MX8 DDR PMU
perf/imx_ddr: Add support for AXI ID filtering
arm64: kpti: ensure patched kernel text is fetched from PoU
arm64: fix fixmap copy for 16K pages and 48-bit VA
perf/smmuv3: Validate groups for global filtering
perf/smmuv3: Validate group size
arm64: Relax Documentation/arm64/tagged-pointers.rst
arm64: kvm: Replace hardcoded '1' with SYS_PAR_EL1_F
arm64: mm: Ignore spurious translation faults taken from the kernel
...
Now that the Xen special cases are gone nothing worth mentioning is
left in the arm64 <asm/dma-mapping.h> file, so switch to use the
asm-generic version instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Will Deacon <will@kernel.org>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
Use the dma-noncoherent dev_is_dma_coherent helper instead of the home
grown variant. Note that both are always initialized to the same
value in arch_setup_dma_ops.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
Shared the duplicate arm/arm64 code in include/xen/arm/page-coherent.h.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
Most archs (well at least x86) store the function call return address on the
stack before storing the local variables for the function. The max stack
tracer depends on this in its algorithm to display the stack size of each
function it finds in the back trace.
Some archs (arm64), may store the return address (from its link register)
just before calling a nested function. There's no reason to save the link
register on leaf functions, as it wont be updated. This breaks the algorithm
of the max stack tracer.
Add a new define ARCH_FTRACE_SHIFT_STACK_TRACER that an architecture may set
if it stores the return address (link register) after it stores the
function's local variables, and have the stack trace shift the values of the
mapped stack size to the appropriate functions.
Link: 20190802094103.163576-1-jiping.ma2@windriver.com
Reported-by: Jiping Ma <jiping.ma2@windriver.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
* for-next/52-bit-kva: (25 commits)
Support for 52-bit virtual addressing in kernel space
* for-next/cpu-topology: (9 commits)
Move CPU topology parsing into core code and add support for ACPI 6.3
* for-next/error-injection: (2 commits)
Support for function error injection via kprobes
* for-next/perf: (8 commits)
Support for i.MX8 DDR PMU and proper SMMUv3 group validation
* for-next/psci-cpuidle: (7 commits)
Move PSCI idle code into a new CPUidle driver
* for-next/rng: (4 commits)
Support for 'rng-seed' property being passed in the devicetree
* for-next/smpboot: (3 commits)
Reduce fragility of secondary CPU bringup in debug configurations
* for-next/tbi: (10 commits)
Introduce new syscall ABI with relaxed requirements for pointer tags
* for-next/tlbi: (6 commits)
Handle spurious page faults arising from kernel space
The 'K' constraint is a documented AArch64 machine constraint supported
by GCC for matching integer constants that can be used with a 32-bit
logical instruction. Unfortunately, some released compilers erroneously
accept the immediate '4294967295' for this constraint, which is later
refused by GAS at assembly time. This had led us to avoid the use of
the 'K' constraint altogether.
Instead, detect whether the compiler is up to the job when building the
kernel and pass the 'K' constraint to our 32-bit atomic macros when it
appears to be supported.
Signed-off-by: Will Deacon <will@kernel.org>
We use a bunch of internal macros when constructing our atomic and
cmpxchg routines in order to save on boilerplate. Avoid exposing these
directly to users of the header files.
Reviewed-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The contents of 'asm/atomic_arch.h' can be split across some of our
other 'asm/' headers. Remove it.
Reviewed-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The 'alt_lse' assembly macro has been unused since 7c8fc35dfc
("locking/atomics/arm64: Replace our atomic/lock bitop implementations
with asm-generic").
Remove it.
Reviewed-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Now that we have removed the out-of-line ll/sc atomics we can give
the compiler the freedom to choose its own register allocation.
Remove the hard-coded use of x30.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
When building for LSE atomics (CONFIG_ARM64_LSE_ATOMICS), if the hardware
or toolchain doesn't support it the existing code will fallback to ll/sc
atomics. It achieves this by branching from inline assembly to a function
that is built with special compile flags. Further this results in the
clobbering of registers even when the fallback isn't used increasing
register pressure.
Improve this by providing inline implementations of both LSE and
ll/sc and use a static key to select between them, which allows for the
compiler to generate better atomics code. Put the LL/SC fallback atomics
in their own subsection to improve icache performance.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Based on an email from Will Deacon.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
arch_dma_mmap_pgprot is used for two things:
1) to override the "normal" uncached page attributes for mapping
memory coherent to devices that can't snoop the CPU caches
2) to provide the special DMA_ATTR_WRITE_COMBINE semantics on older
arm systems and some mips platforms
Replace one with the pgprot_dmacoherent macro that is already provided
by arm and much simpler to use, and lift the DMA_ATTR_WRITE_COMBINE
handling to common code with an explicit arch opt-in.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Acked-by: Paul Burton <paul.burton@mips.com> # mips
The A64 ISA accepts distinct (but overlapping) ranges of immediates for:
* add arithmetic instructions ('I' machine constraint)
* sub arithmetic instructions ('J' machine constraint)
* 32-bit logical instructions ('K' machine constraint)
* 64-bit logical instructions ('L' machine constraint)
... but we currently use the 'I' constraint for many atomic operations
using sub or logical instructions, which is not always valid.
When CONFIG_ARM64_LSE_ATOMICS is not set, this allows invalid immediates
to be passed to instructions, potentially resulting in a build failure.
When CONFIG_ARM64_LSE_ATOMICS is selected the out-of-line ll/sc atomics
always use a register as they have no visibility of the value passed by
the caller.
This patch adds a constraint parameter to the ATOMIC_xx and
__CMPXCHG_CASE macros so that we can pass appropriate constraints for
each case, with uses updated accordingly.
Unfortunately prior to GCC 8.1.0 the 'K' constraint erroneously accepted
'4294967295', so we must instead force the use of a register.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Since commit 2f6ea23f63 ("arm64: KVM: Avoid marking pages as XN in
Stage-2 if CTR_EL0.DIC is set"), KVM has stopped marking normal memory
as execute-never at stage2 when the system supports D->I Coherency at
the PoU. This avoids KVM taking a trap when the page is first executed,
in order to clean it to PoU.
The patch that added this change also wrapped PAGE_S2_DEVICE mappings
up in this too. The upshot is, if your CPU caches support DIC ...
you can execute devices.
Revert the PAGE_S2_DEVICE change so PTE_S2_XN is always used
directly.
Fixes: 2f6ea23f63 ("arm64: KVM: Avoid marking pages as XN in Stage-2 if CTR_EL0.DIC is set")
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
PAR_EL1 is a mysterious creature, but sometimes it's necessary to read
it when translating addresses in situations where we cannot walk the
page table directly.
Add a couple of system register definitions for the fault indication
field ('F') and the fault status code ('FST').
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Commit 6a4cbd63c25a ("Revert "arm64: Remove unnecessary ISBs from
set_{pte,pmd,pud}"") reintroduced ISB instructions to some of our
page table setter functions in light of a recent clarification to the
Armv8 architecture. Although 'set_pgd()' isn't currently used to update
a live page table, add the ISB instruction there too for consistency
with the other macros and to provide some future-proofing if we use it
on live tables in the future.
Reported-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
05f2d2f83b ("arm64: tlbflush: Introduce __flush_tlb_kernel_pgtable")
added a new TLB invalidation helper which is used when freeing
intermediate levels of page table used for kernel mappings, but is
missing the required ISB instruction after completion of the TLBI
instruction.
Add the missing barrier.
Cc: <stable@vger.kernel.org>
Fixes: 05f2d2f83b ("arm64: tlbflush: Introduce __flush_tlb_kernel_pgtable")
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
This reverts commit 24fe1b0efa.
Commit 24fe1b0efa ("arm64: Remove unnecessary ISBs from
set_{pte,pmd,pud}") removed ISB instructions immediately following updates
to the page table, on the grounds that they are not required by the
architecture and a DSB alone is sufficient to ensure that subsequent data
accesses use the new translation:
DDI0487E_a, B2-128:
| ... no instruction that appears in program order after the DSB
| instruction can alter any state of the system or perform any part of
| its functionality until the DSB completes other than:
|
| * Being fetched from memory and decoded
| * Reading the general-purpose, SIMD and floating-point,
| Special-purpose, or System registers that are directly or indirectly
| read without causing side-effects.
However, the same document also states the following:
DDI0487E_a, B2-125:
| DMB and DSB instructions affect reads and writes to the memory system
| generated by Load/Store instructions and data or unified cache
| maintenance instructions being executed by the PE. Instruction fetches
| or accesses caused by a hardware translation table access are not
| explicit accesses.
which appears to claim that the DSB alone is insufficient. Unfortunately,
some CPU designers have followed the second clause above, whereas in Linux
we've been relying on the first. This means that our mapping sequence:
MOV X0, <valid pte>
STR X0, [Xptep] // Store new PTE to page table
DSB ISHST
LDR X1, [X2] // Translates using the new PTE
can actually raise a translation fault on the load instruction because the
translation can be performed speculatively before the page table update and
then marked as "faulting" by the CPU. For user PTEs, this is ok because we
can handle the spurious fault, but for kernel PTEs and intermediate table
entries this results in a panic().
Revert the offending commit to reintroduce the missing barriers.
Cc: <stable@vger.kernel.org>
Fixes: 24fe1b0efa ("arm64: Remove unnecessary ISBs from set_{pte,pmd,pud}")
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Currently in arm64, FDT is mapped to RO before it's passed to
early_init_dt_scan(). However, there might be some codes
(eg. commit "fdt: add support for rng-seed") that need to modify FDT
during init. Map FDT to RO after early fixups are done.
Signed-off-by: Hsin-Yi Wang <hsinyi@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Will Deacon <will@kernel.org>
When taking an SError or Debug exception from EL0, we run the C
handler for these exceptions before updating the context tracking
code and unmasking lower priority interrupts.
When booting with nohz_full lockdep tells us we got this wrong:
| =============================
| WARNING: suspicious RCU usage
| 5.3.0-rc2-00010-gb4b5e9dcb11b-dirty #11271 Not tainted
| -----------------------------
| include/linux/rcupdate.h:643 rcu_read_unlock() used illegally wh!
|
| other info that might help us debug this:
|
|
| RCU used illegally from idle CPU!
| rcu_scheduler_active = 2, debug_locks = 1
| RCU used illegally from extended quiescent state!
| 1 lock held by a.out/432:
| #0: 00000000c7a79515 (rcu_read_lock){....}, at: brk_handler+0x00
|
| stack backtrace:
| CPU: 1 PID: 432 Comm: a.out Not tainted 5.3.0-rc2-00010-gb4b5e9d1
| Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno De8
| Call trace:
| dump_backtrace+0x0/0x140
| show_stack+0x14/0x20
| dump_stack+0xbc/0x104
| lockdep_rcu_suspicious+0xf8/0x108
| brk_handler+0x164/0x1b0
| do_debug_exception+0x11c/0x278
| el0_dbg+0x14/0x20
Moving the ct_user_exit calls to be before do_debug_exception() means
they are also before trace_hardirqs_off() has been updated. Add a new
ct_user_exit_irqoff macro to avoid the context-tracking code using
irqsave/restore before we've updated trace_hardirqs_off(). To be
consistent, do this everywhere.
The C helper is called enter_from_user_mode() to match x86 in the hope
we can merge them into kernel/context_tracking.c later.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 6c81fe7925 ("arm64: enable context tracking")
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The trusted OS may reject CPU_OFF calls to its resident CPU, so we must
avoid issuing those. We never migrate a Trusted OS and we already take
care to prevent CPU_OFF PSCI call. However, this is not reflected
explicitly to the userspace. Any user can attempt to hotplug trusted OS
resident CPU. The entire motion of going through the various state
transitions in the CPU hotplug state machine gets executed and the
PSCI layer finally refuses to make CPU_OFF call.
This results is unnecessary unwinding of CPU hotplug state machine in
the kernel. Instead we can mark the trusted OS resident CPU as not
available for hotplug, so that the user attempt or request to do the
same will get immediately rejected.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Strengthen the wording in the documentation for cpu_enable() to make it
more obvious to readers not already familiar with the code when the core
will call this callback and that this is intentional.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: minor tweak to emphasis in the comment]
Signed-off-by: Will Deacon <will@kernel.org>
Prior to commit:
14c127c957 ("arm64: mm: Flip kernel VA space")
... VA_START described the start of the TTBR1 address space for a given
VA size described by VA_BITS, where all kernel mappings began.
Since that commit, VA_START described a portion midway through the
address space, where the linear map ends and other kernel mappings
begin.
To avoid confusion, let's rename VA_START to PAGE_END, making it clear
that it's not the start of the TTBR1 address space and implying that
it's related to PAGE_OFFSET. Comments and other mnemonics are updated
accordingly, along with a typo fix in the decription of VMEMMAP_SIZE.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Cleanup memory.h so that the indentation is consistent, remove pointless
line-wrapping and use consistent parameter names for different versions
of the same macro.
Reviewed-by: Steve Capper <steve.capper@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Commenting the #endif of a multi-statement #ifdef block with the
condition which guards it is useful and can save having to scroll back
through the file to figure out which set of Kconfig options apply to
a particular piece of code.
Reviewed-by: Steve Capper <steve.capper@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
There's no need for __tag_set() to be a complicated macro when
CONFIG_KASAN_SW_TAGS=y and a simple static inline otherwise. Rewrite
the thing as a common static inline function.
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Rather than subtracting from -1 and then adding 1, we can simply
subtract from 0.
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Build virt_to_page() on top of virt_to_pfn() so we can avoid the need
for explicit shifting.
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The default implementations of page_to_virt() and virt_to_page() are
fairly confusing to read and the former evaluates its 'page' parameter
twice in the macro
Rewrite them so that the computation is expressed as 'base + index' in
both cases and the parameter is always evaluated exactly once.
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
When converting a linear virtual address to a physical address, pfn or
struct page *, we must make sure that the tag bits are masked before the
calculation otherwise we end up with corrupt pointers when running with
CONFIG_KASAN_SW_TAGS=y:
| Unable to handle kernel paging request at virtual address 0037fe0007580d08
| [0037fe0007580d08] address between user and kernel address ranges
Mask out the tag in __virt_to_phys_nodebug() and virt_to_page().
Reported-by: Qian Cai <cai@lca.pw>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 9cb1c5ddd2 ("arm64: mm: Remove bit-masking optimisations for PAGE_OFFSET and VMEMMAP_START")
Signed-off-by: Will Deacon <will@kernel.org>
virt_addr_valid() is intended to test whether or not the passed address
is a valid linear map address. Unfortunately, it relies on
_virt_addr_is_linear() which is broken because it assumes the linear
map is at the top of the address space, which it no longer is.
Reimplement virt_addr_valid() using __is_lm_address() and remove
_virt_addr_is_linear() entirely. At the same time, ensure we evaluate
the macro parameter only once and move it within the __ASSEMBLY__ block.
Reported-by: Qian Cai <cai@lca.pw>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Fixes: 14c127c957 ("arm64: mm: Flip kernel VA space")
Signed-off-by: Will Deacon <will@kernel.org>
Pull in generic CPU topology changes from Paul Walmsley (RISC-V).
* tag 'common/for-v5.4-rc1/cpu-topology' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux:
MAINTAINERS: Add an entry for generic architecture topology
base: arch_topology: update Kconfig help description
RISC-V: Parse cpu topology during boot.
arm: Use common cpu_topology structure and functions.
cpu-topology: Move cpu topology code to common code.
dt-binding: cpu-topology: Move cpu-map to a common binding.
Documentation: DT: arm: add support for sockets defining package boundaries
GCC unescapes escaped string section names while Clang does not. Because
__section uses the `#` stringification operator for the section name, it
doesn't need to be escaped.
This antipattern was found with:
$ grep -e __section\(\" -e __section__\(\" -r
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdTfRfAAoJEL/70l94x66DcN0IAIwyaU2+kwP0jd2miQuKxgwl
WU4u7dZCoQC6meWEVmrSJIVMBONRubmZ9iCqT7807YP8YZSQpOth51FMbULUWuy1
VW1eaRwqidX0EAihDhg2ZbBZ8H6RQ9Fn0aiEEh44dAZZAwGSVnO3PRKvQEJ15xjk
q+OQ4hrxtoorwLj+myejmq3YenTFTCMMJfYwwvlCl+J1FfrLZi5k3X5Gjk+j8Ixd
8CL8/6u5Lu6MCgfYVvxvo8/bUPiATBdF1sWJMMALwXTrDiSy4tQRD0NvZP1HM8G1
hy0XnhgtsS9rWNLtAFOj+r/XhP9V5lOOGX8yBcj0XQQr+DC9MG6MCL+pXXOaMcA=
=ZZh8
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Bugfixes (arm and x86) and cleanups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
selftests: kvm: Adding config fragments
KVM: selftests: Update gitignore file for latest changes
kvm: remove unnecessary PageReserved check
KVM: arm/arm64: vgic: Reevaluate level sensitive interrupts on enable
KVM: arm: Don't write junk to CP15 registers on reset
KVM: arm64: Don't write junk to sysregs on reset
KVM: arm/arm64: Sync ICH_VMCR_EL2 back when about to block
x86: kvm: remove useless calls to kvm_para_available
KVM: no need to check return value of debugfs_create functions
KVM: remove kvm_arch_has_vcpu_debugfs()
KVM: Fix leak vCPU's VMCS value into other pCPU
KVM: Check preempted_in_kernel for involuntary preemption
KVM: LAPIC: Don't need to wakeup vCPU twice afer timer fire
arm64: KVM: hyp: debug-sr: Mark expected switch fall-through
KVM: arm64: Update kvm_arm_exception_class and esr_class_str for new EC
KVM: arm: vgic-v3: Mark expected switch fall-through
arm64: KVM: regmap: Fix unexpected switch fall-through
KVM: arm/arm64: Introduce kvm_pmu_vcpu_init() to setup PMU counter index
untagged_addr() can be called with a '__user' pointer parameter and must
therefore use '__force' casts both when passing this parameter through
to sign_extend64() as a 'u64', but also when casting the 's64' return
value back to the '__user' pointer type.
Signed-off-by: Will Deacon <will@kernel.org>
_virt_addr_valid() is defined as the same value in two places and rolls
its own version of virt_to_pfn() in both cases.
Consolidate these definitions by inlining a simplified version directly
into virt_addr_valid().
Signed-off-by: Will Deacon <will@kernel.org>
Previous patches have enabled 52-bit kernel + user VAs and there is no
longer any scenario where user VA != kernel VA size.
This patch removes the, now redundant, vabits_user variable and replaces
usage with vabits_actual where appropriate.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Most of the machinery is now in place to enable 52-bit kernel VAs that
are detectable at boot time.
This patch adds a Kconfig option for 52-bit user and kernel addresses
and plumbs in the requisite CONFIG_ macros as well as sets TCR.T1SZ,
physvirt_offset and vmemmap at early boot.
To simplify things this patch also removes the 52-bit user/48-bit kernel
kconfig option.
Signed-off-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
In a later patch we will need to have a slightly larger VMEMMAP region
to accommodate boot time selection between 48/52-bit kernel VAs.
This patch modifies the formula for computing VMEMMAP_SIZE to depend
explicitly on the PAGE_OFFSET and start of kernel addressable memory.
(This allows for a slightly larger direct linear map in future).
Signed-off-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
vmemmap is a preprocessor definition that depends on a variable,
memstart_addr. In a later patch we will need to expand the size of
the VMEMMAP region and optionally modify vmemmap depending upon
whether or not hardware support is available for 52-bit virtual
addresses.
This patch changes vmemmap to be a variable. As the old definition
depended on a variable load, this should not affect performance
noticeably.
Signed-off-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
When running with a 52-bit userspace VA and a 48-bit kernel VA we offset
ttbr1_el1 to allow the kernel pagetables with a 52-bit PTRS_PER_PGD to
be used for both userspace and kernel.
Moving on to a 52-bit kernel VA we no longer require this offset to
ttbr1_el1 should we be running on a system with HW support for 52-bit
VAs.
This patch introduces conditional logic to offset_ttbr1 to query
SYS_ID_AA64MMFR2_EL1 whenever 52-bit VAs are selected. If there is HW
support for 52-bit VAs then the ttbr1 offset is skipped.
We choose to read a system register rather than vabits_actual because
offset_ttbr1 can be called in places where the kernel data is not
actually mapped.
Calls to offset_ttbr1 appear to be made from rarely called code paths so
this extra logic is not expected to adversely affect performance.
Signed-off-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
In order to support 52-bit kernel addresses detectable at boot time, one
needs to know the actual VA_BITS detected. A new variable vabits_actual
is introduced in this commit and employed for the KVM hypervisor layout,
KASAN, fault handling and phys-to/from-virt translation where there
would normally be compile time constants.
In order to maintain performance in phys_to_virt, another variable
physvirt_offset is introduced.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
In order to support 52-bit kernel addresses detectable at boot time, the
kernel needs to know the most conservative VA_BITS possible should it
need to fall back to this quantity due to lack of hardware support.
A new compile time constant VA_BITS_MIN is introduced in this patch and
it is employed in the KASAN end address, KASLR, and EFI stub.
For Arm, if 52-bit VA support is unavailable the fallback is to 48-bits.
In other words: VA_BITS_MIN = min (48, VA_BITS)
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>