The first two patches from a series by Kees Cook [1] that introduce
kmalloc_size_roundup(). This will allow merging of per-subsystem patches using
the new function and ultimately stop (ab)using ksize() in a way that causes
ongoing trouble for debugging functionality and static checkers.
[1] https://lore.kernel.org/all/20220923202822.2667581-1-keescook@chromium.org/
--
Resolved a conflict of modifying mm/slab.c __ksize() comment with a commit that
unifies __ksize() implementation into mm/slab_common.c
A patch from Feng Tang that enhances the existing debugfs alloc_traces
file for kmalloc caches with information about how much space is wasted
by allocations that needs less space than the particular kmalloc cache
provides.
In the effort to help the compiler reason about buffer sizes, the
__alloc_size attribute was added to allocators. This improves the scope
of the compiler's ability to apply CONFIG_UBSAN_BOUNDS and (in the near
future) CONFIG_FORTIFY_SOURCE. For most allocations, this works well,
as the vast majority of callers are not expecting to use more memory
than what they asked for.
There is, however, one common exception to this: anticipatory resizing
of kmalloc allocations. These cases all use ksize() to determine the
actual bucket size of a given allocation (e.g. 128 when 126 was asked
for). This comes in two styles in the kernel:
1) An allocation has been determined to be too small, and needs to be
resized. Instead of the caller choosing its own next best size, it
wants to minimize the number of calls to krealloc(), so it just uses
ksize() plus some additional bytes, forcing the realloc into the next
bucket size, from which it can learn how large it is now. For example:
data = krealloc(data, ksize(data) + 1, gfp);
data_len = ksize(data);
2) The minimum size of an allocation is calculated, but since it may
grow in the future, just use all the space available in the chosen
bucket immediately, to avoid needing to reallocate later. A good
example of this is skbuff's allocators:
data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
...
/* kmalloc(size) might give us more room than requested.
* Put skb_shared_info exactly at the end of allocated zone,
* to allow max possible filling before reallocation.
*/
osize = ksize(data);
size = SKB_WITH_OVERHEAD(osize);
In both cases, the "how much was actually allocated?" question is answered
_after_ the allocation, where the compiler hinting is not in an easy place
to make the association any more. This mismatch between the compiler's
view of the buffer length and the code's intention about how much it is
going to actually use has already caused problems[1]. It is possible to
fix this by reordering the use of the "actual size" information.
We can serve the needs of users of ksize() and still have accurate buffer
length hinting for the compiler by doing the bucket size calculation
_before_ the allocation. Code can instead ask "how large an allocation
would I get for a given size?".
Introduce kmalloc_size_roundup(), to serve this function so we can start
replacing the "anticipatory resizing" uses of ksize().
[1] https://github.com/ClangBuiltLinux/linux/issues/1599https://github.com/KSPP/linux/issues/183
[ vbabka@suse.cz: add SLOB version ]
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The __malloc attribute should not be applied to "realloc" functions, as
the returned pointer may alias the storage of the prior pointer. Instead
of splitting __malloc from __alloc_size, which would be a huge amount of
churn, just create __realloc_size for the few cases where it is needed.
Thanks to Geert Uytterhoeven <geert@linux-m68k.org> for reporting build
failures with gcc-8 in earlier version which tried to remove the #ifdef.
While the "alloc_size" attribute is available on all GCC versions, I
forgot that it gets disabled explicitly by the kernel in GCC < 9.1 due
to misbehaviors. Add a note to the compiler_attributes.h entry for it.
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Marco Elver <elver@google.com>
Cc: linux-mm@kvack.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
As Christophe JAILLET suggested [1]
In create_unique_id(),
"looks that ID_STR_LENGTH could even be reduced to 32 or 16.
The 2nd BUG_ON at the end of the function could certainly be just
removed as well or remplaced by a:
if (p > name + ID_STR_LENGTH - 1) {
kfree(name);
return -E<something>;
}
"
According to above suggestion, let's do below cleanups:
1. reduce ID_STR_LENGTH to 32, as the buffer size should be enough;
2. use WARN_ON instead of BUG_ON() and return error if check condition
is true;
3. use snprintf instead of sprintf to avoid overflow.
[1] https://lore.kernel.org/linux-mm/2025305d-16db-abdf-6cd3-1fb93371c2b4@wanadoo.fr/
Suggested-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Chao Yu <chao.yu@oppo.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
kmalloc's API family is critical for mm, with one nature that it will
round up the request size to a fixed one (mostly power of 2). Say
when user requests memory for '2^n + 1' bytes, actually 2^(n+1) bytes
could be allocated, so in worst case, there is around 50% memory
space waste.
The wastage is not a big issue for requests that get allocated/freed
quickly, but may cause problems with objects that have longer life
time.
We've met a kernel boot OOM panic (v5.10), and from the dumped slab
info:
[ 26.062145] kmalloc-2k 814056KB 814056KB
From debug we found there are huge number of 'struct iova_magazine',
whose size is 1032 bytes (1024 + 8), so each allocation will waste
1016 bytes. Though the issue was solved by giving the right (bigger)
size of RAM, it is still nice to optimize the size (either use a
kmalloc friendly size or create a dedicated slab for it).
And from lkml archive, there was another crash kernel OOM case [1]
back in 2019, which seems to be related with the similar slab waste
situation, as the log is similar:
[ 4.332648] iommu: Adding device 0000:20:02.0 to group 16
[ 4.338946] swapper/0 invoked oom-killer: gfp_mask=0x6040c0(GFP_KERNEL|__GFP_COMP), nodemask=(null), order=0, oom_score_adj=0
...
[ 4.857565] kmalloc-2048 59164KB 59164KB
The crash kernel only has 256M memory, and 59M is pretty big here.
(Note: the related code has been changed and optimised in recent
kernel [2], these logs are just picked to demo the problem, also
a patch changing its size to 1024 bytes has been merged)
So add an way to track each kmalloc's memory waste info, and
leverage the existing SLUB debug framework (specifically
SLUB_STORE_USER) to show its call stack of original allocation,
so that user can evaluate the waste situation, identify some hot
spots and optimize accordingly, for a better utilization of memory.
The waste info is integrated into existing interface:
'/sys/kernel/debug/slab/kmalloc-xx/alloc_traces', one example of
'kmalloc-4k' after boot is:
126 ixgbe_alloc_q_vector+0xbe/0x830 [ixgbe] waste=233856/1856 age=280763/281414/282065 pid=1330 cpus=32 nodes=1
__kmem_cache_alloc_node+0x11f/0x4e0
__kmalloc_node+0x4e/0x140
ixgbe_alloc_q_vector+0xbe/0x830 [ixgbe]
ixgbe_init_interrupt_scheme+0x2ae/0xc90 [ixgbe]
ixgbe_probe+0x165f/0x1d20 [ixgbe]
local_pci_probe+0x78/0xc0
work_for_cpu_fn+0x26/0x40
...
which means in 'kmalloc-4k' slab, there are 126 requests of
2240 bytes which got a 4KB space (wasting 1856 bytes each
and 233856 bytes in total), from ixgbe_alloc_q_vector().
And when system starts some real workload like multiple docker
instances, there could are more severe waste.
[1]. https://lkml.org/lkml/2019/8/12/266
[2]. https://lore.kernel.org/lkml/2920df89-9975-5785-f79b-257d3052dfaf@huawei.com/
[Thanks Hyeonggon for pointing out several bugs about sorting/format]
[Thanks Vlastimil for suggesting way to reduce memory usage of
orig_size and keep it only for kmalloc objects]
Signed-off-by: Feng Tang <feng.tang@intel.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: John Garry <john.garry@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
My series [1] to fix validation races for caches with enabled debugging.
By decoupling the debug cache operation more from non-debug fastpaths,
additional locking simplifications were possible and done afterwards.
Additional cleanup of PREEMPT_RT specific code on top, by Thomas Gleixner.
[1] https://lore.kernel.org/all/20220823170400.26546-1-vbabka@suse.cz/
The "common kmalloc v4" series [1] by Hyeonggon Yoo.
- Improves the mm/slab_common.c wrappers to allow deleting duplicated
code between SLAB and SLUB.
- Large kmalloc() allocations in SLAB are passed to page allocator like
in SLUB, reducing number of kmalloc caches.
- Removes the {kmem_cache_alloc,kmalloc}_node variants of tracepoints,
node id parameter added to non-_node variants.
- 8 files changed, 341 insertions(+), 651 deletions(-)
[1] https://lore.kernel.org/all/20220817101826.236819-1-42.hyeyoo@gmail.com/
--
Merge resolves trivial conflict in mm/slub.c with commit 5373b8a09d
("kasan: call kasan_malloc() from __kmalloc_*track_caller()")
Commit 5a836bf6b0 ("mm: slub: move flush_cpu_slab() invocations
__free_slab() invocations out of IRQ context") moved all flush_cpu_slab()
invocations to the global workqueue to avoid a problem related
with deactivate_slab()/__free_slab() being called from an IRQ context
on PREEMPT_RT kernels.
When the flush_all_cpu_locked() function is called from a task context
it may happen that a workqueue with WQ_MEM_RECLAIM bit set ends up
flushing the global workqueue, this will cause a dependency issue.
workqueue: WQ_MEM_RECLAIM nvme-delete-wq:nvme_delete_ctrl_work [nvme_core]
is flushing !WQ_MEM_RECLAIM events:flush_cpu_slab
WARNING: CPU: 37 PID: 410 at kernel/workqueue.c:2637
check_flush_dependency+0x10a/0x120
Workqueue: nvme-delete-wq nvme_delete_ctrl_work [nvme_core]
RIP: 0010:check_flush_dependency+0x10a/0x120[ 453.262125] Call Trace:
__flush_work.isra.0+0xbf/0x220
? __queue_work+0x1dc/0x420
flush_all_cpus_locked+0xfb/0x120
__kmem_cache_shutdown+0x2b/0x320
kmem_cache_destroy+0x49/0x100
bioset_exit+0x143/0x190
blk_release_queue+0xb9/0x100
kobject_cleanup+0x37/0x130
nvme_fc_ctrl_free+0xc6/0x150 [nvme_fc]
nvme_free_ctrl+0x1ac/0x2b0 [nvme_core]
Fix this bug by creating a workqueue for the flush operation with
the WQ_MEM_RECLAIM bit set.
Fixes: 5a836bf6b0 ("mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of IRQ context")
Cc: <stable@vger.kernel.org>
Signed-off-by: Maurizio Lombardi <mlombard@redhat.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
When doing slub_debug test, kfence's 'test_memcache_typesafe_by_rcu'
kunit test case cause a use-after-free error:
BUG: KASAN: use-after-free in kobject_del+0x14/0x30
Read of size 8 at addr ffff888007679090 by task kunit_try_catch/261
CPU: 1 PID: 261 Comm: kunit_try_catch Tainted: G B N 6.0.0-rc5-next-20220916 #17
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x48
print_address_description.constprop.0+0x87/0x2a5
print_report+0x103/0x1ed
kasan_report+0xb7/0x140
kobject_del+0x14/0x30
kmem_cache_destroy+0x130/0x170
test_exit+0x1a/0x30
kunit_try_run_case+0xad/0xc0
kunit_generic_run_threadfn_adapter+0x26/0x50
kthread+0x17b/0x1b0
</TASK>
The cause is inside kmem_cache_destroy():
kmem_cache_destroy
acquire lock/mutex
shutdown_cache
schedule_work(kmem_cache_release) (if RCU flag set)
release lock/mutex
kmem_cache_release (if RCU flag not set)
In some certain timing, the scheduled work could be run before
the next RCU flag checking, which can then get a wrong value
and lead to double kmem_cache_release().
Fix it by caching the RCU flag inside protected area, just like 'refcnt'
Fixes: 0495e337b7 ("mm/slab_common: Deleting kobject in kmem_cache_destroy() without holding slab_mutex/cpu_hotplug_lock")
Signed-off-by: Feng Tang <feng.tang@intel.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The slub code already has a few helpers depending on PREEMPT_RT. Add a few
more and get rid of the CONFIG_PREEMPT_RT conditionals all over the place.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: linux-mm@kvack.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The PREEMPT_RT specific disabling of irqs in __cmpxchg_double_slab()
(through slab_[un]lock()) is unnecessary as bit_spin_lock() disables
preemption and that's sufficient on PREEMPT_RT where no allocation/free
operation is performed in hardirq context and so can't interrupt the
current operation.
That means we no longer need the slab_[un]lock() wrappers, so delete
them and rename the current __slab_[un]lock() to slab_[un]lock().
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
The only remaining user of object_map_lock is list_slab_objects().
Obtaining the lock there used to happen under slab_lock() which implied
disabling irqs on PREEMPT_RT, thus it's a raw_spinlock. With the
slab_lock() removed, we can convert it to a normal spinlock.
Also remove the get_map()/put_map() wrappers as list_slab_objects()
became their only remaining user.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
All alloc and free operations on debug caches are now serialized by
n->list_lock, so we can remove slab_lock() usage in validate_slab()
and list_slab_objects() as those also happen under n->list_lock.
Note the usage in list_slab_objects() could happen even on non-debug
caches, but only during cache shutdown time, so there should not be any
parallel freeing activity anymore. Except for buggy slab users, but in
that case the slab_lock() would not help against the common cmpxchg
based fast paths (in non-debug caches) anyway.
Also adjust documentation comments accordingly.
Suggested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Rongwei Wang reports [1] that cache validation triggered by writing to
/sys/kernel/slab/<cache>/validate is racy against normal cache
operations (e.g. freeing) in a way that can cause false positive
inconsistency reports for caches with debugging enabled. The problem is
that debugging actions that mark object free or active and actual
freelist operations are not atomic, and the validation can see an
inconsistent state.
For caches that do or don't have debugging enabled, additional races
involving n->nr_slabs are possible that result in false reports of wrong
slab counts.
This patch attempts to solve these issues while not adding overhead to
normal (especially fastpath) operations for caches that do not have
debugging enabled. Such overhead would not be justified to make possible
userspace-triggered validation safe. Instead, disable the validation for
caches that don't have debugging enabled and make their sysfs validate
handler return -EINVAL.
For caches that do have debugging enabled, we can instead extend the
existing approach of not using percpu freelists to force all alloc/free
operations to the slow paths where debugging flags is checked and acted
upon. There can adjust the debug-specific paths to increase n->list_lock
coverage against concurrent validation as necessary.
The processing on free in free_debug_processing() already happens under
n->list_lock so we can extend it to actually do the freeing as well and
thus make it atomic against concurrent validation. As observed by
Hyeonggon Yoo, we do not really need to take slab_lock() anymore here
because all paths we could race with are protected by n->list_lock under
the new scheme, so drop its usage here.
The processing on alloc in alloc_debug_processing() currently doesn't
take any locks, but we have to first allocate the object from a slab on
the partial list (as debugging caches have no percpu slabs) and thus
take the n->list_lock anyway. Add a function alloc_single_from_partial()
that grabs just the allocated object instead of the whole freelist, and
does the debug processing. The n->list_lock coverage again makes it
atomic against validation and it is also ultimately more efficient than
the current grabbing of freelist immediately followed by slab
deactivation.
To prevent races on n->nr_slabs updates, make sure that for caches with
debugging enabled, inc_slabs_node() or dec_slabs_node() is called under
n->list_lock. When allocating a new slab for a debug cache, handle the
allocation by a new function alloc_single_from_new_slab() instead of the
current forced deactivation path.
Neither of these changes affect the fast paths at all. The changes in
slow paths are negligible for non-debug caches.
[1] https://lore.kernel.org/all/20220529081535.69275-1-rongwei.wang@linux.alibaba.com/
Reported-by: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
We were failing to call kasan_malloc() from __kmalloc_*track_caller()
which was causing us to sometimes fail to produce KASAN error reports
for allocations made using e.g. devm_kcalloc(), as the KASAN poison was
not being initialized. Fix it.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Cc: <stable@vger.kernel.org> # 5.15
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
A circular locking problem is reported by lockdep due to the following
circular locking dependency.
+--> cpu_hotplug_lock --> slab_mutex --> kn->active --+
| |
+-----------------------------------------------------+
The forward cpu_hotplug_lock ==> slab_mutex ==> kn->active dependency
happens in
kmem_cache_destroy(): cpus_read_lock(); mutex_lock(&slab_mutex);
==> sysfs_slab_unlink()
==> kobject_del()
==> kernfs_remove()
==> __kernfs_remove()
==> kernfs_drain(): rwsem_acquire(&kn->dep_map, ...);
The backward kn->active ==> cpu_hotplug_lock dependency happens in
kernfs_fop_write_iter(): kernfs_get_active();
==> slab_attr_store()
==> cpu_partial_store()
==> flush_all(): cpus_read_lock()
One way to break this circular locking chain is to avoid holding
cpu_hotplug_lock and slab_mutex while deleting the kobject in
sysfs_slab_unlink() which should be equivalent to doing a write_lock
and write_unlock pair of the kn->active virtual lock.
Since the kobject structures are not protected by slab_mutex or the
cpu_hotplug_lock, we can certainly release those locks before doing
the delete operation.
Move sysfs_slab_unlink() and sysfs_slab_release() to the newly
created kmem_cache_release() and call it outside the slab_mutex &
cpu_hotplug_lock critical sections. There will be a slight delay
in the deletion of sysfs files if kmem_cache_release() is called
indirectly from a work function.
Fixes: 5a836bf6b0 ("mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of IRQ context")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: David Rientjes <rientjes@google.com>
Link: https://lore.kernel.org/all/YwOImVd+nRUsSAga@hyeyoo/
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
If address of large object is not beginning of folio or size of the
folio is too small, it must be invalid. WARN() and return 0 in such
cases.
Cc: Marco Elver <elver@google.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
__ksize() is only called by KASAN. Remove export symbol and move
declaration to mm/slab.h as we don't want to grow its callers.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Drop kmem_alloc event class, and define kmalloc and kmem_cache_alloc
using TRACE_EVENT() macro.
And then this patch does:
- Do not pass pointer to struct kmem_cache to trace_kmalloc.
gfp flag is enough to know if it's accounted or not.
- Avoid dereferencing s->object_size and s->size when not using kmem_cache_alloc event.
- Avoid dereferencing s->name in when not using kmem_cache_free event.
- Adjust s->size to SLOB_UNITS(s->size) * SLOB_UNIT in SLOB
Cc: Vasily Averin <vasily.averin@linux.dev>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Drop kmem_alloc event class, rename kmem_alloc_node to kmem_alloc, and
remove _node postfix for NUMA version of tracepoints.
This will break some tools that depend on {kmem_cache_alloc,kmalloc}_node,
but at this point maintaining both kmem_alloc and kmem_alloc_node
event classes does not makes sense at all.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Despite its name, kmem_cache_alloc[_node]_trace() is hook for inlined
kmalloc. So rename it to kmalloc[_node]_trace().
Move its implementation to slab_common.c by using
__kmem_cache_alloc_node(), but keep CONFIG_TRACING=n varients to save a
function call when CONFIG_TRACING=n.
Use __assume_kmalloc_alignment for kmalloc[_node]_trace instead of
__assume_slab_alignement. Generally kmalloc has larger alignment
requirements.
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Now everything in kmalloc subsystem can be generalized.
Let's do it!
Generalize __do_kmalloc_node(), __kmalloc_node_track_caller(),
kfree(), __ksize(), __kmalloc(), __kmalloc_node() and move them
to slab_common.c.
In the meantime, rename kmalloc_large_node_notrace()
to __kmalloc_large_node() and make it static as it's now only called in
slab_common.c.
[ feng.tang@intel.com: adjust kfence skip list to include
__kmem_cache_free so that kfence kunit tests do not fail ]
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
In the following patch, the function free_debug_processing() will be
calling add_partial(), remove_partial() and discard_slab(), se move it
below their definitions to avoid forward declarations. To make review
easier, separate the move from functional changes.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
To unify kmalloc functions in later patch, introduce common alloc/free
functions that does not have tracepoint.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
There is not much benefit for serving large objects in kmalloc().
Let's pass large requests to page allocator like SLUB for better
maintenance of common code.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Now that kmalloc_large() and kmalloc_large_node() do mostly same job,
make kmalloc_large() wrapper of kmalloc_large_node_notrace().
In the meantime, add missing flag fix code in
kmalloc_large_node_notrace().
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Now that kmalloc_large_node() is in common code, pass large requests
to page allocator in kmalloc_node() using kmalloc_large_node().
One problem is that currently there is no tracepoint in
kmalloc_large_node(). Instead of simply putting tracepoint in it,
use kmalloc_large_node{,_notrace} depending on its caller to show
useful address for both inlined kmalloc_node() and
__kmalloc_node_track_caller() when large objects are allocated.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
In later patch SLAB will also pass requests larger than order-1 page
to page allocator. Move kmalloc_large_node() to slab_common.c.
Fold kmalloc_large_node_hook() into kmalloc_large_node() as there is
no other caller.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
There is no caller of kmalloc_order_trace() except kmalloc_large().
Fold it into kmalloc_large() and remove kmalloc_order{,_trace}().
Also add tracepoint in kmalloc_large() that was previously
in kmalloc_order_trace().
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
__kmalloc(), __kmalloc_node(), __kmalloc_node_track_caller()
mostly do same job. Factor out common code into __do_kmalloc_node().
Note that this patch also fixes missing kasan_kmalloc() in SLUB's
__kmalloc_node_track_caller().
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Now that slab_alloc_node() is available for SLAB when CONFIG_NUMA=n,
remove CONFIG_NUMA ifdefs for common kmalloc functions.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Make slab_alloc_node() available even when CONFIG_NUMA=n and
make slab_alloc() wrapper of slab_alloc_node().
This is necessary for further cleanup.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
To implement slab_alloc_node() independent of NUMA configuration,
move NUMA fallback/alternate allocation code into __do_cache_alloc().
One functional change here is not to check availability of node
when allocating from local node.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Return the value from attribute->store(s, buf, len) and
attribute->show(s, buf) directly instead of storing it in
another redundant variable.
Reported-by: Zeal Robot <zealci@zte.com.cn>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Return the value from __kmem_cache_shrink() directly instead of storing it
in another redundant variable.
Reported-by: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
- hardware poisoning support for 1GB hugepages, from Naoya Horiguchi
- highmem documentation fixups from Fabio De Francesco
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYvMFaQAKCRDdBJ7gKXxA
jrM7AQCsaVsrRJgVMNqjDvLAsWFEm48s6/smQT4UZ9n/rPQUsAEA0iRpOfbjcxwK
npAml1mp5uP2AkimTVLB6Bokt6N+wAg=
=9Wta
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-08-09' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull remaining MM updates from Andrew Morton:
"Three patch series - two that perform cleanups and one feature:
- hugetlb_vmemmap cleanups from Muchun Song
- hardware poisoning support for 1GB hugepages, from Naoya Horiguchi
- highmem documentation fixups from Fabio De Francesco"
* tag 'mm-stable-2022-08-09' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (23 commits)
Documentation/mm: add details about kmap_local_page() and preemption
highmem: delete a sentence from kmap_local_page() kdocs
Documentation/mm: rrefer kmap_local_page() and avoid kmap()
Documentation/mm: avoid invalid use of addresses from kmap_local_page()
Documentation/mm: don't kmap*() pages which can't come from HIGHMEM
highmem: specify that kmap_local_page() is callable from interrupts
highmem: remove unneeded spaces in kmap_local_page() kdocs
mm, hwpoison: enable memory error handling on 1GB hugepage
mm, hwpoison: skip raw hwpoison page in freeing 1GB hugepage
mm, hwpoison: make __page_handle_poison returns int
mm, hwpoison: set PG_hwpoison for busy hugetlb pages
mm, hwpoison: make unpoison aware of raw error info in hwpoisoned hugepage
mm, hwpoison, hugetlb: support saving mechanism of raw error pages
mm/hugetlb: make pud_huge() and follow_huge_pud() aware of non-present pud entry
mm/hugetlb: check gigantic_page_runtime_supported() in return_unused_surplus_pages()
mm: hugetlb_vmemmap: use PTRS_PER_PTE instead of PMD_SIZE / PAGE_SIZE
mm: hugetlb_vmemmap: move code comments to vmemmap_dedup.rst
mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readability
mm: hugetlb_vmemmap: replace early_param() with core_param()
mm: hugetlb_vmemmap: move vmemmap code related to HugeTLB to hugetlb_vmemmap.c
...
- Introduce a 'struct cxl_region' object with support for provisioning
and assembling persistent memory regions.
- Introduce alloc_free_mem_region() to accompany the existing
request_free_mem_region() as a method to allocate physical memory
capacity out of an existing resource.
- Export insert_resource_expand_to_fit() for the CXL subsystem to
late-publish CXL platform windows in iomem_resource.
- Add a polled mode PCI DOE (Data Object Exchange) driver service and
use it in cxl_pci to retrieve the CDAT (Coherent Device Attribute
Table).
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCYvLYmAAKCRDfioYZHlFs
Z0pbAQC/3j+WriWpU7CdhrnZI1Wqn+x5IIklF0Lc4/f6LwGZtAEAsSbLpItzvwqx
M/rcLaeLpwYlgvS1JjdsuQ2VQ7KOtAs=
=ehNT
-----END PGP SIGNATURE-----
Merge tag 'cxl-for-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
Pull cxl updates from Dan Williams:
"Compute Express Link (CXL) updates for 6.0:
- Introduce a 'struct cxl_region' object with support for
provisioning and assembling persistent memory regions.
- Introduce alloc_free_mem_region() to accompany the existing
request_free_mem_region() as a method to allocate physical memory
capacity out of an existing resource.
- Export insert_resource_expand_to_fit() for the CXL subsystem to
late-publish CXL platform windows in iomem_resource.
- Add a polled mode PCI DOE (Data Object Exchange) driver service and
use it in cxl_pci to retrieve the CDAT (Coherent Device Attribute
Table)"
* tag 'cxl-for-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl: (74 commits)
cxl/hdm: Fix skip allocations vs multiple pmem allocations
cxl/region: Disallow region granularity != window granularity
cxl/region: Fix x1 interleave to greater than x1 interleave routing
cxl/region: Move HPA setup to cxl_region_attach()
cxl/region: Fix decoder interleave programming
Documentation: cxl: remove dangling kernel-doc reference
cxl/region: describe targets and nr_targets members of cxl_region_params
cxl/regions: add padding for cxl_rr_ep_add nested lists
cxl/region: Fix IS_ERR() vs NULL check
cxl/region: Fix region reference target accounting
cxl/region: Fix region commit uninitialized variable warning
cxl/region: Fix port setup uninitialized variable warnings
cxl/region: Stop initializing interleave granularity
cxl/hdm: Fix DPA reservation vs cxl_endpoint_decoder lifetime
cxl/acpi: Minimize granularity for x1 interleaves
cxl/region: Delete 'region' attribute from root decoders
cxl/acpi: Autoload driver for 'cxl_acpi' test devices
cxl/region: decrement ->nr_targets on error in cxl_region_attach()
cxl/region: prevent underflow in ways_to_cxl()
cxl/region: uninitialized variable in alloc_hpa()
...
* An optimization in memblock_add_range() to reduce array traversals
* Improvements to the memblock test suite
-----BEGIN PGP SIGNATURE-----
iQFMBAABCAA2FiEEeOVYVaWZL5900a/pOQOGJssO/ZEFAmLyCbgYHG1pa2UucmFw
b3BvcnRAZ21haWwuY29tAAoJEDkDhibLDv2RBxMH/1uIcfERl3Cbw25zluWSVn4O
mrnr+JPqUkyeVLQDEGzk/VWIM1WT11s7fFpoTpIwu3dq/fVoD3HZlZQkWS0ANFDL
V3xf6Xz17R5ZNoZmacczhNaBqkJSi+dcvoAevjyBHPpKEaCLC/rNrISpDdCD0Lz0
5fgv2F4sISBUVc6FVIFB+9zKC/neI9ewemCABSFTIa5mmQvZZwX1Tj5BrxIsESwN
DwX5u1Q65SoFBbAk6F5+aoClJ7wMGz8OlZoFw106HTvxq8sNne27KXW9mKugBzJr
yAZ/TWrjXigNAr8dcXQEZuxagFSB1PQ4aNgU8phiAwE7/5z3j1KLa65hDRzc9t4=
=JMiG
-----END PGP SIGNATURE-----
Merge tag 'memblock-v5.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock
Pull memblock updates from Mike Rapoport:
- An optimization in memblock_add_range() to reduce array traversals
- Improvements to the memblock test suite
* tag 'memblock-v5.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock:
memblock test: Modify the obsolete description in README
memblock tests: fix compilation errors
memblock tests: change build options to run-time options
memblock tests: remove completed TODO items
memblock tests: set memblock_debug to enable memblock_dbg() messages
memblock tests: add verbose output to memblock tests
memblock tests: Makefile: add arguments to control verbosity
memblock: avoid some repeat when add new range
* more new_sync_{read,write}() speedups - ITER_UBUF introduction
* ITER_PIPE cleanups
* unification of iov_iter_get_pages/iov_iter_get_pages_alloc and
switching them to advancing semantics
* making ITER_PIPE take high-order pages without splitting them
* handling copy_page_from_iter() for high-order pages properly
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCYvHI8QAKCRBZ7Krx/gZQ
62CQAPsGlbebqBeAT2pMulaGDxfLAsgz5Yf4BEaMLhPtRqFOQgD+KrZQId7Sd8O0
3IWucpTb2c4jvLlXhGMS+XWnusQH+AQ=
=pBux
-----END PGP SIGNATURE-----
Merge tag 'pull-work.iov_iter-rebased' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more iov_iter updates from Al Viro:
- more new_sync_{read,write}() speedups - ITER_UBUF introduction
- ITER_PIPE cleanups
- unification of iov_iter_get_pages/iov_iter_get_pages_alloc and
switching them to advancing semantics
- making ITER_PIPE take high-order pages without splitting them
- handling copy_page_from_iter() for high-order pages properly
* tag 'pull-work.iov_iter-rebased' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (32 commits)
fix copy_page_from_iter() for compound destinations
hugetlbfs: copy_page_to_iter() can deal with compound pages
copy_page_to_iter(): don't split high-order page in case of ITER_PIPE
expand those iov_iter_advance()...
pipe_get_pages(): switch to append_pipe()
get rid of non-advancing variants
ceph: switch the last caller of iov_iter_get_pages_alloc()
9p: convert to advancing variant of iov_iter_get_pages_alloc()
af_alg_make_sg(): switch to advancing variant of iov_iter_get_pages()
iter_to_pipe(): switch to advancing variant of iov_iter_get_pages()
block: convert to advancing variants of iov_iter_get_pages{,_alloc}()
iov_iter: advancing variants of iov_iter_get_pages{,_alloc}()
iov_iter: saner helper for page array allocation
fold __pipe_get_pages() into pipe_get_pages()
ITER_XARRAY: don't open-code DIV_ROUND_UP()
unify the rest of iov_iter_get_pages()/iov_iter_get_pages_alloc() guts
unify xarray_get_pages() and xarray_get_pages_alloc()
unify pipe_get_pages() and pipe_get_pages_alloc()
iov_iter_get_pages(): sanity-check arguments
iov_iter_get_pages_alloc(): lift freeing pages array on failure exits into wrapper
...
Equivalent of single-segment iovec. Initialized by iov_iter_ubuf(),
checked for by iter_is_ubuf(), otherwise behaves like ITER_IOVEC
ones.
We are going to expose the things like ->write_iter() et.al. to those
in subsequent commits.
New predicate (user_backed_iter()) that is true for ITER_IOVEC and
ITER_UBUF; places like direct-IO handling should use that for
checking that pages we modify after getting them from iov_iter_get_pages()
would need to be dirtied.
DO NOT assume that replacing iter_is_iovec() with user_backed_iter()
will solve all problems - there's code that uses iter_is_iovec() to
decide how to poke around in iov_iter guts and for that the predicate
replacement obviously won't suffice.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now error handling code is prepared, so remove the blocking code and
enable memory error handling on 1GB hugepage.
Link: https://lkml.kernel.org/r/20220714042420.1847125-9-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently if memory_failure() (modified to remove blocking code with
subsequent patch) is called on a page in some 1GB hugepage, memory error
handling fails and the raw error page gets into leaked state. The impact
is small in production systems (just leaked single 4kB page), but this
limits the testability because unpoison doesn't work for it. We can no
longer create 1GB hugepage on the 1GB physical address range with such
leaked pages, that's not useful when testing on small systems.
When a hwpoison page in a 1GB hugepage is handled, it's caught by the
PageHWPoison check in free_pages_prepare() because the 1GB hugepage is
broken down into raw error pages before coming to this point:
if (unlikely(PageHWPoison(page)) && !order) {
...
return false;
}
Then, the page is not sent to buddy and the page refcount is left 0.
Originally this check is supposed to work when the error page is freed
from page_handle_poison() (that is called from soft-offline), but now we
are opening another path to call it, so the callers of
__page_handle_poison() need to handle the case by considering the return
value 0 as success. Then page refcount for hwpoison is properly
incremented so unpoison works.
Link: https://lkml.kernel.org/r/20220714042420.1847125-8-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
__page_handle_poison() returns bool that shows whether
take_page_off_buddy() has passed or not now. But we will want to
distinguish another case of "dissolve has passed but taking off failed" by
its return value. So change the type of the return value. No functional
change.
Link: https://lkml.kernel.org/r/20220714042420.1847125-7-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If memory_failure() fails to grab page refcount on a hugetlb page because
it's busy, it returns without setting PG_hwpoison on it. This not only
loses a chance of error containment, but breaks the rule that
action_result() should be called only when memory_failure() do any of
handling work (even if that's just setting PG_hwpoison). This
inconsistency could harm code maintainability.
So set PG_hwpoison and call hugetlb_set_page_hwpoison() for such a case.
Link: https://lkml.kernel.org/r/20220714042420.1847125-6-naoya.horiguchi@linux.dev
Fixes: 405ce05123 ("mm/hwpoison: fix race between hugetlb free/demotion and memory_failure_hugetlb()")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Raw error info list needs to be removed when hwpoisoned hugetlb is
unpoisoned. And unpoison handler needs to know how many errors there are
in the target hugepage. So add them.
HPageVmemmapOptimized(hpage) and HPageRawHwpUnreliable(hpage)) sometimes
can't be unpoisoned, so skip them.
Link: https://lkml.kernel.org/r/20220714042420.1847125-5-naoya.horiguchi@linux.dev
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>