The only users of alloc_intr_gate() are hypervisors, which both check the
used_vectors bitmap whether they have allocated the gate already. Move that
check into alloc_intr_gate() and simplify the users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Reviewed-by: K. Y. Srinivasan <kys@microsoft.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064959.580830286@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
IDT related code lives scattered around in various places. Create a new
source file in arch/x86/kernel/idt.c to hold it.
Move the idt_tables and descriptors to it for a start. Follow up patches
will gradually move more code over.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064958.367081121@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Machine checks are not really high frequency events. The extra two NOP5s for
the disabled tracepoints are noise vs. the heavy lifting which needs to be
done in the MCE handler.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064957.144301907@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Thomas Gleixner:
"Another pile of small fixes and updates for x86:
- Plug a hole in the SMAP implementation which misses to clear AC on
NMI entry
- Fix the norandmaps/ADDR_NO_RANDOMIZE logic so the command line
parameter works correctly again
- Use the proper accessor in the startup64 code for next_early_pgt to
prevent accessing of invalid addresses and faulting in the early
boot code.
- Prevent CPU hotplug lock recursion in the MTRR code
- Unbreak CPU0 hotplugging
- Rename overly long CPUID bits which got introduced in this cycle
- Two commits which mark data 'const' and restrict the scope of data
and functions to file scope by making them 'static'"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Constify attribute_group structures
x86/boot/64/clang: Use fixup_pointer() to access 'next_early_pgt'
x86/elf: Remove the unnecessary ADDR_NO_RANDOMIZE checks
x86: Fix norandmaps/ADDR_NO_RANDOMIZE
x86/mtrr: Prevent CPU hotplug lock recursion
x86: Mark various structures and functions as 'static'
x86/cpufeature, kvm/svm: Rename (shorten) the new "virtualized VMSAVE/VMLOAD" CPUID flag
x86/smpboot: Unbreak CPU0 hotplug
x86/asm/64: Clear AC on NMI entries
Larry reported a CPU hotplug lock recursion in the MTRR code.
============================================
WARNING: possible recursive locking detected
systemd-udevd/153 is trying to acquire lock:
(cpu_hotplug_lock.rw_sem){.+.+.+}, at: [<c030fc26>] stop_machine+0x16/0x30
but task is already holding lock:
(cpu_hotplug_lock.rw_sem){.+.+.+}, at: [<c0234353>] mtrr_add_page+0x83/0x470
....
cpus_read_lock+0x48/0x90
stop_machine+0x16/0x30
mtrr_add_page+0x18b/0x470
mtrr_add+0x3e/0x70
mtrr_add_page() holds the hotplug rwsem already and calls stop_machine()
which acquires it again.
Call stop_machine_cpuslocked() instead.
Reported-and-tested-by: Larry Finger <Larry.Finger@lwfinger.net>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1708140920250.1865@nanos
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@suse.de>
According to Intel 64 and IA-32 Architectures SDM, Volume 3,
Chapter 14.2, "Software needs to exercise care to avoid delays
between the two RDMSRs (for example interrupts)".
So, disable interrupts during reading MSRs IA32_APERF and IA32_MPERF.
See also: commit 4ab60c3f32 (cpufreq: intel_pstate: Disable
interrupts during MSRs reading).
Signed-off-by: Doug Smythies <dsmythies@telus.net>
Reviewed-by: Len Brown <len.brown@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
After commit f8475cef90 "x86: use common aperfmperf_khz_on_cpu() to
calculate KHz using APERF/MPERF" the scaling_cur_freq policy attribute
in sysfs only behaves as expected on x86 with APERF/MPERF registers
available when it is read from at least twice in a row. The value
returned by the first read may not be meaningful, because the
computations in there use cached values from the previous iteration
of aperfmperf_snapshot_khz() which may be stale.
To prevent that from happening, modify arch_freq_get_on_cpu() to
call aperfmperf_snapshot_khz() twice, with a short delay between
these calls, if the previous invocation of aperfmperf_snapshot_khz()
was too far back in the past (specifically, more that 1s ago).
Also, as pointed out by Doug Smythies, aperf_delta is limited now
and the multiplication of it by cpu_khz won't overflow, so simplify
the s->khz computations too.
Fixes: f8475cef90 "x86: use common aperfmperf_khz_on_cpu() to calculate KHz using APERF/MPERF"
Reported-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This old piece of code is supposed to measure the performance of indirect
calls to determine if the processor is buggy or not, however the compiler
optimizer turns it into a direct call.
Use the OPTIMIZER_HIDE_VAR() macro to thwart the optimization, so that a real
indirect call is generated.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1707110737530.8746@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Rework suspend-to-idle to allow it to take wakeup events signaled
by the EC into account on ACPI-based platforms in order to properly
support power button wakeup from suspend-to-idle on recent Dell
laptops (Rafael Wysocki).
That includes the core suspend-to-idle code rework, support for
the Low Power S0 _DSM interface, and support for the ACPI INT0002
Virtual GPIO device from Hans de Goede (required for USB keyboard
wakeup from suspend-to-idle to work on some machines).
- Stop trying to export the current CPU frequency via /proc/cpuinfo
on x86 as that is inaccurate and confusing (Len Brown).
- Rework the way in which the current CPU frequency is exported by
the kernel (over the cpufreq sysfs interface) on x86 systems with
the APERF and MPERF registers by always using values read from
these registers, when available, to compute the current frequency
regardless of which cpufreq driver is in use (Len Brown).
- Rework the PCI/ACPI device wakeup infrastructure to remove the
questionable and artificial distinction between "devices that
can wake up the system from sleep states" and "devices that can
generate wakeup signals in the working state" from it, which
allows the code to be simplified quite a bit (Rafael Wysocki).
- Fix the wakeup IRQ framework by making it use SRCU instead of
RCU which doesn't allow sleeping in the read-side critical
sections, but which in turn is expected to be allowed by the
IRQ bus locking infrastructure (Thomas Gleixner).
- Modify some computations in the intel_pstate driver to avoid
rounding errors resulting from them (Srinivas Pandruvada).
- Reduce the overhead of the intel_pstate driver in the HWP
(hardware-managed P-states) mode and when the "performance"
P-state selection algorithm is in use by making it avoid
registering scheduler callbacks in those cases (Len Brown).
- Rework the energy_performance_preference sysfs knob in
intel_pstate by changing the values that correspond to
different symbolic hint names used by it (Len Brown).
- Make it possible to use more than one cpuidle driver at the same
time on ARM (Daniel Lezcano).
- Make it possible to prevent the cpuidle menu governor from using
the 0 state by disabling it via sysfs (Nicholas Piggin).
- Add support for FFH (Fixed Functional Hardware) MWAIT in ACPI C1
on AMD systems (Yazen Ghannam).
- Make the CPPC cpufreq driver take the lowest nonlinear performance
information into account (Prashanth Prakash).
- Add support for hi3660 to the cpufreq-dt driver, fix the
imx6q driver and clean up the sfi, exynos5440 and intel_pstate
drivers (Colin Ian King, Krzysztof Kozlowski, Octavian Purdila,
Rafael Wysocki, Tao Wang).
- Fix a few minor issues in the generic power domains (genpd)
framework and clean it up somewhat (Krzysztof Kozlowski,
Mikko Perttunen, Viresh Kumar).
- Fix a couple of minor issues in the operating performance points
(OPP) framework and clean it up somewhat (Viresh Kumar).
- Fix a CONFIG dependency in the hibernation core and clean it up
slightly (Balbir Singh, Arvind Yadav, BaoJun Luo).
- Add rk3228 support to the rockchip-io adaptive voltage scaling
(AVS) driver (David Wu).
- Fix an incorrect bit shift operation in the RAPL power capping
driver (Adam Lessnau).
- Add support for the EPP field in the HWP (hardware managed
P-states) control register, HWP.EPP, to the x86_energy_perf_policy
tool and update msr-index.h with HWP.EPP values (Len Brown).
- Fix some minor issues in the turbostat tool (Len Brown).
- Add support for AMD family 0x17 CPUs to the cpupower tool and fix
a minor issue in it (Sherry Hurwitz).
- Assorted cleanups, mostly related to the constification of some
data structures (Arvind Yadav, Joe Perches, Kees Cook, Krzysztof
Kozlowski).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJZWrICAAoJEILEb/54YlRxZYMQAIRhfbyDxKq+ByvSilUS8kTA
AItwJ8FFzykhiwN75Cqabg4rAGyWma7IRs1vzU7zeC1aEQIn+bTQtvk+utZNI+g2
ANFlDha20q/sXsP/CDMMTIAdW9tSOC0TOvFI9s2V2Y8dJZhoekO4ctx34FAfUS5d
Ao6rwSAWCMsCXcGaTAlqTA+TEJmBG7u6Iq6hq6ngltoFwOv3mWWBVn52VVaJ7SMp
9/IPbbLGMFAedrgEBRGCR+MME1xZZpvcZIJaTt1Mgn7Cx3cJaysIUAvqY/SsvFGq
5FcUTcF2qpK3+AGawiAxZIjvOBsGRtIwqKinNIzYWs/NjiIdzmgVAmTeuPtTqp+5
HFehUdtkFcnuDnLqSNzAaZUa7tw84cJkwnbVMnesx0MkG6rZ1SeL22E2Sabpcdsh
3Yo1ThzJSxi59DhiiE92EQnNCEjmCldRy+8q5Ag035muxl6EJYvuNBMnZv/BMCUn
ltSNOrmps1DlN+Col8ORIeNzQ1YjYzWMqKAYzSbyccm4ug/iSHx0/DuESmQ4GTlF
YCwkmqyWiHrBwpl51jc+4a7SGlMmKRqU+MJes0CjagaaqoUAb8qeBOpzEJ0yNwjZ
wtI41l6blE6kbMD3yqGdCfiB2S7GlPVoxa15eX1wRyLH3fLjwwrzJirEaiBS86tI
1PzHZEOmBlh3DYC6DBKA
=Wsph
-----END PGP SIGNATURE-----
Merge tag 'pm-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"The big ticket items here are the rework of suspend-to-idle in order
to add proper support for power button wakeup from it on recent Dell
laptops and the rework of interfaces exporting the current CPU
frequency on x86.
In addition to that, support for a few new pieces of hardware is
added, the PCI/ACPI device wakeup infrastructure is simplified
significantly and the wakeup IRQ framework is fixed to unbreak the IRQ
bus locking infrastructure.
Also, there are some functional improvements for intel_pstate, tools
updates and small fixes and cleanups all over.
Specifics:
- Rework suspend-to-idle to allow it to take wakeup events signaled
by the EC into account on ACPI-based platforms in order to properly
support power button wakeup from suspend-to-idle on recent Dell
laptops (Rafael Wysocki).
That includes the core suspend-to-idle code rework, support for the
Low Power S0 _DSM interface, and support for the ACPI INT0002
Virtual GPIO device from Hans de Goede (required for USB keyboard
wakeup from suspend-to-idle to work on some machines).
- Stop trying to export the current CPU frequency via /proc/cpuinfo
on x86 as that is inaccurate and confusing (Len Brown).
- Rework the way in which the current CPU frequency is exported by
the kernel (over the cpufreq sysfs interface) on x86 systems with
the APERF and MPERF registers by always using values read from
these registers, when available, to compute the current frequency
regardless of which cpufreq driver is in use (Len Brown).
- Rework the PCI/ACPI device wakeup infrastructure to remove the
questionable and artificial distinction between "devices that can
wake up the system from sleep states" and "devices that can
generate wakeup signals in the working state" from it, which allows
the code to be simplified quite a bit (Rafael Wysocki).
- Fix the wakeup IRQ framework by making it use SRCU instead of RCU
which doesn't allow sleeping in the read-side critical sections,
but which in turn is expected to be allowed by the IRQ bus locking
infrastructure (Thomas Gleixner).
- Modify some computations in the intel_pstate driver to avoid
rounding errors resulting from them (Srinivas Pandruvada).
- Reduce the overhead of the intel_pstate driver in the HWP
(hardware-managed P-states) mode and when the "performance" P-state
selection algorithm is in use by making it avoid registering
scheduler callbacks in those cases (Len Brown).
- Rework the energy_performance_preference sysfs knob in intel_pstate
by changing the values that correspond to different symbolic hint
names used by it (Len Brown).
- Make it possible to use more than one cpuidle driver at the same
time on ARM (Daniel Lezcano).
- Make it possible to prevent the cpuidle menu governor from using
the 0 state by disabling it via sysfs (Nicholas Piggin).
- Add support for FFH (Fixed Functional Hardware) MWAIT in ACPI C1 on
AMD systems (Yazen Ghannam).
- Make the CPPC cpufreq driver take the lowest nonlinear performance
information into account (Prashanth Prakash).
- Add support for hi3660 to the cpufreq-dt driver, fix the imx6q
driver and clean up the sfi, exynos5440 and intel_pstate drivers
(Colin Ian King, Krzysztof Kozlowski, Octavian Purdila, Rafael
Wysocki, Tao Wang).
- Fix a few minor issues in the generic power domains (genpd)
framework and clean it up somewhat (Krzysztof Kozlowski, Mikko
Perttunen, Viresh Kumar).
- Fix a couple of minor issues in the operating performance points
(OPP) framework and clean it up somewhat (Viresh Kumar).
- Fix a CONFIG dependency in the hibernation core and clean it up
slightly (Balbir Singh, Arvind Yadav, BaoJun Luo).
- Add rk3228 support to the rockchip-io adaptive voltage scaling
(AVS) driver (David Wu).
- Fix an incorrect bit shift operation in the RAPL power capping
driver (Adam Lessnau).
- Add support for the EPP field in the HWP (hardware managed
P-states) control register, HWP.EPP, to the x86_energy_perf_policy
tool and update msr-index.h with HWP.EPP values (Len Brown).
- Fix some minor issues in the turbostat tool (Len Brown).
- Add support for AMD family 0x17 CPUs to the cpupower tool and fix a
minor issue in it (Sherry Hurwitz).
- Assorted cleanups, mostly related to the constification of some
data structures (Arvind Yadav, Joe Perches, Kees Cook, Krzysztof
Kozlowski)"
* tag 'pm-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (69 commits)
cpufreq: Update scaling_cur_freq documentation
cpufreq: intel_pstate: Clean up after performance governor changes
PM: hibernate: constify attribute_group structures.
cpuidle: menu: allow state 0 to be disabled
intel_idle: Use more common logging style
PM / Domains: Fix missing default_power_down_ok comment
PM / Domains: Fix unsafe iteration over modified list of domains
PM / Domains: Fix unsafe iteration over modified list of domain providers
PM / Domains: Fix unsafe iteration over modified list of device links
PM / Domains: Handle safely genpd_syscore_switch() call on non-genpd device
PM / Domains: Call driver's noirq callbacks
PM / core: Drop run_wake flag from struct dev_pm_info
PCI / PM: Simplify device wakeup settings code
PCI / PM: Drop pme_interrupt flag from struct pci_dev
ACPI / PM: Consolidate device wakeup settings code
ACPI / PM: Drop run_wake from struct acpi_device_wakeup_flags
PM / QoS: constify *_attribute_group.
PM / AVS: rockchip-io: add io selectors and supplies for rk3228
powercap/RAPL: prevent overridding bits outside of the mask
PM / sysfs: Constify attribute groups
...
Pull RAS updates from Thomas Gleixner:
"The RAS updates for the 4.13 merge window:
- Cleanup of the MCE injection facility (Borsilav Petkov)
- Rework of the AMD/SMCA handling (Yazen Ghannam)
- Enhancements for ACPI/APEI to handle new notitication types (Shiju
Jose)
- atomic_t to refcount_t conversion (Elena Reshetova)
- A few fixes and enhancements all over the place"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
RAS/CEC: Check the correct variable in the debugfs error handling
x86/mce: Always save severity in machine_check_poll()
x86/MCE, xen/mcelog: Make /dev/mcelog registration messages more precise
x86/mce: Update bootlog description to reflect behavior on AMD
x86/mce: Don't disable MCA banks when offlining a CPU on AMD
x86/mce/mce-inject: Preset the MCE injection struct
x86/mce: Clean up include files
x86/mce: Get rid of register_mce_write_callback()
x86/mce: Merge mce_amd_inj into mce-inject
x86/mce/AMD: Use saved threshold block info in interrupt handler
x86/mce/AMD: Use msr_stat when clearing MCA_STATUS
x86/mce/AMD: Carve out SMCA bank configuration
x86/mce/AMD: Redo error logging from APIC LVT interrupt handlers
x86/mce: Convert threshold_bank.cpus from atomic_t to refcount_t
RAS: Make local function parse_ras_param() static
ACPI/APEI: Handle GSIV and GPIO notification types
Pull SMP hotplug updates from Thomas Gleixner:
"This update is primarily a cleanup of the CPU hotplug locking code.
The hotplug locking mechanism is an open coded RWSEM, which allows
recursive locking. The main problem with that is the recursive nature
as it evades the full lockdep coverage and hides potential deadlocks.
The rework replaces the open coded RWSEM with a percpu RWSEM and
establishes full lockdep coverage that way.
The bulk of the changes fix up recursive locking issues and address
the now fully reported potential deadlocks all over the place. Some of
these deadlocks have been observed in the RT tree, but on mainline the
probability was low enough to hide them away."
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
cpu/hotplug: Constify attribute_group structures
powerpc: Only obtain cpu_hotplug_lock if called by rtasd
ARM/hw_breakpoint: Fix possible recursive locking for arch_hw_breakpoint_init
cpu/hotplug: Remove unused check_for_tasks() function
perf/core: Don't release cred_guard_mutex if not taken
cpuhotplug: Link lock stacks for hotplug callbacks
acpi/processor: Prevent cpu hotplug deadlock
sched: Provide is_percpu_thread() helper
cpu/hotplug: Convert hotplug locking to percpu rwsem
s390: Prevent hotplug rwsem recursion
arm: Prevent hotplug rwsem recursion
arm64: Prevent cpu hotplug rwsem recursion
kprobes: Cure hotplug lock ordering issues
jump_label: Reorder hotplug lock and jump_label_lock
perf/tracing/cpuhotplug: Fix locking order
ACPI/processor: Use cpu_hotplug_disable() instead of get_online_cpus()
PCI: Replace the racy recursion prevention
PCI: Use cpu_hotplug_disable() instead of get_online_cpus()
perf/x86/intel: Drop get_online_cpus() in intel_snb_check_microcode()
x86/perf: Drop EXPORT of perf_check_microcode
...
Pull x86 microcode updates from Ingo Molnar:
"The main changes are a fix early microcode application for
resume-from-RAM, plus a 32-bit initrd placement fix - by Borislav
Petkov"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Make a couple of symbols static
x86/microcode/intel: Save pointer to ucode patch for early AP loading
x86/microcode: Look for the initrd at the correct address on 32-bit
Pull x86 hyperv updates from Ingo Molnar:
"Avoid boot time TSC calibration on Hyper-V hosts, to improve
calibration robustness. (Vitaly Kuznetsov)"
* 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Read TSC frequency from a synthetic MSR
x86/hyperv: Check frequency MSRs presence according to the specification
The goal of this change is to give users a uniform and meaningful
result when they read /sys/...cpufreq/scaling_cur_freq
on modern x86 hardware, as compared to what they get today.
Modern x86 processors include the hardware needed
to accurately calculate frequency over an interval --
APERF, MPERF, and the TSC.
Here we provide an x86 routine to make this calculation
on supported hardware, and use it in preference to any
driver driver-specific cpufreq_driver.get() routine.
MHz is computed like so:
MHz = base_MHz * delta_APERF / delta_MPERF
MHz is the average frequency of the busy processor
over a measurement interval. The interval is
defined to be the time between successive invocations
of aperfmperf_khz_on_cpu(), which are expected to to
happen on-demand when users read sysfs attribute
cpufreq/scaling_cur_freq.
As with previous methods of calculating MHz,
idle time is excluded.
base_MHz above is from TSC calibration global "cpu_khz".
This x86 native method to calculate MHz returns a meaningful result
no matter if P-states are controlled by hardware or firmware
and/or if the Linux cpufreq sub-system is or is-not installed.
When this routine is invoked more frequently, the measurement
interval becomes shorter. However, the code limits re-computation
to 10ms intervals so that average frequency remains meaningful.
Discerning users are encouraged to take advantage of
the turbostat(8) utility, which can gracefully handle
concurrent measurement intervals of arbitrary length.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The MCE severity gives a hint as to how to handle the error. The
notifier blocks can then use the severity to decide on an action.
It's not necessary for machine_check_poll() to filter errors for
the notifier chain, since each block will check its own set of
conditions before handling an error.
Also, there isn't any urgency for machine_check_poll() to make decisions
based on severity like in do_machine_check().
If we can assume that a severity is set then we can use it in more
notifier blocks. For example, the CEC block could check for a "KEEP"
severity rather than checking bits in the status. This isn't possible
now since the severity is not set except for "DEFFRRED/UCNA" errors with
a valid address.
Save the severity since we have it, and let the notifier blocks decide
if they want to do anything.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1498074402-98633-1-git-send-email-Yazen.Ghannam@amd.com
The helper function __load_ucode_amd() and pointer intel_ucode_patch do
not need to be in global scope, so make them static.
Fixes those sparse warnings:
"symbol '__load_ucode_amd' was not declared. Should it be static?"
"symbol 'intel_ucode_patch' was not declared. Should it be static?"
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170622095736.11937-1-colin.king@canonical.com
cpufreq_quick_get() allows cpufreq drivers to over-ride cpu_khz
that is otherwise reported in x86 /proc/cpuinfo "cpu MHz".
There are four problems with this scheme,
any of them is sufficient justification to delete it.
1. Depending on which cpufreq driver is loaded, the behavior
of this field is different.
2. Distros complain that they have to explain to users
why and how this field changes. Distros have requested a constant.
3. The two major providers of this information, acpi_cpufreq
and intel_pstate, both "get it wrong" in different ways.
acpi_cpufreq lies to the user by telling them that
they are running at whatever frequency was last
requested by software.
intel_pstate lies to the user by telling them that
they are running at the average frequency computed
over an undefined measurement. But an average computed
over an undefined interval, is itself, undefined...
4. On modern processors, user space utilities, such as
turbostat(1), are more accurate and more precise, while
supporing concurrent measurement over arbitrary intervals.
Users who have been consulting /proc/cpuinfo to
track changing CPU frequency will be dissapointed that
it no longer wiggles -- perhaps being unaware of the
limitations of the information they have been consuming.
Yes, they can change their scripts to look in sysfs
cpufreq/scaling_cur_frequency. Here they will find the same
data of dubious quality here removed from /proc/cpuinfo.
The value in sysfs will be addressed in a subsequent patch
to address issues 1-3, above.
Issue 4 will remain -- users that really care about
accurate frequency information should not be using either
proc or sysfs kernel interfaces.
They should be using using turbostat(8), or a similar
purpose-built analysis tool.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It was found that SMI_TRESHOLD of 50000 is not enough for Hyper-V
guests in nested environment and falling back to counting jiffies
is not an option for Gen2 guests as they don't have PIT. As Hyper-V
provides TSC frequency in a synthetic MSR we can just use this information
instead of doing a error prone calibration.
Reported-and-tested-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Jork Loeser <jloeser@microsoft.com>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Link: http://lkml.kernel.org/r/20170622100730.18112-3-vkuznets@redhat.com
Hyper-V TLFS specifies two bits which should be checked before accessing
frequency MSRs:
- AccessFrequencyMsrs (BIT(11) in EAX) which indicates if we have access to
frequency MSRs.
- FrequencyMsrsAvailable (BIT(8) in EDX) which indicates is these MSRs are
present.
Rename and specify these bits accordingly.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Ladi Prosek <lprosek@redhat.com>
Cc: Jork Loeser <jloeser@microsoft.com>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Link: http://lkml.kernel.org/r/20170622100730.18112-2-vkuznets@redhat.com
When running under Xen as dom0, /dev/mcelog is being provided by Xen
instead of the normal mcelog character device of the MCE core. Convert
an error message being issued by the MCE core in this case to an
informative message that Xen has registered the device.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel@lists.xenproject.org
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170614084059.19294-1-jgross@suse.com
Normally, when the initrd is gone, we can't search it for microcode
blobs to apply anymore. For that we need to stash away the patch in our
own storage.
And save_microcode_in_initrd_intel() looks like the proper place to
do that from. So in order for early loading to work, invalidate the
intel_ucode_patch pointer to the patch *before* scanning the initrd one
last time.
If the scanning code finds a microcode patch, it will assign that
pointer again, this time with our own storage's address.
This way, early microcode application during resume-from-RAM works too,
even after the initrd is long gone.
Tested-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170614140626.4462-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Early during boot, the BSP finds the ramdisk's position from boot_params
but by the time the APs get to boot, the BSP has continued in the mean
time and has potentially managed to relocate that ramdisk.
And in that case, the APs need to find the ramdisk at its new position,
in *physical* memory as they're running before paging has been enabled.
Thus, get the updated physical location of the ramdisk which is in the
relocated_ramdisk variable.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170614140626.4462-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The bootlog option is only disabled by default on AMD Fam10h and older
systems.
Update bootlog description to say this. Change the family value to hex
to avoid confusion.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170613162835.30750-9-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
AMD systems have non-core, shared MCA banks within a die. These banks
are controlled by a master CPU per die. If this CPU is offlined then all
the shared banks are disabled in addition to the CPU's core banks.
Also, Fam17h systems may have SMT enabled. The MCA_CTL register is shared
between SMT thread siblings. If a CPU is offlined then all its sibling's
MCA banks are also disabled.
Extend the existing vendor check to AMD too.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
[ Fix up comment. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170613162835.30750-8-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make the mcelog call a notifier which lands in the injector module and
does the injection. This allows for mce-inject to be a normal kernel
module now.
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20170613162835.30750-5-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reuse mce_amd_inj's debugfs interface so that mce-inject can
benefit from it too. The old functionality is still preserved under
CONFIG_X86_MCELOG_LEGACY.
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20170613162835.30750-4-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the amd_threshold_interrupt() handler, we loop through every possible
block in each bank and rediscover the block's address and if it's valid,
e.g. valid, counter present and not locked.
However, we already have the address saved in the threshold blocks list
for each CPU and bank. The list only contains blocks that have passed
all the valid checks.
Besides the redundancy, there's also a smp_call_function* in
get_block_address() which causes a warning when servicing the interrupt:
WARNING: CPU: 0 PID: 0 at kernel/smp.c:281 smp_call_function_single+0xdd/0xf0
...
Call Trace:
<IRQ>
rdmsr_safe_on_cpu()
get_block_address.isra.2()
amd_threshold_interrupt()
smp_threshold_interrupt()
threshold_interrupt()
because we do get called in an interrupt handler *with* interrupts
disabled, which can result in a deadlock.
Drop the redundant valid checks and move the overflow check, logging and
block reset into a separate function.
Check the first block then iterate over the rest. This procedure is
needed since the first block is used as the head of the list.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170613162835.30750-3-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The value of MCA_STATUS is used as the MSR when clearing MCA_STATUS.
This may cause the following warning:
unchecked MSR access error: WRMSR to 0x11b (tried to write 0x0000000000000000)
Call Trace:
<IRQ>
smp_threshold_interrupt()
threshold_interrupt()
Use msr_stat instead which has the MSR address.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Fixes: 37d43acfd7 ("x86/mce/AMD: Redo error logging from APIC LVT interrupt handlers")
Link: http://lkml.kernel.org/r/20170613162835.30750-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
During early boot, load_ucode_intel_ap() uses __load_ucode_intel()
to obtain a pointer to the relevant microcode patch (embedded in the
initrd), and stores this value in 'intel_ucode_patch' to speed up the
microcode patch application for subsequent CPUs.
On resuming from suspend-to-RAM, however, load_ucode_ap() calls
load_ucode_intel_ap() for each non-boot-CPU. By then the initramfs is
long gone so the pointer stored in 'intel_ucode_patch' no longer points to
a valid microcode patch.
Clear that pointer so that we effectively fall back to the CPU hotplug
notifier callbacks to update the microcode.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
[ Edit and massage commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.10..
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170607095819.9754-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A SoC variant of Geode GX1, notably NSC branded SC1100, seems to
report an inverted Device ID in its DIR0 configuration register,
specifically 0xb instead of the expected 0x4.
Catch this presumably quirky version so it's properly recognized
as GX1 and has its cache switched to write-back mode, which provides
a significant performance boost in most workloads.
SC1100's datasheet "Geode™ SC1100 Information Appliance On a Chip",
states in section 1.1.7.1 "Device ID" that device identification
values are specified in SC1100's device errata. These, however,
seem to not have been publicly released.
Wading through a number of boot logs and /proc/cpuinfo dumps found on
pastebin and blogs, this patch should mostly be relevant for a number
of now admittedly aging Soekris NET4801 and PC Engines WRAP devices,
the latter being the platform this issue was discovered on.
Performance impact was verified using "openssl speed", with
write-back caching scaling throughput between -3% and +41%.
Signed-off-by: Christian Sünkenberg <christian.suenkenberg@student.kit.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1496596719.26725.14.camel@student.kit.edu
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With CONFIG_DEBUG_PREEMPT enabled, I get:
BUG: using smp_processor_id() in preemptible [00000000] code: swapper/0/1
caller is debug_smp_processor_id
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.12.0-rc2+ #2
Call Trace:
dump_stack
check_preemption_disabled
debug_smp_processor_id
save_microcode_in_initrd_amd
? microcode_init
save_microcode_in_initrd
...
because, well, it says it above, we're using smp_processor_id() in
preemptible code.
But passing the CPU number is not really needed. It is only used to
determine whether we're on the BSP, and, if so, to save the microcode
patch for early loading.
[ We don't absolutely need to do it on the BSP but we do that
customarily there. ]
Instead, convert that function parameter to a boolean which denotes
whether the patch should be saved or not, thereby avoiding the use of
smp_processor_id() in preemptible code.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170528200414.31305-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
mtrr_save_state() is invoked from native_cpu_up() which is in the context
of a CPU hotplug operation and therefor calling get_online_cpus() is
pointless.
While this works in the current get_online_cpus() implementation it
prevents from converting the hotplug locking to percpu rwsems.
Remove it.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170524081547.651378834@linutronix.de
Scalable MCA systems have a new MCA_CONFIG register that we use to
configure each bank. We currently use this when we set up thresholding.
However, this is logically separate.
Group all SMCA-related initialization into a single function.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1493147772-2721-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We have support for the new SMCA MCA_DE{STAT,ADDR} registers in Linux.
So we've used these registers in place of MCA_{STATUS,ADDR} on SMCA
systems.
However, the guidance for current SMCA implementations of is to continue
using MCA_{STATUS,ADDR} and to use MCA_DE{STAT,ADDR} only if a Deferred
error was not found in the former registers. If we logged a Deferred
error in MCA_STATUS then we should also clear MCA_DESTAT. This also
means we shouldn't clear MCA_CONFIG[LogDeferredInMcaStat].
Rework __log_error() to only log an error and add helpers for the
different error types being logged from the corresponding interrupt
handlers.
Boris: carve out common functionality into a _log_error_bank(). Cleanup
comments, check MCi_STATUS bits before reading MSRs. Streamline flow.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1493147772-2721-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The refcount_t type and corresponding API should be used instead
of atomic_t when the variable is used as a reference counter. This
allows to avoid accidental refcounter overflows that might lead to
use-after-free situations.
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1492695536-5947-1-git-send-email-elena.reshetova@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Export the function which checks whether an MCE is a memory error to
other users so that we can reuse the logic. Drop the boot_cpu_data use,
while at it, as mce.cpuvendor already has the CPU vendor in there.
Integrate a piece from a patch from Vishal Verma
<vishal.l.verma@intel.com> to export it for modules (nfit).
The main reason we're exporting it is that the nfit handler
nfit_handle_mce() needs to detect a memory error properly before doing
its recovery actions.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170519093915.15413-2-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 fixes from Ingo Molnar:
"Misc fixes:
- two boot crash fixes
- unwinder fixes
- kexec related kernel direct mappings enhancements/fixes
- more Clang support quirks
- minor cleanups
- Documentation fixes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel_rdt: Fix a typo in Documentation
x86/build: Don't add -maccumulate-outgoing-args w/o compiler support
x86/boot/32: Fix UP boot on Quark and possibly other platforms
x86/mm/32: Set the '__vmalloc_start_set' flag in initmem_init()
x86/kexec/64: Use gbpages for identity mappings if available
x86/mm: Add support for gbpages to kernel_ident_mapping_init()
x86/boot: Declare error() as noreturn
x86/mm/kaslr: Use the _ASM_MUL macro for multiplication to work around Clang incompatibility
x86/mm: Fix boot crash caused by incorrect loop count calculation in sync_global_pgds()
x86/asm: Don't use RBP as a temporary register in csum_partial_copy_generic()
x86/microcode/AMD: Remove redundant NULL check on mc
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABAgAGBQJZFWTzAAoJELDendYovxMv24cIAJ3U2OZ64d7WTKD37AT2O6nF
6R3j+zJ6apoKX4zHvhWUOHZ6jpTASTnaisiIskVc52JcgAK0f8ZYTg5nhyWPceAD
Icf+JuXrI6uplD97qsjt7X9FbxUsRZninfsznoBkK6P8Cw8ZWlWIWIl6e3CrVwBD
geyKcbsKkVG8+bMjWvmQd94CFq5r8Ivup0sCECumx0lqw3RhxdhQvUix9eBULEoG
h/XAuPbMupdjU6phgqG4rvUjWd/R+9mIIDG1oY9Kpx4Kpn/7bHtoYZ//Qzs8bmuP
5ORujOedshdyAZqLGxQuQzo+/4E9gX3qVbaS6fPf1Ab+ra0k/iWtetUITZ0v2AQ=
=gWpG
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.12b-rc0c-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
"This contains two fixes for booting under Xen introduced during this
merge window and two fixes for older problems, where one is just much
more probable due to another merge window change"
* tag 'for-linus-4.12b-rc0c-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: adjust early dom0 p2m handling to xen hypervisor behavior
x86/amd: don't set X86_BUG_SYSRET_SS_ATTRS when running under Xen
xen/x86: Do not call xen_init_time_ops() until shared_info is initialized
x86/xen: fix xsave capability setting
When running as Xen pv guest X86_BUG_SYSRET_SS_ATTRS must not be set
on AMD cpus.
This bug/feature bit is kind of special as it will be used very early
when switching threads. Setting the bit and clearing it a little bit
later leaves a critical window where things can go wrong. This time
window has enlarged a little bit by using setup_clear_cpu_cap() instead
of the hypervisor's set_cpu_features callback. It seems this larger
window now makes it rather easy to hit the problem.
The proper solution is to never set the bit in case of Xen.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
set_memory_* functions have moved to set_memory.h. Switch to this
explicitly.
Link: http://lkml.kernel.org/r/1488920133-27229-6-git-send-email-labbott@redhat.com
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here is the big set of new char/misc driver drivers and features for
4.12-rc1.
There's lots of new drivers added this time around, new firmware drivers
from Google, more auxdisplay drivers, extcon drivers, fpga drivers, and
a bunch of other driver updates. Nothing major, except if you happen to
have the hardware for these drivers, and then you will be happy :)
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWQvAgg8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yknsACgzkAeyz16Z97J3UTaeejbR7nKUCAAoKY4WEHY
8O9f9pr9gj8GMBwxeZQa
=OIfB
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the big set of new char/misc driver drivers and features for
4.12-rc1.
There's lots of new drivers added this time around, new firmware
drivers from Google, more auxdisplay drivers, extcon drivers, fpga
drivers, and a bunch of other driver updates. Nothing major, except if
you happen to have the hardware for these drivers, and then you will
be happy :)
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (136 commits)
firmware: google memconsole: Fix return value check in platform_memconsole_init()
firmware: Google VPD: Fix return value check in vpd_platform_init()
goldfish_pipe: fix build warning about using too much stack.
goldfish_pipe: An implementation of more parallel pipe
fpga fr br: update supported version numbers
fpga: region: release FPGA region reference in error path
fpga altera-hps2fpga: disable/unprepare clock on error in alt_fpga_bridge_probe()
mei: drop the TODO from samples
firmware: Google VPD sysfs driver
firmware: Google VPD: import lib_vpd source files
misc: lkdtm: Add volatile to intentional NULL pointer reference
eeprom: idt_89hpesx: Add OF device ID table
misc: ds1682: Add OF device ID table
misc: tsl2550: Add OF device ID table
w1: Remove unneeded use of assert() and remove w1_log.h
w1: Use kernel common min() implementation
uio_mf624: Align memory regions to page size and set correct offsets
uio_mf624: Refactor memory info initialization
uio: Allow handling of non page-aligned memory regions
hangcheck-timer: Fix typo in comment
...
There is no user of x86_hyper->set_cpu_features() any more. Remove it.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
There is no need to set the same capabilities for each cpu
individually. This can be done for all cpus in platform initialization.
Cc: Alok Kataria <akataria@vmware.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: virtualization@lists.linux-foundation.org
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Alok Kataria <akataria@vmware.com>
Signed-off-by: Juergen Gross <jgross@suse.com>