423584dd80
12731 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Huang Ying
|
14fef28414 |
mm, swap: make CONFIG_THP_SWAP depend on CONFIG_SWAP
CONFIG_THP_SWAP should depend on CONFIG_SWAP, because it's unreasonable
to optimize swapping for THP (Transparent Huge Page) without basic
swapping support.
In original code, when CONFIG_SWAP=n and CONFIG_THP_SWAP=y,
split_swap_cluster() will not be built because it is in swapfile.c, but
it will be called in huge_memory.c. This doesn't trigger a build error
in practice because the call site is enclosed by PageSwapCache(), which
is defined to be constant 0 when CONFIG_SWAP=n. But this is fragile and
should be fixed.
The comments are fixed too to reflect the latest progress.
Link: http://lkml.kernel.org/r/20180713021228.439-1-ying.huang@intel.com
Fixes:
|
||
Pavel Tatashin
|
2a3cb8baef |
mm/sparse: delete old sparse_init and enable new one
Rename new_sparse_init() to sparse_init() which enables it. Delete old sparse_init() and all the code that became obsolete with. [pasha.tatashin@oracle.com: remove unused sparse_mem_maps_populate_node()] Link: http://lkml.kernel.org/r/20180716174447.14529-6-pasha.tatashin@oracle.com Link: http://lkml.kernel.org/r/20180712203730.8703-6-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Tested-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com> Cc: Baoquan He <bhe@redhat.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pavel Tatashin
|
85c77f7913 |
mm/sparse: add new sparse_init_nid() and sparse_init()
sparse_init() requires to temporary allocate two large buffers: usemap_map and map_map. Baoquan He has identified that these buffers are so large that Linux is not bootable on small memory machines, such as a kdump boot. The buffers are especially large when CONFIG_X86_5LEVEL is set, as they are scaled to the maximum physical memory size. Baoquan provided a fix, which reduces these sizes of these buffers, but it is much better to get rid of them entirely. Add a new way to initialize sparse memory: sparse_init_nid(), which only operates within one memory node, and thus allocates memory either in large contiguous block or allocates section by section. This eliminates the need for use of temporary buffers. For simplified bisecting and review temporarly call sparse_init() new_sparse_init(), the new interface is going to be enabled as well as old code removed in the next patch. Link: http://lkml.kernel.org/r/20180712203730.8703-5-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Oscar Salvador <osalvador@suse.de> Tested-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com> Cc: Baoquan He <bhe@redhat.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pavel Tatashin
|
afda57bc13 |
mm/sparse: move buffer init/fini to the common place
Now that both variants of sparse memory use the same buffers to populate memory map, we can move sparse_buffer_init()/sparse_buffer_fini() to the common place. Link: http://lkml.kernel.org/r/20180712203730.8703-4-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Tested-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com> Cc: Baoquan He <bhe@redhat.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pavel Tatashin
|
e131c06b14 |
mm/sparse: use the new sparse buffer functions in non-vmemmap
non-vmemmap sparse also allocated large contiguous chunk of memory, and if fails falls back to smaller allocations. Use the same functions to allocate buffer as the vmemmap-sparse Link: http://lkml.kernel.org/r/20180712203730.8703-3-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Oscar Salvador <osalvador@suse.de> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com> Cc: Baoquan He <bhe@redhat.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pavel Tatashin
|
35fd1eb1e8 |
mm/sparse: abstract sparse buffer allocations
Patch series "sparse_init rewrite", v6. In sparse_init() we allocate two large buffers to temporary hold usemap and memmap for the whole machine. However, we can avoid doing that if we changed sparse_init() to operated on per-node bases instead of doing it on the whole machine beforehand. As shown by Baoquan http://lkml.kernel.org/r/20180628062857.29658-1-bhe@redhat.com The buffers are large enough to cause machine stop to boot on small memory systems. Another benefit of these changes is that they also obsolete CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER. This patch (of 5): When struct pages are allocated for sparse-vmemmap VA layout, we first try to allocate one large buffer, and than if that fails allocate struct pages for each section as we go. The code that allocates buffer is uses global variables and is spread across several call sites. Cleanup the code by introducing three functions to handle the global buffer: sparse_buffer_init() initialize the buffer sparse_buffer_fini() free the remaining part of the buffer sparse_buffer_alloc() alloc from the buffer, and if buffer is empty return NULL Define these functions in sparse.c instead of sparse-vmemmap.c because later we will use them for non-vmemmap sparse allocations as well. [akpm@linux-foundation.org: use PTR_ALIGN()] [akpm@linux-foundation.org: s/BUG_ON/WARN_ON/] Link: http://lkml.kernel.org/r/20180712203730.8703-2-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Oscar Salvador <osalvador@suse.de> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Baoquan He <bhe@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Cannon Matthews
|
330d6e489a |
mm/hugetlb.c: don't zero 1GiB bootmem pages
When using 1GiB pages during early boot, use the new memblock_virt_alloc_try_nid_raw() to allocate memory without zeroing it. Zeroing out hundreds or thousands of GiB in a single core memset() call is very slow, and can make early boot last upwards of 20-30 minutes on multi TiB machines. The memory does not need to be zero'd as the hugetlb pages are always zero'd on page fault. Tested: Booted with ~3800 1G pages, and it booted successfully in roughly the same amount of time as with 0, as opposed to the 25+ minutes it would take before. Link: http://lkml.kernel.org/r/20180711213313.92481-1-cannonmatthews@google.com Signed-off-by: Cannon Matthews <cannonmatthews@google.com> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Peter Feiner <pfeiner@google.com> Cc: David Matlack <dmatlack@google.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aaron Lu
|
d8a759b570 |
mm, page_alloc: double zone's batchsize
To improve page allocator's performance for order-0 pages, each CPU has a Per-CPU-Pageset(PCP) per zone. Whenever an order-0 page is needed, PCP will be checked first before asking pages from Buddy. When PCP is used up, a batch of pages will be fetched from Buddy to improve performance and the size of batch can affect performance. zone's batch size gets doubled last time by commit ba56e91c9401("mm: page_alloc: increase size of per-cpu-pages") over ten years ago. Since then, CPU has envolved a lot and CPU's cache sizes also increased. Dave Hansen is concerned the current batch size doesn't fit well with modern hardware and suggested me to do two things: first, use a page allocator intensive benchmark, e.g. will-it-scale/page_fault1 to find out how performance changes with different batch sizes on various machines and then choose a new default batch size; second, see how this new batch size work with other workloads. In the first test, we saw performance gains on high-core-count systems and little to no effect on older systems with more modest core counts. In this phase's test data, two candidates: 63 and 127 are chosen. In the second step, ebizzy, oltp, kbuild, pigz, netperf, vm-scalability and more will-it-scale sub-tests are tested to see how these two candidates work with these workloads and decides a new default according to their results. Most test results are flat. will-it-scale/page_fault2 process mode has 10%-18% performance increase on 4-sockets Skylake and Broadwell. vm-scalability/lru-file-mmap-read has 17%-47% performance increase for 4-sockets servers while for 2-sockets servers, it caused 3%-8% performance drop. Further analysis showed that, with a larger pcp->batch and thus larger pcp->high(the relationship of pcp->high=6 * pcp->batch is maintained in this patch), zone lock contention shifted to LRU add side lock contention and that caused performance drop. This performance drop might be mitigated by others' work on optimizing LRU lock. Another downside of increasing pcp->batch is, when PCP is used up and need to fetch a batch of pages from Buddy, since batch is increased, that time can be longer than before. My understanding is, this doesn't affect slowpath where direct reclaim and compaction dominates. For fastpath, throughput is a win(according to will-it-scale/page_fault1) but worst latency can be larger now. Overall, I think double the batch size from 31 to 63 is relatively safe and provide good performance boost for high-core-count systems. The two phase's test results are listed below(all tests are done with THP disabled). Phase one(will-it-scale/page_fault1) test results: Skylake-EX: increased batch size has a good effect on zone->lock contention, though LRU contention will rise at the same time and limited the final performance increase. batch score change zone_contention lru_contention total_contention 31 15345900 +0.00% 64% 8% 72% 53 17903847 +16.67% 32% 38% 70% 63 17992886 +17.25% 24% 45% 69% 73 18022825 +17.44% 10% 61% 71% 119 18023401 +17.45% 4% 66% 70% 127 18029012 +17.48% 3% 66% 69% 137 18036075 +17.53% 4% 66% 70% 165 18035964 +17.53% 2% 67% 69% 188 18101105 +17.95% 2% 67% 69% 223 18130951 +18.15% 2% 67% 69% 255 18118898 +18.07% 2% 67% 69% 267 18101559 +17.96% 2% 67% 69% 299 18160468 +18.34% 2% 68% 70% 320 18139845 +18.21% 2% 67% 69% 393 18160869 +18.34% 2% 68% 70% 424 18170999 +18.41% 2% 68% 70% 458 18144868 +18.24% 2% 68% 70% 467 18142366 +18.22% 2% 68% 70% 498 18154549 +18.30% 1% 68% 69% 511 18134525 +18.17% 1% 69% 70% Broadwell-EX: similar pattern as Skylake-EX. batch score change zone_contention lru_contention total_contention 31 16703983 +0.00% 67% 7% 74% 53 18195393 +8.93% 43% 28% 71% 63 18288885 +9.49% 38% 33% 71% 73 18344329 +9.82% 35% 37% 72% 119 18535529 +10.96% 24% 46% 70% 127 18513596 +10.83% 23% 48% 71% 137 18514327 +10.84% 23% 48% 71% 165 18511840 +10.82% 22% 49% 71% 188 18593478 +11.31% 17% 53% 70% 223 18601667 +11.36% 17% 52% 69% 255 18774825 +12.40% 12% 58% 70% 267 18754781 +12.28% 9% 60% 69% 299 18892265 +13.10% 7% 63% 70% 320 18873812 +12.99% 8% 62% 70% 393 18891174 +13.09% 6% 64% 70% 424 18975108 +13.60% 6% 64% 70% 458 18932364 +13.34% 8% 62% 70% 467 18960891 +13.51% 5% 65% 70% 498 18944526 +13.41% 5% 64% 69% 511 18960839 +13.51% 5% 64% 69% Skylake-EP: although increased batch reduced zone->lock contention, but the effect is not as good as EX: zone->lock contention is still as high as 20% with a very high batch value instead of 1% on Skylake-EX or 5% on Broadwell-EX. Also, total_contention actually decreased with a higher batch but that doesn't translate to performance increase. batch score change zone_contention lru_contention total_contention 31 9554867 +0.00% 66% 3% 69% 53 9855486 +3.15% 63% 3% 66% 63 9980145 +4.45% 62% 4% 66% 73 10092774 +5.63% 62% 5% 67% 119 10310061 +7.90% 45% 19% 64% 127 10342019 +8.24% 42% 19% 61% 137 10358182 +8.41% 42% 21% 63% 165 10397060 +8.81% 37% 24% 61% 188 10341808 +8.24% 34% 26% 60% 223 10349135 +8.31% 31% 27% 58% 255 10327189 +8.08% 28% 29% 57% 267 10344204 +8.26% 27% 29% 56% 299 10325043 +8.06% 25% 30% 55% 320 10310325 +7.91% 25% 31% 56% 393 10293274 +7.73% 21% 31% 52% 424 10311099 +7.91% 21% 32% 53% 458 10321375 +8.02% 21% 32% 53% 467 10303881 +7.84% 21% 32% 53% 498 10332462 +8.14% 20% 33% 53% 511 10325016 +8.06% 20% 32% 52% Broadwell-EP: zone->lock and lru lock had an agreement to make sure performance doesn't increase and they successfully managed to keep total contention at 70%. batch score change zone_contention lru_contention total_contention 31 10121178 +0.00% 19% 50% 69% 53 10142366 +0.21% 6% 63% 69% 63 10117984 -0.03% 11% 58% 69% 73 10123330 +0.02% 7% 63% 70% 119 10108791 -0.12% 2% 67% 69% 127 10166074 +0.44% 3% 66% 69% 137 10141574 +0.20% 3% 66% 69% 165 10154499 +0.33% 2% 68% 70% 188 10124921 +0.04% 2% 67% 69% 223 10137399 +0.16% 2% 67% 69% 255 10143289 +0.22% 0% 68% 68% 267 10123535 +0.02% 1% 68% 69% 299 10140952 +0.20% 0% 68% 68% 320 10163170 +0.41% 0% 68% 68% 393 10000633 -1.19% 0% 69% 69% 424 10087998 -0.33% 0% 69% 69% 458 10187116 +0.65% 0% 69% 69% 467 10146790 +0.25% 0% 69% 69% 498 10197958 +0.76% 0% 69% 69% 511 10152326 +0.31% 0% 69% 69% Haswell-EP: similar to Broadwell-EP. batch score change zone_contention lru_contention total_contention 31 10442205 +0.00% 14% 48% 62% 53 10442255 +0.00% 5% 57% 62% 63 10452059 +0.09% 6% 57% 63% 73 10482349 +0.38% 5% 59% 64% 119 10454644 +0.12% 3% 60% 63% 127 10431514 -0.10% 3% 59% 62% 137 10423785 -0.18% 3% 60% 63% 165 10481216 +0.37% 2% 61% 63% 188 10448755 +0.06% 2% 61% 63% 223 10467144 +0.24% 2% 61% 63% 255 10480215 +0.36% 2% 61% 63% 267 10484279 +0.40% 2% 61% 63% 299 10466450 +0.23% 2% 61% 63% 320 10452578 +0.10% 2% 61% 63% 393 10499678 +0.55% 1% 62% 63% 424 10481454 +0.38% 1% 62% 63% 458 10473562 +0.30% 1% 62% 63% 467 10484269 +0.40% 0% 62% 62% 498 10505599 +0.61% 0% 62% 62% 511 10483395 +0.39% 0% 62% 62% Westmere-EP: contention is pretty small so not interesting. Note too high a batch value could hurt performance. batch score change zone_contention lru_contention total_contention 31 4831523 +0.00% 2% 3% 5% 53 4834086 +0.05% 2% 4% 6% 63 4834262 +0.06% 2% 3% 5% 73 |
||
Michal Hocko
|
a195d3f5b7 |
mm/oom_kill.c: document oom_lock
Add comments describing oom_lock's scope. Requested-by: David Rientjes <rientjes@google.com> Link: http://lkml.kernel.org/r/20180711120121.25635-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Kravetz
|
40d18ebffb |
mm/hugetlb: remove gigantic page support for HIGHMEM
This reverts |
||
Michal Hocko
|
9bfe5ded05 |
mm, oom: remove sleep from under oom_lock
Tetsuo has pointed out that since
|
||
Marek Szyprowski
|
6518202970 |
mm/cma: remove unsupported gfp_mask parameter from cma_alloc()
cma_alloc() doesn't really support gfp flags other than __GFP_NOWARN, so
convert gfp_mask parameter to boolean no_warn parameter.
This will help to avoid giving false feeling that this function supports
standard gfp flags and callers can pass __GFP_ZERO to get zeroed buffer,
what has already been an issue: see commit
|
||
Rik van Riel
|
50c150f262 |
Revert "mm: always flush VMA ranges affected by zap_page_range"
There was a bug in Linux that could cause madvise (and mprotect?) system calls to return to userspace without the TLB having been flushed for all the pages involved. This could happen when multiple threads of a process made simultaneous madvise and/or mprotect calls. This was noticed in the summer of 2017, at which time two solutions were created: |
||
Baoquan He
|
c98aff6493 |
mm/sparse: optimize memmap allocation during sparse_init()
In sparse_init(), two temporary pointer arrays, usemap_map and map_map are allocated with the size of NR_MEM_SECTIONS. They are used to store each memory section's usemap and mem map if marked as present. With the help of these two arrays, continuous memory chunk is allocated for usemap and memmap for memory sections on one node. This avoids too many memory fragmentations. Like below diagram, '1' indicates the present memory section, '0' means absent one. The number 'n' could be much smaller than NR_MEM_SECTIONS on most of systems. |1|1|1|1|0|0|0|0|1|1|0|0|...|1|0||1|0|...|1||0|1|...|0| ------------------------------------------------------- 0 1 2 3 4 5 i i+1 n-1 n If we fail to populate the page tables to map one section's memmap, its ->section_mem_map will be cleared finally to indicate that it's not present. After use, these two arrays will be released at the end of sparse_init(). In 4-level paging mode, each array costs 4M which can be ignorable. While in 5-level paging, they costs 256M each, 512M altogether. Kdump kernel Usually only reserves very few memory, e.g 256M. So, even thouth they are temporarily allocated, still not acceptable. In fact, there's no need to allocate them with the size of NR_MEM_SECTIONS. Since the ->section_mem_map clearing has been deferred to the last, the number of present memory sections are kept the same during sparse_init() until we finally clear out the memory section's ->section_mem_map if its usemap or memmap is not correctly handled. Thus in the middle whenever for_each_present_section_nr() loop is taken, the i-th present memory section is always the same one. Here only allocate usemap_map and map_map with the size of 'nr_present_sections'. For the i-th present memory section, install its usemap and memmap to usemap_map[i] and mam_map[i] during allocation. Then in the last for_each_present_section_nr() loop which clears the failed memory section's ->section_mem_map, fetch usemap and memmap from usemap_map[] and map_map[] array and set them into mem_section[] accordingly. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20180628062857.29658-5-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oscar Salvador <osalvador@techadventures.net> Cc: Pankaj Gupta <pagupta@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Baoquan He
|
9258631b33 |
mm/sparse.c: add a new parameter 'data_unit_size' for alloc_usemap_and_memmap
It's used to pass the size of map data unit into alloc_usemap_and_memmap, and is preparation for next patch. Link: http://lkml.kernel.org/r/20180228032657.32385-4-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Pankaj Gupta <pagupta@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Baoquan He
|
07a34a8c36 |
mm/sparsemem.c: defer the ms->section_mem_map clearing
In sparse_init(), if CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER=y, system will allocate one continuous memory chunk for mem maps on one node and populate the relevant page tables to map memory section one by one. If fail to populate for a certain mem section, print warning and its ->section_mem_map will be cleared to cancel the marking of being present. Like this, the number of mem sections marked as present could become less during sparse_init() execution. Here just defer the ms->section_mem_map clearing if failed to populate its page tables until the last for_each_present_section_nr() loop. This is in preparation for later optimizing the mem map allocation. [akpm@linux-foundation.org: remove now-unused local `ms', per Oscar] Link: http://lkml.kernel.org/r/20180228032657.32385-3-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Pankaj Gupta <pagupta@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Baoquan He
|
f2fc10e0b3 |
mm/sparse.c: add a static variable nr_present_sections
Patch series "mm/sparse: Optimize memmap allocation during sparse_init()", v6. In sparse_init(), two temporary pointer arrays, usemap_map and map_map are allocated with the size of NR_MEM_SECTIONS. They are used to store each memory section's usemap and mem map if marked as present. In 5-level paging mode, this will cost 512M memory though they will be released at the end of sparse_init(). System with few memory, like kdump kernel which usually only has about 256M, will fail to boot because of allocation failure if CONFIG_X86_5LEVEL=y. In this patchset, optimize the memmap allocation code to only use usemap_map and map_map with the size of nr_present_sections. This makes kdump kernel boot up with normal crashkernel='' setting when CONFIG_X86_5LEVEL=y. This patch (of 5): nr_present_sections is used to record how many memory sections are marked as present during system boot up, and will be used in the later patch. Link: http://lkml.kernel.org/r/20180228032657.32385-2-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Pankaj Gupta <pagupta@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
7e010df53c |
mm: use special value SHRINKER_REGISTERING instead of list_empty() check
The patch introduces a special value SHRINKER_REGISTERING to use instead of list_empty() to differ a registering shrinker from unregistered shrinker. Why we need that at all? Shrinker registration is split in two parts. The first one is prealloc_shrinker(), which allocates shrinker memory and reserves ID in shrinker_idr. This function can fail. The second is register_shrinker_prepared(), and it finalizes the registration. This function actually makes shrinker available to be used from shrink_slab(), and it can't fail. One shrinker may be based on more then one LRU lists. So, we never clear the bit in memcg shrinker maps, when (one of) corresponding LRU list becomes empty, since other LRU lists may be not empty. See superblock shrinker for example: it is based on two LRU lists: s_inode_lru and s_dentry_lru. We do not want to clear shrinker bit, when there are no inodes in s_inode_lru, as s_dentry_lru may contain dentries. Instead of that, we use special algorithm to detect shrinkers having no elements at all its LRU lists, and this is made in shrink_slab_memcg(). See the comment in this function for the details. Also, in shrink_slab_memcg() we clear shrinker bit in the map, when we meet unregistered shrinker (bit is set, while there is no a shrinker in IDR). Otherwise, we would have done that at the moment of shrinker unregistration for all memcgs (and this looks worse, since iteration over all memcg may take much time). Also this would have imposed restrictions on shrinker unregistration order for its users: they would have had to guarantee, there are no new elements after unregister_shrinker() (otherwise, a new added element would have set a bit). So, if we meet a set bit in map and no shrinker in IDR when we're iterating over the map in shrink_slab_memcg(), this means the corresponding shrinker is unregistered, and we must clear the bit. Another case is shrinker registration. We want two things there: 1) do_shrink_slab() can be called only for completely registered shrinkers; 2) shrinker internal lists may be populated in any order with register_shrinker_prepared() (let's talk on the example with sb). Both of: a)list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru); [cpu0] memcg_set_shrinker_bit(); [cpu0] ... register_shrinker_prepared(); [cpu1] and b)register_shrinker_prepared(); [cpu0] ... list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru); [cpu1] memcg_set_shrinker_bit(); [cpu1] are legitimate. We don't want to impose restriction here and to force people to use only (b) variant. We don't want to force people to care, there is no elements in LRU lists before the shrinker is completely registered. Internal users of LRU lists and shrinker code are two different subsystems, and they have to be closed in themselves each other. In (a) case we have the bit set before shrinker is completely registered. We don't want do_shrink_slab() is called at this moment, so we have to detect such the registering shrinkers. Before this patch list_empty() (shrinker is not linked to the list) check was used for that. So, in (a) there could be a bit set, but we don't call do_shrink_slab() unless shrinker is linked to the list. It's just an indicator, I just overloaded linking to the list. This was not the best solution, since it's better not to touch the shrinker memory from shrink_slab_memcg() before it's completely registered (this also will be useful in the future to make shrink_slab() completely lockless). So, this patch introduces better way to detect registering shrinker, which allows not to dereference shrinker memory. It's just a ~0UL value, which we insert into the IDR during ID allocation. After shrinker is ready to be used, we insert actual shrinker pointer in the IDR, and it becomes available to shrink_slab_memcg(). We can't use NULL instead of this new value for this purpose as: shrink_slab_memcg() already uses NULL to detect unregistered shrinkers, and we don't want the function sees NULL and clears the bit, otherwise (a) won't work. This is the only thing the patch makes: the better way to detect registering shrinker. Nothing else this patch makes. Also this gives a better assembler, but it's minor side of the patch: Before: callq <idr_find> mov %rax,%r15 test %rax,%rax je <shrink_slab_memcg+0x1d5> mov 0x20(%rax),%rax lea 0x20(%r15),%rdx cmp %rax,%rdx je <shrink_slab_memcg+0xbd> mov 0x8(%rsp),%edx mov %r15,%rsi lea 0x10(%rsp),%rdi callq <do_shrink_slab> After: callq <idr_find> mov %rax,%r15 lea -0x1(%rax),%rax cmp $0xfffffffffffffffd,%rax ja <shrink_slab_memcg+0x1cd> mov 0x8(%rsp),%edx mov %r15,%rsi lea 0x10(%rsp),%rdi callq ffffffff810cefd0 <do_shrink_slab> [ktkhai@virtuozzo.com: add #ifdef CONFIG_MEMCG_KMEM around idr_replace()] Link: http://lkml.kernel.org/r/758b8fec-7573-47eb-b26a-7b2847ae7b8c@virtuozzo.com Link: http://lkml.kernel.org/r/153355467546.11522.4518015068123480218.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Matthew Wilcox <willy@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Josef Bacik <jbacik@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
ac7fb3ad27 |
mm/vmscan.c: move check for SHRINKER_NUMA_AWARE to do_shrink_slab()
In case of shrink_slab_memcg() we do not zero nid, when shrinker is not numa-aware. This is not a real problem, since currently all memcg-aware shrinkers are numa-aware too (we have two: super_block shrinker and workingset shrinker), but something may change in the future. Link: http://lkml.kernel.org/r/153320759911.18959.8842396230157677671.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Matthew Wilcox <willy@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Josef Bacik <jbacik@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
f90280d6b7 |
mm/vmscan.c: clear shrinker bit if there are no objects related to memcg
To avoid further unneed calls of do_shrink_slab() for shrinkers, which already do not have any charged objects in a memcg, their bits have to be cleared. This patch introduces a lockless mechanism to do that without races without parallel list lru add. After do_shrink_slab() returns SHRINK_EMPTY the first time, we clear the bit and call it once again. Then we restore the bit, if the new return value is different. Note, that single smp_mb__after_atomic() in shrink_slab_memcg() covers two situations: 1)list_lru_add() shrink_slab_memcg list_add_tail() for_each_set_bit() <--- read bit do_shrink_slab() <--- missed list update (no barrier) <MB> <MB> set_bit() do_shrink_slab() <--- seen list update This situation, when the first do_shrink_slab() sees set bit, but it doesn't see list update (i.e., race with the first element queueing), is rare. So we don't add <MB> before the first call of do_shrink_slab() instead of this to do not slow down generic case. Also, it's need the second call as seen in below in (2). 2)list_lru_add() shrink_slab_memcg() list_add_tail() ... set_bit() ... ... for_each_set_bit() do_shrink_slab() do_shrink_slab() clear_bit() ... ... ... list_lru_add() ... list_add_tail() clear_bit() <MB> <MB> set_bit() do_shrink_slab() The barriers guarantee that the second do_shrink_slab() in the right side task sees list update if really cleared the bit. This case is drawn in the code comment. [Results/performance of the patchset] After the whole patchset applied the below test shows signify increase of performance: $echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy $mkdir /sys/fs/cgroup/memory/ct $echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes $for i in `seq 0 4000`; do mkdir /sys/fs/cgroup/memory/ct/$i; echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs; mkdir -p s/$i; mount -t tmpfs $i s/$i; touch s/$i/file; done Then, 5 sequential calls of drop caches: $time echo 3 > /proc/sys/vm/drop_caches 1)Before: 0.00user 13.78system 0:13.78elapsed 99%CPU 0.00user 5.59system 0:05.60elapsed 99%CPU 0.00user 5.48system 0:05.48elapsed 99%CPU 0.00user 8.35system 0:08.35elapsed 99%CPU 0.00user 8.34system 0:08.35elapsed 99%CPU 2)After 0.00user 1.10system 0:01.10elapsed 99%CPU 0.00user 0.00system 0:00.01elapsed 64%CPU 0.00user 0.01system 0:00.01elapsed 82%CPU 0.00user 0.00system 0:00.01elapsed 64%CPU 0.00user 0.01system 0:00.01elapsed 82%CPU The results show the performance increases at least in 548 times. Shakeel Butt tested this patchset with fork-bomb on his configuration: > I created 255 memcgs, 255 ext4 mounts and made each memcg create a > file containing few KiBs on corresponding mount. Then in a separate > memcg of 200 MiB limit ran a fork-bomb. > > I ran the "perf record -ag -- sleep 60" and below are the results: > > Without the patch series: > Samples: 4M of event 'cycles', Event count (approx.): 3279403076005 > + 36.40% fb.sh [kernel.kallsyms] [k] shrink_slab > + 18.97% fb.sh [kernel.kallsyms] [k] list_lru_count_one > + 6.75% fb.sh [kernel.kallsyms] [k] super_cache_count > + 0.49% fb.sh [kernel.kallsyms] [k] down_read_trylock > + 0.44% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter > + 0.27% fb.sh [kernel.kallsyms] [k] up_read > + 0.21% fb.sh [kernel.kallsyms] [k] osq_lock > + 0.13% fb.sh [kernel.kallsyms] [k] shmem_unused_huge_count > + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node_memcg > + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node > > With the patch series: > Samples: 4M of event 'cycles', Event count (approx.): 2756866824946 > + 47.49% fb.sh [kernel.kallsyms] [k] down_read_trylock > + 30.72% fb.sh [kernel.kallsyms] [k] up_read > + 9.51% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter > + 1.69% fb.sh [kernel.kallsyms] [k] shrink_node_memcg > + 1.35% fb.sh [kernel.kallsyms] [k] mem_cgroup_protected > + 1.05% fb.sh [kernel.kallsyms] [k] queued_spin_lock_slowpath > + 0.85% fb.sh [kernel.kallsyms] [k] _raw_spin_lock > + 0.78% fb.sh [kernel.kallsyms] [k] lruvec_lru_size > + 0.57% fb.sh [kernel.kallsyms] [k] shrink_node > + 0.54% fb.sh [kernel.kallsyms] [k] queue_work_on > + 0.46% fb.sh [kernel.kallsyms] [k] shrink_slab_memcg [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112561772.4097.11011071937553113003.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063070859.1818.11870882950920963480.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
9b996468cf |
mm: add SHRINK_EMPTY shrinker methods return value
We need to distinguish the situations when shrinker has very small amount of objects (see vfs_pressure_ratio() called from super_cache_count()), and when it has no objects at all. Currently, in the both of these cases, shrinker::count_objects() returns 0. The patch introduces new SHRINK_EMPTY return value, which will be used for "no objects at all" case. It's is a refactoring mostly, as SHRINK_EMPTY is replaced by 0 by all callers of do_shrink_slab() in this patch, and all the magic will happen in further. Link: http://lkml.kernel.org/r/153063069574.1818.11037751256699341813.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
aeed1d325d |
mm/vmscan.c: generalize shrink_slab() calls in shrink_node()
The patch makes shrink_slab() be called for root_mem_cgroup in the same way as it's called for the rest of cgroups. This simplifies the logic and improves the readability. [ktkhai@virtuozzo.com: wrote changelog] Link: http://lkml.kernel.org/r/153063068338.1818.11496084754797453962.stgit@localhost.localdomain Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
b0dedc49a2 |
mm/vmscan.c: iterate only over charged shrinkers during memcg shrink_slab()
Using the preparations made in previous patches, in case of memcg shrink, we may avoid shrinkers, which are not set in memcg's shrinkers bitmap. To do that, we separate iterations over memcg-aware and !memcg-aware shrinkers, and memcg-aware shrinkers are chosen via for_each_set_bit() from the bitmap. In case of big nodes, having many isolated environments, this gives significant performance growth. See next patches for the details. Note that the patch does not respect to empty memcg shrinkers, since we never clear the bitmap bits after we set it once. Their shrinkers will be called again, with no shrinked objects as result. This functionality is provided by next patches. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112558507.4097.12713813335683345488.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063066653.1818.976035462801487910.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
fae91d6d8b |
mm/list_lru.c: set bit in memcg shrinker bitmap on first list_lru item appearance
Introduce set_shrinker_bit() function to set shrinker-related bit in memcg shrinker bitmap, and set the bit after the first item is added and in case of reparenting destroyed memcg's items. This will allow next patch to make shrinkers be called only, in case of they have charged objects at the moment, and to improve shrink_slab() performance. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112557572.4097.17315791419810749985.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063065671.1818.15914674956134687268.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
dfd2f10ccf |
mm/memcontrol.c: export mem_cgroup_is_root()
This will be used in next patch. Link: http://lkml.kernel.org/r/153063064347.1818.1987011484100392706.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
3b82c4dcc2 |
mm/list_lru.c: pass lru argument to memcg_drain_list_lru_node()
This is just refactoring to allow next patches to have lru pointer in memcg_drain_list_lru_node(). Link: http://lkml.kernel.org/r/153063063164.1818.55009531386089350.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
9bec5c35bf |
mm/list_lru: pass dst_memcg argument to memcg_drain_list_lru_node()
This is just refactoring to allow the next patches to have dst_memcg pointer in memcg_drain_list_lru_node(). Link: http://lkml.kernel.org/r/153063062118.1818.2761273817739499749.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
44bd4a4759 |
mm/list_lru.c: add memcg argument to list_lru_from_kmem()
This is just refactoring to allow the next patches to have memcg pointer in list_lru_from_kmem(). Link: http://lkml.kernel.org/r/153063060664.1818.9541345386733498582.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
c92e8e10ca |
fs: propagate shrinker::id to list_lru
Add list_lru::shrinker_id field and populate it by registered shrinker id. This will be used to set correct bit in memcg shrinkers map by lru code in next patches, after there appeared the first related to memcg element in list_lru. Link: http://lkml.kernel.org/r/153063059758.1818.14866596416857717800.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
39887653aa |
mm/workingset.c: refactor workingset_init()
Use prealloc_shrinker()/register_shrinker_prepared() instead of register_shrinker(). This will be used in next patch. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112550112.4097.16606173020912323761.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063057666.1818.17625951186610808734.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
0a4465d340 |
mm, memcg: assign memcg-aware shrinkers bitmap to memcg
Imagine a big node with many cpus, memory cgroups and containers. Let we have 200 containers, every container has 10 mounts, and 10 cgroups. All container tasks don't touch foreign containers mounts. If there is intensive pages write, and global reclaim happens, a writing task has to iterate over all memcgs to shrink slab, before it's able to go to shrink_page_list(). Iteration over all the memcg slabs is very expensive: the task has to visit 200 * 10 = 2000 shrinkers for every memcg, and since there are 2000 memcgs, the total calls are 2000 * 2000 = 4000000. So, the shrinker makes 4 million do_shrink_slab() calls just to try to isolate SWAP_CLUSTER_MAX pages in one of the actively writing memcg via shrink_page_list(). I've observed a node spending almost 100% in kernel, making useless iteration over already shrinked slab. This patch adds bitmap of memcg-aware shrinkers to memcg. The size of the bitmap depends on bitmap_nr_ids, and during memcg life it's maintained to be enough to fit bitmap_nr_ids shrinkers. Every bit in the map is related to corresponding shrinker id. Next patches will maintain set bit only for really charged memcg. This will allow shrink_slab() to increase its performance in significant way. See the last patch for the numbers. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112549031.4097.3576147070498769979.stgit@localhost.localdomain [ktkhai@virtuozzo.com: add comment to mem_cgroup_css_online()] Link: http://lkml.kernel.org/r/521f9e5f-c436-b388-fe83-4dc870bfb489@virtuozzo.com Link: http://lkml.kernel.org/r/153063056619.1818.12550500883688681076.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
b05706f100 |
mm/memcontrol.c: move up for_each_mem_cgroup{, _tree} defines
Next patch requires these defines are above their current position, so here they are moved to declarations. Link: http://lkml.kernel.org/r/153063055665.1818.5200425793649695598.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
b4c2b231c3 |
mm: assign id to every memcg-aware shrinker
Introduce shrinker::id number, which is used to enumerate memcg-aware shrinkers. The number start from 0, and the code tries to maintain it as small as possible. This will be used to represent a memcg-aware shrinkers in memcg shrinkers map. Since all memcg-aware shrinkers are based on list_lru, which is per-memcg in case of !CONFIG_MEMCG_KMEM only, the new functionality will be under this config option. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112546435.4097.10607140323811756557.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063054586.1818.6041047871606697364.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
84c07d11aa |
mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB
Introduce new config option, which is used to replace repeating CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more memcg+kmem related code, so let's keep the defines more clearly. Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
e0295238e5 |
mm/list_lru.c: combine code under the same define
Patch series "Improve shrink_slab() scalability (old complexity was O(n^2), new is O(n))", v8. This patcheset solves the problem with slow shrink_slab() occuring on the machines having many shrinkers and memory cgroups (i.e., with many containers). The problem is complexity of shrink_slab() is O(n^2) and it grows too fast with the growth of containers numbers. Let us have 200 containers, and every container has 10 mounts and 10 cgroups. All container tasks are isolated, and they don't touch foreign containers mounts. In case of global reclaim, a task has to iterate all over the memcgs and to call all the memcg-aware shrinkers for all of them. This means, the task has to visit 200 * 10 = 2000 shrinkers for every memcg, and since there are 2000 memcgs, the total calls of do_shrink_slab() are 2000 * 2000 = 4000000. 4 million calls are not a number operations, which can takes 1 cpu cycle. E.g., super_cache_count() accesses at least two lists, and makes arifmetical calculations. Even, if there are no charged objects, we do these calculations, and replaces cpu caches by read memory. I observed nodes spending almost 100% time in kernel, in case of intensive writing and global reclaim. The writer consumes pages fast, but it's need to shrink_slab() before the reclaimer reached shrink pages function (and frees SWAP_CLUSTER_MAX pages). Even if there is no writing, the iterations just waste the time, and slows reclaim down. Let's see the small test below: $echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy $mkdir /sys/fs/cgroup/memory/ct $echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes $for i in `seq 0 4000`; do mkdir /sys/fs/cgroup/memory/ct/$i; echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs; mkdir -p s/$i; mount -t tmpfs $i s/$i; touch s/$i/file; done Then, let's see drop caches time (5 sequential calls): $time echo 3 > /proc/sys/vm/drop_caches 0.00user 13.78system 0:13.78elapsed 99%CPU 0.00user 5.59system 0:05.60elapsed 99%CPU 0.00user 5.48system 0:05.48elapsed 99%CPU 0.00user 8.35system 0:08.35elapsed 99%CPU 0.00user 8.34system 0:08.35elapsed 99%CPU The last four calls don't actually shrink anything. So, the iterations over slab shrinkers take 5.48 seconds. Not so good for scalability. The patchset solves the problem by making shrink_slab() of O(n) complexity. There are following functional actions: 1) Assign id to every registered memcg-aware shrinker. 2) Maintain per-memcgroup bitmap of memcg-aware shrinkers, and set a shrinker-related bit after the first element is added to lru list (also, when removed child memcg elements are reparanted). 3) Split memcg-aware shrinkers and !memcg-aware shrinkers, and call a shrinker if its bit is set in memcg's shrinker bitmap. (Also, there is a functionality to clear the bit, after last element is shrinked). This gives significant performance increase. The result after patchset is applied: $time echo 3 > /proc/sys/vm/drop_caches 0.00user 1.10system 0:01.10elapsed 99%CPU 0.00user 0.00system 0:00.01elapsed 64%CPU 0.00user 0.01system 0:00.01elapsed 82%CPU 0.00user 0.00system 0:00.01elapsed 64%CPU 0.00user 0.01system 0:00.01elapsed 82%CPU The results show the performance increases at least in 548 times. So, the patchset makes shrink_slab() of less complexity and improves the performance in such types of load I pointed. This will give a profit in case of !global reclaim case, since there also will be less do_shrink_slab() calls. This patch (of 17): These two pairs of blocks of code are under the same #ifdef #else #endif. Link: http://lkml.kernel.org/r/153063052519.1818.9393587113056959488.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Roman Gushchin <guro@fb.com> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Waiman Long <longman@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Josef Bacik <jbacik@fb.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Li RongQing <lirongqing@baidu.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Rapoport
|
a36aab890c |
mm/memblock.c: replace u64 with phys_addr_t where appropriate
Most functions in memblock already use phys_addr_t to represent a physical address with __memblock_free_late() being an exception. This patch replaces u64 with phys_addr_t in __memblock_free_late() and switches several format strings from %llx to %pa to avoid casting from phys_addr_t to u64. Link: http://lkml.kernel.org/r/1530637506-1256-1-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Oscar Salvador
|
4e40987f12 |
mm/sparse.c: make sparse_init_one_section void and remove check
sparse_init_one_section() is being called from two sites: sparse_init() and sparse_add_one_section(). The former calls it from a for_each_present_section_nr() loop, and the latter marks the section as present before calling it. This means that when sparse_init_one_section() gets called, we already know that the section is present. So there is no point to double check that in the function. This removes the check and makes the function void. [ross.zwisler@linux.intel.com: fix error path in sparse_add_one_section] Link: http://lkml.kernel.org/r/20180706190658.6873-1-ross.zwisler@linux.intel.com [ross.zwisler@linux.intel.com: simplification suggested by Oscar] Link: http://lkml.kernel.org/r/20180706223358.742-1-ross.zwisler@linux.intel.com Link: http://lkml.kernel.org/r/20180702154325.12196-1-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
29ef680ae7 |
memcg, oom: move out_of_memory back to the charge path
Commit
|
||
Mike Rapoport
|
d39f8fb4b7 |
mm: make DEFERRED_STRUCT_PAGE_INIT explicitly depend on SPARSEMEM
The deferred memory initialization relies on section definitions, e.g
PAGES_PER_SECTION, that are only available when CONFIG_SPARSEMEM=y on
most architectures.
Initially DEFERRED_STRUCT_PAGE_INIT depended on explicit
ARCH_SUPPORTS_DEFERRED_STRUCT_PAGE_INIT configuration option, but since
the commit
|
||
Andrey Ryabinin
|
0207df4fa1 |
kernel/memremap, kasan: make ZONE_DEVICE with work with KASAN
KASAN learns about hotadded memory via the memory hotplug notifier.
devm_memremap_pages() intentionally skips calling memory hotplug
notifiers. So KASAN doesn't know anything about new memory added by
devm_memremap_pages(). This causes a crash when KASAN tries to access
non-existent shadow memory:
BUG: unable to handle kernel paging request at ffffed0078000000
RIP: 0010:check_memory_region+0x82/0x1e0
Call Trace:
memcpy+0x1f/0x50
pmem_do_bvec+0x163/0x720
pmem_make_request+0x305/0xac0
generic_make_request+0x54f/0xcf0
submit_bio+0x9c/0x370
submit_bh_wbc+0x4c7/0x700
block_read_full_page+0x5ef/0x870
do_read_cache_page+0x2b8/0xb30
read_dev_sector+0xbd/0x3f0
read_lba.isra.0+0x277/0x670
efi_partition+0x41a/0x18f0
check_partition+0x30d/0x5e9
rescan_partitions+0x18c/0x840
__blkdev_get+0x859/0x1060
blkdev_get+0x23f/0x810
__device_add_disk+0x9c8/0xde0
pmem_attach_disk+0x9a8/0xf50
nvdimm_bus_probe+0xf3/0x3c0
driver_probe_device+0x493/0xbd0
bus_for_each_drv+0x118/0x1b0
__device_attach+0x1cd/0x2b0
bus_probe_device+0x1ac/0x260
device_add+0x90d/0x1380
nd_async_device_register+0xe/0x50
async_run_entry_fn+0xc3/0x5d0
process_one_work+0xa0a/0x1810
worker_thread+0x87/0xe80
kthread+0x2d7/0x390
ret_from_fork+0x3a/0x50
Add kasan_add_zero_shadow()/kasan_remove_zero_shadow() - post mm_init()
interface to map/unmap kasan_zero_page at requested virtual addresses.
And use it to add/remove the shadow memory for hotplugged/unplugged
device memory.
Link: http://lkml.kernel.org/r/20180629164932.740-1-aryabinin@virtuozzo.com
Fixes:
|
||
Song Liu
|
50f8b92f21 |
mm: thp: pass correct vm_flags to hugepage_vma_check()
khugepaged_enter_vma_merge() passes a stale vma->vm_flags to hugepage_vma_check(). The argument vm_flags contains the latest value. Therefore, it is necessary to pass this vm_flags into hugepage_vma_check(). With this bug, madvise(MADV_HUGEPAGE) for mmap files in shmem fails to put memory in huge pages. Here is an example of failed madvise(): /* mount /dev/shm with huge=advise: * mount -o remount,huge=advise /dev/shm */ /* create file /dev/shm/huge */ #define HUGE_FILE "/dev/shm/huge" fd = open(HUGE_FILE, O_RDONLY); ptr = mmap(NULL, FILE_SIZE, PROT_READ, MAP_PRIVATE, fd, 0); ret = madvise(ptr, FILE_SIZE, MADV_HUGEPAGE); madvise() will return 0, but this memory region is never put in huge page (check from /proc/meminfo: ShmemHugePages). Link: http://lkml.kernel.org/r/20180629181752.792831-1-songliubraving@fb.com Fixes: 02b75dc8160d ("mm: thp: register mm for khugepaged when merging vma for shmem") Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Rik van Riel <riel@surriel.com> Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
a718e28f53 |
mm/fadvise.c: fix signed overflow UBSAN complaint
Signed integer overflow is undefined according to the C standard. The overflow in ksys_fadvise64_64() is deliberate, but since it is signed overflow, UBSAN complains: UBSAN: Undefined behaviour in mm/fadvise.c:76:10 signed integer overflow: 4 + 9223372036854775805 cannot be represented in type 'long long int' Use unsigned types to do math. Unsigned overflow is defined so UBSAN will not complain about it. This patch doesn't change generated code. [akpm@linux-foundation.org: add comment explaining the casts] Link: http://lkml.kernel.org/r/20180629184453.7614-1-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reported-by: <icytxw@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Colin Ian King
|
31f21da181 |
mm/swap_slots.c: make swap_slots_cache_mutex and swap_slots_cache_enable_mutex static
The mutexes swap_slots_cache_mutex and swap_slots_cache_enable_mutex are local to the source and do not need to be in global scope, so make them static. Cleans up sparse warnings: symbol 'swap_slots_cache_mutex' was not declared. Should it be static? symbol 'swap_slots_cache_enable_mutex' was not declared. Should it be static? Link: http://lkml.kernel.org/r/20180624182536.4937-1-colin.king@canonical.com Signed-off-by: Colin Ian King <colin.king@canonical.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Colin Ian King
|
4d0a5402f5 |
mm/zsmalloc.c: make several functions and a struct static
The functions zs_page_isolate, zs_page_migrate, zs_page_putback, lock_zspage, trylock_zspage and structure zsmalloc_aops are local to source and do not need to be in global scope, so make them static. Cleans up sparse warnings: symbol 'zs_page_isolate' was not declared. Should it be static? symbol 'zs_page_migrate' was not declared. Should it be static? symbol 'zs_page_putback' was not declared. Should it be static? symbol 'zsmalloc_aops' was not declared. Should it be static? symbol 'lock_zspage' was not declared. Should it be static? symbol 'trylock_zspage' was not declared. Should it be static? [arnd@arndb.de: hide unused lock_zspage] Link: http://lkml.kernel.org/r/20180706130924.3891230-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20180624213322.13776-1-colin.king@canonical.com Signed-off-by: Colin Ian King <colin.king@canonical.com> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Thelen
|
dcfe4df3d5 |
mm/page-writeback.c: update stale account_page_redirty() comment
Commit
|
||
Shakeel Butt
|
f745c6f5fe |
fs, mm: account buffer_head to kmemcg
The buffer_head can consume a significant amount of system memory and is directly related to the amount of page cache. In our production environment we have observed that a lot of machines are spending a significant amount of memory as buffer_head and can not be left as system memory overhead. Charging buffer_head is not as simple as adding __GFP_ACCOUNT to the allocation. The buffer_heads can be allocated in a memcg different from the memcg of the page for which buffer_heads are being allocated. One concrete example is memory reclaim. The reclaim can trigger I/O of pages of any memcg on the system. So, the right way to charge buffer_head is to extract the memcg from the page for which buffer_heads are being allocated and then use targeted memcg charging API. [shakeelb@google.com: use __GFP_ACCOUNT for directed memcg charging] Link: http://lkml.kernel.org/r/20180702220208.213380-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-3-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
d46eb14b73 |
fs: fsnotify: account fsnotify metadata to kmemcg
Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Luis R. Rodriguez
|
1a9b4b3d75 |
mm: provide a fallback for PAGE_KERNEL_EXEC for architectures
Some architectures just don't have PAGE_KERNEL_EXEC. The mm/nommu.c and mm/vmalloc.c code have been using PAGE_KERNEL as a fallback for years. Move this fallback to asm-generic. Link: http://lkml.kernel.org/r/20180510185507.2439-3-mcgrof@kernel.org Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org> Suggested-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Oscar Salvador
|
4fbce63391 |
mm/memory_hotplug.c: make register_mem_sect_under_node() a callback of walk_memory_range()
link_mem_sections() and walk_memory_range() share most of the code, so we can use convert link_mem_sections() into a dummy function that calls walk_memory_range() with a callback to register_mem_sect_under_node(). This patch converts register_mem_sect_under_node() in order to match a walk_memory_range's callback, getting rid of the check_nid argument and checking instead if the system is still boothing, since we only have to check for the nid if the system is in such state. Link: http://lkml.kernel.org/r/20180622111839.10071-4-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Suggested-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Oscar Salvador
|
d5b6f6a361 |
mm/memory_hotplug.c: call register_mem_sect_under_node()
When hotplugging memory, it is possible that two calls are being made to register_mem_sect_under_node(). One comes from __add_section()->hotplug_memory_register() and the other from add_memory_resource()->link_mem_sections() if we had to register a new node. In case we had to register a new node, hotplug_memory_register() will only handle/allocate the memory_block's since register_mem_sect_under_node() will return right away because the node it is not online yet. I think it is better if we leave hotplug_memory_register() to handle/allocate only memory_block's and make link_mem_sections() to call register_mem_sect_under_node(). So this patch removes the call to register_mem_sect_under_node() from hotplug_memory_register(), and moves the call to link_mem_sections() out of the condition, so it will always be called. In this way we only have one place where the memory sections are registered. Link: http://lkml.kernel.org/r/20180622111839.10071-3-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Oscar Salvador
|
b9ff036082 |
mm/memory_hotplug.c: make add_memory_resource use __try_online_node
This is a small cleanup for the memhotplug code. A lot more could be done, but it is better to start somewhere. I tried to unify/remove duplicated code. The following is what this patchset does: 1) add_memory_resource() has code to allocate a node in case it was offline. Since try_online_node has some code for that as well, I just made add_memory_resource() to use that so we can remove duplicated code.. This is better explained in patch 1/4. 2) register_mem_sect_under_node() will be called only from link_mem_sections() 3) Make register_mem_sect_under_node() a callback of walk_memory_range() 4) Drop unnecessary checks from register_mem_sect_under_node() I have done some tests and I could not see anything broken because of this patchset. add_memory_resource() contains code to allocate a new node in case it is necessary. Since try_online_node() also has some code for this purpose, let us make use of that and remove duplicate code. This introduces __try_online_node(), which is called by add_memory_resource() and try_online_node(). __try_online_node() has two new parameters, start_addr of the node, and if the node should be onlined and registered right away. This is always wanted if we are calling from do_cpu_up(), but not when we are calling from memhotplug code. Nothing changes from the point of view of the users of try_online_node(), since try_online_node passes start_addr=0 and online_node=true to __try_online_node(). Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com> Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com> Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrew Morton
|
930eaac5ee |
mm/list_lru.c: fold __list_lru_count_one() into its caller
__list_lru_count_one() has a single callsite. Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
6ca342d020 |
mm: workingset: make shadow_lru_isolate() use locking suffix
shadow_lru_isolate() disables interrupts and acquires a lock. It could use spin_lock_irq() instead. It also uses local_irq_enable() while it could use spin_unlock_irq()/xa_unlock_irq(). Use proper suffix for lock/unlock in order to enable/disable interrupts during release/acquire of a lock. Link: http://lkml.kernel.org/r/20180622151221.28167-3-bigeasy@linutronix.de Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Sebastian Andrzej Siewior
|
ae1e16da14 |
mm: workingset: remove local_irq_disable() from count_shadow_nodes()
Patch series "mm: use irq locking suffix instead local_irq_disable()".
A small series which avoids using local_irq_disable()/local_irq_enable()
but instead does spin_lock_irq()/spin_unlock_irq() so it is within the
context of the lock which it belongs to. Patch #1 is a cleanup where
local_irq_.*() remained after the lock was removed.
This patch (of 2):
In
|
||
Michal Hocko
|
9ea9a68064 |
mm: drop VM_BUG_ON from __get_free_pages
There is no real reason to blow up just because the caller doesn't know that __get_free_pages cannot return highmem pages. Simply fix that up silently. Even if we have some confused users such a fixup will not be harmful. [akpm@linux-foundation.org: mask off __GFP_HIGHMEM] Link: http://lkml.kernel.org/r/20180622162841.25114-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Jiankang Chen <chenjiankang1@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Yisheng Xie <xieyisheng1@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
974e6d66b6 |
mm, hugetlbfs: pass fault address to cow handler
This is to take better advantage of the general huge page copying optimization. Where, the target subpage will be copied last to avoid the cache lines of target subpage to be evicted when copying other subpages. This works better if the address of the target subpage is available when copying huge page. So hugetlbfs page fault handlers are changed to pass that information to hugetlb_cow(). This will benefit workloads which don't access the begin of the hugetlbfs huge page after the page fault under heavy cache contention. Link: http://lkml.kernel.org/r/20180524005851.4079-5-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shaohua Li <shli@fb.com> Cc: Christopher Lameter <cl@linux.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Punit Agrawal <punit.agrawal@arm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
5b7a1d4060 |
mm, hugetlbfs: rename address to haddr in hugetlb_cow()
To take better advantage of general huge page copying optimization, the target subpage address will be passed to hugetlb_cow(), then copy_user_huge_page(). So we will use both target subpage address and huge page size aligned address in hugetlb_cow(). To distinguish between them, "haddr" is used for huge page size aligned address to be consistent with Transparent Huge Page naming convention. Now, only huge page size aligned address is used in hugetlb_cow(), so the "address" is renamed to "haddr" in hugetlb_cow() in this patch. Next patch will use target subpage address in hugetlb_cow() too. The patch is just code cleanup without any functionality changes. Link: http://lkml.kernel.org/r/20180524005851.4079-4-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Suggested-by: Mike Kravetz <mike.kravetz@oracle.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shaohua Li <shli@fb.com> Cc: Christopher Lameter <cl@linux.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Punit Agrawal <punit.agrawal@arm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
c9f4cd7138 |
mm, huge page: copy target sub-page last when copy huge page
Huge page helps to reduce TLB miss rate, but it has higher cache
footprint, sometimes this may cause some issue. For example, when
copying huge page on x86_64 platform, the cache footprint is 4M. But on
a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M LLC
(last level cache). That is, in average, there are 2.5M LLC for each
core and 1.25M LLC for each thread.
If the cache contention is heavy when copying the huge page, and we copy
the huge page from the begin to the end, it is possible that the begin
of huge page is evicted from the cache after we finishing copying the
end of the huge page. And it is possible for the application to access
the begin of the huge page after copying the huge page.
In
|
||
Huang Ying
|
c6ddfb6c58 |
mm, clear_huge_page: move order algorithm into a separate function
Patch series "mm, huge page: Copy target sub-page last when copy huge page", v2. Huge page helps to reduce TLB miss rate, but it has higher cache footprint, sometimes this may cause some issue. For example, when copying huge page on x86_64 platform, the cache footprint is 4M. But on a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M LLC (last level cache). That is, in average, there are 2.5M LLC for each core and 1.25M LLC for each thread. If the cache contention is heavy when copying the huge page, and we copy the huge page from the begin to the end, it is possible that the begin of huge page is evicted from the cache after we finishing copying the end of the huge page. And it is possible for the application to access the begin of the huge page after copying the huge page. In |
||
Yang Shi
|
87aa752906 |
mm: thp: inc counter for collapsed shmem THP
/sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed is used to record the counter of collapsed THP, but it just gets inc'ed in anonymous THP collapse path, do this for shmem THP collapse too. Link: http://lkml.kernel.org/r/1529622949-75504-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
c2231020ea |
mm: thp: register mm for khugepaged when merging vma for shmem
When merging anonymous page vma, if the size of the vma can fit in at least one hugepage, the mm will be registered for khugepaged for collapsing THP in the future. But it skips shmem vmas. Do so for shmem also, but not for file-private mappings when merging a vma in order to increase the odds of collapsing a hugepage via khugepaged. hugepage_vma_check() sounds like a good fit to do the check. And move the definition of it before khugepaged_enter_vma_merge() to avoid a build error. Link: http://lkml.kernel.org/r/1529697791-6950-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jia-Ju Bai
|
8cded8668e |
mm/mempool.c: remove unused argument in kasan_unpoison_element() and remove_element()
The argument "gfp_t flags" is not used in kasan_unpoison_element() and remove_element(), so remove it. Link: http://lkml.kernel.org/r/20180621070332.16633-1-baijiaju1990@gmail.com Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com> Reviewed-by: Matthew Wilcox <willy@infradead.org> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Thelen
|
bb451fdf3d |
mm/vmscan.c: condense scan_control
Use smaller scan_control fields for order, priority, and reclaim_idx.
Convert fields from int => s8. All easily fit within a byte:
- allocation order range: 0..MAX_ORDER(64?)
- priority range: 0..12(DEF_PRIORITY)
- reclaim_idx range: 0..6(__MAX_NR_ZONES)
Since
|
||
Kirill A. Shutemov
|
10ed634152 |
mm/page_ext.c: constify lookup_page_ext() argument
lookup_page_ext() finds 'struct page_ext' for a given page. It requires only read access to the given struct page. Current implemnentation takes 'struct page *' as an argument. It makes compiler complain when 'const struct page *' passed. Change the argument to 'const struct page *'. Link: http://lkml.kernel.org/r/20180531135457.20167-3-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Arnd Bergmann
|
46c9a946d7 |
shmem: use monotonic time for i_generation
get_seconds() is deprecated because it will lead to a 32-bit overflow in 2038 or 2106. We don't need the i_generation to be strictly monotonic anyway, and other file systems like ext4 and xfs just use prandom_u32(), so let's use the same one here. If this is considered too slow, we could also use ktime_get_seconds() or ktime_get_real_seconds() to keep the previous behavior. Both of these return a time64_t and are not deprecated, but only return a unique value once per second, and are predictable. Link: http://lkml.kernel.org/r/20180620082556.581543-1-arnd@arndb.de Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
d6a24df006 |
mm, page_alloc: actually ignore mempolicies for high priority allocations
__alloc_pages_slowpath() has for a long time contained code to ignore node restrictions from memory policies for high priority allocations. The current code that resets the zonelist iterator however does effectively nothing after commit |
||
Yang Shi
|
fadae29530 |
thp: use mm_file_counter to determine update which rss counter
Since commit |
||
Pavel Tatashin
|
720e14ebec |
mm: skip invalid pages block at a time in zero_resv_unresv()
The role of zero_resv_unavail() is to make sure that every struct page that is allocated but is not backed by memory that is accessible by kernel is zeroed and not in some uninitialized state. Since struct pages are allocated in blocks (2M pages in x86 case), we can skip pageblock_nr_pages at a time, when the first one is found to be invalid. This optimization may help since now on x86 every hole in e820 maps is marked as reserved in memblock, and thus will go through this function. This function is called before sched_clock() is initialized, so I used my x86 early boot clock patches to measure the performance improvement. With 1T hole on i7-8700 currently we would take 0.606918s of boot time, but with this optimization 0.001103s. Link: http://lkml.kernel.org/r/20180615155733.1175-1-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Souptick Joarder
|
50a7ca3c6f |
mm: convert return type of handle_mm_fault() caller to vm_fault_t
Use new return type vm_fault_t for fault handler. For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno. Once all instances are converted, vm_fault_t will become a
distinct type.
Ref-> commit
|
||
Vlastimil Babka
|
0882ff9190 |
mm, slub: restore the original intention of prefetch_freepointer()
In SLUB, prefetch_freepointer() is used when allocating an object from cache's freelist, to make sure the next object in the list is cache-hot, since it's probable it will be allocated soon. Commit |
||
Dave Jiang
|
e1fb4a0864 |
dax: remove VM_MIXEDMAP for fsdax and device dax
This patch is reworked from an earlier patch that Dan has posted: https://patchwork.kernel.org/patch/10131727/ VM_MIXEDMAP is used by dax to direct mm paths like vm_normal_page() that the memory page it is dealing with is not typical memory from the linear map. The get_user_pages_fast() path, since it does not resolve the vma, is already using {pte,pmd}_devmap() as a stand-in for VM_MIXEDMAP, so we use that as a VM_MIXEDMAP replacement in some locations. In the cases where there is no pte to consult we fallback to using vma_is_dax() to detect the VM_MIXEDMAP special case. Now that we have explicit driver pfn_t-flag opt-in/opt-out for get_user_pages() support for DAX we can stop setting VM_MIXEDMAP. This also means we no longer need to worry about safely manipulating vm_flags in a future where we support dynamically changing the dax mode of a file. DAX should also now be supported with madvise_behavior(), vma_merge(), and copy_page_range(). This patch has been tested against ndctl unit test. It has also been tested against xfstests commit: 625515d using fake pmem created by memmap and no additional issues have been observed. Link: http://lkml.kernel.org/r/152847720311.55924.16999195879201817653.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Dave Jiang <dave.jiang@intel.com> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
fa1b5d09d0 |
Consolidation of Kconfig files by Christoph Hellwig.
Move the source statements of arch-independent Kconfig files instead of duplicating the includes in every arch/$(SRCARCH)/Kconfig. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJbdFsfAAoJED2LAQed4NsGxHsP/1tmA57OOOj8oGxO2OXhXVbr Q0MZqCoV4bqMvK/hgCQdl9f+tp0m+j12x4xDLdVf4OqnTXMbqvPDu3uQVKvaj/k1 gHhsFA1tFgSbuJ8InltUsrPEQqbceeJsj50xHVAKijqI6LYeRPPSU7aE9obn+OzH n2nd5sLKvMI/dqdJvW6i5KPydqTH3r3iA7D+ne/XQj0s0EMXvXUPmDT1+ijTnM4a yfm6W5p7L/c3Ugf1Pz5PfnPl4BxBwZMfW5ie/UO8j5C6Rl0iPaOGuuHurocaaJb3 MefR/7NEAR3G8MhJyL2+70jbbwhjpqR2b5ooz1vpuulPHxjeU45BY60XIBWq1afR ewsc12MMCYB695ieYWoHdaWgxD/jhffyRuajfpkXKIZEMgDxS03sMhdULXENVMx1 M0ZQ01g/NLWt9ti9DY3eTKB3ymOhnBa1sa77nGGUHkITq4DQKwPX1J9FP/HT6RNt uOvzeH5kGzc7tqOlZAO0kHbwhQG1uqGcd78IYd4lgf/XfkSgDERTWjnJmnQbwr9m 3PFuST2u8eyO+8Lh1MK76TXOEkXsHMdFugPmb6SlgtMEPKGVLDPlsj52o/LFtgzl eygfMiBFr2+ttkZ6IpNcpmQ4IztmDpz6XoMk3PqDAfUTUSYpCnq1gAEuff/eisCM Odva1ZZaeQ7WpxhsP8rr =gsQJ -----END PGP SIGNATURE----- Merge tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kconfig consolidation from Masahiro Yamada: "Consolidation of Kconfig files by Christoph Hellwig. Move the source statements of arch-independent Kconfig files instead of duplicating the includes in every arch/$(SRCARCH)/Kconfig" * tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: kconfig: add a Memory Management options" menu kconfig: move the "Executable file formats" menu to fs/Kconfig.binfmt kconfig: use a menu in arch/Kconfig to reduce clutter kconfig: include kernel/Kconfig.preempt from init/Kconfig Kconfig: consolidate the "Kernel hacking" menu kconfig: include common Kconfig files from top-level Kconfig kconfig: remove duplicate SWAP symbol defintions um: create a proper drivers Kconfig um: cleanup Kconfig files um: stop abusing KBUILD_KCONFIG |
||
Linus Torvalds
|
8c479c2c0f |
- drop unneeded Kconfig "select BUG" (Kamal Mostafa)
- add "hardened_usercopy=off" rare performance needs (Chris von Recklinghausen) -----BEGIN PGP SIGNATURE----- Comment: Kees Cook <kees@outflux.net> iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAltx6hAWHGtlZXNjb29r QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJrrsEAChFhTgko1nNKYhks9KIIMZ7YWc bCWpXMnBkmTbPa192a/4aDvvwuor5EFDavWY+vEciOvT2iY6h6uus/BzKB5JlHZ9 QsZS2uLr6SJX76Ri2r8alWT0hWovp/tFopXfnFt4fOHgSK+6rcWJRFzFefsZkcYd xNEw2HnS0kYpgw0aEe3BsnsEn6u0/CxzyGTv6OLcnXU5riOkFUqm8ehLSA44aJW4 cfqWmdelfhvs0thR0rJItUUUmhVM3i6Zccvv0HCt6z8Xz9LIZgyxnnD9Ac7mGz8y WjNPipLqXhu8/JVsd0Y6GK6b8bYh8uNID20fgr/6aWDZkOvUHe54/ChCkjs7cW6F JWGn1hS1tg75rdw09tr4POVw4tUIe1JcqCfsJ7IzXA7oc6PsXzlGl8USDtK9f/fK ryC60NQKo1dXGlY+18i1iw7HsMuWbtaIiWf8Zudy7JethDn3RbHshyF5tGpx0nFB /qRTtMaC5WqIfZAbVb1Qou71gJzmS+k/RjltCO0AnhZrvFr0Qq3eQKRTkGhzOKRq 1dvOHb9ScNeehlQeaC+k0mm8ANf16gzXSGmGg3Z/7LfECbCqc7R7B767dN52hx2X 48P5cDNKUuXgHNk+p20Yr5m16oJDkAOxSHvFN9Kizy/eL7RbgOZREQcB4an9S+A0 yb6uQKU9CQ3n/NSZyA== =j2xG -----END PGP SIGNATURE----- Merge tag 'hardened-usercopy-v4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull hardened usercopy updates from Kees Cook: "This cleans up a minor Kconfig issue and adds a kernel boot option for disabling hardened usercopy for distro users that may have corner-case performance issues (e.g. high bandwidth small-packet UDP traffic). Summary: - drop unneeded Kconfig "select BUG" (Kamal Mostafa) - add "hardened_usercopy=off" rare performance needs (Chris von Recklinghausen)" * tag 'hardened-usercopy-v4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: usercopy: Allow boot cmdline disabling of hardening usercopy: Do not select BUG with HARDENED_USERCOPY |
||
Linus Torvalds
|
e6ecec342f |
This was a moderately busy cycle for docs, with the usual collection of
small fixes and updates. We also have new ktime_get_*() docs from Arnd, some kernel-doc fixes, a new set of Italian translations (non so se vale la pena, ma non fa male - speriamo bene), and some extensive early memory-management documentation improvements from Mike Rapoport. -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJbcZVtAAoJEI3ONVYwIuV64ekP/jgTlMi/fErRu6zlsrsWgiIK ir8ueCQ1OSiwOA+N2fUb+2+zlLlfTLgQ+o5IwmZk6rizG87fQ3Rp6i+bvYAZWITh YUuls3VhtRlJZqG1EW7gww1Q2IhRO6GhcpsIamAvhrSLFPaCKiN3JomJi/X47Pfj Ibl24HsruI2fDM1JwWRwCtE5J6vCL9lH1/5v4zVv7xdrVgTrwkZ/hAsE7HBNNat5 dSku2u9HSAXa4KR4sLWrVJ8UI5+fylwilz/57HhCeduQDwKCHE/mfhxLdqL4Oa4q oHTCNq2zTUj4w7GTvHS1g0P3y/iWMYjAzH2is+BokilpIC65NwwsKx2ybZd3Srdh zwP/kYk5U+mYSgdDlyNqwPCibw8KDXB3srKMzyQSN6tkosKCOHFSXF0Js0eupi7t NqmGigl3Qozj1uvU6Wy7vh58u+GFeuO4PF566t2m70Jp0cWzuVKLrBvgNO1X37rB aEBrpOYB/H54t/qf79IFW//pptWXFNZ3S9AgyDVIcmX5C2ihaCoaPNRTom+KbH/D QEoH9rwWSoCi2DGoR83D+G8thCUfB4yfEGulSSIA4pUR7qvIR5rd1ZioI/qtgAHm l7MjTbLpPwiMnpFkBrxxxlFFb4gbETakMBGYoYee8ww5WbQLu0qA93AbwIXyjhE8 mqCOLyBdCAZ0mNxqPSsc =x/P0 -----END PGP SIGNATURE----- Merge tag 'docs-4.19' of git://git.lwn.net/linux Pull documentation update from Jonathan Corbet: "This was a moderately busy cycle for docs, with the usual collection of small fixes and updates. We also have new ktime_get_*() docs from Arnd, some kernel-doc fixes, a new set of Italian translations (non so se vale la pena, ma non fa male - speriamo bene), and some extensive early memory-management documentation improvements from Mike Rapoport" * tag 'docs-4.19' of git://git.lwn.net/linux: (52 commits) Documentation: corrections to console/console.txt Documentation: add ioctl number entry for v4l2-subdev.h Remove gendered language from management style documentation scripts/kernel-doc: Escape all literal braces in regexes docs/mm: add description of boot time memory management docs/mm: memblock: add overview documentation docs/mm: memblock: add kernel-doc description for memblock types docs/mm: memblock: add kernel-doc comments for memblock_add[_node] docs/mm: memblock: update kernel-doc comments mm/memblock: add a name for memblock flags enumeration docs/mm: bootmem: add overview documentation docs/mm: bootmem: add kernel-doc description of 'struct bootmem_data' docs/mm: bootmem: fix kernel-doc warnings docs/mm: nobootmem: fixup kernel-doc comments mm/bootmem: drop duplicated kernel-doc comments Documentation: vm.txt: Adding 'nr_hugepages_mempolicy' parameter description. doc:it_IT: translation for kernel-hacking docs: Fix the reference labels in Locking.rst doc: tracing: Fix a typo of trace_stat mm: Introduce new type vm_fault_t ... |
||
Linus Torvalds
|
b018fc9800 |
Power management updates for 4.19-rc1
- Add a new framework for CPU idle time injection (Daniel Lezcano). - Add AVS support to the armada-37xx cpufreq driver (Gregory CLEMENT). - Add support for current CPU frequency reporting to the ACPI CPPC cpufreq driver (George Cherian). - Rework the cooling device registration in the imx6q/thermal driver (Bastian Stender). - Make the pcc-cpufreq driver refuse to work with dynamic scaling governors on systems with many CPUs to avoid scalability issues with it (Rafael Wysocki). - Fix the intel_pstate driver to report different maximum CPU frequencies on systems where they really are different and to ignore the turbo active ratio if hardware-managend P-states (HWP) are in use; make it use the match_string() helper (Xie Yisheng, Srinivas Pandruvada). - Fix a minor deferred probe issue in the qcom-kryo cpufreq driver (Niklas Cassel). - Add a tracepoint for the tracking of frequency limits changes (from Andriod) to the cpufreq core (Ruchi Kandoi). - Fix a circular lock dependency between CPU hotplug and sysfs locking in the cpufreq core reported by lockdep (Waiman Long). - Avoid excessive error reports on driver registration failures in the ARM cpuidle driver (Sudeep Holla). - Add a new device links flag to the driver core to make links go away automatically on supplier driver removal (Vivek Gautam). - Eliminate potential race condition between system-wide power management transitions and system shutdown (Pingfan Liu). - Add a quirk to save NVS memory on system suspend for the ASUS 1025C laptop (Willy Tarreau). - Make more systems use suspend-to-idle (instead of ACPI S3) by default (Tristian Celestin). - Get rid of stack VLA usage in the low-level hibernation code on 64-bit x86 (Kees Cook). - Fix error handling in the hibernation core and mark an expected fall-through switch in it (Chengguang Xu, Gustavo Silva). - Extend the generic power domains (genpd) framework to support attaching a device to a power domain by name (Ulf Hansson). - Fix device reference counting and user limits initialization in the devfreq core (Arvind Yadav, Matthias Kaehlcke). - Fix a few issues in the rk3399_dmc devfreq driver and improve its documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner). - Drop a redundant error message from the exynos-ppmu devfreq driver (Markus Elfring). -----BEGIN PGP SIGNATURE----- Version: GnuPG v2 iQIcBAABCAAGBQJbcqOqAAoJEILEb/54YlRxOxMP/2ZFvnXU0pey/VX/+TelLMS7 /ROVGQ+s75QP1c9P/3BjvnXc0dsMRLRFPog+7wyoG/2DbEIV25COyAYsmSE0TRni XUaZO6YAx4/e3pm2AfamYbLCPvjw85eucHg5QJQ4b1mSVRNJOsNv+fUo6lmxwvnm j9kHvfttFeIhoa/3wa7hbhPKLln46atnpVSxCIceY7L5EFNhkKBvQt6B5yx9geb9 QMY6ohgkyN+bnK9QySXX+trcWpzx1uGX0apI07NkX7n9QGFdU4lCW8lsAf8jMC3g PPValTsUQsdRONUJJsrgqBioq4tvtgQWibyS2tfRrOGXYvHpJNpGmHVplfsrf/SE cvlsciR47YbmrXZuqg/r8hql+qefNN16/rnZIZ9VnbcG806VBy2z8IzI5wcdWR7p vzxhbCqVqOHcEdEwRwvuM2io67MWvkGtKsbCP+33DBh8SubpsECpKN4nIDboa3SE CJ15RUqXnF6enmmfCKOoHZeu7iXWDz6Pi71XmRzaj9DqbITVV281IerqLgV3rbal BVa53+202iD0IP+2b7KedGe/5ALlI97ffN0gB+L/eB832853DKSZQKzcvvpRhEN7 Iv2crnUwuQED9ns8P7hzp1Bk9CFCAOLW8UM43YwZRPWnmdeSsPJusJ5lzkAf7bss wfsFoUE3RaY4msnuHyCh =kv2M -----END PGP SIGNATURE----- Merge tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "These add a new framework for CPU idle time injection, to be used by all of the idle injection code in the kernel in the future, fix some issues and add a number of relatively small extensions in multiple places. Specifics: - Add a new framework for CPU idle time injection (Daniel Lezcano). - Add AVS support to the armada-37xx cpufreq driver (Gregory CLEMENT). - Add support for current CPU frequency reporting to the ACPI CPPC cpufreq driver (George Cherian). - Rework the cooling device registration in the imx6q/thermal driver (Bastian Stender). - Make the pcc-cpufreq driver refuse to work with dynamic scaling governors on systems with many CPUs to avoid scalability issues with it (Rafael Wysocki). - Fix the intel_pstate driver to report different maximum CPU frequencies on systems where they really are different and to ignore the turbo active ratio if hardware-managend P-states (HWP) are in use; make it use the match_string() helper (Xie Yisheng, Srinivas Pandruvada). - Fix a minor deferred probe issue in the qcom-kryo cpufreq driver (Niklas Cassel). - Add a tracepoint for the tracking of frequency limits changes (from Andriod) to the cpufreq core (Ruchi Kandoi). - Fix a circular lock dependency between CPU hotplug and sysfs locking in the cpufreq core reported by lockdep (Waiman Long). - Avoid excessive error reports on driver registration failures in the ARM cpuidle driver (Sudeep Holla). - Add a new device links flag to the driver core to make links go away automatically on supplier driver removal (Vivek Gautam). - Eliminate potential race condition between system-wide power management transitions and system shutdown (Pingfan Liu). - Add a quirk to save NVS memory on system suspend for the ASUS 1025C laptop (Willy Tarreau). - Make more systems use suspend-to-idle (instead of ACPI S3) by default (Tristian Celestin). - Get rid of stack VLA usage in the low-level hibernation code on 64-bit x86 (Kees Cook). - Fix error handling in the hibernation core and mark an expected fall-through switch in it (Chengguang Xu, Gustavo Silva). - Extend the generic power domains (genpd) framework to support attaching a device to a power domain by name (Ulf Hansson). - Fix device reference counting and user limits initialization in the devfreq core (Arvind Yadav, Matthias Kaehlcke). - Fix a few issues in the rk3399_dmc devfreq driver and improve its documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner). - Drop a redundant error message from the exynos-ppmu devfreq driver (Markus Elfring)" * tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (35 commits) PM / reboot: Eliminate race between reboot and suspend PM / hibernate: Mark expected switch fall-through cpufreq: intel_pstate: Ignore turbo active ratio in HWP cpufreq: Fix a circular lock dependency problem cpu/hotplug: Add a cpus_read_trylock() function x86/power/hibernate_64: Remove VLA usage cpufreq: trace frequency limits change cpufreq: intel_pstate: Show different max frequency with turbo 3 and HWP cpufreq: pcc-cpufreq: Disable dynamic scaling on many-CPU systems cpufreq: qcom-kryo: Silently error out on EPROBE_DEFER cpufreq / CPPC: Add cpuinfo_cur_freq support for CPPC cpufreq: armada-37xx: Add AVS support dt-bindings: marvell: Add documentation for the Armada 3700 AVS binding PM / devfreq: rk3399_dmc: Fix duplicated opp table on reload. PM / devfreq: Init user limits from OPP limits, not viceversa PM / devfreq: rk3399_dmc: fix spelling mistakes. PM / devfreq: rk3399_dmc: do not print error when get supply and clk defer. dt-bindings: devfreq: rk3399_dmc: move interrupts to be optional. PM / devfreq: rk3399_dmc: remove wait for dcf irq event. dt-bindings: clock: add rk3399 DDR3 standard speed bins. ... |
||
Linus Torvalds
|
73ba2fb33c |
for-4.19/block-20180812
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAltwvasQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgpv65EACTq5gSLnJBI6ZPr1RAHruVDnjfzO2Veitl tUtjm0XfWmnEiwQ3dYvnyhy99xbyaG3900d9BClCTlH6xaUdSiQkDpcKG/R2F36J 5mZitYukQcpFAQJWF8YKsTTE7JPl4VglCIDqYiC4+C3rOSVi8lrKn2qp4J4MMCFn thRg3jCcq7c5s9Eigsop1pXWQSasubkXfk55Krcp4oybKYpYRKXXf74Mj14QAbwJ QHN3VisyAUWoBRg7UQZo1Npe2oPk6bbnJypnjf8M0M2EnlvddEkIlHob91sodka8 6p4APOEu5cbyXOBCAQsw/koff14mb8aEadqeQA68WvXfIdX9ZjfxCX0OoC3sBEXk yqJhZ0C980AM13zIBD8ejv4uasGcPca8W+47mE5P8sRiI++5kBsFWDZPCtUBna0X 2Kh24NsmEya9XRR5vsB84dsIPQ3tLMkxg/IgQRVDaSnfJz0c/+zm54xDyKRaFT4l 5iERk2WSkm9+8jNfVmWG0edrv6nRAXjpGwFfOCPh6/LCSCi4xQRULYN7sVzsX8ZK FRjt24HftBI8mJbh4BtweJvg+ppVe1gAk3IO3HvxAQhv29Hz+uvFYe9kL+3N8LJA Qosr9n9O4+wKYizJcDnw+5iPqCHfAwOm9th4pyedR+R7SmNcP3yNC8AbbheNBiF5 Zolos5H+JA== =b9ib -----END PGP SIGNATURE----- Merge tag 'for-4.19/block-20180812' of git://git.kernel.dk/linux-block Pull block updates from Jens Axboe: "First pull request for this merge window, there will also be a followup request with some stragglers. This pull request contains: - Fix for a thundering heard issue in the wbt block code (Anchal Agarwal) - A few NVMe pull requests: * Improved tracepoints (Keith) * Larger inline data support for RDMA (Steve Wise) * RDMA setup/teardown fixes (Sagi) * Effects log suppor for NVMe target (Chaitanya Kulkarni) * Buffered IO suppor for NVMe target (Chaitanya Kulkarni) * TP4004 (ANA) support (Christoph) * Various NVMe fixes - Block io-latency controller support. Much needed support for properly containing block devices. (Josef) - Series improving how we handle sense information on the stack (Kees) - Lightnvm fixes and updates/improvements (Mathias/Javier et al) - Zoned device support for null_blk (Matias) - AIX partition fixes (Mauricio Faria de Oliveira) - DIF checksum code made generic (Max Gurtovoy) - Add support for discard in iostats (Michael Callahan / Tejun) - Set of updates for BFQ (Paolo) - Removal of async write support for bsg (Christoph) - Bio page dirtying and clone fixups (Christoph) - Set of bcache fix/changes (via Coly) - Series improving blk-mq queue setup/teardown speed (Ming) - Series improving merging performance on blk-mq (Ming) - Lots of other fixes and cleanups from a slew of folks" * tag 'for-4.19/block-20180812' of git://git.kernel.dk/linux-block: (190 commits) blkcg: Make blkg_root_lookup() work for queues in bypass mode bcache: fix error setting writeback_rate through sysfs interface null_blk: add lock drop/acquire annotation Blk-throttle: reduce tail io latency when iops limit is enforced block: paride: pd: mark expected switch fall-throughs block: Ensure that a request queue is dissociated from the cgroup controller block: Introduce blk_exit_queue() blkcg: Introduce blkg_root_lookup() block: Remove two superfluous #include directives blk-mq: count the hctx as active before allocating tag block: bvec_nr_vecs() returns value for wrong slab bcache: trivial - remove tailing backslash in macro BTREE_FLAG bcache: make the pr_err statement used for ENOENT only in sysfs_attatch section bcache: set max writeback rate when I/O request is idle bcache: add code comments for bset.c bcache: fix mistaken comments in request.c bcache: fix mistaken code comments in bcache.h bcache: add a comment in super.c bcache: avoid unncessary cache prefetch bch_btree_node_get() bcache: display rate debug parameters to 0 when writeback is not running ... |
||
Linus Torvalds
|
958f338e96 |
Merge branch 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge L1 Terminal Fault fixes from Thomas Gleixner: "L1TF, aka L1 Terminal Fault, is yet another speculative hardware engineering trainwreck. It's a hardware vulnerability which allows unprivileged speculative access to data which is available in the Level 1 Data Cache when the page table entry controlling the virtual address, which is used for the access, has the Present bit cleared or other reserved bits set. If an instruction accesses a virtual address for which the relevant page table entry (PTE) has the Present bit cleared or other reserved bits set, then speculative execution ignores the invalid PTE and loads the referenced data if it is present in the Level 1 Data Cache, as if the page referenced by the address bits in the PTE was still present and accessible. While this is a purely speculative mechanism and the instruction will raise a page fault when it is retired eventually, the pure act of loading the data and making it available to other speculative instructions opens up the opportunity for side channel attacks to unprivileged malicious code, similar to the Meltdown attack. While Meltdown breaks the user space to kernel space protection, L1TF allows to attack any physical memory address in the system and the attack works across all protection domains. It allows an attack of SGX and also works from inside virtual machines because the speculation bypasses the extended page table (EPT) protection mechanism. The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646 The mitigations provided by this pull request include: - Host side protection by inverting the upper address bits of a non present page table entry so the entry points to uncacheable memory. - Hypervisor protection by flushing L1 Data Cache on VMENTER. - SMT (HyperThreading) control knobs, which allow to 'turn off' SMT by offlining the sibling CPU threads. The knobs are available on the kernel command line and at runtime via sysfs - Control knobs for the hypervisor mitigation, related to L1D flush and SMT control. The knobs are available on the kernel command line and at runtime via sysfs - Extensive documentation about L1TF including various degrees of mitigations. Thanks to all people who have contributed to this in various ways - patches, review, testing, backporting - and the fruitful, sometimes heated, but at the end constructive discussions. There is work in progress to provide other forms of mitigations, which might be less horrible performance wise for a particular kind of workloads, but this is not yet ready for consumption due to their complexity and limitations" * 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits) x86/microcode: Allow late microcode loading with SMT disabled tools headers: Synchronise x86 cpufeatures.h for L1TF additions x86/mm/kmmio: Make the tracer robust against L1TF x86/mm/pat: Make set_memory_np() L1TF safe x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert x86/speculation/l1tf: Invert all not present mappings cpu/hotplug: Fix SMT supported evaluation KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry x86/speculation: Simplify sysfs report of VMX L1TF vulnerability Documentation/l1tf: Remove Yonah processors from not vulnerable list x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr() x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d x86: Don't include linux/irq.h from asm/hardirq.h x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d x86/irq: Demote irq_cpustat_t::__softirq_pending to u16 x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush() x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond' x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush() cpu/hotplug: detect SMT disabled by BIOS ... |
||
Rafael J. Wysocki
|
17bc3432e3 |
Merge branches 'pm-core', 'pm-domains', 'pm-sleep', 'acpi-pm' and 'pm-cpuidle'
Merge changes in the PM core, system-wide PM infrastructure, generic power domains (genpd) framework, ACPI PM infrastructure and cpuidle for 4.19. * pm-core: driver core: Add flag to autoremove device link on supplier unbind driver core: Rename flag AUTOREMOVE to AUTOREMOVE_CONSUMER * pm-domains: PM / Domains: Introduce dev_pm_domain_attach_by_name() PM / Domains: Introduce option to attach a device by name to genpd PM / Domains: dt: Add a power-domain-names property * pm-sleep: PM / reboot: Eliminate race between reboot and suspend PM / hibernate: Mark expected switch fall-through x86/power/hibernate_64: Remove VLA usage PM / hibernate: cast PAGE_SIZE to int when comparing with error code * acpi-pm: ACPI / PM: save NVS memory for ASUS 1025C laptop ACPI / PM: Default to s2idle in all machines supporting LP S0 * pm-cpuidle: ARM: cpuidle: silence error on driver registration failure |
||
Linus Torvalds
|
a66b4cd1e7 |
Merge branch 'work.open3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs open-related updates from Al Viro: - "do we need fput() or put_filp()" rules are gone - it's always fput() now. We keep track of that state where it belongs - in ->f_mode. - int *opened mess killed - in finish_open(), in ->atomic_open() instances and in fs/namei.c code around do_last()/lookup_open()/atomic_open(). - alloc_file() wrappers with saner calling conventions are introduced (alloc_file_clone() and alloc_file_pseudo()); callers converted, with much simplification. - while we are at it, saner calling conventions for path_init() and link_path_walk(), simplifying things inside fs/namei.c (both on open-related paths and elsewhere). * 'work.open3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits) few more cleanups of link_path_walk() callers allow link_path_walk() to take ERR_PTR() make path_init() unconditionally paired with terminate_walk() document alloc_file() changes make alloc_file() static do_shmat(): grab shp->shm_file earlier, switch to alloc_file_clone() new helper: alloc_file_clone() create_pipe_files(): switch the first allocation to alloc_file_pseudo() anon_inode_getfile(): switch to alloc_file_pseudo() hugetlb_file_setup(): switch to alloc_file_pseudo() ocxlflash_getfile(): switch to alloc_file_pseudo() cxl_getfile(): switch to alloc_file_pseudo() ... and switch shmem_file_setup() to alloc_file_pseudo() __shmem_file_setup(): reorder allocations new wrapper: alloc_file_pseudo() kill FILE_{CREATED,OPENED} switch atomic_open() and lookup_open() to returning 0 in all success cases document ->atomic_open() changes ->atomic_open(): return 0 in all success cases get rid of 'opened' in path_openat() and the helpers downstream ... |
||
Linus Torvalds
|
eac3411944 |
Merge branch 'x86/pti' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 PTI updates from Thomas Gleixner: "The Speck brigade sadly provides yet another large set of patches destroying the perfomance which we carefully built and preserved - PTI support for 32bit PAE. The missing counter part to the 64bit PTI code implemented by Joerg. - A set of fixes for the Global Bit mechanics for non PCID CPUs which were setting the Global Bit too widely and therefore possibly exposing interesting memory needlessly. - Protection against userspace-userspace SpectreRSB - Support for the upcoming Enhanced IBRS mode, which is preferred over IBRS. Unfortunately we dont know the performance impact of this, but it's expected to be less horrible than the IBRS hammering. - Cleanups and simplifications" * 'x86/pti' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits) x86/mm/pti: Move user W+X check into pti_finalize() x86/relocs: Add __end_rodata_aligned to S_REL x86/mm/pti: Clone kernel-image on PTE level for 32 bit x86/mm/pti: Don't clear permissions in pti_clone_pmd() x86/mm/pti: Fix 32 bit PCID check x86/mm/init: Remove freed kernel image areas from alias mapping x86/mm/init: Add helper for freeing kernel image pages x86/mm/init: Pass unconverted symbol addresses to free_init_pages() mm: Allow non-direct-map arguments to free_reserved_area() x86/mm/pti: Clear Global bit more aggressively x86/speculation: Support Enhanced IBRS on future CPUs x86/speculation: Protect against userspace-userspace spectreRSB x86/kexec: Allocate 8k PGDs for PTI Revert "perf/core: Make sure the ring-buffer is mapped in all page-tables" x86/mm: Remove in_nmi() warning from vmalloc_fault() x86/entry/32: Check for VM86 mode in slow-path check perf/core: Make sure the ring-buffer is mapped in all page-tables x86/pti: Check the return value of pti_user_pagetable_walk_pmd() x86/pti: Check the return value of pti_user_pagetable_walk_p4d() x86/entry/32: Add debug code to check entry/exit CR3 ... |
||
Linus Torvalds
|
203b4fc903 |
Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Thomas Gleixner: - Make lazy TLB mode even lazier to avoid pointless switch_mm() operations, which reduces CPU load by 1-2% for memcache workloads - Small cleanups and improvements all over the place * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm: Remove redundant check for kmem_cache_create() arm/asm/tlb.h: Fix build error implicit func declaration x86/mm/tlb: Make clear_asid_other() static x86/mm/tlb: Skip atomic operations for 'init_mm' in switch_mm_irqs_off() x86/mm/tlb: Always use lazy TLB mode x86/mm/tlb: Only send page table free TLB flush to lazy TLB CPUs x86/mm/tlb: Make lazy TLB mode lazier x86/mm/tlb: Restructure switch_mm_irqs_off() x86/mm/tlb: Leave lazy TLB mode at page table free time mm: Allocate the mm_cpumask (mm->cpu_bitmap[]) dynamically based on nr_cpu_ids x86/mm: Add TLB purge to free pmd/pte page interfaces ioremap: Update pgtable free interfaces with addr x86/mm: Disable ioremap free page handling on x86-PAE |
||
jie@chenjie6@huwei.com
|
24eee1e4c4 |
mm/memory.c: check return value of ioremap_prot
ioremap_prot() can return NULL which could lead to an oops. Link: http://lkml.kernel.org/r/1533195441-58594-1-git-send-email-chenjie6@huawei.com Signed-off-by: chen jie <chenjie6@huawei.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Li Zefan <lizefan@huawei.com> Cc: chenjie <chenjie6@huawei.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Pingfan Liu
|
55f2503c3b |
PM / reboot: Eliminate race between reboot and suspend
At present, "systemctl suspend" and "shutdown" can run in parrallel. A system can suspend after devices_shutdown(), and resume. Then the shutdown task goes on to power off. This causes many devices are not really shut off. Hence replacing reboot_mutex with system_transition_mutex (renamed from pm_mutex) to achieve the exclusion. The renaming of pm_mutex as system_transition_mutex can be better to reflect the purpose of the mutex. Signed-off-by: Pingfan Liu <kernelfans@gmail.com> Acked-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
||
Jens Axboe
|
05b9ba4b55 |
Linux 4.18-rc6
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAltU8z0eHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG5X8H/2fJr7m3k242+t76 sitwvx1eoPqTgryW59dRKm9IuXAGA+AjauvHzaz1QxomeQa50JghGWefD0eiJfkA 1AphQ/24EOiAbbVk084dAI/C2p122dE4D5Fy7CrfLnuouyrbFaZI5STbnrRct7sR 9deeYW0GDHO1Uenp4WDCj0baaqJqaevZ+7GG09DnWpya2nQtSkGBjqn6GpYmrfOU mqFuxAX8mEOW6cwK16y/vYtnVjuuMAiZ63/OJ8AQ6d6ArGLwAsdn7f8Fn4I4tEr2 L0d3CRLUyegms4++Dmlu05k64buQu46WlPhjCZc5/Ts4kjrNxBuHejj2/jeSnUSt vJJlibI= =42a5 -----END PGP SIGNATURE----- Merge tag 'v4.18-rc6' into for-4.19/block2 Pull in 4.18-rc6 to get the NVMe core AEN change to avoid a merge conflict down the line. Signed-of-by: Jens Axboe <axboe@kernel.dk> |
||
Dave Hansen
|
0d83432811 |
mm: Allow non-direct-map arguments to free_reserved_area()
free_reserved_area() takes pointers as arguments to show which addresses should be freed. However, it does this in a somewhat ambiguous way. If it gets a kernel direct map address, it always works. However, if it gets an address that is part of the kernel image alias mapping, it can fail. It fails if all of the following happen: * The specified address is part of the kernel image alias * Poisoning is requested (forcing a memset()) * The address is in a read-only portion of the kernel image The memset() fails on the read-only mapping, of course. free_reserved_area() *is* called both on the direct map and on kernel image alias addresses. We've just lucked out thus far that the kernel image alias areas it gets used on are read-write. I'm fairly sure this has been just a happy accident. It is quite easy to make free_reserved_area() work for all cases: just convert the address to a direct map address before doing the memset(), and do this unconditionally. There is little chance of a regression here because we previously did a virt_to_page() on the address for the memset, so we know these are not highmem pages for which virt_to_page() would fail. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@google.com Cc: aarcange@redhat.com Cc: jgross@suse.com Cc: jpoimboe@redhat.com Cc: gregkh@linuxfoundation.org Cc: peterz@infradead.org Cc: hughd@google.com Cc: torvalds@linux-foundation.org Cc: bp@alien8.de Cc: luto@kernel.org Cc: ak@linux.intel.com Cc: Kees Cook <keescook@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Link: https://lkml.kernel.org/r/20180802225826.1287AE3E@viggo.jf.intel.com |
||
Thomas Gleixner
|
f2701b77bb |
Merge 4.18-rc7 into master to pick up the KVM dependcy
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Jane Chu
|
eec3636ad1 |
ipc/shm.c add ->pagesize function to shm_vm_ops
Commit |
||
Kirill Tkhai
|
7e97de0b03 |
memcg: remove memcg_cgroup::id from IDR on mem_cgroup_css_alloc() failure
In case of memcg_online_kmem() failure, memcg_cgroup::id remains hashed
in mem_cgroup_idr even after memcg memory is freed. This leads to leak
of ID in mem_cgroup_idr.
This patch adds removal into mem_cgroup_css_alloc(), which fixes the
problem. For better readability, it adds a generic helper which is used
in mem_cgroup_alloc() and mem_cgroup_id_put_many() as well.
Link: http://lkml.kernel.org/r/152354470916.22460.14397070748001974638.stgit@localhost.localdomain
Fixes
|
||
Mike Rapoport
|
3e039c5c0a |
docs/mm: memblock: add overview documentation
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Mike Rapoport
|
48a833cc74 |
docs/mm: memblock: add kernel-doc comments for memblock_add[_node]
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Mike Rapoport
|
47cec4432a |
docs/mm: memblock: update kernel-doc comments
* make memblock_discard description kernel-doc compatible * add brief description for memblock_setclr_flag and describe its parameters * fixup return value descriptions Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Mike Rapoport
|
e1720fee27 |
mm/memblock: add a name for memblock flags enumeration
Since kernel-doc does not like anonymous enums the name is required for adding documentation. While on it, I've also updated all the function declarations to use 'enum memblock_flags' instead of unsigned long. Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Mike Rapoport
|
58faef9328 |
docs/mm: bootmem: add overview documentation
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Mike Rapoport
|
7c757207fa |
docs/mm: bootmem: fix kernel-doc warnings
Add descriptions of the return value where they were missing and fixup the syntax for present ones. Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Mike Rapoport
|
8108ad51fe |
docs/mm: nobootmem: fixup kernel-doc comments
* add kernel-doc marking to free_bootmem_late() description * add return value descriptions * mention that address parameter of free_bootmem{_node} is a physical address Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Mike Rapoport
|
04c450603f |
mm/bootmem: drop duplicated kernel-doc comments
Parts of the bootmem interfaces are duplicated in nobootmem.c along with the kernel-doc comments. There is no point to keep two copies of the comments, so let's drop the bootmem.c copy. Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Christoph Hellwig
|
59e0b520c7 |
kconfig: add a Memory Management options" menu
This moves all the options under a proper menu. Based on a patch from Randy Dunlap. Signed-off-by: Christoph Hellwig <hch@lst.de> Tested-by: Randy Dunlap <rdunlap@infradead.org> Acked-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> |
||
Hugh Dickins
|
53406ed1bc |
mm: delete historical BUG from zap_pmd_range()
Delete the old VM_BUG_ON_VMA() from zap_pmd_range(), which asserted
that mmap_sem must be held when splitting an "anonymous" vma there.
Whether that's still strictly true nowadays is not entirely clear,
but the danger of sometimes crashing on the BUG is now fairly clear.
Even with the new stricter rules for anonymous vma marking, the
condition it checks for can possible trigger. Commit
|
||
Markus Stockhausen
|
dc30b96ab6 |
readahead: stricter check for bdi io_pages
ondemand_readahead() checks bdi->io_pages to cap the maximum pages
that need to be processed. This works until the readit section. If
we would do an async only readahead (async size = sync size) and
target is at beginning of window we expand the pages by another
get_next_ra_size() pages. Btrace for large reads shows that kernel
always issues a doubled size read at the beginning of processing.
Add an additional check for io_pages in the lower part of the func.
The fix helps devices that hard limit bio pages and rely on proper
handling of max_hw_read_sectors (e.g. older FusionIO cards). For
that reason it could qualify for stable.
Fixes:
|
||
Li Wang
|
16e536ef47 |
zswap: re-check zswap_is_full() after do zswap_shrink()
/sys/../zswap/stored_pages keeps rising in a zswap test with "zswap.max_pool_percent=0" parameter. But it should not compress or store pages any more since there is no space in the compressed pool. Reproduce steps: 1. Boot kernel with "zswap.enabled=1" 2. Set the max_pool_percent to 0 # echo 0 > /sys/module/zswap/parameters/max_pool_percent 3. Do memory stress test to see if some pages have been compressed # stress --vm 1 --vm-bytes $mem_available"M" --timeout 60s 4. Watching the 'stored_pages' number increasing or not The root cause is: When zswap_max_pool_percent is set to 0 via kernel parameter, zswap_is_full() will always return true due to zswap_shrink(). But if the shinking is able to reclain a page successfully the code then proceeds to compressing/storing another page, so the value of stored_pages will keep changing. To solve the issue, this patch adds a zswap_is_full() check again after zswap_shrink() to make sure it's now under the max_pool_percent, and to not compress/store if we reached the limit. Link: http://lkml.kernel.org/r/20180530103936.17812-1-liwang@redhat.com Signed-off-by: Li Wang <liwang@redhat.com> Acked-by: Dan Streetman <ddstreet@ieee.org> Cc: Seth Jennings <sjenning@redhat.com> Cc: Huang Ying <huang.ying.caritas@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |