This flag indicates that requests in this context should not wait for
tee-supplicant daemon to be started if not present and just return
with an error code. It is needed for requests which should be
non-blocking in nature like ones arising from TEE based kernel drivers
or any in kernel api that uses TEE internal client interface.
Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Reviewed-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Adds a kernel internal TEE client interface to be used by other drivers.
Reviewed-by: Sumit Garg <sumit.garg@linaro.org>
Tested-by: Sumit Garg <sumit.garg@linaro.org>
Tested-by: Zeng Tao <prime.zeng@hisilicon.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
This change prevents userland from referencing TEE shared memory
outside the area initially allocated by its owner. Prior this change an
application could not reference or access memory it did not own but
it could reference memory not explicitly allocated by owner but still
allocated to the owner due to the memory allocation granule.
Reported-by: Alexandre Jutras <alexandre.jutras@nxp.com>
Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
The privileged dev id range is [TEE_NUM_DEVICES / 2, TEE_NUM_DEVICES).
The non-privileged dev id range is [0, TEE_NUM_DEVICES / 2).
So when finding a slot for them, need to use different max value.
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
subsystem as a whole and in OP-TEE in particular.
Global Platform TEE specification [1] allows client applications
to register part of own memory as a shared buffer between
application and TEE. This allows fast zero-copy communication between
TEE and REE. But current implementation of TEE in Linux does not support
this feature.
Also, current implementation of OP-TEE transport uses fixed size
pre-shared buffer for all communications with OP-TEE OS. This is okay
in the most use cases. But this prevents use of OP-TEE in virtualized
environments, because:
a) We can't share the same buffer between different virtual machines
b) Physically contiguous memory as seen by VM can be non-contiguous
in reality (and as seen by OP-TEE OS) due to second stage of
MMU translation.
c) Size of this pre-shared buffer is limited.
So, first part of this pull request adds generic register/unregister
interface to tee subsystem. The second part adds necessary features into
OP-TEE driver, so it can use not only static pre-shared buffer, but
whole RAM to communicate with OP-TEE OS.
This change is backwards compatible allowing older secure world or
user space to work with newer kernels and vice versa.
[1] https://www.globalplatform.org/specificationsdevice.asp
-----BEGIN PGP SIGNATURE-----
iQI3BAABCgAhBQJaM8X7GhxqZW5zLndpa2xhbmRlckBsaW5hcm8ub3JnAAoJELWw
uEGXj+zThYsQAMPsMwvV977gLCnFxSZuIh1qnK5sXabpe4ITVOaUaxyCIoKAcROX
exFdo1l+4UrOaEA9o06IROnHczCEz7IvGcPVYCB13tHwyfPsuicrdM0b/hm2Mehx
MGYDsm3ZjnUTcZxGMNHYvCunNi84Rt1yOC8Mdx4kPhCI8ZCDqb9pV/Bb5wNLnkXS
lXP/+EAkF0ECj88JUhgunkvL96QyK/PROCNUMWansB1RwglvyWy7IS/r03BW9Cpi
4Mtiywmj/KZO9To4LvWhPiX5xvdxe+VxXUD6BW9hVVOxmXGSTEwr9YYr0f7qWH5q
HeTLzkOsRQ+uHkaSLZOJ1HkIsP0sYQ7tR6OaipAEMJIN87ktGr45uuxaMnJCV1Z/
tiKkGKJq9VISa7LA0Fv3nLhfYo8/jHiV/dV77FTreHhWimtVl3aiIkon+P/VSA7W
Qstkq/v+djZXSmJ+dAcaRdukufWLUB4xhl27isnmaVjToFUHJH36wM9smtgXFygv
DL8+5UBgsWPOlpJkIsTD/dwiQK+CeG4/SASgfe5DV7GVh+Z+71E2V40UQ9JoUROa
Y33tPFWg07gG3cHAZYugKG2ucf4Yy3GXh5xZnjIq0Ye1U3/TnbK543V1y2N45vx0
xBWJFFh2blKD04QPynBFqKPKNc5d//OgeK3m4PBTYk2GoGIvnc5YxPTq
=3iwl
-----END PGP SIGNATURE-----
Merge tag 'tee-drv-dynamic-shm-for-v4.16' of https://git.linaro.org/people/jens.wiklander/linux-tee into next/drivers
Pull "tee dynamic shm for v4.16" from Jens Wiklander:
This pull request enables dynamic shared memory support in the TEE
subsystem as a whole and in OP-TEE in particular.
Global Platform TEE specification [1] allows client applications
to register part of own memory as a shared buffer between
application and TEE. This allows fast zero-copy communication between
TEE and REE. But current implementation of TEE in Linux does not support
this feature.
Also, current implementation of OP-TEE transport uses fixed size
pre-shared buffer for all communications with OP-TEE OS. This is okay
in the most use cases. But this prevents use of OP-TEE in virtualized
environments, because:
a) We can't share the same buffer between different virtual machines
b) Physically contiguous memory as seen by VM can be non-contiguous
in reality (and as seen by OP-TEE OS) due to second stage of
MMU translation.
c) Size of this pre-shared buffer is limited.
So, first part of this pull request adds generic register/unregister
interface to tee subsystem. The second part adds necessary features into
OP-TEE driver, so it can use not only static pre-shared buffer, but
whole RAM to communicate with OP-TEE OS.
This change is backwards compatible allowing older secure world or
user space to work with newer kernels and vice versa.
[1] https://www.globalplatform.org/specificationsdevice.asp
* tag 'tee-drv-dynamic-shm-for-v4.16' of https://git.linaro.org/people/jens.wiklander/linux-tee:
tee: shm: inline tee_shm_get_id()
tee: use reference counting for tee_context
tee: optee: enable dynamic SHM support
tee: optee: add optee-specific shared pool implementation
tee: optee: store OP-TEE capabilities in private data
tee: optee: add registered buffers handling into RPC calls
tee: optee: add registered shared parameters handling
tee: optee: add shared buffer registration functions
tee: optee: add page list manipulation functions
tee: optee: Update protocol definitions
tee: shm: add page accessor functions
tee: shm: add accessors for buffer size and page offset
tee: add register user memory
tee: flexible shared memory pool creation
We need to ensure that tee_context is present until last
shared buffer will be freed.
Signed-off-by: Volodymyr Babchuk <vlad.babchuk@gmail.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Added new ioctl to allow users register own buffers as a shared memory.
Signed-off-by: Volodymyr Babchuk <vlad.babchuk@gmail.com>
[jw: moved tee_shm_is_registered() declaration]
[jw: added space after __tee_shm_alloc() implementation]
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Adds TEE_IOCTL_PARAM_ATTR_META which can be used to indicate meta
parameters when communicating with user space. These meta parameters can
be used by supplicant support multiple parallel requests at a time.
Reviewed-by: Etienne Carriere <etienne.carriere@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Mirrors the TEE_DESC_PRIVILEGED bit of struct tee_desc:flags into struct
tee_ioctl_version_data:gen_caps as TEE_GEN_CAP_PRIVILEGED in
tee_ioctl_version()
Reviewed-by: Jerome Forissier <jerome.forissier@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Initial patch for generic TEE subsystem.
This subsystem provides:
* Registration/un-registration of TEE drivers.
* Shared memory between normal world and secure world.
* Ioctl interface for interaction with user space.
* Sysfs implementation_id of TEE driver
A TEE (Trusted Execution Environment) driver is a driver that interfaces
with a trusted OS running in some secure environment, for example,
TrustZone on ARM cpus, or a separate secure co-processor etc.
The TEE subsystem can serve a TEE driver for a Global Platform compliant
TEE, but it's not limited to only Global Platform TEEs.
This patch builds on other similar implementations trying to solve
the same problem:
* "optee_linuxdriver" by among others
Jean-michel DELORME<jean-michel.delorme@st.com> and
Emmanuel MICHEL <emmanuel.michel@st.com>
* "Generic TrustZone Driver" by Javier González <javier@javigon.com>
Acked-by: Andreas Dannenberg <dannenberg@ti.com>
Tested-by: Jerome Forissier <jerome.forissier@linaro.org> (HiKey)
Tested-by: Volodymyr Babchuk <vlad.babchuk@gmail.com> (RCAR H3)
Tested-by: Scott Branden <scott.branden@broadcom.com>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>