Syscall tracing must select kallsysms.
The arch code builds a table to find the syscall metadata by syscall
number. It needs the syscalls names resolution from the symbol table
to know which name found on the syscalls metadatas match a function
pointer from the arch sys_call_table.
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <1237151439-6755-4-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide basic callbacks to do syscall tracing.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <1236401580-5758-2-git-send-email-fweisbec@gmail.com>
[ simplified it to a trace_printk() for now. ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: faster and lighter tracing
Now that we have trace_bprintk() which is faster and consume lesser
memory than trace_printk() and has the same purpose, we can now drop
the old implementation in favour of the binary one from trace_bprintk(),
which means we move all the implementation of trace_bprintk() to
trace_printk(), so the Api doesn't change except that we must now use
trace_seq_bprintk() to print the TRACE_PRINT entries.
Some changes result of this:
- Previously, trace_bprintk depended of a single tracer and couldn't
work without. This tracer has been dropped and the whole implementation
of trace_printk() (like the module formats management) is now integrated
in the tracing core (comes with CONFIG_TRACING), though we keep the file
trace_printk (previously trace_bprintk.c) where we can find the module
management. Thus we don't overflow trace.c
- changes some parts to use trace_seq_bprintk() to print TRACE_PRINT entries.
- change a bit trace_printk/trace_vprintk macros to support non-builtin formats
constants, and fix 'const' qualifiers warnings. But this is all transparent for
developers.
- etc...
V2:
- Rebase against last changes
- Fix mispell on the changelog
V3:
- Rebase against last changes (moving trace_printk() to kernel.h)
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <1236356510-8381-5-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: save on memory for tracing
Current tracers are typically using a struct(like struct ftrace_entry,
struct ctx_switch_entry, struct special_entr etc...)to record a binary
event. These structs can only record a their own kind of events.
A new kind of tracer need a new struct and a lot of code too handle it.
So we need a generic binary record for events. This infrastructure
is for this purpose.
[fweisbec@gmail.com: rebase against latest -tip, make it safe while sched
tracing as reported by Steven Rostedt]
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <1236356510-8381-3-git-send-email-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Clean up menu structure, introduce TRACING_SUPPORT switch that signals
whether an architecture supports various instrumentation mechanisms.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch creates the event tracing infrastructure of ftrace.
It will create the files:
/debug/tracing/available_events
/debug/tracing/set_event
The available_events will list the trace points that have been
registered with the event tracer.
set_events will allow the user to enable or disable an event hook.
example:
# echo sched_wakeup > /debug/tracing/set_event
Will enable the sched_wakeup event (if it is registered).
# echo "!sched_wakeup" >> /debug/tracing/set_event
Will disable the sched_wakeup event (and only that event).
# echo > /debug/tracing/set_event
Will disable all events (notice the '>')
# cat /debug/tracing/available_events > /debug/tracing/set_event
Will enable all registered event hooks.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Impact: fix output of function tracer to be useful
The function tracer is pretty useless if KALLSYMS is not configured.
Unless you are good at reading hex values, the function tracer should
select the KALLSYMS configuration.
Also, the dynamic function tracer will fail its self test if KALLSYMS
is not selected.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Impact: cosmetic change in Kconfig menu layout
This patch was originally suggested by Peter Zijlstra, but seems it
was forgotten.
CONFIG_MMIOTRACE and CONFIG_MMIOTRACE_TEST were selectable
directly under the Kernel hacking / debugging menu in the kernel
configuration system. They were present only for x86 and x86_64.
Other tracers that use the ftrace tracing framework are in their own
sub-menu. This patch moves the mmiotrace configuration options there.
Since the Kconfig file, where the tracer menu is, is not architecture
specific, HAVE_MMIOTRACE_SUPPORT is introduced and provided only by
x86/x86_64. CONFIG_MMIOTRACE now depends on it.
Signed-off-by: Pekka Paalanen <pq@iki.fi>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add the missing pair tracing_{start,stop}_record_cmdline() to record well
the cmdline associated with pid.
Changes in v2:
- fix a build error, the sched_switch tracer is needed to record the
cmdline.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: build fix
The BLK_DEV_IO_TRACE entry used to be in block/Kconfig - which
file itself was dependent on CONFIG_BLOCK. But now the entry is
in kernel/trace/Kconfig - which is present even on !CONFIG_BLOCK.
So add a 'depends on BLOCK' to BLK_DEV_IO_TRACE.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: prevent deadlock in NMI
The ring buffers are not yet totally lockless with writing to
the buffer. When a writer crosses a page, it grabs a per cpu spinlock
to protect against a reader. The spinlocks taken by a writer are not
to protect against other writers, since a writer can only write to
its own per cpu buffer. The spinlocks protect against readers that
can touch any cpu buffer. The writers are made to be reentrant
with the spinlocks disabling interrupts.
The problem arises when an NMI writes to the buffer, and that write
crosses a page boundary. If it grabs a spinlock, it can be racing
with another writer (since disabling interrupts does not protect
against NMIs) or with a reader on the same CPU. Luckily, most of the
users are not reentrant and protects against this issue. But if a
user of the ring buffer becomes reentrant (which is what the ring
buffers do allow), if the NMI also writes to the ring buffer then
we risk the chance of a deadlock.
This patch moves the ftrace_nmi_enter called by nmi_enter() to the
ring buffer code. It replaces the current ftrace_nmi_enter that is
used by arch specific code to arch_ftrace_nmi_enter and updates
the Kconfig to handle it.
When an NMI is called, it will set a per cpu variable in the ring buffer
code and will clear it when the NMI exits. If a write to the ring buffer
crosses page boundaries inside an NMI, a trylock is used on the spin
lock instead. If the spinlock fails to be acquired, then the entry
is discarded.
This bug appeared in the ftrace work in the RT tree, where event tracing
is reentrant. This workaround solved the deadlocks that appeared there.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Now that we have a working ftrace=<tracer> function, make the boot
tracer get activated by it. This way we can turn it on or off without
recompiling the kernel, as well as keeping the selftests on. The
selftests are disabled whenever a default tracer starts running.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new tracer
The workqueue tracer provides some statistical informations
about each cpu workqueue thread such as the number of the
works inserted and executed since their creation. It can help
to evaluate the amount of work each of them have to perform.
For example it can help a developer to decide whether he should
choose a per cpu workqueue instead of a singlethreaded one.
It only traces statistical informations for now but it will probably later
provide event tracing too.
Such a tracer could help too, and be improved, to help rt priority sorted
workqueue development.
To have a snapshot of the workqueues state at any time, just do
cat /debugfs/tracing/trace_stat/workqueues
Ie:
1 125 125 reiserfs/1
1 0 0 scsi_tgtd/1
1 0 0 aio/1
1 0 0 ata/1
1 114 114 kblockd/1
1 0 0 kintegrityd/1
1 2147 2147 events/1
0 0 0 kpsmoused
0 105 105 reiserfs/0
0 0 0 scsi_tgtd/0
0 0 0 aio/0
0 0 0 ata_aux
0 0 0 ata/0
0 0 0 cqueue
0 0 0 kacpi_notify
0 0 0 kacpid
0 149 149 kblockd/0
0 0 0 kintegrityd/0
0 1000 1000 khelper
0 2270 2270 events/0
Changes in V2:
_ Drop the static array based on NR_CPU and dynamically allocate the stat array
with num_possible_cpus() and other cpu mask facilities....
_ Trace workqueue insertion at a bit lower level (insert_work instead of queue_work) to handle
even the workqueue barriers.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cosmetic change in Kconfig menu layout
This patch was originally suggested by Peter Zijlstra, but seems it
was forgotten.
CONFIG_MMIOTRACE and CONFIG_MMIOTRACE_TEST were selectable
directly under the Kernel hacking / debugging menu in the kernel
configuration system. They were present only for x86 and x86_64.
Other tracers that use the ftrace tracing framework are in their own
sub-menu. This patch moves the mmiotrace configuration options there.
Since the Kconfig file, where the tracer menu is, is not architecture
specific, HAVE_MMIOTRACE_SUPPORT is introduced and provided only by
x86/x86_64. CONFIG_MMIOTRACE now depends on it.
Signed-off-by: Pekka Paalanen <pq@iki.fi>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
kmemtrace now uses ftrace. This patch removes the relay version.
Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new tracer plugin
This patch adapts kmemtrace raw events tracing to the unified tracing API.
To enable and use this tracer, just do the following:
echo kmemtrace > /debugfs/tracing/current_tracer
cat /debugfs/tracing/trace
You will have the following output:
# tracer: kmemtrace
#
#
# ALLOC TYPE REQ GIVEN FLAGS POINTER NODE CALLER
# FREE | | | | | | | |
# |
type_id 1 call_site 18446744071565527833 ptr 18446612134395152256
type_id 0 call_site 18446744071565585597 ptr 18446612134405955584 bytes_req 4096 bytes_alloc 4096 gfp_flags 208 node -1
type_id 1 call_site 18446744071565585534 ptr 18446612134405955584
type_id 0 call_site 18446744071565585597 ptr 18446612134405955584 bytes_req 4096 bytes_alloc 4096 gfp_flags 208 node -1
type_id 0 call_site 18446744071565636711 ptr 18446612134345164672 bytes_req 240 bytes_alloc 240 gfp_flags 208 node -1
type_id 1 call_site 18446744071565585534 ptr 18446612134405955584
type_id 0 call_site 18446744071565585597 ptr 18446612134405955584 bytes_req 4096 bytes_alloc 4096 gfp_flags 208 node -1
type_id 0 call_site 18446744071565636711 ptr 18446612134345164912 bytes_req 240 bytes_alloc 240 gfp_flags 208 node -1
type_id 1 call_site 18446744071565585534 ptr 18446612134405955584
type_id 0 call_site 18446744071565585597 ptr 18446612134405955584 bytes_req 4096 bytes_alloc 4096 gfp_flags 208 node -1
type_id 0 call_site 18446744071565636711 ptr 18446612134345165152 bytes_req 240 bytes_alloc 240 gfp_flags 208 node -1
type_id 0 call_site 18446744071566144042 ptr 18446612134346191680 bytes_req 1304 bytes_alloc 1312 gfp_flags 208 node -1
type_id 1 call_site 18446744071565585534 ptr 18446612134405955584
type_id 0 call_site 18446744071565585597 ptr 18446612134405955584 bytes_req 4096 bytes_alloc 4096 gfp_flags 208 node -1
type_id 1 call_site 18446744071565585534 ptr 18446612134405955584
That was to stay backward compatible with the format output produced in
inux/tracepoint.h.
This is the default ouput, but note that I tried something else.
If you change an option:
echo kmem_minimalistic > /debugfs/trace_options
and then cat /debugfs/trace, you will have the following output:
# tracer: kmemtrace
#
#
# ALLOC TYPE REQ GIVEN FLAGS POINTER NODE CALLER
# FREE | | | | | | | |
# |
- C 0xffff88007c088780 file_free_rcu
+ K 4096 4096 000000d0 0xffff88007cad6000 -1 getname
- C 0xffff88007cad6000 putname
+ K 4096 4096 000000d0 0xffff88007cad6000 -1 getname
+ K 240 240 000000d0 0xffff8800790dc780 -1 d_alloc
- C 0xffff88007cad6000 putname
+ K 4096 4096 000000d0 0xffff88007cad6000 -1 getname
+ K 240 240 000000d0 0xffff8800790dc870 -1 d_alloc
- C 0xffff88007cad6000 putname
+ K 4096 4096 000000d0 0xffff88007cad6000 -1 getname
+ K 240 240 000000d0 0xffff8800790dc960 -1 d_alloc
+ K 1304 1312 000000d0 0xffff8800791d7340 -1 reiserfs_alloc_inode
- C 0xffff88007cad6000 putname
+ K 4096 4096 000000d0 0xffff88007cad6000 -1 getname
- C 0xffff88007cad6000 putname
+ K 992 1000 000000d0 0xffff880079045b58 -1 alloc_inode
+ K 768 1024 000080d0 0xffff88007c096400 -1 alloc_pipe_info
+ K 240 240 000000d0 0xffff8800790dca50 -1 d_alloc
+ K 272 320 000080d0 0xffff88007c088780 -1 get_empty_filp
+ K 272 320 000080d0 0xffff88007c088000 -1 get_empty_filp
Yeah I shall confess kmem_minimalistic should be: kmem_alternative.
Whatever, I find it more readable but this a personal opinion of course.
We can drop it if you want.
On the ALLOC/FREE column, + means an allocation and - a free.
On the type column, you have K = kmalloc, C = cache, P = page
I would like the flags to be GFP_* strings but that would not be easy to not
break the column with strings....
About the node...it seems to always be -1. I don't know why but that shouldn't
be difficult to find.
I moved linux/tracepoint.h to trace/tracepoint.h as well. I think that would
be more easy to find the tracer headers if they are all in their common
directory.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: enhancement to stack tracer
The stack tracer currently is either on when configured in or
off when it is not. It can not be disabled when it is configured on.
(besides disabling the function tracer that it uses)
This patch adds a way to enable or disable the stack tracer at
run time. It defaults off on bootup, but a kernel parameter 'stacktrace'
has been added to enable it on bootup.
A new sysctl has been added "kernel.stack_tracer_enabled" to let
the user enable or disable the stack tracer at run time.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: restructure code, cleanup
Remove BTS bits from the hw-branch-tracer (renamed from bts-tracer) and
use the ds interface.
Signed-off-by: Markus Metzger <markut.t.metzger@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
CONFIG_FUNCTION_GRAPH_TRACER depends on FUNCTION_TRACER already,
(turning it non-default) so it so making it default-n is pointless.
So enable it by default - it's a nice extension of the function tracer.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new "power-tracer" ftrace plugin
This patch adds a C/P-state ftrace plugin that will generate
detailed statistics about the C/P-states that are being used,
so that we can look at detailed decisions that the C/P-state
code is making, rather than the too high level "average"
that we have today.
An example way of using this is:
mount -t debugfs none /sys/kernel/debug
echo cstate > /sys/kernel/debug/tracing/current_tracer
echo 1 > /sys/kernel/debug/tracing/tracing_enabled
sleep 1
echo 0 > /sys/kernel/debug/tracing/tracing_enabled
cat /sys/kernel/debug/tracing/trace | perl scripts/trace/cstate.pl > out.svg
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
This patch changes the name of the "return function tracer" into
function-graph-tracer which is a more suitable name for a tracing
which makes one able to retrieve the ordered call stack during
the code flow.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: add new ftrace plugin
A prototype for a BTS ftrace plug-in.
The tracer collects branch trace in a cyclic buffer for each cpu.
The tracer is not configurable and the trace for each snapshot is
appended when doing cat /debug/tracing/trace.
This is a proof of concept that will be extended with future patches
to become a (hopefully) useful tool.
Signed-off-by: Markus Metzger <markus.t.metzger@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
User stack tracing is just implemented for x86, but it is not x86 specific.
Introduce a generic config flag, that is currently enabled only for x86.
When other arches implement it, they will have to
SELECT USER_STACKTRACE_SUPPORT.
Signed-off-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: feature to profile if statements
This patch adds a branch profiler for all if () statements.
The results will be found in:
/debugfs/tracing/profile_branch
For example:
miss hit % Function File Line
------- --------- - -------- ---- ----
0 1 100 x86_64_start_reservations head64.c 127
0 1 100 copy_bootdata head64.c 69
1 0 0 x86_64_start_kernel head64.c 111
32 0 0 set_intr_gate desc.h 319
1 0 0 reserve_ebda_region head.c 51
1 0 0 reserve_ebda_region head.c 47
0 1 100 reserve_ebda_region head.c 42
0 0 X maxcpus main.c 165
Miss means the branch was not taken. Hit means the branch was taken.
The percent is the percentage the branch was taken.
This adds a significant amount of overhead and should only be used
by those analyzing their system.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: clean up to make one profiler of like and unlikely tracer
The likely and unlikely profiler prints out the file and line numbers
of the annotated branches that it is profiling. It shows the number
of times it was correct or incorrect in its guess. Having two
different files or sections for that matter to tell us if it was a
likely or unlikely is pretty pointless. We really only care if
it was correct or not.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds the support for dynamic tracing on the function return tracer.
The whole difference with normal dynamic function tracing is that we don't need
to hook on a particular callback. The only pro that we want is to nop or set
dynamically the calls to ftrace_caller (which is ftrace_return_caller here).
Some security checks ensure that we are not trying to launch dynamic tracing for
return tracing while normal function tracing is already running.
An example of trace with getnstimeofday set as a filter:
ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns)
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: name change of unlikely tracer and profiler
Ingo Molnar suggested changing the config from UNLIKELY_PROFILE
to BRANCH_PROFILING. I never did like the "unlikely" name so I
went one step farther, and renamed all the unlikely configurations
to a "BRANCH" variant.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new likely/unlikely branch tracer
This patch adds a way to record the instances of the likely() and unlikely()
branch condition annotations.
When "unlikely" is set in /debugfs/tracing/iter_ctrl the unlikely conditions
will be added to any of the ftrace tracers. The change takes effect when
a new tracer is passed into the current_tracer file.
For example:
bash-3471 [003] 357.014755: [INCORRECT] sched_info_dequeued:sched_stats.h:177
bash-3471 [003] 357.014756: [correct] update_curr:sched_fair.c:489
bash-3471 [003] 357.014758: [correct] calc_delta_fair:sched_fair.c:411
bash-3471 [003] 357.014759: [correct] account_group_exec_runtime:sched_stats.h:356
bash-3471 [003] 357.014761: [correct] update_curr:sched_fair.c:489
bash-3471 [003] 357.014763: [INCORRECT] calc_delta_fair:sched_fair.c:411
bash-3471 [003] 357.014765: [correct] calc_delta_mine:sched.c:1279
Which shows the normal tracer heading, as well as whether the condition was
correct "[correct]" or was mistaken "[INCORRECT]", followed by the function,
file name and line number.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: new unlikely/likely profiler
Andrew Morton recently suggested having an in-kernel way to profile
likely and unlikely macros. This patch achieves that goal.
When configured, every(*) likely and unlikely macro gets a counter attached
to it. When the condition is hit, the hit and misses of that condition
are recorded. These numbers can later be retrieved by:
/debugfs/tracing/profile_likely - All likely markers
/debugfs/tracing/profile_unlikely - All unlikely markers.
# cat /debug/tracing/profile_unlikely | head
correct incorrect % Function File Line
------- --------- - -------- ---- ----
2167 0 0 do_arch_prctl process_64.c 832
0 0 0 do_arch_prctl process_64.c 804
2670 0 0 IS_ERR err.h 34
71230 5693 7 __switch_to process_64.c 673
76919 0 0 __switch_to process_64.c 639
43184 33743 43 __switch_to process_64.c 624
12740 64181 83 __switch_to process_64.c 594
12740 64174 83 __switch_to process_64.c 590
# cat /debug/tracing/profile_unlikely | \
awk '{ if ($3 > 25) print $0; }' |head -20
44963 35259 43 __switch_to process_64.c 624
12762 67454 84 __switch_to process_64.c 594
12762 67447 84 __switch_to process_64.c 590
1478 595 28 syscall_get_error syscall.h 51
0 2821 100 syscall_trace_leave ptrace.c 1567
0 1 100 native_smp_prepare_cpus smpboot.c 1237
86338 265881 75 calc_delta_fair sched_fair.c 408
210410 108540 34 calc_delta_mine sched.c 1267
0 54550 100 sched_info_queued sched_stats.h 222
51899 66435 56 pick_next_task_fair sched_fair.c 1422
6 10 62 yield_task_fair sched_fair.c 982
7325 2692 26 rt_policy sched.c 144
0 1270 100 pre_schedule_rt sched_rt.c 1261
1268 48073 97 pick_next_task_rt sched_rt.c 884
0 45181 100 sched_info_dequeued sched_stats.h 177
0 15 100 sched_move_task sched.c 8700
0 15 100 sched_move_task sched.c 8690
53167 33217 38 schedule sched.c 4457
0 80208 100 sched_info_switch sched_stats.h 270
30585 49631 61 context_switch sched.c 2619
# cat /debug/tracing/profile_likely | awk '{ if ($3 > 25) print $0; }'
39900 36577 47 pick_next_task sched.c 4397
20824 15233 42 switch_mm mmu_context_64.h 18
0 7 100 __cancel_work_timer workqueue.c 560
617 66484 99 clocksource_adjust timekeeping.c 456
0 346340 100 audit_syscall_exit auditsc.c 1570
38 347350 99 audit_get_context auditsc.c 732
0 345244 100 audit_syscall_entry auditsc.c 1541
38 1017 96 audit_free auditsc.c 1446
0 1090 100 audit_alloc auditsc.c 862
2618 1090 29 audit_alloc auditsc.c 858
0 6 100 move_masked_irq migration.c 9
1 198 99 probe_sched_wakeup trace_sched_switch.c 58
2 2 50 probe_wakeup trace_sched_wakeup.c 227
0 2 100 probe_wakeup_sched_switch trace_sched_wakeup.c 144
4514 2090 31 __grab_cache_page filemap.c 2149
12882 228786 94 mapping_unevictable pagemap.h 50
4 11 73 __flush_cpu_slab slub.c 1466
627757 330451 34 slab_free slub.c 1731
2959 61245 95 dentry_lru_del_init dcache.c 153
946 1217 56 load_elf_binary binfmt_elf.c 904
102 82 44 disk_put_part genhd.h 206
1 1 50 dst_gc_task dst.c 82
0 19 100 tcp_mss_split_point tcp_output.c 1126
As you can see by the above, there's a bit of work to do in rethinking
the use of some unlikelys and likelys. Note: the unlikely case had 71 hits
that were more than 25%.
Note: After submitting my first version of this patch, Andrew Morton
showed me a version written by Daniel Walker, where I picked up
the following ideas from:
1) Using __builtin_constant_p to avoid profiling fixed values.
2) Using __FILE__ instead of instruction pointers.
3) Using the preprocessor to stop all profiling of likely
annotations from vsyscall_64.c.
Thanks to Andrew Morton, Arjan van de Ven, Theodore Tso and Ingo Molnar
for their feed back on this patch.
(*) Not ever unlikely is recorded, those that are used by vsyscalls
(a few of them) had to have profiling disabled.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Theodore Tso <tytso@mit.edu>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: add new tracing plugin which can trace full (entry+exit) function calls
This tracer uses the low level function return ftrace plugin to
measure the execution time of the kernel functions.
The first field is the caller of the function, the second is the
measured function, and the last one is the execution time in
nanoseconds.
- v3:
- HAVE_FUNCTION_RET_TRACER have been added. Each arch that support ftrace return
should enable it.
- ftrace_return_stub becomes ftrace_stub.
- CONFIG_FUNCTION_RET_TRACER depends now on CONFIG_FUNCTION_TRACER
- Return traces printing can be used for other tracers on trace.c
- Adapt to the new tracing API (no more ctrl_update callback)
- Correct the check of "disabled" during insertion.
- Minor changes...
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: quick start and stop of function tracer
This patch adds a way to disable the function tracer quickly without
the need to run kstop_machine. It adds a new variable called
function_trace_stop which will stop the calls to functions from mcount
when set. This is just an on/off switch and does not handle recursion
like preempt_disable().
It's main purpose is to help other tracers/debuggers start and stop tracing
fuctions without the need to call kstop_machine.
The config option HAVE_FUNCTION_TRACE_MCOUNT_TEST is added for archs
that implement the testing of the function_trace_stop in the mcount
arch dependent code. Otherwise, the test is done in the C code.
x86 is the only arch at the moment that supports this.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: build fix on !stacktrace architectures
only select STACKTRACE on architectures that have STACKTRACE_SUPPORT
... since we also need to ifdef out the guts of ftrace_trace_stack().
We also want to disallow setting TRACE_ITER_STACKTRACE in trace_flags
on such configs, but that can wait.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: build fix on non-function-tracing architectures
The trace_nop is the tracer that is defined when no tracer is set in
the ftrace infrastructure.
The trace_nop was mistakenly selected by HAVE_FTRACE due to the confusion
between ftrace infrastructure and the ftrace function tracer (which has
been solved by renaming the function tracer).
This patch changes the select to the approriate TRACING.
This patch should fix compile errors on architectures that do not define
the FUNCTION_TRACER.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: build fix
If the boot tracer is selected but not the sched_switch,
there will be a build failure:
kernel/built-in.o: In function `boot_trace_init':
trace_boot.c:(.text+0x5ee38): undefined reference to `sched_switch_trace'
kernel/built-in.o: In function `disable_boot_trace':
(.text+0x5eee1): undefined reference to `tracing_stop_cmdline_record'
kernel/built-in.o: In function `enable_boot_trace':
(.text+0x5ef11): undefined reference to `tracing_start_cmdline_record'
This patch fixes it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We seem to have plenty tracers, lets create a menu and not clutter
the already cluttered debug menu more.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Frédéric Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Due to confusion between the ftrace infrastructure and the gcc profiling
tracer "ftrace", this patch renames the config options from FTRACE to
FUNCTION_TRACER. The other two names that are offspring from FTRACE
DYNAMIC_FTRACE and FTRACE_MCOUNT_RECORD will stay the same.
This patch was generated mostly by script, and partially by hand.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
A lot of tracers have HAVE_FTRACE as a dependent config where it
really should not. The HAVE_FTRACE is a misnomer (soon to be fixed)
and describes if the architecture has the function tracer (mcount)
implemented. The ftrace infrastructure is implemented in all archs.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.
The events recorded into the buffer have the following structure:
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.
There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).
RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
of a buffer page.
RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
is greater than the 27 bit delta can hold. We add another
32 bits, and record that in its own event (8 byte size).
RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
help keep the buffer timestamps in sync.
RINGBUF_TYPE_DATA: The event actually holds user data.
The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.
Example, data size of 7 bytes:
type = RINGBUF_TYPE_DATA
len = 2
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0..1]: <7 bytes of data> <1 byte empty>
This event is saved in 12 bytes of the buffer.
An event with 82 bytes of data:
type = RINGBUF_TYPE_DATA
len = 0
time_delta: <time-stamp> - <prev_event-time-stamp>
array[0]: 84 (Note the alignment)
array[1..14]: <82 bytes of data> <2 bytes empty>
The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.
Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.
ring_buffer_event_length(event): get the length of the event.
This is the size of the memory used to record this
event, and not the size of the data pay load.
ring_buffer_time_delta(event): get the time delta of the event
This returns the delta time stamp since the last event.
Note: Even though this is in the header, there should
be no reason to access this directly, accept
for debugging.
ring_buffer_event_data(event): get the data from the event
This is the function to use to get the actual data
from the event. Note, it is only a pointer to the
data inside the buffer. This data must be copied to
another location otherwise you risk it being written
over in the buffer.
ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.
ring_buffer_alloc: create a new ring buffer. Can choose between
overwrite or consumer/producer mode. Overwrite will
overwrite old data, where as consumer producer will
throw away new data if the consumer catches up with the
producer. The consumer/producer is the default.
ring_buffer_free: free the ring buffer.
ring_buffer_resize: resize the buffer. Changes the size of each cpu
buffer. Note, it is up to the caller to provide that
the buffer is not being used while this is happening.
This requirement may go away but do not count on it.
ring_buffer_lock_reserve: locks the ring buffer and allocates an
entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
the buffer.
ring_buffer_write: writes some data into the ring buffer.
ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
consume it. That is, this function increments the head
pointer.
ring_buffer_read_start: Start an iterator of a cpu buffer.
For now, this disables the cpu buffer, until you issue
a finish. This is just because we do not want the iterator
to be overwritten. This restriction may change in the future.
But note, this is used for static reading of a buffer which
is usually done "after" a trace. Live readings would want
to use the ring_buffer_consume above, which will not
disable the ring buffer.
ring_buffer_read_finish: Finishes the read iterator and reenables
the ring buffer.
ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
of the cpu buffer.
ring_buffer_size: returns the size in bytes of each cpu buffer.
Note, the real size is this times the number of CPUs.
ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty
ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
cpu buffer of another buffer. This is handy when you
want to take a snap shot of a running trace on just one
cpu. Having a backup buffer, to swap with facilitates this.
Ftrace max latencies use this.
ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.
ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.
ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.
ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
into nanosecs.
I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure. But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The tracing engine resets the ring buffer and the tracers touch it
too during self-tests. These self-tests happen during tracers registering
and work against boot tracing which is logging initcalls.
We have to disable tracing self-tests if the boot-tracer is selected.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Bring the entry to choose the boot tracer on the kernel config.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that the nop tracer is used as the default tracer by
replacing the "none" tracer, tracing engine depends on it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Steven Noonan <steven@uplinklabs.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
A no-op tracer which can serve two purposes:
1. A template for development of a new tracer.
2. A convenient way to see ftrace_printk() calls without
an irrelevant trace making the output messy.
[ mingo@elte.hu: resolved conflicts ]
Signed-off-by: Steven Noonan <steven@uplinklabs.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>