We really don't want all the arch code defining stuff
over and over.
[ anna-maria: Added missing GENERIC_CMOS_UPDATE switch ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@glx-um.de>
Cc: Paul Mundt <lethal@linux-sh.org>
Link: http://lkml.kernel.org/r/1337529587.3208.2.camel@dionysos
Acked-by: Sam Ravnborg <sam@ravnborg.org>
The Android alarm interface provides a settime call that sets both
the alarmtimer RTC device and CLOCK_REALTIME to the same value.
Since there may be multiple rtc devices, provide a hook to access the
one the alarmtimer infrastructure is using.
CC: Colin Cross <ccross@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Android Kernel Team <kernel-team@android.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
During resume, tick_resume_broadcast() programs the broadcast timer in
oneshot mode unconditionally. On the platforms where broadcast timer
is not really required, this will generate spurious broadcast timer
ticks upon resume. For example, on the always running apic timer
platforms with HPET, I see spurious hpet tick once every ~5minutes
(which is the 32-bit hpet counter wraparound time).
Similar to boot time, during resume make the oneshot mode setting of
the broadcast clock event device conditional on the state of active
broadcast users.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Tested-by: svenjoac@gmx.de
Cc: torvalds@linux-foundation.org
Cc: rjw@sisk.pl
Link: http://lkml.kernel.org/r/1334802459.28674.209.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Santosh found another trap when we avoid to initialize the broadcast
device in the switch_to_oneshot code. The broadcast device might be
still in SHUTDOWN state when we actually need to use it. That
obviously breaks, as set_next_event() is called on a shutdown
device. This did not break on x86, but Suresh analyzed it:
From the review, most likely on Sven's system we are force enabling
the hpet using the pci quirk's method very late. And in this case,
hpet_clockevent (which will be global_clock_event) handler can be
null, specifically as this platform might not be using deeper c-states
and using the reliable APIC timer.
Prior to commit 'fa4da365bc7772c', that handler will be set to
'tick_handle_oneshot_broadcast' when we switch the broadcast timer to
oneshot mode, even though we don't use it. Post commit
'fa4da365bc7772c', we stopped switching the broadcast mode to oneshot
as this is not really needed and his platform's global_clock_event's
handler will remain null. While on my SNB laptop, same is set to
'clockevents_handle_noop' because hpet gets enabled very early. (noop
handler on my platform set when the early enabled hpet timer gets
replaced by the lapic timer).
But the commit 'fa4da365bc7772c' tracked the broadcast timer mode in
the SW as oneshot, even though it didn't touch the HW timer. During
resume however, tick_resume_broadcast() saw the SW broadcast mode as
oneshot and actually programmed the broadcast device also into oneshot
mode. So this triggered the null pointer de-reference after the hpet
wraps around and depending on what the hpet counter is set to. On the
normal platforms where hpet gets enabled early we should be seeing a
spurious interrupt (in my SNB laptop I see one spurious interrupt
after around 5 minutes ;) which is 32-bit hpet counter wraparound
time), but that's a separate issue.
Enforce the mode setting when trying to set an event.
Reported-and-tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: torvalds@linux-foundation.org
Cc: svenjoac@gmx.de
Cc: rjw@sisk.pl
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1204181723350.2542@ionos
Sven Joachim reported, that suspend/resume on rc3 trips over a NULL
pointer dereference. Linus spotted the clockevent handler being NULL.
commit fa4da365b(clockevents: tTack broadcast device mode change in
tick_broadcast_switch_to_oneshot()) tried to fix a problem with the
broadcast device setup, which was introduced in commit 77b0d60c5(
clockevents: Leave the broadcast device in shutdown mode when not
needed).
The initial commit avoided to set up the broadcast device when no
broadcast request bits were set, but that left the broadcast device
disfunctional. In consequence deep idle states which need the
broadcast device were not woken up.
commit fa4da365b tried to fix that by initializing the state of the
broadcast facility, but that missed the fact, that nothing initializes
the event handler and some other state of the underlying clock event
device.
The fix is to revert both commits and make only the mode setting of
the clock event device conditional on the state of active broadcast
users.
That initializes everything except the low level device mode, but this
happens when the broadcast functionality is invoked by deep idle.
Reported-and-tested-by: Sven Joachim <svenjoac@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1204181205540.2542@ionos
In the commit 77b0d60c5a,
"clockevents: Leave the broadcast device in shutdown mode when not needed",
we were bailing out too quickly in tick_broadcast_switch_to_oneshot(),
with out tracking the broadcast device mode change to 'TICKDEV_MODE_ONESHOT'.
This breaks the platforms which need broadcast device oneshot services during
deep idle states. tick_broadcast_oneshot_control() thinks that it is
in periodic mode and fails to take proper decisions based on the
CLOCK_EVT_NOTIFY_BROADCAST_[ENTER, EXIT] notifications during deep
idle entry/exit.
Fix this by tracking the broadcast device mode as 'TICKDEV_MODE_ONESHOT',
before leaving the broadcast HW device in shutdown mode if there are no active
requests for the moment.
Reported-and-tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: johnstul@us.ibm.com
Link: http://lkml.kernel.org/r/1334011304.12400.81.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fix tick_nohz_restart() to not use a stale ktime_t "now" value when
calling tick_do_update_jiffies64(now).
If we reach this point in the loop it means that we crossed a tick
boundary since we grabbed the "now" timestamp, so at this point "now"
refers to a time in the old jiffy, so using the old value for "now" is
incorrect, and is likely to give us a stale jiffies value.
In particular, the first time through the loop the
tick_do_update_jiffies64(now) call is always a no-op, since the
caller, tick_nohz_restart_sched_tick(), will have already called
tick_do_update_jiffies64(now) with that "now" value.
Note that tick_nohz_stop_sched_tick() already uses the correct
approach: when we notice we cross a jiffy boundary, grab a new
timestamp with ktime_get(), and *then* update jiffies.
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1332875377-23014-1-git-send-email-ncardwell@google.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This option has been selected from arch code as it was assumed that
it's necessary to support oneshot mode clockevent devices. But it's
just a core internal helper to compile tick-oneshot.c if NOHZ or
HIG_RES_TIMERS are selected.
Reported-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull timer core updates from Thomas Gleixner.
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ia64: vsyscall: Add missing paranthesis
alarmtimer: Don't call rtc_timer_init() when CONFIG_RTC_CLASS=n
x86: vdso: Put declaration before code
x86-64: Inline vdso clock_gettime helpers
x86-64: Simplify and optimize vdso clock_gettime monotonic variants
kernel-time: fix s/then/than/ spelling errors
time: remove no_sync_cmos_clock
time: Avoid scary backtraces when warning of > 11% adj
alarmtimer: Make sure we initialize the rtctimer
ntp: Fix leap-second hrtimer livelock
x86, tsc: Skip refined tsc calibration on systems with reliable TSC
rtc: Provide flag for rtc devices that don't support UIE
ia64: vsyscall: Use seqcount instead of seqlock
x86: vdso: Use seqcount instead of seqlock
x86: vdso: Remove bogus locking in update_vsyscall_tz()
time: Remove bogus comments
time: Fix change_clocksource locking
time: x86: Fix race switching from vsyscall to non-vsyscall clock
rtc_timer_init() is not available when CONFIG_RTC_CLASS=n. Provide a
proper wrapper in the RTC section of alarmtimer.c
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Use than for comparisons, like more than.
CC: John Stultz <john.stultz@linaro.org>
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Commit 9863c90f68 (x86, vmware: Remove
deprecated VMI kernel support) removed the only place which set
no_sync_cmos_clock. Since that commit, this variable is never set.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Folks have been getting a number of warnings about time
adjustments > 11%. The WARN_ON leaves a big useless backtrace
so this patch removes it for a printk_once().
I'm still working to narrow down the cause of the > 11% adjustment.
Signed-off-by: John Stultz <john.stultz@linaro.org>
jonghwan Choi reported seeing warnings with the alarmtimer
code at suspend/resume time, and pointed out that the
rtctimer isn't being properly initialized.
This patch corrects this issue.
Reported-by: jonghwan Choi <jhbird.choi@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Pull input subsystem updates from Dmitry Torokhov:
"- we finally merged driver for USB version of Synaptics touchpads
(I guess most commonly found in IBM/Lenovo keyboard/touchpad combo);
- a bunch of new drivers for embedded platforms (Cypress
touchscreens, DA9052 OnKey, MAX8997-haptic, Ilitek ILI210x
touchscreens, TI touchscreen);
- input core allows clients to specify desired clock source for
timestamps on input events (EVIOCSCLOCKID ioctl);
- input core allows querying state of all MT slots for given event
code via EVIOCGMTSLOTS ioctl;
- various driver fixes and improvements."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input: (45 commits)
Input: ili210x - add support for Ilitek ILI210x based touchscreens
Input: altera_ps2 - use of_match_ptr()
Input: synaptics_usb - switch to module_usb_driver()
Input: convert I2C drivers to use module_i2c_driver()
Input: convert SPI drivers to use module_spi_driver()
Input: omap4-keypad - move platform_data to <linux/platform_data>
Input: kxtj9 - who_am_i check value and initial data rate fixes
Input: add driver support for MAX8997-haptic
Input: tegra-kbc - revise device tree support
Input: of_keymap - add device tree bindings for simple key matrices
Input: wacom - fix physical size calculation for 3rd-gen Bamboo
Input: twl4030-vibra - really switch from #if to #ifdef
Input: hp680_ts_input - ensure arguments to request_irq and free_irq are compatible
Input: max8925_onkey - avoid accessing input device too early
Input: max8925_onkey - allow to be used as a wakeup source
Input: atmel-wm97xx - convert to dev_pm_ops
Input: atmel-wm97xx - set driver owner
Input: add cyttsp touchscreen maintainer entry
Input: cyttsp - remove useless checks in cyttsp_probe()
Input: usbtouchscreen - add support for Data Modul EasyTouch TP 72037
...
Since commit 7dffa3c673 the ntp
subsystem has used an hrtimer for triggering the leapsecond
adjustment. However, this can cause a potential livelock.
Thomas diagnosed this as the following pattern:
CPU 0 CPU 1
do_adjtimex()
spin_lock_irq(&ntp_lock);
process_adjtimex_modes(); timer_interrupt()
process_adj_status(); do_timer()
ntp_start_leap_timer(); write_lock(&xtime_lock);
hrtimer_start(); update_wall_time();
hrtimer_reprogram(); ntp_tick_length()
tick_program_event() spin_lock(&ntp_lock);
clockevents_program_event()
ktime_get()
seq = req_seqbegin(xtime_lock);
This patch tries to avoid the problem by reverting back to not using
an hrtimer to inject leapseconds, and instead we handle the leapsecond
processing in the second_overflow() function.
The downside to this change is that on systems that support highres
timers, the leap second processing will occur on a HZ tick boundary,
(ie: ~1-10ms, depending on HZ) after the leap second instead of
possibly sooner (~34us in my tests w/ x86_64 lapic).
This patch applies on top of tip/timers/core.
CC: Sasha Levin <levinsasha928@gmail.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Diagnoised-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
change_clocksource() fails to grab locks or call timekeeping_update(),
which leaves a race window for time inconsistencies.
This adds proper locking and a call to timekeeping_update() to fix this.
CC: Andy Lutomirski <luto@amacapital.net>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
'long secs' is passed as divisor to div_s64, which accepts a 32bit
divisor. On 64bit machines that value is trimmed back from 8 bytes
back to 4, causing a divide by zero when the number is bigger than
(1 << 32) - 1 and all 32 lower bits are 0.
Use div64_long() instead.
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Cc: johnstul@us.ibm.com
Link: http://lkml.kernel.org/r/1331829374-31543-2-git-send-email-levinsasha928@gmail.com
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
ts->inidle is set by tick_nohz_idle_enter() and unset by
tick_nohz_idle_exit(). However these two calls are assumed
to be always paired. This means that by the time we call
tick_nohz_idle_exit(), ts->inidle is supposed to be always
set to 1.
Remove the checks for ts->inidle in tick_nohz_idle_exit().
This simplifies a bit the code and improves its debuggability
(ie: ensure the call is paired with a tick_nohz_idle_enter()
call).
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Ingo Molnar <mingo@elte.hu>
Link: http://lkml.kernel.org/r/1327427984-23282-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There is no reason to call update_ts_time_stat from tick_nohz_start_idle
anymore (after e0e37c20 sched: Eliminate the ts->idle_lastupdate field)
when we updated idle_lastupdate unconditionally.
We haven't set idle_active yet and do not provide last_update_time so
the whole call end up being just 2 wasted branches.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Link: http://lkml.kernel.org/r/1322755222-6951-1-git-send-email-mhocko@suse.cz
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Platforms with Always Running APIC Timer doesn't use the broadcast timer
but the kernel is leaving the broadcast timer (HPET in this case)
in oneshot mode.
On these platforms, before the switch to oneshot mode, broadcast device is
actually in shutdown mode. Code checks for empty tick_broadcast_mask and
avoids going into the periodic mode.
During switch to oneshot mode, add the same tick_broadcast_mask checks in the
tick_broadcast_switch_to_oneshot() and avoid the broadcast device going into
the oneshot mode.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: john stultz <johnstul@us.ibm.com>
Cc: venki@google.com
Link: http://lkml.kernel.org/r/1320452301.15071.16.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
As noted by Arve and others, since wall time can jump backwards, it is
difficult to use for input because one cannot determine if one event
occurred before another or for how long a key was pressed.
However, the timestamp field is part of the kernel ABI, and cannot be
changed without possibly breaking existing users.
This patch adds a new IOCTL that allows a clockid to be set in the
evdev_client struct that will specify which time base to use for event
timestamps (ie: CLOCK_MONOTONIC instead of CLOCK_REALTIME).
For now we only support CLOCK_MONOTONIC and CLOCK_REALTIME, but
in the future we could support other clockids if appropriate.
The default remains CLOCK_REALTIME, so we don't change the ABI.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Daniel Kurtz <djkurtz@google.com>
Signed-off-by: Dmitry Torokhov <dtor@mail.ru>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Keep all the interesting data in a single cache line.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Now that ntp.c's locking is reworked, we can remove most
of the xtime_lock usage in timekeeping.c
The remaining xtime_lock presence is really for jiffies access
and the global load calculation.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Use a ntp_lock spin lock to replace xtime_lock locking in ntp.c
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Currently the NTP managed tick_length value is accessed globally,
in preparations for locking cleanups, make sure it is accessed via
a function and mark it as static.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Move ntp_sycned to ntp.c and mark time_status as static.
Also yank function declaration for non-existant function.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Now that all the timekeeping variables are stored in
the timekeeper structure, add a new lock to protect the
structure.
For now, this lock nests under the xtime_lock for writes.
For readers, we don't need to take xtime_lock anymore.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Move global xtime_lock and timekeeping_suspended values up
to the top of timekeeping.c
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In preparation for locking cleanups, move raw_time into
timekeeper structure.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In preparation for locking cleanups, move xtime into
timekeeper structure.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In preparation for locking cleanups, move wall_to_monotonic
into the timekeeper structure.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Move total_sleep_time into the timekeeper structure in preparation
for locking cleanups
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (53 commits)
Kconfig: acpi: Fix typo in comment.
misc latin1 to utf8 conversions
devres: Fix a typo in devm_kfree comment
btrfs: free-space-cache.c: remove extra semicolon.
fat: Spelling s/obsolate/obsolete/g
SCSI, pmcraid: Fix spelling error in a pmcraid_err() call
tools/power turbostat: update fields in manpage
mac80211: drop spelling fix
types.h: fix comment spelling for 'architectures'
typo fixes: aera -> area, exntension -> extension
devices.txt: Fix typo of 'VMware'.
sis900: Fix enum typo 'sis900_rx_bufer_status'
decompress_bunzip2: remove invalid vi modeline
treewide: Fix comment and string typo 'bufer'
hyper-v: Update MAINTAINERS
treewide: Fix typos in various parts of the kernel, and fix some comments.
clockevents: drop unknown Kconfig symbol GENERIC_CLOCKEVENTS_MIGR
gpio: Kconfig: drop unknown symbol 'CS5535_GPIO'
leds: Kconfig: Fix typo 'D2NET_V2'
sound: Kconfig: drop unknown symbol ARCH_CLPS7500
...
Fix up trivial conflicts in arch/powerpc/platforms/40x/Kconfig (some new
kconfig additions, close to removed commented-out old ones)
* 'driver-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (73 commits)
arm: fix up some samsung merge sysdev conversion problems
firmware: Fix an oops on reading fw_priv->fw in sysfs loading file
Drivers:hv: Fix a bug in vmbus_driver_unregister()
driver core: remove __must_check from device_create_file
debugfs: add missing #ifdef HAS_IOMEM
arm: time.h: remove device.h #include
driver-core: remove sysdev.h usage.
clockevents: remove sysdev.h
arm: convert sysdev_class to a regular subsystem
arm: leds: convert sysdev_class to a regular subsystem
kobject: remove kset_find_obj_hinted()
m86k: gpio - convert sysdev_class to a regular subsystem
mips: txx9_sram - convert sysdev_class to a regular subsystem
mips: 7segled - convert sysdev_class to a regular subsystem
sh: dma - convert sysdev_class to a regular subsystem
sh: intc - convert sysdev_class to a regular subsystem
power: suspend - convert sysdev_class to a regular subsystem
power: qe_ic - convert sysdev_class to a regular subsystem
power: cmm - convert sysdev_class to a regular subsystem
s390: time - convert sysdev_class to a regular subsystem
...
Fix up conflicts with 'struct sysdev' removal from various platform
drivers that got changed:
- arch/arm/mach-exynos/cpu.c
- arch/arm/mach-exynos/irq-eint.c
- arch/arm/mach-s3c64xx/common.c
- arch/arm/mach-s3c64xx/cpu.c
- arch/arm/mach-s5p64x0/cpu.c
- arch/arm/mach-s5pv210/common.c
- arch/arm/plat-samsung/include/plat/cpu.h
- arch/powerpc/kernel/sysfs.c
and fix up cpu_is_hotpluggable() as per Greg in include/linux/cpu.h
This resolves the conflict in the arch/arm/mach-s3c64xx/s3c6400.c file,
and it fixes the build error in the arch/x86/kernel/microcode_core.c
file, that the merge did not catch.
The microcode_core.c patch was provided by Stephen Rothwell
<sfr@canb.auug.org.au> who was invaluable in the merge issues involved
with the large sysdev removal process in the driver-core tree.
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
sched/tracing: Add a new tracepoint for sleeptime
sched: Disable scheduler warnings during oopses
sched: Fix cgroup movement of waking process
sched: Fix cgroup movement of newly created process
sched: Fix cgroup movement of forking process
sched: Remove cfs bandwidth period check in tg_set_cfs_period()
sched: Fix load-balance lock-breaking
sched: Replace all_pinned with a generic flags field
sched: Only queue remote wakeups when crossing cache boundaries
sched: Add missing rcu_dereference() around ->real_parent usage
[S390] fix cputime overflow in uptime_proc_show
[S390] cputime: add sparse checking and cleanup
sched: Mark parent and real_parent as __rcu
sched, nohz: Fix missing RCU read lock
sched, nohz: Set the NOHZ_BALANCE_KICK flag for idle load balancer
sched, nohz: Fix the idle cpu check in nohz_idle_balance
sched: Use jump_labels for sched_feat
sched/accounting: Fix parameter passing in task_group_account_field
sched/accounting: Fix user/system tick double accounting
sched/accounting: Re-use scheduler statistics for the root cgroup
...
Fix up conflicts in
- arch/ia64/include/asm/cputime.h, include/asm-generic/cputime.h
usecs_to_cputime64() vs the sparse cleanups
- kernel/sched/fair.c, kernel/time/tick-sched.c
scheduler changes in multiple branches
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
cpu: Export cpu_up()
rcu: Apply ACCESS_ONCE() to rcu_boost() return value
Revert "rcu: Permit rt_mutex_unlock() with irqs disabled"
docs: Additional LWN links to RCU API
rcu: Augment rcu_batch_end tracing for idle and callback state
rcu: Add rcutorture tests for srcu_read_lock_raw()
rcu: Make rcutorture test for hotpluggability before offlining CPUs
driver-core/cpu: Expose hotpluggability to the rest of the kernel
rcu: Remove redundant rcu_cpu_stall_suppress declaration
rcu: Adaptive dyntick-idle preparation
rcu: Keep invoking callbacks if CPU otherwise idle
rcu: Irq nesting is always 0 on rcu_enter_idle_common
rcu: Don't check irq nesting from rcu idle entry/exit
rcu: Permit dyntick-idle with callbacks pending
rcu: Document same-context read-side constraints
rcu: Identify dyntick-idle CPUs on first force_quiescent_state() pass
rcu: Remove dynticks false positives and RCU failures
rcu: Reduce latency of rcu_prepare_for_idle()
rcu: Eliminate RCU_FAST_NO_HZ grace-period hang
rcu: Avoid needlessly IPIing CPUs at GP end
...
This isn't needed in the clockevents.c file, and the header file is
going away soon, so just remove the #include
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
After all sysdev classes are ported to regular driver core entities, the
sysdev implementation will be entirely removed from the kernel.
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Those two APIs were provided to optimize the calls of
tick_nohz_idle_enter() and rcu_idle_enter() into a single
irq disabled section. This way no interrupt happening in-between would
needlessly process any RCU job.
Now we are talking about an optimization for which benefits
have yet to be measured. Let's start simple and completely decouple
idle rcu and dyntick idle logics to simplify.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
It is assumed that rcu won't be used once we switch to tickless
mode and until we restart the tick. However this is not always
true, as in x86-64 where we dereference the idle notifiers after
the tick is stopped.
To prepare for fixing this, add two new APIs:
tick_nohz_idle_enter_norcu() and tick_nohz_idle_exit_norcu().
If no use of RCU is made in the idle loop between
tick_nohz_enter_idle() and tick_nohz_exit_idle() calls, the arch
must instead call the new *_norcu() version such that the arch doesn't
need to call rcu_idle_enter() and rcu_idle_exit().
Otherwise the arch must call tick_nohz_enter_idle() and
tick_nohz_exit_idle() and also call explicitly:
- rcu_idle_enter() after its last use of RCU before the CPU is put
to sleep.
- rcu_idle_exit() before the first use of RCU after the CPU is woken
up.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: David Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The tick_nohz_stop_sched_tick() function, which tries to delay
the next timer tick as long as possible, can be called from two
places:
- From the idle loop to start the dytick idle mode
- From interrupt exit if we have interrupted the dyntick
idle mode, so that we reprogram the next tick event in
case the irq changed some internal state that requires this
action.
There are only few minor differences between both that
are handled by that function, driven by the ts->inidle
cpu variable and the inidle parameter. The whole guarantees
that we only update the dyntick mode on irq exit if we actually
interrupted the dyntick idle mode, and that we enter in RCU extended
quiescent state from idle loop entry only.
Split this function into:
- tick_nohz_idle_enter(), which sets ts->inidle to 1, enters
dynticks idle mode unconditionally if it can, and enters into RCU
extended quiescent state.
- tick_nohz_irq_exit() which only updates the dynticks idle mode
when ts->inidle is set (ie: if tick_nohz_idle_enter() has been called).
To maintain symmetry, tick_nohz_restart_sched_tick() has been renamed
into tick_nohz_idle_exit().
This simplifies the code and micro-optimize the irq exit path (no need
for local_irq_save there). This also prepares for the split between
dynticks and rcu extended quiescent state logics. We'll need this split to
further fix illegal uses of RCU in extended quiescent states in the idle
loop.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: David Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Earlier versions of RCU used the scheduling-clock tick to detect idleness
by checking for the idle task, but handled idleness differently for
CONFIG_NO_HZ=y. But there are now a number of uses of RCU read-side
critical sections in the idle task, for example, for tracing. A more
fine-grained detection of idleness is therefore required.
This commit presses the old dyntick-idle code into full-time service,
so that rcu_idle_enter(), previously known as rcu_enter_nohz(), is
always invoked at the beginning of an idle loop iteration. Similarly,
rcu_idle_exit(), previously known as rcu_exit_nohz(), is always invoked
at the end of an idle-loop iteration. This allows the idle task to
use RCU everywhere except between consecutive rcu_idle_enter() and
rcu_idle_exit() calls, in turn allowing architecture maintainers to
specify exactly where in the idle loop that RCU may be used.
Because some of the userspace upcall uses can result in what looks
to RCU like half of an interrupt, it is not possible to expect that
the irq_enter() and irq_exit() hooks will give exact counts. This
patch therefore expands the ->dynticks_nesting counter to 64 bits
and uses two separate bitfields to count process/idle transitions
and interrupt entry/exit transitions. It is presumed that userspace
upcalls do not happen in the idle loop or from usermode execution
(though usermode might do a system call that results in an upcall).
The counter is hard-reset on each process/idle transition, which
avoids the interrupt entry/exit error from accumulating. Overflow
is avoided by the 64-bitness of the ->dyntick_nesting counter.
This commit also adds warnings if a non-idle task asks RCU to enter
idle state (and these checks will need some adjustment before applying
Frederic's OS-jitter patches (http://lkml.org/lkml/2011/10/7/246).
In addition, validation of ->dynticks and ->dynticks_nesting is added.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The expiry function compares the timer against current time and does
not expire the timer when the expiry time is >= now. That's wrong. If
the timer is set for now, then it must expire.
Make the condition expiry > now for breaking out the loop.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: stable@kernel.org
Introduce nr_busy_cpus in the struct sched_group_power [Not in sched_group
because sched groups are duplicated for the SD_OVERLAP scheduler domain]
and for each cpu that enters and exits idle, this parameter will
be updated in each scheduler group of the scheduler domain that this cpu
belongs to.
To avoid the frequent update of this state as the cpu enters
and exits idle, the update of the stat during idle exit is
delayed to the first timer tick that happens after the cpu becomes busy.
This is done using NOHZ_IDLE flag in the struct rq's nohz_flags.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20111202010832.555984323@sbsiddha-desk.sc.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clockevents: Set noop handler in clockevents_exchange_device()
tick-broadcast: Stop active broadcast device when replacing it
clocksource: Fix bug with max_deferment margin calculation
rtc: Fix some bugs that allowed accumulating time drift in suspend/resume
rtc: Disable the alarm in the hardware
If a device is shutdown, then there might be a pending interrupt,
which will be processed after we reenable interrupts, which causes the
original handler to be run. If the old handler is the (broadcast)
periodic handler the shutdown state might hang the kernel completely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
When a better rated broadcast device is installed, then the current
active device is not disabled, which results in two running broadcast
devices.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
In order to leave a margin of 12.5% we should >> 3 not >> 5.
CC: stable@kernel.org
Signed-off-by: Yang Honggang (Joseph) <eagle.rtlinux@gmail.com>
[jstultz: Modified commit subject]
Signed-off-by: John Stultz <john.stultz@linaro.org>
There's no Kconfig symbol GENERIC_CLOCKEVENTS_MIGR, so the check for it
will always fail.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
hrtimer: Fix extra wakeups from __remove_hrtimer()
timekeeping: add arch_offset hook to ktime_get functions
clocksource: Avoid selecting mult values that might overflow when adjusted
time: Improve documentation of timekeeeping_adjust()
Fixup spelling issues caught by Richard
CC: Richard Cochran <richardcochran@gmail.com>
CC: Chen Jie <chenj@lemote.com>
CC: Steven Rostedt <rostedt@goodmis.org>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The whole point of this function is to return a value not touched by
NTP; unfortunately the comment got copied wholesale without adjustment
from the timekeeping_get_ns function above.
Signed-off-by: Dan McGee <dpmcgee@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
ktime_get and ktime_get_ts were calling timekeeping_get_ns()
but later they were not calling arch_gettimeoffset() so architectures
using this mechanism returned 0 ns when calling these functions.
This happened for example when running Busybox's ping which calls
syscall(__NR_clock_gettime, CLOCK_MONOTONIC, ts) which eventually
calls ktime_get. As a result the returned ping travel time was zero.
CC: stable@kernel.org
Signed-off-by: Hector Palacios <hector.palacios@digi.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
For some frequencies, the clocks_calc_mult_shift() function will
unfortunately select mult values very close to 0xffffffff. This
has the potential to overflow when NTP adjusts the clock, adding
to the mult value.
This patch adds a clocksource.maxadj value, which provides
an approximation of an 11% adjustment(NTP limits adjustments to
500ppm and the tick adjustment is limited to 10%), which could
be made to the clocksource.mult value. This is then used to both
check that the current mult value won't overflow/underflow, as
well as warning us if the timekeeping_adjust() code pushes over
that 11% boundary.
v2: Fix max_adjustment calculation, and improve WARN_ONCE
messages.
v3: Don't warn before maxadj has actually been set
CC: Yong Zhang <yong.zhang0@gmail.com>
CC: David Daney <ddaney.cavm@gmail.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Chen Jie <chenj@lemote.com>
CC: zhangfx <zhangfx@lemote.com>
CC: stable@kernel.org
Reported-by: Chen Jie <chenj@lemote.com>
Reported-by: zhangfx <zhangfx@lemote.com>
Tested-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
These files were getting <linux/module.h> via an implicit non-obvious
path, but we want to crush those out of existence since they cost
time during compiles of processing thousands of lines of headers
for no reason. Give them the lightweight header that just contains
the EXPORT_SYMBOL infrastructure.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
After getting a number of questions in private emails about the
math around admittedly very complex timekeeping_adjust() and
timekeeping_big_adjust(), I figure the code needs some better
comments.
Hopefully the explanations are clear enough and don't muddy the
water any worse.
Still needs documentation for ntp_error, but I couldn't recall
exactly the full explanation behind the code that's there
(although I do recall once working it out when Roman first
proposed it). Given a bit more time I can probably work it out,
but I don't want to hold back this documentation until then.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Chen Jie <chenj@lemote.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1319764362-32367-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
time, s390: Get rid of compile warning
dw_apb_timer: constify clocksource name
time: Cleanup old CONFIG_GENERIC_TIME references that snuck in
time: Change jiffies_to_clock_t() argument type to unsigned long
alarmtimers: Fix error handling
clocksource: Make watchdog reset lockless
posix-cpu-timers: Cure SMP accounting oddities
s390: Use direct ktime path for s390 clockevent device
clockevents: Add direct ktime programming function
clockevents: Make minimum delay adjustments configurable
nohz: Remove "Switched to NOHz mode" debugging messages
proc: Consider NO_HZ when printing idle and iowait times
nohz: Make idle/iowait counter update conditional
nohz: Fix update_ts_time_stat idle accounting
cputime: Clean up cputime_to_usecs and usecs_to_cputime macros
alarmtimers: Rework RTC device selection using class interface
alarmtimers: Add try_to_cancel functionality
alarmtimers: Add more refined alarm state tracking
alarmtimers: Remove period from alarm structure
alarmtimers: Remove interval cap limit hack
...
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
rcu: Move propagation of ->completed from rcu_start_gp() to rcu_report_qs_rsp()
rcu: Remove rcu_needs_cpu_flush() to avoid false quiescent states
rcu: Wire up RCU_BOOST_PRIO for rcutree
rcu: Make rcu_torture_boost() exit loops at end of test
rcu: Make rcu_torture_fqs() exit loops at end of test
rcu: Permit rt_mutex_unlock() with irqs disabled
rcu: Avoid having just-onlined CPU resched itself when RCU is idle
rcu: Suppress NMI backtraces when stall ends before dump
rcu: Prohibit grace periods during early boot
rcu: Simplify unboosting checks
rcu: Prevent early boot set_need_resched() from __rcu_pending()
rcu: Dump local stack if cannot dump all CPUs' stacks
rcu: Move __rcu_read_unlock()'s barrier() within if-statement
rcu: Improve rcu_assign_pointer() and RCU_INIT_POINTER() documentation
rcu: Make rcu_assign_pointer() unconditionally insert a memory barrier
rcu: Make rcu_implicit_dynticks_qs() locals be correct size
rcu: Eliminate in_irq() checks in rcu_enter_nohz()
nohz: Remove nohz_cpu_mask
rcu: Document interpretation of RCU-lockdep splats
rcu: Allow rcutorture's stat_interval parameter to be changed at runtime
...
RCU no longer uses this global variable, nor does anyone else. This
commit therefore removes this variable. This reduces memory footprint
and also removes some atomic instructions and memory barriers from
the dyntick-idle path.
Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
commit 8bc0daf (alarmtimers: Rework RTC device selection using class
interface) did not implement required error checks. Add them.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The table_lock lock can be taken in atomic context and therefore
cannot be preempted on -rt - annotate it.
In mainline this change documents the low level nature of
the lock - otherwise there's no functional difference. Lockdep
and Sparse checking will work as usual.
Reported-by: Andreas Sundebo <kernel@sundebo.dk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Andreas Sundebo <kernel@sundebo.dk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
KGDB needs to trylock watchdog_lock when trying to reset the
clocksource watchdog after the system has been stopped to avoid a
potential deadlock. When the trylock fails TSC usually becomes
unstable.
We can be more clever by using an atomic counter and checking it in
the clocksource_watchdog callback. We restart the watchdog whenever
the counter is > 0 and only decrement the counter when we ran through
a full update cycle.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <johnstul@us.ibm.com>
Acked-by: Jason Wessel <jason.wessel@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1109121326280.2723@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There is at least one architecture (s390) with a sane clockevent device
that can be programmed with the equivalent of a ktime. No need to create
a delta against the current time, the ktime can be used directly.
A new clock device function 'set_next_ktime' is introduced that is called
with the unmodified ktime for the timer if the clock event device has the
CLOCK_EVT_FEAT_KTIME bit set.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: john stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/20110823133142.815350967@de.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The automatic increase of the min_delta_ns of a clockevents device
should be done in the clockevents code as the minimum delay is an
attribute of the clockevents device.
In addition not all architectures want the automatic adjustment, on a
massively virtualized system it can happen that the programming of a
clock event fails several times in a row because the virtual cpu has
been rescheduled quickly enough. In that case the minimum delay will
erroneously be increased with no way back. The new config symbol
GENERIC_CLOCKEVENTS_MIN_ADJUST is used to enable the automatic
adjustment. The config option is selected only for x86.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: john stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/20110823133142.494157493@de.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When performing cpu hotplug tests the kernel printk log buffer gets flooded
with pointless "Switched to NOHz mode..." messages. Especially when afterwards
analyzing a dump this might have removed more interesting stuff out of the
buffer.
Assuming that switching to NOHz mode simply works just remove the printk.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Link: http://lkml.kernel.org/r/20110823112046.GB2540@osiris.boeblingen.de.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
get_cpu_{idle,iowait}_time_us update idle/iowait counters
unconditionally if the given CPU is in the idle loop.
This doesn't work well outside of CPU governors which are singletons
so nobody (except for IRQ) can race with them.
We will need to use both functions from /proc/stat handler to properly
handle nohz idle/iowait times.
Make the update depend on a non NULL last_update_time argument.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Dave Jones <davej@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Link: http://lkml.kernel.org/r/11f23179472635ce52e78921d47a20216b872f23.1314172057.git.mhocko@suse.cz
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
update_ts_time_stat currently updates idle time even if we are in
iowait loop at the moment. The only real users of the idle counter
(via get_cpu_idle_time_us) are CPU governors and they expect to get
cumulative time for both idle and iowait times.
The value (idle_sleeptime) is also printed to userspace by print_cpu
but it prints both idle and iowait times so the idle part is misleading.
Let's clean this up and fix update_ts_time_stat to account both counters
properly and update consumers of idle to consider iowait time as well.
If we do this we might use get_cpu_{idle,iowait}_time_us from other
contexts as well and we will get expected values.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Dave Jones <davej@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Link: http://lkml.kernel.org/r/e9c909c221a8da402c4da07e4cd968c3218f8eb1.1314172057.git.mhocko@suse.cz
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This allows cleaner detection of the RTC device being registered, rather
then probing any time someone calls alarmtimer_get_rtcdev.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
There's a number of edge cases when cancelling a alarm, so
to be sure we accurately do so, introduce try_to_cancel, which
returns proper failure errors if it cannot. Also modify cancel
to spin until the alarm is properly disabled.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In order to allow for functionality like try_to_cancel, add
more refined state tracking (similar to hrtimers).
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Now that periodic alarmtimers are managed by the handler function,
remove the period value from the alarm structure and let the handlers
manage the interval on their own.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Now that the alarmtimers code has been refactored, the interval
cap limit can be removed.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In order to avoid wasting time expiring and re-adding very high freq
periodic alarmtimers, introduce alarm_forward() which is similar to
hrtimer_forward and moves the timer to the next future expiration time
and returns the number of overruns.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This patch pushes the periodic alarmtimer re-arming down into the alarmtimer
handler, mimicking how hrtimers handle this.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In order to properly fix the denial of service issue with high freq
periodic alarm timers, we need to push the re-arming logic into the
alarm timer handler, much as the hrtimer code does.
This patch introduces alarmtimer_restart enum and changes the
alarmtimer handler declarations to use it as a return value. Further,
to ease following changes, it extends the alarmtimer handler functions
to also take the time at expiration. No logic is yet modified.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Its possible to jam up the alarm timers by setting very small interval
timers, which will cause the alarmtimer subsystem to spend all of its time
firing and restarting timers. This can effectivly lock up a box.
A deeper fix is needed, closely mimicking the hrtimer code, but for now
just cap the interval to 100us to avoid userland hanging the system.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: stable@kernel.org
Signed-off-by: John Stultz <john.stultz@linaro.org>
Following common_timer_get, zero out the itimerspec passed in.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: stable@kernel.org
Signed-off-by: John Stultz <john.stultz@linaro.org>
We don't check if old_setting is non null before assigning it, so
correct this.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: stable@kernel.org
Signed-off-by: John Stultz <john.stultz@linaro.org>
Terribly embarassing. Don't know how I committed this, but its
KERN_WARNING not KERN_WARN.
This fixes the following compile error:
kernel/time/timekeeping.c: In function ‘__timekeeping_inject_sleeptime’:
kernel/time/timekeeping.c:608: error: ‘KERN_WARN’ undeclared (first use in this function)
kernel/time/timekeeping.c:608: error: (Each undeclared identifier is reported only once
kernel/time/timekeeping.c:608: error: for each function it appears in.)
kernel/time/timekeeping.c:608: error: expected ‘)’ before string constant
make[2]: *** [kernel/time/timekeeping.o] Error 1
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Because the read_persistent_clock interface is usually backed by
only a second granular interface, each time we read from the persistent
clock for suspend/resume, we introduce a half second (on average) of error.
In order to avoid this error accumulating as the system is suspended
over and over, this patch measures the time delta between the persistent
clock and the system CLOCK_REALTIME.
If the delta is less then 2 seconds from the last suspend, we compensate
by using the previous time delta (keeping it close). If it is larger
then 2 seconds, we assume the clock was set or has been changed, so we
do no correction and update the delta.
Note: If NTP is running, ths could seem to "fight" with the NTP corrected
time, where as if the system time was off by 1 second, and NTP slewed the
value in, a suspend/resume cycle could undo this correction, by trying to
restore the previous offset from the persistent clock. However, without
this patch, since each read could cause almost a full second worth of
error, its possible to get almost 2 seconds of error just from the
suspend/resume cycle alone, so this about equal to any offset added by
the compensation.
Further on systems that suspend/resume frequently, this should keep time
closer then NTP could compensate for if the errors were allowed to
accumulate.
Credits to Arve Hjønnevåg for suggesting this solution.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Arve suggested making sure we catch possible negative sleep time
intervals that could be passed into timekeeping_inject_sleeptime.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Toralf Förster and Richard Weinberger noted that if there is
no RTC device, the alarm timers core prints out an annoying
"ALARM timers will not wake from suspend" message.
This warning has been removed in a previous patch, however
the issue still remains: The original idea was to support
alarm timers even if there was no rtc device, as long as the
system didn't go into suspend.
However, after further consideration, communicating to the application
that alarmtimers are not fully functional seems like the better
solution.
So this patch makes it so we return -ENOTSUPP to any posix _ALARM
clockid calls if there is no backing RTC device on the system.
Further this changes the behavior where when there is no rtc device
we will check for one on clock_getres, clock_gettime, timer_create,
and timer_nsleep instead of on suspend.
CC: Toralf Förster <toralf.foerster@gmx.de>
CC: Richard Weinberger <richard@nod.at
CC: Peter Zijlstra <peterz@infradead.org>
CC: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Reported by: Richard Weinberger <richard@nod.at>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The alarmtimers code currently picks a rtc device to use at
late init time. However, if your rtc driver is loaded as a module,
it may be registered after the alarmtimers late init code, leaving
the alarmtimers nonfunctional.
This patch moves the the rtcdevice selection to when we actually try
to use it, allowing us to make use of rtc modules that may have been
loaded at any point since bootup.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Meelis Roos <mroos@ut.ee>
Reported-by: Meelis Roos <mroos@ut.ee>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The clocksource watchdog code is interruptible and it has been
observed that this can trigger false positives which disable the TSC.
The reason is that an interrupt storm or a long running interrupt
handler between the read of the watchdog source and the read of the
TSC brings the two far enough apart that the delta is larger than the
unstable treshold. Move both reads into a short interrupt disabled
region to avoid that.
Reported-and-tested-by: Vernon Mauery <vernux@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
For UP it's stupid to request an initialized cpumask for the clock
event devices. Though we need the mask set even on UP to avoid a
horrible ifdeffery especially in the broadcast code.
For SMP we can at least try to survive with a warning and set the
cpumask of the cpu we're running on. That gives a decent chance to
bring the machine up and retrieve the debug info.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Walleij <linus.walleij@linaro.org
Cc: Lee Jones <lee.jones@linaro.org>
Cc: Russell King - ARM Linux <linux@arm.linux.org.uk>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Instead of iterating over all possible timer bases avoid it by marking
the active bases in the cpu base.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
hrtimer: Make lookup table const
RTC: Disable CONFIG_RTC_CLASS from being built as a module
timers: Fix alarmtimer build issues when CONFIG_RTC_CLASS=n
timers: Remove delayed irqwork from alarmtimers implementation
timers: Improve alarmtimer comments and minor fixes
timers: Posix interface for alarm-timers
timers: Introduce in-kernel alarm-timer interface
timers: Add rb_init_node() to allow for stack allocated rb nodes
time: Add timekeeping_inject_sleeptime
* 'timers-clockevents-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: hpet: Cleanup the clockevents init and register code
x86: Convert PIT to clockevents_config_and_register()
clockevents: Provide interface to reconfigure an active clock event device
clockevents: Provide combined configure and register function
clockevents: Restructure clock_event_device members
clocksource: Get rid of the hardcoded 5 seconds sleep time limit
clocksource: Restructure clocksource struct members
Some ARM SoCs have clock event devices which have their frequency
modified due to frequency scaling. Provide an interface which allows
to reconfigure an active device. After reconfiguration reprogram the
current pending event.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: LAK <linux-arm-kernel@lists.infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Link: http://lkml.kernel.org/r/%3C20110518210136.437459958%40linutronix.de%3E
All clockevent devices have the same open coded initialization
functions. Provide an interface which does all necessary
initialization in the core code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Link: http://lkml.kernel.org/r/%3C20110518210136.331975870%40linutronix.de%3E
Slow clocksources can have a way longer sleep time than 5 seconds and
even fast ones can easily cope with 600 seconds and still maintain
proper accuracy.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Link: http://lkml.kernel.org/r/%3C20110518210136.109811585%40linutronix.de%3E
The first cpu which switches from periodic to oneshot mode switches
also the broadcast device into oneshot mode. The broadcast device
serves as a backup for per cpu timers which stop in deeper
C-states. To avoid starvation of the cpus which might be in idle and
depend on broadcast mode it marks the other cpus as broadcast active
and sets the brodcast expiry value of those cpus to the next tick.
The oneshot mode broadcast bit for the other cpus is sticky and gets
only cleared when those cpus exit idle. If a cpu was not idle while
the bit got set in consequence the bit prevents that the broadcast
device is armed on behalf of that cpu when it enters idle for the
first time after it switched to oneshot mode.
In most cases that goes unnoticed as one of the other cpus has usually
a timer pending which keeps the broadcast device armed with a short
timeout. Now if the only cpu which has a short timer active has the
bit set then the broadcast device will not be armed on behalf of that
cpu and will fire way after the expected timer expiry. In the case of
Christians bug report it took ~145 seconds which is about half of the
wrap around time of HPET (the limit for that device) due to the fact
that all other cpus had no timers armed which expired before the 145
seconds timeframe.
The solution is simply to clear the broadcast active bit
unconditionally when a cpu switches to oneshot mode after the first
cpu switched the broadcast device over. It's not idle at that point
otherwise it would not be executing that code.
[ I fundamentally hate that broadcast crap. Why the heck thought some
folks that when going into deep idle it's a brilliant concept to
switch off the last device which brings the cpu back from that
state? ]
Thanks to Christian for providing all the valuable debug information!
Reported-and-tested-by: Christian Hoffmann <email@christianhoffmann.info>
Cc: John Stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/%3Calpine.LFD.2.02.1105161105170.3078%40ionos%3E
Cc: stable@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Avoid taking broadcast_lock in the idle path for systems where the
timer doesn't stop in C3.
[ tglx: Removed the stale label and added comment ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Dave Kleikamp <dkleikamp@gmail.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: lenb@kernel.org
Cc: paulmck@us.ibm.com
Link: http://lkml.kernel.org/r/%3C20110504234806.GF2925%40one.firstfloor.org%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Christian Hoffmann reported that the command line clocksource override
with acpi_pm timer fails:
Kernel command line: <SNIP> clocksource=acpi_pm
hpet clockevent registered
Switching to clocksource hpet
Override clocksource acpi_pm is not HRT compatible.
Cannot switch while in HRT/NOHZ mode.
The watchdog code is what enables CLOCK_SOURCE_VALID_FOR_HRES, but we
actually end up selecting the clocksource before we enqueue it into
the watchdog list, so that's why we see the warning and fail to switch
to acpi_pm timer as requested. That's particularly bad when we want to
debug timekeeping related problems in early boot.
Put the selection call last.
Reported-by: Christian Hoffmann <email@christianhoffmann.info>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: stable@kernel.org # 32...
Link: http://lkml.kernel.org/r/%3C1304558210.2943.24.camel%40work-vm%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
class_find_device() takes a refcount on the rtc device. rtc_open()
takes another one, so we can drop it after the rtc_open() call.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
alarmtimer_late_init() uses class_find_device() to find a alarm
capable rtc device. The match callback stores a pointer to the name in
the char pointer handed in from the call site. alarmtimer_late_init()
checks the char pointer for NULL, but the pointer is on the stack and
not initialized to NULL before the call. So it can have random content
when the match function did not identify a device, which leads to
random access in the following rtc_open() call where the pointer is
dereferenced
Instead of relying on the char pointer, check the return value of
class_find_device. If a device is found then the name pointer is valid
as well.
Reported-by: Ingo Molnar <mingo@elte.hu>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some applications must be aware of clock realtime being set
backward. A simple example is a clock applet which arms a timer for
the next minute display. If clock realtime is set backward then the
applet displays a stale time for the amount of time which the clock
was set backwards. Due to that applications poll the time because we
don't have an interface.
Extend the timerfd interface by adding a flag which puts the timer
onto a different internal realtime clock. All timers on this clock are
expired whenever the clock was set.
The timerfd core records the monotonic offset when the timer is
created. When the timer is armed, then the current offset is compared
to the previous recorded offset. When it has changed, then
timerfd_settime returns -ECANCELED. When a timer is read the offset is
compared and if it changed -ECANCELED returned to user space. Periodic
timers are not rearmed in the cancelation case.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Chris Friesen <chris.friesen@genband.com>
Tested-by: Kay Sievers <kay.sievers@vrfy.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davide Libenzi <davidel@xmailserver.org>
Reviewed-by: Alexander Shishkin <virtuoso@slind.org>
Link: http://lkml.kernel.org/r/%3Calpine.LFD.2.02.1104271359580.3323%40ionos%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make clock_was_set() unconditional and rename hres_timers_resume to
hrtimers_resume. This is a preparatory patch for hrtimers which are
cancelled when clock realtime was set.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Ingo pointed out that the alarmtimers won't build if CONFIG_RTC_CLASS=n.
This patch adds proper ifdefs to the alarmtimer code to disable the rtc
usage if it is not built in.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Thomas asked about the delayed irq work in the alarmtimers code,
and I realized that it was a legacy from when the alarmtimer base
lock was a mutex (due to concerns that we'd be interacting with
the RTC device, which is protected by mutexes).
Since the alarmtimer base is now protected by a spinlock, we can
simply execute alarmtimer functions directly from the hrtimer
callback. Should any future alarmtimer functions sleep, they can
simply manage scheduling any delayed work themselves.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This patch addresses a number of minor comment improvements and
other minor issues from Thomas' review of the alarmtimers code.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This patch exposes alarm-timers to userland via the posix clock
and timers interface, using two new clockids: CLOCK_REALTIME_ALARM
and CLOCK_BOOTTIME_ALARM. Both clockids behave identically to
CLOCK_REALTIME and CLOCK_BOOTTIME, respectively, but timers
set against the _ALARM suffixed clockids will wake the system if
it is suspended.
Some background can be found here:
https://lwn.net/Articles/429925/
The concept for Alarm-timers was inspired by the Android Alarm
driver (by Arve Hjønnevåg) found in the Android kernel tree.
See: http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=drivers/rtc/alarm.c;h=1250edfbdf3302f5e4ea6194847c6ef4bb7beb1c;hb=android-2.6.36
While the in-kernel interface is pretty similar between
alarm-timers and Android alarm driver, the user-space interface
for the Android alarm driver is via ioctls to a new char device.
As mentioned above, I've instead chosen to export this functionality
via the posix interface, as it seemed a little simpler and avoids
creating duplicate interfaces to things like CLOCK_REALTIME and
CLOCK_MONOTONIC under alternate names (ie:ANDROID_ALARM_RTC and
ANDROID_ALARM_SYSTEMTIME).
The semantics of the Android alarm driver are different from what
this posix interface provides. For instance, threads other then
the thread waiting on the Android alarm driver are able to modify
the alarm being waited on. Also this interface does not allow
the same wakelock semantics that the Android driver provides
(ie: kernel takes a wakelock on RTC alarm-interupt, and holds it
through process wakeup, and while the process runs, until the
process either closes the char device or calls back in to wait
on a new alarm).
One potential way to implement similar semantics may be via
the timerfd infrastructure, but this needs more research.
There may also need to be some sort of sysfs system level policy
hooks that allow alarm timers to be disabled to keep them
from firing at inappropriate times (ie: laptop in a well insulated
bag, mid-flight).
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This provides the in kernel interface and infrastructure for
alarm-timers.
Alarm-timers are a hybrid style timer, similar to hrtimers,
but when the system is suspended, the RTC device is set to
fire and wake the system for when the soonest alarm-timer
expires.
The concept for Alarm-timers was inspired by the Android Alarm
driver (by Arve Hjønnevåg) found in the Android kernel tree.
See: http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=drivers/rtc/alarm.c;h=1250edfbdf3302f5e4ea6194847c6ef4bb7beb1c;hb=android-2.6.36
This in-kernel interface should be fairly compatible with the
Android alarm driver in-kernel interface, but has the advantage
of utilizing the new RTC timerqueue code instead of doing direct
RTC manipulation.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Alessandro Zummo <a.zummo@towertech.it>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Some platforms cannot implement read_persistent_clock, as
their RTC devices are only accessible when interrupts are enabled.
This keeps them from being used by the timekeeping code on resume
to measure the time in suspend.
The RTC layer tries to work around this, by calling do_settimeofday
on resume after irqs are reenabled to set the time properly. However,
this only corrects CLOCK_REALTIME, and does not properly adjust
the sleep time value. This causes btime in /proc/stat to be incorrect
as well as making the new CLOCK_BOTTTIME inaccurate.
This patch resolves the issue by introducing a new timekeeping hook
to allow the RTC layer to inject the sleep time on resume.
The code also checks to make sure that read_persistent_clock is
nonfunctional before setting the sleep time, so that should the RTC's
HCTOSYS option be configured in on a system that does support
read_persistent_clock we will not increase the total_sleep_time twice.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
A dynamic posix clock is protected from asynchronous removal by a mutex.
However, using a mutex has the unwanted effect that a long running clock
operation in one process will unnecessarily block other processes.
For example, one process might call read() to get an external time stamp
coming in at one pulse per second. A second process calling clock_gettime
would have to wait for almost a whole second.
This patch fixes the issue by using a reader/writer semaphore instead of
a mutex.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/%3C20110330132421.GA31771%40riccoc20.at.omicron.at%3E
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The ADJ_SETOFFSET bit added in commit 094aa188 ("ntp: Add ADJ_SETOFFSET
mode bit") also introduced a way for any user to change the system time.
Sneaky or buggy calls to adjtimex() could set
ADJ_OFFSET_SS_READ | ADJ_SETOFFSET
which would result in a successful call to timekeeping_inject_offset().
This patch fixes the issue by adding the capability check.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The timekeeping subsystem uses a sysdev class and a sysdev for
executing timekeeping_suspend() after interrupts have been turned off
on the boot CPU (during system suspend) and for executing
timekeeping_resume() before turning on interrupts on the boot CPU
(during system resume). However, since both of these functions
ignore their arguments, the entire mechanism may be replaced with a
struct syscore_ops object which is simpler.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (62 commits)
posix-clocks: Check write permissions in posix syscalls
hrtimer: Remove empty hrtimer_init_hres_timer()
hrtimer: Update hrtimer->state documentation
hrtimer: Update base[CLOCK_BOOTTIME].offset correctly
timers: Export CLOCK_BOOTTIME via the posix timers interface
timers: Add CLOCK_BOOTTIME hrtimer base
time: Extend get_xtime_and_monotonic_offset() to also return sleep
time: Introduce get_monotonic_boottime and ktime_get_boottime
hrtimers: extend hrtimer base code to handle more then 2 clockids
ntp: Remove redundant and incorrect parameter check
mn10300: Switch do_timer() to xtimer_update()
posix clocks: Introduce dynamic clocks
posix-timers: Cleanup namespace
posix-timers: Add support for fd based clocks
x86: Add clock_adjtime for x86
posix-timers: Introduce a syscall for clock tuning.
time: Splitout compat timex accessors
ntp: Add ADJ_SETOFFSET mode bit
time: Introduce timekeeping_inject_offset
posix-timer: Update comment
...
Fix up new system-call-related conflicts in
arch/x86/ia32/ia32entry.S
arch/x86/include/asm/unistd_32.h
arch/x86/include/asm/unistd_64.h
arch/x86/kernel/syscall_table_32.S
(name_to_handle_at()/open_by_handle_at() vs clock_adjtime()), and some
due to movement of get_jiffies_64() in:
kernel/time.c
pc_clock_settime() and pc_clock_adjtime() do not check whether the fd
was opened in write mode, so a clock can be set with a read only fd.
[ tglx: We deliberately do not return -EPERM as we want this to be
distingushable from the capability based permission check ]
Signed-off-by: Torben Hohn <torbenh@gmx.de>
LKML-Reference: <1299173174-348-4-git-send-email-torbenh@gmx.de>
Cc: Richard Cochran <richard.cochran@omicron.at>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
When the per cpu timer is marked CLOCK_EVT_FEAT_C3STOP, then we only
can switch into oneshot mode, when the backup broadcast device
supports oneshot mode as well. Otherwise we would try to switch the
broadcast device into an unsupported mode unconditionally. This went
unnoticed so far as the current available broadcast devices support
oneshot mode. Seth unearthed this problem while debugging and working
around an hpet related BIOS wreckage.
Add the necessary check to tick_is_oneshot_available().
Reported-and-tested-by: Seth Forshee <seth.forshee@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <alpine.LFD.2.00.1102252231200.2701@localhost6.localdomain6>
Cc: stable@kernel.org # .21 ->
This adds new functions that return the monotonic time since boot
(in other words, CLOCK_MONOTONIC + suspend time).
CC: Jamie Lokier <jamie@shareable.org>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Alexander Shishkin <virtuoso@slind.org>
CC: Arve Hjønnevåg <arve@android.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The ADJ_SETOFFSET code redundantly checks the range of the nanoseconds
field of the time value. This field is checked again in the subsequent
call to timekeeping_inject_offset(). Also, as is, the check will not
detect whether the number of microseconds is out of range.
Let timekeeping_inject_offset() do the error checking.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Cc: johnstul@us.ibm.com
LKML-Reference: <20110218090724.GA2924@riccoc20.at.omicron.at>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds support for adding and removing posix clocks. The
clock lifetime cycle is patterned after usb devices. Each clock is
represented by a standard character device. In addition, the driver
may optionally implement custom character device operations.
The posix clock and timer system calls listed below now work with
dynamic posix clocks, as well as the traditional static clocks.
The following system calls are affected:
- clock_adjtime (brand new syscall)
- clock_gettime
- clock_getres
- clock_settime
- timer_create
- timer_delete
- timer_gettime
- timer_settime
[ tglx: Adapted to the posix-timer cleanup. Moved clock_posix_dynamic
to posix-clock.c and made all referenced functions static ]
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134420.164172635@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds a new mode bit into the timex structure. When set, the bit
instructs the kernel to add the given time value to the current time.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134320.688829863@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This adds a kernel-internal timekeeping interface to add or subtract
a fixed amount from CLOCK_REALTIME. This makes it so kernel users or
interfaces trying to do so do not have to read the time, then add an
offset and then call settimeofday(), which adds some extra error in
comparision to just simply adding the offset in the kernel timekeeping
core.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
LKML-Reference: <20110201134419.584311693@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Both settimeofday() and clock_settime() promise with a 'const'
attribute not to alter the arguments passed in. This patch adds the
missing 'const' attribute into the various kernel functions
implementing these calls.
Signed-off-by: Richard Cochran <richard.cochran@omicron.at>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20110201134417.545698637@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The xtime/dotimer cleanup broke architectures which do not implement
clockevents. Time to send out another __do_IRQ threat.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Ingo Molnar <mingo@elte.hu>
Cc: Torben Hohn <torbenh@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: johnstul@us.ibm.com
Cc: yong.zhang0@gmail.com
Cc: hch@infradead.org
LKML-Reference: <20110127145905.23248.30458.stgit@localhost>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
All callers of do_timer() are converted to xtime_update(). The only
users of xtime_lock are in kernel/time/. Make both local to
kernel/time/ and remove them from the global header files.
[ tglx: Reuse tick-internal.h instead of creating another local header
file. Massaged changelog ]
Signed-off-by: Torben Hohn <torbenh@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: johnstul@us.ibm.com
Cc: yong.zhang0@gmail.com
Cc: hch@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The hrtimer code accesses timekeeping variables under
xtime_lock. Provide a sensible accessor function and use it.
[ tglx: Removed the conditionals, unused variable, fixed codingstyle
and massaged changelog ]
Signed-off-by: Torben Hohn <torbenh@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: johnstul@us.ibm.com
Cc: yong.zhang0@gmail.com
Cc: hch@infradead.org
LKML-Reference: <20110127145905.23248.30458.stgit@localhost>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
do_timer() is primary timekeeping related. calc_global_load() is
called from do_timer() as well, but that's more for historical
reasons.
[ tglx: Fixed up the calc_global_load() reject andmassaged changelog ]
Signed-off-by: Torben Hohn <torbenh@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: johnstul@us.ibm.com
Cc: yong.zhang0@gmail.com
Cc: hch@infradead.org
LKML-Reference: <20110127145855.23248.56933.stgit@localhost>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When NOHZ=y and high res timers are disabled (via cmdline or
Kconfig) tick_nohz_switch_to_nohz() will notify the user about
switching into NOHZ mode. Nothing is printed for the case where
HIGH_RES_TIMERS=y. Fix this for the HIGH_RES_TIMERS=y case by
duplicating the printk from the low res NOHZ path in the high
res NOHZ path.
This confused me since I was thinking 'dmesg | grep -i NOHZ' would
tell me if NOHZ was enabled, but if I have hrtimers there is
nothing.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1295419594-13085-1-git-send-email-sboyd@codeaurora.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
rcu: avoid pointless blocked-task warnings
rcu: demote SRCU_SYNCHRONIZE_DELAY from kernel-parameter status
rtmutex: Fix comment about why new_owner can be NULL in wake_futex_pi()
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, olpc: Add missing Kconfig dependencies
x86, mrst: Set correct APB timer IRQ affinity for secondary cpu
x86: tsc: Fix calibration refinement conditionals to avoid divide by zero
x86, ia64, acpi: Clean up x86-ism in drivers/acpi/numa.c
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timekeeping: Make local variables static
time: Rename misnamed minsec argument of clocks_calc_mult_shift()
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
tracing: Remove syscall_exit_fields
tracing: Only process module tracepoints once
perf record: Add "nodelay" mode, disabled by default
perf sched: Fix list of events, dropping unsupported ':r' modifier
Revert "perf tools: Emit clearer message for sys_perf_event_open ENOENT return"
perf top: Fix annotate segv
perf evsel: Fix order of event list deletion
MONOTONIC_RAW clock timestamps are ideally suited for frequency
calculation and also fit well into the original NTP hardpps design. Now
phase and frequency can be adjusted separately: the former based on
REALTIME clock and the latter based on MONOTONIC_RAW clock.
A new function getnstime_raw_and_real is added to timekeeping subsystem to
capture both timestamps at the same time and atomically.
Signed-off-by: Alexander Gordeev <lasaine@lvk.cs.msu.su>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Rodolfo Giometti <giometti@enneenne.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit adds hardpps() implementation based upon the original one from
the NTPv4 reference kernel code from David Mills. However, it is highly
optimized towards very fast syncronization and maximum stickness to PPS
signal. The typical error is less then a microsecond.
To make it sync faster I had to throw away exponential phase filter so
that the full phase offset is corrected immediately. Then I also had to
throw away median phase filter because it gives a bigger error itself if
used without exponential filter.
Maybe we will find an appropriate filtering scheme in the future but it's
not necessary if the signal quality is ok.
Signed-off-by: Alexander Gordeev <lasaine@lvk.cs.msu.su>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Rodolfo Giometti <giometti@enneenne.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <0D753D10438DA54287A00B027084269764CE0E54B7@AUSP01VMBX24.collaborationhost.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The minsec argument to clocks_calc_mult_shift() is misnamed. It is used
to clamp the magnitude of the mult factor so that a multiplication with
any value in the given range won't overflow a 64 bit result. Let's
rename it to match the actual usage.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Acked-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <alpine.LFD.2.00.1101111207140.17086@xanadu.home>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits)
gameport: use this_cpu_read instead of lookup
x86: udelay: Use this_cpu_read to avoid address calculation
x86: Use this_cpu_inc_return for nmi counter
x86: Replace uses of current_cpu_data with this_cpu ops
x86: Use this_cpu_ops to optimize code
vmstat: User per cpu atomics to avoid interrupt disable / enable
irq_work: Use per cpu atomics instead of regular atomics
cpuops: Use cmpxchg for xchg to avoid lock semantics
x86: this_cpu_cmpxchg and this_cpu_xchg operations
percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support
percpu,x86: relocate this_cpu_add_return() and friends
connector: Use this_cpu operations
xen: Use this_cpu_inc_return
taskstats: Use this_cpu_ops
random: Use this_cpu_inc_return
fs: Use this_cpu_inc_return in buffer.c
highmem: Use this_cpu_xx_return() operations
vmstat: Use this_cpu_inc_return for vm statistics
x86: Support for this_cpu_add, sub, dec, inc_return
percpu: Generic support for this_cpu_add, sub, dec, inc_return
...
Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c}
as per Tejun.
* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (416 commits)
ARM: DMA: add support for DMA debugging
ARM: PL011: add DMA burst threshold support for ST variants
ARM: PL011: Add support for transmit DMA
ARM: PL011: Ensure IRQs are disabled in UART interrupt handler
ARM: PL011: Separate hardware FIFO size from TTY FIFO size
ARM: PL011: Allow better handling of vendor data
ARM: PL011: Ensure error flags are clear at startup
ARM: PL011: include revision number in boot-time port printk
ARM: vexpress: add sched_clock() for Versatile Express
ARM i.MX53: Make MX53 EVK bootable
ARM i.MX53: Some bug fix about MX53 MSL code
ARM: 6607/1: sa1100: Update platform device registration
ARM: 6606/1: sa1100: Fix platform device registration
ARM i.MX51: rename IPU irqs
ARM i.MX51: Add ipu clock support
ARM: imx/mx27_3ds: Add PMIC support
ARM: DMA: Replace page_to_dma()/dma_to_page() with pfn_to_dma()/dma_to_pfn()
mx51: fix usb clock support
MX51: Add support for usb host 2
arch/arm/plat-mxc/ehci.c: fix errors/typos
...
Russell King reports:
| On the ARM dev boards, we have a 32-bit counter running at 24MHz. Calling
| clocks_calc_mult_shift(&mult, &shift, 24MHz, NSEC_PER_SEC, 60) gives
| us a multiplier of 2796202666 and a shift of 26.
|
| Over a large counter delta, this produces an error - lets take a count
| from 362976315 to 4280663372:
|
| (4280663372-362976315) * 2796202666 / 2^26 - (4280663372-362976315) * (1000/24)
| => -38.91872422891230269990
|
| Can we do better?
|
| (4280663372-362976315) * 2796202667 / 2^26 - (4280663372-362976315) * (1000/24)
| 19.45936211449532822051
|
| which is about twice as good as the 2796202666 multiplier.
|
| Looking at the equivalent divisions obtained, 2796202666 / 2^26 gives
| 41.66666665673255920410ns per tick, whereas 2796202667 / 2^26 gives
| 41.66666667163372039794ns. The actual value wanted is 1000/24 =
| 41.66666666666666666666ns.
Fix this by ensuring we round to nearest when calculating the
multiplier.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Tested-by: Mikael Pettersson <mikpe@it.uu.se>
Tested-by: Eric Miao <eric.y.miao@gmail.com>
Tested-by: Olof Johansson <olof@lixom.net>
Tested-by: Jamie Iles <jamie@jamieiles.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
__get_cpu_var() can be replaced with this_cpu_read and will then use a
single read instruction with implied address calculation to access the
correct per cpu instance.
However, the address of a per cpu variable passed to __this_cpu_read()
cannot be determined (since it's an implied address conversion through
segment prefixes). Therefore apply this only to uses of __get_cpu_var
where the address of the variable is not used.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hughd@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Converts the hrtimer code to use the new timerlist infrastructure
Signed-off-by: John Stultz <john.stultz@linaro.org>
LKML Reference: <1290136329-18291-3-git-send-email-john.stultz@linaro.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
CC: Alessandro Zummo <a.zummo@towertech.it>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Richard Cochran <richardcochran@gmail.com>
Replace sizeof(buffer)/sizeof(buffer[0]) with ARRAY_SIZE(buffer) in
kernel/time/timecompare.c
Signed-off-by: Nikitas Angelinas <nikitasangelinas@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When the clocksource is not a multiple of HZ, the clock will be off. For
acpi_pm, HZ=1000 the error is 127.111 ppm:
The rounding of cycle_interval ends up generating a false error term in
ntp_error accumulation since xtime_interval is not exactly 1/HZ. So, we
subtract out the error caused by the rounding.
This has been visible since 2.6.32-rc2
commit a092ff0f90
time: Implement logarithmic time accumulation
That commit raised NTP_INTERVAL_FREQ and exposed the rounding error.
testing tool: http://n1.taur.dk/permanent/testpmt.c
Also tested with ntpd and a frequency counter.
Signed-off-by: Kasper Pedersen <kkp2010@kasperkp.dk>
Acked-by: john stultz <johnstul@us.ibm.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Clamp update interval to reduce PLL gain with low sampling rate (e.g.
intermittent network connection) to avoid instability.
The clamp roughly corresponds to the loop time constant, it's 8 * poll
interval for SHIFT_PLL 2 and 32 * poll interval for SHIFT_PLL 4. This
gives good results without affecting the gain in normal conditions where
ntpd skips only up to seven consecutive samples.
Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com>
Acked-by: john stultz <johnstul@us.ibm.com>
LKML-Reference: <1283870626-9472-1-git-send-email-mlichvar@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Early 4.3 versions of gcc apparently aggressively optimize the raw
time accumulation loop, replacing it with a divide.
On 32bit systems, this causes the following link errors:
undefined reference to `__umoddi3'
undefined reference to `__udivdi3'
The gcc issue has been fixed in 4.4 and greater.
This patch replaces the accumulation loop with a do_div, as suggested
by Linus.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
CC: Jason Wessel <jason.wessel@windriver.com>
CC: Larry Finger <Larry.Finger@lwfinger.net>
CC: Ingo Molnar <mingo@elte.hu>
CC: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The tv_nsec is a long and when added to the shifted interval it can wrap
and become negative which later causes looping problems in the
getrawmonotonic(). The edge case occurs when the system has slept for
a short period of time of ~2 seconds.
A trace printk of the values in this patch illustrate the problem:
ftrace time stamp: log
43.716079: logarithmic_accumulation: raw: 3d0913 tv_nsec d687faa
43.718513: logarithmic_accumulation: raw: 3d0913 tv_nsec da588bd
43.722161: logarithmic_accumulation: raw: 3d0913 tv_nsec de291d0
46.349925: logarithmic_accumulation: raw: 7a122600 tv_nsec e1f9ae3
46.349930: logarithmic_accumulation: raw: 1e848980 tv_nsec 8831c0e3
The kernel starts looping at 46.349925 in the getrawmonotonic() due to
the negative value from adding the raw value to tv_nsec.
A simple solution is to accumulate into a u64, and then normalize it
to a timespec_t.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
[ Reworked variable names and simplified some of the code. - John ]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'timers-timekeeping-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
um: Fix read_persistent_clock fallout
kgdb: Do not access xtime directly
powerpc: Clean up obsolete code relating to decrementer and timebase
powerpc: Rework VDSO gettimeofday to prevent time going backwards
clocksource: Add __clocksource_updatefreq_hz/khz methods
x86: Convert common clocksources to use clocksource_register_hz/khz
timekeeping: Make xtime and wall_to_monotonic static
hrtimer: Cleanup direct access to wall_to_monotonic
um: Convert to use read_persistent_clock
timkeeping: Fix update_vsyscall to provide wall_to_monotonic offset
powerpc: Cleanup xtime usage
powerpc: Simplify update_vsyscall
time: Kill off CONFIG_GENERIC_TIME
time: Implement timespec_add
x86: Fix vtime/file timestamp inconsistencies
Trivial conflicts in Documentation/feature-removal-schedule.txt
Much less trivial conflicts in arch/powerpc/kernel/time.c resolved as
per Thomas' earlier merge commit 47916be4e2 ("Merge branch
'powerpc.cherry-picks' into timers/clocksource")
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
Documentation: Add timers/timers-howto.txt
timer: Added usleep_range timer
Revert "timer: Added usleep[_range] timer"
clockevents: Remove the per cpu tick skew
posix_timer: Move copy_to_user(created_timer_id) down in timer_create()
timer: Added usleep[_range] timer
timers: Document meaning of deferrable timer
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (27 commits)
sched: Use correct macro to display sched_child_runs_first in /proc/sched_debug
sched: No need for bootmem special cases
sched: Revert nohz_ratelimit() for now
sched: Reduce update_group_power() calls
sched: Update rq->clock for nohz balanced cpus
sched: Fix spelling of sibling
sched, cpuset: Drop __cpuexit from cpu hotplug callbacks
sched: Fix the racy usage of thread_group_cputimer() in fastpath_timer_check()
sched: run_posix_cpu_timers: Don't check ->exit_state, use lock_task_sighand()
sched: thread_group_cputime: Simplify, document the "alive" check
sched: Remove the obsolete exit_state/signal hacks
sched: task_tick_rt: Remove the obsolete ->signal != NULL check
sched: __sched_setscheduler: Read the RLIMIT_RTPRIO value lockless
sched: Fix comments to make them DocBook happy
sched: Fix fix_small_capacity
powerpc: Exclude arch_sd_sibiling_asym_packing() on UP
powerpc: Enable asymmetric SMT scheduling on POWER7
sched: Add asymmetric group packing option for sibling domain
sched: Fix capacity calculations for SMT4
sched: Change nohz idle load balancing logic to push model
...
Historically, Linux has tried to make the regular timer tick on the
various CPUs not happen at the same time, to avoid contention on
xtime_lock.
Nowadays, with the tickless kernel, this contention no longer happens
since time keeping and updating are done differently. In addition,
this skew is actually hurting power consumption in a measurable way on
many-core systems.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
LKML-Reference: <20100727210210.58d3118c@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To properly handle clocksources that change frequencies
at the clocksource->enable() point, this patch adds
a method that will update the clocksource's mult/shift and
max_idle_ns values.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-12-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch makes xtime and wall_to_monotonic static, as planned in
Documentation/feature-removal-schedule.txt. This will allow for
further cleanups to the timekeeping core.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-10-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Provides an accessor function to replace hrtimer.c's
direct access of wall_to_monotonic.
This will allow wall_to_monotonic to be made static as
planned in Documentation/feature-removal-schedule.txt
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-9-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
update_vsyscall() did not provide the wall_to_monotoinc offset,
so arch specific implementations tend to reference wall_to_monotonic
directly. This limits future cleanups in the timekeeping core, so
this patch fixes the update_vsyscall interface to provide
wall_to_monotonic, allowing wall_to_monotonic to be made static
as planned in Documentation/feature-removal-schedule.txt
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Tony Luck <tony.luck@intel.com>
LKML-Reference: <1279068988-21864-7-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Now that all arches have been converted over to use generic time via
clocksources or arch_gettimeoffset(), we can remove the GENERIC_TIME
config option and simplify the generic code.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-4-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
After accidentally misusing timespec_add_safe, I wanted to make sure
we don't accidently trip over that issue again, so I created a simple
timespec_add() function which we can use to replace the instances
of timespec_add_safe() that don't want the overflow detection.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1279068988-21864-3-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Norbert reported that nohz_ratelimit() causes his laptop to burn about
4W (40%) extra. For now back out the change and see if we can adjust
the power management code to make better decisions.
Reported-by: Norbert Preining <preining@logic.at>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Mike Galbraith <efault@gmx.de>
Cc: Arjan van de Ven <arjan@infradead.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 0224cf4c5e (sched: Intoduce get_cpu_iowait_time_us())
broke things by not making sure preemption was indeed disabled
by the callers of nr_iowait_cpu() which took the iowait value of
the current cpu.
This resulted in a heap of preempt warnings. Cure this by making
nr_iowait_cpu() take a cpu number and fix up the callers to pass
in the right number.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Maxim Levitsky <maximlevitsky@gmail.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: linux-pm@lists.linux-foundation.org
LKML-Reference: <1277968037.1868.120.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Chris Wedgwood reports that 39c0cbe (sched: Rate-limit nohz) causes a
serial console regression, unresponsiveness, and indeed it does. The
reason is that the nohz code is skipped even when the tick was already
stopped before the nohz_ratelimit(cpu) condition changed.
Move the nohz_ratelimit() check to the other conditions which prevent
long idle sleeps.
Reported-by: Chris Wedgwood <cw@f00f.org>
Tested-by: Brian Bloniarz <bmb@athenacr.com>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg KH <gregkh@suse.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Jef Driesen <jefdriesen@telenet.be>
LKML-Reference: <1276790557.27822.516.camel@twins>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In the new push model, all idle CPUs indeed go into nohz mode. There is
still the concept of idle load balancer (performing the load balancing
on behalf of all the idle cpu's in the system). Busy CPU kicks the nohz
balancer when any of the nohz CPUs need idle load balancing.
The kickee CPU does the idle load balancing on behalf of all idle CPUs
instead of the normal idle balance.
This addresses the below two problems with the current nohz ilb logic:
* the idle load balancer continued to have periodic ticks during idle and
wokeup frequently, even though it did not have any rebalancing to do on
behalf of any of the idle CPUs.
* On x86 and CPUs that have APIC timer stoppage on idle CPUs, this
periodic wakeup can result in a periodic additional interrupt on a CPU
doing the timer broadcast.
Also currently we are migrating the unpinned timers from an idle to the cpu
doing idle load balancing (when all the cpus in the system are idle,
there is no idle load balancing cpu and timers get added to the same idle cpu
where the request was made. So the existing optimization works only on semi idle
system).
And In semi idle system, we no longer have periodic ticks on the idle load
balancer CPU. Using that cpu will add more delays to the timers than intended
(as that cpu's timer base may not be uptodate wrt jiffies etc). This was
causing mysterious slowdowns during boot etc.
For now, in the semi idle case, use the nearest busy cpu for migrating timers
from an idle cpu. This is good for power-savings anyway.
Signed-off-by: Venkatesh Pallipadi <venki@google.com>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <1274486981.2840.46.camel@sbs-t61.sc.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
clocksource: Add clocksource_register_hz/khz interface
posix-cpu-timers: Optimize run_posix_cpu_timers()
time: Remove xtime_cache
mqueue: Convert message queue timeout to use hrtimers
hrtimers: Provide schedule_hrtimeout for CLOCK_REALTIME
timers: Introduce the concept of timer slack for legacy timers
ntp: Remove tickadj
ntp: Make time_adjust static
time: Add xtime, wall_to_monotonic to feature-removal-schedule
timer: Try to survive timer callback preempt_count leak
timer: Split out timer function call
timer: Print function name for timer callbacks modifying preemption count
time: Clean up warp_clock()
cpu-timers: Avoid iterating over all threads in fastpath_timer_check()
cpu-timers: Change SIGEV_NONE timer implementation
cpu-timers: Return correct previous timer reload value
cpu-timers: Cleanup arm_timer()
cpu-timers: Simplify RLIMIT_CPU handling
How to pick good mult/shift pairs has always been difficult to
describe to folks writing clocksource drivers, since it requires
careful tradeoffs in adjustment accuracy vs overflow limits.
Now, with the clocks_calc_mult_shift function, its much
easier. However, not many clocksources have converted to using that
function, and there is still the issue of the max interval length
assumption being made by each clocksource driver independently.
So this patch simplifies the registration process by having
clocksources be registered with a hz/khz value and the registration
function taking care of setting mult/shift.
This should take most of the confusion out of writing a clocksource
driver.
Additionally it also keeps the shift size tradeoff (more accuracy vs
longer possible nohz times) centralized so the timekeeping core can
keep track of the assumptions being made.
[ tglx: Coding style and comments fixed ]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1273280858-30143-1-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For the ondemand cpufreq governor, it is desired that the iowait
time is microaccounted in a similar way as idle time is.
This patch introduces the infrastructure to account and expose
this information via the get_cpu_iowait_time_us() function.
[akpm@linux-foundation.org: fix CONFIG_NO_HZ=n build]
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082523.284feab6@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that the only user of ts->idle_lastupdate is
update_ts_time_stats(), the entire field can be eliminated.
In update_ts_time_stats(), idle_lastupdate is first set to
"now", and a few lines later, the only user is an if() statement
that assigns a variable either to "now" or to
ts->idle_lastupdate, which has the value of "now" at that point.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082439.2fab0b4f@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch folds the updating of the last_update_time into the
update_ts_time_stats() function, and updates the callers.
This allows for further cleanups that are done in the next
patch.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082403.60072967@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Right now, get_cpu_idle_time_us() only reports the idle
statistics upto the point the CPU entered last idle; not what is
valid right now.
This patch adds an update of the idle statistics to
get_cpu_idle_time_us(), so that calling this function always
returns statistics that are accurate at the point of the call.
This includes resetting the start of the idle time for
accounting purposes to avoid double accounting.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082323.2d2f1945@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently, two places update the idle statistics (and more to
come later in this series).
This patch creates a helper function for updating these
statistics.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082245.163e67ed@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The exported function get_cpu_idle_time_us() has no comment
describing it; add a kerneldoc comment
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
LKML-Reference: <20100509082208.7cb721f0@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With the earlier logarithmic time accumulation patch, xtime will now
always be within one "tick" of the current time, instead of possibly
half a second off.
This removes the need for the xtime_cache value, which always stored the
time at the last interrupt, so this patch cleans that up removing the
xtime_cache related code.
This patch also addresses an issue with an earlier version of this change,
where xtime_cache was normalizing xtime, which could in some cases be
not valid (ie: tv_nsec == NSEC_PER_SEC). This is fixed by handling
the edge case in update_wall_time().
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Petr Titěra <P.Titera@century.cz>
LKML-Reference: <1270589451-30773-1-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Now that no arches are accessing time_adjust directly,
make it static.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1268968769-19209-1-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The logarithmic accumulation done in the timekeeping has some overflow
protection that limits the max shift value. That means it will take
more then shift loops to accumulate all of the cycles. This causes
the shift decrement to underflow, which causes the loop to never exit.
The simplest fix would be simply to do a:
if (shift)
shift--;
However that is not optimal, as we know the cycle offset is larger
then the interval << shift, the above would make shift drop to zero,
then we would be spinning for quite awhile accumulating at interval
chunks at a time.
Instead, this patch only decreases shift if the offset is smaller
then cycle_interval << shift. This makes sure we accumulate using
the largest chunks possible without overflowing tick_length, and limits
the number of iterations through the loop.
This issue was found and reported by Sonic Zhang, who also tested the fix.
Many thanks your explanation and testing!
Reported-by: Sonic Zhang <sonic.adi@gmail.com>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Tested-by: Sonic Zhang <sonic.adi@gmail.com>
LKML-Reference: <1268948850-5225-1-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The current logic which handles clock events programming failures can
increase min_delta_ns unlimited and even can cause overflows.
Sanitize it by:
- prevent zero increase when min_delta_ns == 1
- limiting min_delta_ns to a jiffie
- bail out if the jiffie limit is hit
- add retries stats for /proc/timer_list so we can gather data
Reported-by: Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Entering nohz code on every micro-idle is costing ~10% throughput for netperf
TCP_RR when scheduling cross-cpu. Rate limiting entry fixes this, but raises
ticks a bit. On my Q6600, an idle box goes from ~85 interrupts/sec to 128.
The higher the context switch rate, the more nohz entry costs. With this patch
and some cycle recovery patches in my tree, max cross cpu context switch rate is
improved by ~16%, a large portion of which of which is this ratelimiting.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268301003.6785.28.camel@marge.simson.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Aaro Koskinen reported an issue in kernel.org bugzilla #15366, where
on non-GENERIC_TIME systems, accessing
/sys/devices/system/clocksource/clocksource0/current_clocksource
results in an oops.
It seems the timekeeper/clocksource rework missed initializing the
curr_clocksource value in the !GENERIC_TIME case.
Thanks to Aaro for reporting and diagnosing the issue as well as
testing the fix!
Reported-by: Aaro Koskinen <aaro.koskinen@iki.fi>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: stable@kernel.org
LKML-Reference: <1267475683.4216.61.camel@localhost.localdomain>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Export getboottime and monotonic_to_bootbased in order to let them
could be used by following patch.
Cc: stable@kernel.org
Signed-off-by: Jason Wang <jasowang@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Add a clocksource suspend callback. This callback can be used by the
clocksource driver to shutdown and perform any kind of late suspend
activities even though the clocksource driver itself is a non-sysdev
driver.
One example where this is useful is to fix the sh_cmt.c platform driver
that today suspends using the platform bus and shuts down the clocksource
too early.
With this callback in place the sh_cmt driver will suspend using the
clocksource and clockevent hooks and leave the platform device pm
callbacks unused.
Signed-off-by: Magnus Damm <damm@opensource.se>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: john stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pass the clocksource as an argument to the clocksource resume callback.
Needed so we can point out which CMT channel the sh_cmt.c driver shall
resume.
Signed-off-by: Magnus Damm <damm@opensource.se>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
ntp.c doesn't need to access timekeeping internals directly, so change
xtime references to use the get_seconds() timekeeping interface.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: richard@rsk.demon.co.uk
LKML-Reference: <1264738844-21935-1-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make time_esterror and time_maxerror static as no one uses them
outside of ntp.c
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: richard@rsk.demon.co.uk
LKML-Reference: <1264719761.3437.47.camel@localhost.localdomain>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit 0f8e8ef7 (clocksource: Simplify clocksource watchdog resume
logic) introduced a potential kgdb dead lock. When the kernel is
stopped by kgdb inside code which holds watchdog_lock then kgdb dead
locks in clocksource_resume_watchdog().
clocksource_resume_watchdog() is called from kbdg via
clocksource_touch_watchdog() to avoid that the clock source watchdog
marks TSC unstable after the kernel has been stopped.
Solve this by replacing spin_lock with a spin_trylock and just return
in case the lock is held. Not resetting the watchdog might result in
TSC becoming marked unstable, but that's an acceptable penalty for
using kgdb.
The timekeeping is anyway easily screwed up by kgdb when the system
uses either jiffies or a clock source which wraps in short intervals
(e.g. pm_timer wraps about every 4.6s), so we really do not have to
worry about that occasional TSC marked unstable side effect.
The second caller of clocksource_resume_watchdog() is
clocksource_resume(). The trylock is safe here as well because the
system is UP at this point, interrupts are disabled and nothing else
can hold watchdog_lock().
Reported-by: Jason Wessel <jason.wessel@windriver.com>
LKML-Reference: <1264480000-6997-4-git-send-email-jason.wessel@windriver.com>
Cc: kgdb-bugreport@lists.sourceforge.net
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Marc reported that the BUG_ON in clockevents_notify() triggers on his
system. This happens because the kernel tries to remove an active
clock event device (used for broadcasting) from the device list.
The handling of devices which can be used as per cpu device and as a
global broadcast device is suboptimal.
The simplest solution for now (and for stable) is to check whether the
device is used as global broadcast device, but this needs to be
revisited.
[ tglx: restored the cpuweight check and massaged the changelog ]
Reported-by: Marc Dionne <marc.c.dionne@gmail.com>
Tested-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: Xiaotian Feng <dfeng@redhat.com>
LKML-Reference: <1262834564-13033-1-git-send-email-dfeng@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
This reverts commit 7bc7d63745, as
requested by John Stultz. Quoting John:
"Petr Titěra reported an issue where he saw odd atime regressions with
2.6.33 where there were a full second worth of nanoseconds in the
nanoseconds field.
He also reviewed the time code and narrowed down the problem: unhandled
overflow of the nanosecond field caused by rounding up the
sub-nanosecond accumulated time.
Details:
* At the end of update_wall_time(), we currently round up the
sub-nanosecond portion of accumulated time when storing it into xtime.
This was added to avoid time inconsistencies caused when the
sub-nanosecond portion was truncated when storing into xtime.
Unfortunately we don't handle the possible second overflow caused by
that rounding.
* Previously the xtime_cache code hid this overflow by normalizing the
xtime value when storing into the xtime_cache.
* We could try to handle the second overflow after the rounding up, but
since this affects the timekeeping's internal state, this would further
complicate the next accumulation cycle, causing small errors in ntp
steering. As much as I'd like to get rid of it, the xtime_cache code is
known to work.
* The correct fix is really to include the sub-nanosecond portion in the
timekeeping accessor function, so we don't need to round up at during
accumulation. This would greatly simplify the accumulation code.
Unfortunately, we can't do this safely until the last three
non-GENERIC_TIME arches (sparc32, arm, cris) are converted (those
patches are in -mm) and we kill off the spots where arches set xtime
directly. This is all 2.6.34 material, so I think reverting the
xtime_cache change is the best approach for now.
Many thanks to Petr for both reporting and finding the issue!"
Reported-by: Petr Titěra <P.Titera@century.cz>
Requested-by: john stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timers: Remove duplicate setting of new_base in __mod_timer()
clockevents: Prevent clockevent_devices list corruption on cpu hotplug
struct cpumask will be undefined soon with CONFIG_CPUMASK_OFFSTACK=y,
to avoid them being declared on the stack.
cpumask_bits() does what we want here (of course, this code is crap).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
To: Thomas Gleixner <tglx@linutronix.de>
ktime will overflow from 03:14:07 UTC on Tuesday, 19 January 2038,
ktime_add() in timecompare_update() will overflow a half earlier. As a
result, wrong offset will be gotten, then cause some strange problems.
Signed-off-by: Barry Song <21cnbao@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Patrick Ohly <patrick.ohly@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert locks which cannot be sleeping locks in preempt-rt to
raw_spinlocks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Convert locks which cannot be sleeping locks in preempt-rt to
raw_spinlocks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (34 commits)
m68k: rename global variable vmalloc_end to m68k_vmalloc_end
percpu: add missing per_cpu_ptr_to_phys() definition for UP
percpu: Fix kdump failure if booted with percpu_alloc=page
percpu: make misc percpu symbols unique
percpu: make percpu symbols in ia64 unique
percpu: make percpu symbols in powerpc unique
percpu: make percpu symbols in x86 unique
percpu: make percpu symbols in xen unique
percpu: make percpu symbols in cpufreq unique
percpu: make percpu symbols in oprofile unique
percpu: make percpu symbols in tracer unique
percpu: make percpu symbols under kernel/ and mm/ unique
percpu: remove some sparse warnings
percpu: make alloc_percpu() handle array types
vmalloc: fix use of non-existent percpu variable in put_cpu_var()
this_cpu: Use this_cpu_xx in trace_functions_graph.c
this_cpu: Use this_cpu_xx for ftrace
this_cpu: Use this_cpu_xx in nmi handling
this_cpu: Use this_cpu operations in RCU
this_cpu: Use this_cpu ops for VM statistics
...
Fix up trivial (famous last words) global per-cpu naming conflicts in
arch/x86/kvm/svm.c
mm/slab.c
Xiaotian Feng triggered a list corruption in the clock events list on
CPU hotplug and debugged the root cause.
If a CPU registers more than one per cpu clock event device, then only
the active clock event device is removed on CPU_DEAD. The unused
devices are kept in the clock events device list.
On CPU up the clock event devices are registered again, which means
that we list_add an already enqueued list_head. That results in list
corruption.
Resolve this by removing all devices which are associated to the dead
CPU on CPU_DEAD.
Reported-by: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Xiaotian Feng <dfeng@redhat.com>
Cc: stable@kernel.org
The hrtimer_interrupt hang logic adjusts min_delta_ns based on the
execution time of the hrtimer callbacks.
This is error-prone for virtual machines, where a guest vcpu can be
scheduled out during the execution of the callbacks (and the callbacks
themselves can do operations that translate to blocking operations in
the hypervisor), which in can lead to large min_delta_ns rendering the
system unusable.
Replace the current heuristics with something more reliable. Allow the
interrupt code to try 3 times to catch up with the lost time. If that
fails use the total time spent in the interrupt handler to defer the
next timer interrupt so the system can catch up with other things
which got delayed. Limit that deferment to 100ms.
The retry events and the maximum time spent in the interrupt handler
are recorded and exposed via /proc/timer_list
Inspired by a patch from Marcelo.
Reported-by: Michael Tokarev <mjt@tls.msk.ru>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marcelo Tosatti <mtosatti@redhat.com>
Cc: kvm@vger.kernel.org
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timers, init: Limit the number of per cpu calibration bootup messages
posix-cpu-timers: optimize and document timer_create callback
clockevents: Add missing include to pacify sparse
x86: vmiclock: Fix printk format
x86: Fix printk format due to variable type change
sparc: fix printk for change of variable type
clocksource/events: Fix fallout of generic code changes
nohz: Allow 32-bit machines to sleep for more than 2.15 seconds
nohz: Track last do_timer() cpu
nohz: Prevent clocksource wrapping during idle
nohz: Type cast printk argument
mips: Use generic mult/shift factor calculation for clocks
clocksource: Provide a generic mult/shift factor calculation
clockevents: Use u32 for mult and shift factors
nohz: Introduce arch_needs_cpu
nohz: Reuse ktime in sub-functions of tick_check_idle.
time: Remove xtime_cache
time: Implement logarithmic time accumulation
Include "tick-internal.h" in order to pick up the extern function
prototype for clockevents_shutdown(). This quiets the following sparse
build noise:
warning: symbol 'clockevents_shutdown' was not declared. Should it be static?
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
LKML-Reference: <BD79186B4FD85F4B8E60E381CAEE190901E24550@mi8nycmail19.Mi8.com>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Cc: johnstul@us.ibm.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since commit 0a544198 "timekeeping: Move NTP adjusted clock multiplier
to struct timekeeper" the clock multiplier of vsyscall is updated with
the unmodified clock multiplier of the clock source and not with the
NTP adjusted multiplier of the timekeeper.
This causes user space observerable time warps:
new CLOCK-warp maximum: 120 nsecs, 00000025c337c537 -> 00000025c337c4bf
Add a new argument "mult" to update_vsyscall() and hand in the
timekeeping internal NTP adjusted multiplier.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Cc: "Zhang Yanmin" <yanmin_zhang@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Tony Luck <tony.luck@intel.com>
LKML-Reference: <1258436990.17765.83.camel@minggr.sh.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
powerpc grew a new warning due to the type change of clockevent->mult.
The architectures which use parts of the generic time keeping
infrastructure tripped over my wrong assumption that
clocksource_register is only used when GENERIC_TIME=y.
I should have looked and also I should have known better. These
renitent Gaul villages are racking my nerves. Some serious deprecating
is due.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In the dynamic tick code, "max_delta_ns" (member of the
"clock_event_device" structure) represents the maximum sleep time
that can occur between timer events in nanoseconds.
The variable, "max_delta_ns", is defined as an unsigned long
which is a 32-bit integer for 32-bit machines and a 64-bit
integer for 64-bit machines (if -m64 option is used for gcc).
The value of max_delta_ns is set by calling the function
"clockevent_delta2ns()" which returns a maximum value of LONG_MAX.
For a 32-bit machine LONG_MAX is equal to 0x7fffffff and in
nanoseconds this equates to ~2.15 seconds. Hence, the maximum
sleep time for a 32-bit machine is ~2.15 seconds, where as for
a 64-bit machine it will be many years.
This patch changes the type of max_delta_ns to be "u64" instead of
"unsigned long" so that this variable is a 64-bit type for both 32-bit
and 64-bit machines. It also changes the maximum value returned by
clockevent_delta2ns() to KTIME_MAX. Hence this allows a 32-bit
machine to sleep for longer than ~2.15 seconds. Please note that this
patch also changes "min_delta_ns" to be "u64" too and although this is
unnecessary, it makes the patch simpler as it avoids to fixup all
callers of clockevent_delta2ns().
[ tglx: changed "unsigned long long" to u64 as we use this data type
through out the time code ]
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1250617512-23567-3-git-send-email-jon-hunter@ti.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The previous patch which limits the sleep time to the maximum
deferment time of the time keeping clocksource has some limitations on
SMP machines: if all CPUs are idle then for all CPUs the maximum sleep
time is limited.
Solve this by keeping track of which cpu had the do_timer() duty
assigned last and limit the sleep time only for this cpu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <new-submission>
Cc: Jon Hunter <jon-hunter@ti.com>
Cc: John Stultz <johnstul@us.ibm.com>
The dynamic tick allows the kernel to sleep for periods longer than a
single tick, but it does not limit the sleep time currently. In the
worst case the kernel could sleep longer than the wrap around time of
the time keeping clock source which would result in losing track of
time.
Prevent this by limiting it to the safe maximum sleep time of the
current time keeping clock source. The value is calculated when the
clock source is registered.
[ tglx: simplified the code a bit and massaged the commit msg ]
Signed-off-by: Jon Hunter <jon-hunter@ti.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <1250617512-23567-2-git-send-email-jon-hunter@ti.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On some archs local_softirq_pending() has a data type of unsigned long
on others its unsigned int. Type cast it to (unsigned int) in the
printk to avoid the compiler warning.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <new-submission>
MIPS has two functions to calculcate the mult/shift factors for clock
sources and clock events at run time. ARM needs such functions as
well.
Implement a function which calculates the mult/shift factors based on
the frequencies to which and from which is converted. The function
also has a parameter to specify the minimum conversion range in
seconds. This range is guaranteed not to produce a 64bit overflow when
a value is multiplied with the calculated mult factor. The larger the
conversion range the less becomes the conversion accuracy.
Provide two inline wrappers which handle clock events and clock
sources. For clock events the "from" frequency is nano seconds per
second which corresponds to 1GHz and "to" is the device frequency. For
clock sources "from" is the device frequency and "to" is nano seconds
per second.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mikael Pettersson <mikpe@it.uu.se>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Linus Walleij <linus.walleij@stericsson.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20091111134229.766673305@linutronix.de>
The mult and shift factors of clock events differ in their data type
from those of clock sources for no reason. u32 is sufficient for
both. shift is always <= 32 and mult is limited to 2^32-1 to avoid
64bit multiplication overflows in the conversion.
Preparatory patch for a generic mult/shift factor calculation
function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mikael Pettersson <mikpe@it.uu.se>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Linus Walleij <linus.walleij@stericsson.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20091111134229.725664788@linutronix.de>
This patch was generated by
git grep -E -i -l 's(le|el)ct' | xargs -r perl -p -i -e 's/([Ss])(le|el)ct/$1elect/
with only skipping net/netfilter/xt_SECMARK.c and
include/linux/netfilter/xt_SECMARK.h which have a struct member called
selctx.
Signed-off-by: Uwe Kleine-Knig <u.kleine-koenig@pengutronix.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Allow the architecture to request a normal jiffy tick when the system
goes idle and tick_nohz_stop_sched_tick is called . On s390 the hook is
used to prevent the system going fully idle if there has been an
interrupt other than a clock comparator interrupt since the last wakeup.
On s390 the HiperSockets response time for 1 connection ping-pong goes
down from 42 to 34 microseconds. The CPU cost decreases by 27%.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
LKML-Reference: <20090929122533.402715150@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On a system with NOHZ=y tick_check_idle calls tick_nohz_stop_idle and
tick_nohz_update_jiffies. Given the right conditions (ts->idle_active
and/or ts->tick_stopped) both function get a time stamp with ktime_get.
The same time stamp can be reused if both function require one.
On s390 this change has the additional benefit that gcc inlines the
tick_nohz_stop_idle function into tick_check_idle. The number of
instructions to execute tick_check_idle drops from 225 to 144
(without the ktime_get optimization it is 367 vs 215 instructions).
before:
0) | tick_check_idle() {
0) | tick_nohz_stop_idle() {
0) | ktime_get() {
0) | read_tod_clock() {
0) 0.601 us | }
0) 1.765 us | }
0) 3.047 us | }
0) | ktime_get() {
0) | read_tod_clock() {
0) 0.570 us | }
0) 1.727 us | }
0) | tick_do_update_jiffies64() {
0) 0.609 us | }
0) 8.055 us | }
after:
0) | tick_check_idle() {
0) | ktime_get() {
0) | read_tod_clock() {
0) 0.617 us | }
0) 1.773 us | }
0) | tick_do_update_jiffies64() {
0) 0.593 us | }
0) 4.477 us | }
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: john stultz <johnstul@us.ibm.com>
LKML-Reference: <20090929122533.206589318@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch updates percpu related symbols under kernel/ and mm/ such
that percpu symbols are unique and don't clash with local symbols.
This serves two purposes of decreasing the possibility of global
percpu symbol collision and allowing dropping per_cpu__ prefix from
percpu symbols.
* kernel/lockdep.c: s/lock_stats/cpu_lock_stats/
* kernel/sched.c: s/init_rq_rt/init_rt_rq_var/ (any better idea?)
s/sched_group_cpus/sched_groups/
* kernel/softirq.c: s/ksoftirqd/run_ksoftirqd/a
* kernel/softlockup.c: s/(*)_timestamp/softlockup_\1_ts/
s/watchdog_task/softlockup_watchdog/
s/timestamp/ts/ for local variables
* kernel/time/timer_stats: s/lookup_lock/tstats_lookup_lock/
* mm/slab.c: s/reap_work/slab_reap_work/
s/reap_node/slab_reap_node/
* mm/vmstat.c: local variable changed to avoid collision with vmstat_work
Partly based on Rusty Russell's "alloc_percpu: rename percpu vars
which cause name clashes" patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: (slab/vmstat) Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
After m68k's task_thread_info() doesn't refer to current,
it's possible to remove sched.h from interrupt.h and not break m68k!
Many thanks to Heiko Carstens for allowing this.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Commit f2e21c9610 had unfortunate side
effects with cpufreq governors on some systems.
If the system did not switch into NOHZ mode ts->inidle is not set when
tick_nohz_stop_sched_tick() is called from the idle routine. Therefor
all subsequent calls from irq_exit() to tick_nohz_stop_sched_tick()
fail to call tick_nohz_start_idle(). This results in bogus idle
accounting information which is passed to cpufreq governors.
Set the inidle flag unconditionally of the NOHZ active state to keep
the idle time accounting correct in any case.
[ tglx: Added comment and tweaked the changelog ]
Reported-by: Steven Noonan <steven@uplinklabs.net>
Signed-off-by: Eero Nurkkala <ext-eero.nurkkala@nokia.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Greg KH <greg@kroah.com>
Cc: Steven Noonan <steven@uplinklabs.net>
Cc: stable@kernel.org
LKML-Reference: <1254907901.30157.93.camel@eenurkka-desktop>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
With the prior logarithmic time accumulation patch, xtime will now
always be within one "tick" of the current time, instead of
possibly half a second off.
This removes the need for the xtime_cache value, which always
stored the time at the last interrupt, so this patch cleans that up
removing the xtime_cache related code.
This is a bit simpler, but still could use some wider testing.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <1254525855.7741.95.camel@localhost.localdomain>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Accumulating one tick at a time works well unless we're using NOHZ.
Then it can be an issue, since we may have to run through the loop
a few thousand times, which can increase timer interrupt caused
latency.
The current solution was to accumulate in half-second intervals
with NOHZ. This kept the number of loops down, however it did
slightly change how we make NTP adjustments. While not an issue
with NTPd users, as NTPd makes adjustments over a longer period of
time, other adjtimex() users have noticed the half-second
granularity with which we can apply frequency changes to the clock.
For instance, if a application tries to apply a 100ppm frequency
correction for 20ms to correct a 2us offset, with NOHZ they either
get no correction, or a 50us correction.
Now, there will always be some granularity error for applying
frequency corrections. However with users sensitive to this error
have seen a 50-500x increase with NOHZ compared to running without
NOHZ.
So I figured I'd try another approach then just simply increasing
the interval. My approach is to consume the time interval
logarithmically. This reduces the number of times through the loop
needed keeping latency down, while still preserving the original
granularity error for adjtimex() changes.
Further, this change allows us to remove the xtime_cache code
(patch to follow), as xtime is always within one tick of the
current time, instead of the half-second updates it saw before.
An earlier version of this patch has been shipping to x86 users in
the RedHat MRG releases for awhile without issue, but I've reworked
this version to be even more careful about avoiding possible
overflows if the shift value gets too large.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: John Kacur <jkacur@redhat.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <1254525473.7741.88.camel@localhost.localdomain>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
clocksource: Resume clocksource without taking the clocksource mutex
git commit 75c5158f70 converted the clocksource spinlock to a
mutex. This causes the following BUG:
BUG: sleeping function called from invalid context at
kernel/mutex.c:280 in_atomic(): 0, irqs_disabled(): 1, pid: 2473,
name: pm-suspend 2 locks held by pm-suspend/2473:
#0: (&buffer->mutex){......}, at: [<ffffffff8115ab13>]
sysfs_write_file+0x3c/0x137
#1: (pm_mutex){......}, at: [<ffffffff810865b5>]
enter_state+0x39/0x130 Pid: 2473, comm: pm-suspend Not tainted 2.6.31
#1 Call Trace:
[<ffffffff810792f0>] ? __debug_show_held_locks+0x22/0x24
[<ffffffff8104a2ef>] __might_sleep+0x107/0x10b
[<ffffffff8141fca9>] mutex_lock_nested+0x25/0x43
[<ffffffff81073537>] clocksource_resume+0x1c/0x60
[<ffffffff81072902>] timekeeping_resume+0x1e/0x1c8
[<ffffffff812aee62>] __sysdev_resume+0x25/0xcf
[<ffffffff812aef79>] sysdev_resume+0x6d/0xae
[<ffffffff810864f8>] suspend_devices_and_enter+0x12b/0x1af
[<ffffffff8108665b>] enter_state+0xdf/0x130
[<ffffffff81085dc3>] state_store+0xb6/0xd3
[<ffffffff81204c73>] kobj_attr_store+0x17/0x19
[<ffffffff8115abd2>] sysfs_write_file+0xfb/0x137
[<ffffffff811057d2>] vfs_write+0xae/0x10b
[<ffffffff81208392>] ? __up_read+0x1a/0x7f
[<ffffffff811058ef>] sys_write+0x4a/0x6e
[<ffffffff81011b82>] system_call_fastpath+0x16/0x1b
clocksource_resume is called early in the resume process, there is
only one cpu, no processes are running and the interrupts are
disabled. It is therefore possible to resume the clocksources
without taking the clocksource mutex.
Reported-by: Xiaotian Feng <xtfeng@gmail.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Tested-by: Michal Schmidt <mschmidt@redhat.com>
Cc: Xiaotian Feng <xtfeng@gmail.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20090924172952.49697825@mschwide.boeblingen.de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There are many similar code in kernel for one object: convert time between
calendar time and broken-down time.
Here is some source I found:
fs/ncpfs/dir.c
fs/smbfs/proc.c
fs/fat/misc.c
fs/udf/udftime.c
fs/cifs/netmisc.c
net/netfilter/xt_time.c
drivers/scsi/ips.c
drivers/input/misc/hp_sdc_rtc.c
drivers/rtc/rtc-lib.c
arch/ia64/hp/sim/boot/fw-emu.c
arch/m68k/mac/misc.c
arch/powerpc/kernel/time.c
arch/parisc/include/asm/rtc.h
...
We can make a common function for this type of conversion, At least we
can get following benefit:
1: Make kernel simple and unify
2: Easy to fix bug in converting code
3: Reduce clone of code in future
For example, I'm trying to make ftrace display walltime,
this patch will make me easy.
This code is based on code from glibc-2.6
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (34 commits)
time: Prevent 32 bit overflow with set_normalized_timespec()
clocksource: Delay clocksource down rating to late boot
clocksource: clocksource_select must be called with mutex locked
clocksource: Resolve cpu hotplug dead lock with TSC unstable, fix crash
timers: Drop a function prototype
clocksource: Resolve cpu hotplug dead lock with TSC unstable
timer.c: Fix S/390 comments
timekeeping: Fix invalid getboottime() value
timekeeping: Fix up read_persistent_clock() breakage on sh
timekeeping: Increase granularity of read_persistent_clock(), build fix
time: Introduce CLOCK_REALTIME_COARSE
x86: Do not unregister PIT clocksource on PIT oneshot setup/shutdown
clocksource: Avoid clocksource watchdog circular locking dependency
clocksource: Protect the watchdog rating changes with clocksource_mutex
clocksource: Call clocksource_change_rating() outside of watchdog_lock
timekeeping: Introduce read_boot_clock
timekeeping: Increase granularity of read_persistent_clock()
timekeeping: Update clocksource with stop_machine
timekeeping: Add timekeeper read_clock helper functions
timekeeping: Move NTP adjusted clock multiplier to struct timekeeper
...
Fix trivial conflict due to MIPS lemote -> loongson renaming.
The down rating of clock sources in the early boot process via the
clock source watchdog mechanism can happen way before the per cpu
event queues are initialized. This leads to a boot crash on x86 when
the TSC is marked unstable in the SMP bring up.
The selection of a clock source for time keeping happens in the late
boot process so we can safely delay the list manipulation until
clocksource_done_booting() is called.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <new-submission>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
The callers of clocksource_select must hold clocksource_mutex to
protect the clocksource_list.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <new-submission>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
The watchdog timer is started after the watchdog clocksource
and at least one watched clocksource have been registered. The
clocksource work element watchdog_work is initialized just
before the clocksource timer is started. This is too late for
the clocksource_mark_unstable call from native_cpu_up. To fix
this use a static initializer for watchdog_work.
This resolves a boot crash reported by multiple people.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: John Stultz <johnstul@us.ibm.com>
LKML-Reference: <20090911153305.3fe9a361@skybase>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Martin Schwidefsky analyzed it:
To register a clocksource the clocksource_mutex is acquired and if
necessary timekeeping_notify is called to install the clocksource as
the timekeeper clock. timekeeping_notify uses stop_machine which needs
to take cpu_add_remove_lock mutex.
Starting a new cpu is done with the cpu_add_remove_lock mutex held.
native_cpu_up checks the tsc of the new cpu and if the tsc is no good
clocksource_change_rating is called. Which needs the clocksource_mutex
and the deadlock is complete.
The solution is to replace the TSC via the clocksource watchdog
mechanism. Mark the TSC as unstable and schedule the watchdog work so
it gets removed in the watchdog thread context.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <new-submission>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
Don't use timespec_add_safe() with wall_to_monotonic, because
wall_to_monotonic has negative values which will cause overflow
in timespec_add_safe(). That makes btime in /proc/stat invalid.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <4A937FDE.4050506@ct.jp.nec.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
After talking with some application writers who want very fast, but not
fine-grained timestamps, I decided to try to implement new clock_ids
to clock_gettime(): CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE
which returns the time at the last tick. This is very fast as we don't
have to access any hardware (which can be very painful if you're using
something like the acpi_pm clocksource), and we can even use the vdso
clock_gettime() method to avoid the syscall. The only trade off is you
only get low-res tick grained time resolution.
This isn't a new idea, I know Ingo has a patch in the -rt tree that made
the vsyscall gettimeofday() return coarse grained time when the
vsyscall64 sysctrl was set to 2. However this affects all applications
on a system.
With this method, applications can choose the proper speed/granularity
trade-off for themselves.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: nikolag@ca.ibm.com
Cc: Darren Hart <dvhltc@us.ibm.com>
Cc: arjan@infradead.org
Cc: jonathan@jonmasters.org
LKML-Reference: <1250734414.6897.5.camel@localhost.localdomain>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Currently clockevents_notify() is called with interrupts enabled at
some places and interrupts disabled at some other places.
This results in a deadlock in this scenario.
cpu A holds clockevents_lock in clockevents_notify() with irqs enabled
cpu B waits for clockevents_lock in clockevents_notify() with irqs disabled
cpu C doing set_mtrr() which will try to rendezvous of all the cpus.
This will result in C and A come to the rendezvous point and waiting
for B. B is stuck forever waiting for the spinlock and thus not
reaching the rendezvous point.
Fix the clockevents code so that clockevents_lock is taken with
interrupts disabled and thus avoid the above deadlock.
Also call lapic_timer_propagate_broadcast() on the destination cpu so
that we avoid calling smp_call_function() in the clockevents notifier
chain.
This issue left us wondering if we need to change the MTRR rendezvous
logic to use stop machine logic (instead of smp_call_function) or add
a check in spinlock debug code to see if there are other spinlocks
which gets taken under both interrupts enabled/disabled conditions.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: "Pallipadi Venkatesh" <venkatesh.pallipadi@intel.com>
Cc: "Brown Len" <len.brown@intel.com>
LKML-Reference: <1250544899.2709.210.camel@sbs-t61.sc.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
stop_machine from a multithreaded workqueue is not allowed because
of a circular locking dependency between cpu_down and the workqueue
execution. Use a kernel thread to do the clocksource downgrade.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: john stultz <johnstul@us.ibm.com>
LKML-Reference: <20090818170942.3ab80c91@skybase>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Martin pointed out that commit 6ea41d2529 (clocksource: Call
clocksource_change_rating() outside of watchdog_lock) has a
theoretical reference count problem. The calls to
clocksource_change_rating() are now done outside of the clocksource
mutex and outside of the watchdog lock. A concurrent
clocksource_unregister() could remove the clock.
Split out the code which changes the rating from
clocksource_change_rating() into __clocksource_change_rating().
Protect the clocksource_watchdog_work() code sequence with the
clocksource_mutex() and call __clocksource_change_rating().
LKML-Reference: <alpine.LFD.2.00.0908171038420.2782@localhost.localdomain>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
/proc/timer_list and /proc/slabinfo are not supposed to be
written, so there should be no write permissions on it.
Signed-off-by: WANG Cong <amwang@redhat.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: linux-mm@kvack.org
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Amerigo Wang <amwang@redhat.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
LKML-Reference: <20090817094525.6355.88682.sendpatchset@localhost.localdomain>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The changes to the watchdog logic introduced a lock inversion between
watchdog_lock and clocksource_mutex. Change the rating outside of
watchdog_lock to avoid it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add the new function read_boot_clock to get the exact time the system
has been started. For architectures without support for exact boot
time a new weak function is added that returns 0. Use the exact boot
time to initialize wall_to_monotonic, or xtime if the read_boot_clock
returned 0.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134811.296703241@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The persistent clock of some architectures (e.g. s390) have a
better granularity than seconds. To reduce the delta between the
host clock and the guest clock in a virtualized system change the
read_persistent_clock function to return a struct timespec.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134811.013873340@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
update_wall_time calls change_clocksource HZ times per second to check
if a new clock source is available. In close to 100% of all calls
there is no new clock. Replace the tick based check by an update done
with stop_machine.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134810.711836357@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add timekeeper_read_clock_ntp and timekeeper_read_clock_raw and use
them for getnstimeofday, ktime_get, ktime_get_ts and getrawmonotonic.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134810.435105711@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The clocksource structure has two multipliers, the unmodified multiplier
clock->mult_orig and the NTP corrected multiplier clock->mult. The NTP
multiplier is misplaced in the struct clocksource, this is private
information of the timekeeping code. Add the mult field to the struct
timekeeper to contain the NTP corrected value, keep the unmodifed
multiplier in clock->mult and remove clock->mult_orig.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134810.149047645@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The xtime_nsec value in the timekeeper structure is shifted by a few
bits to improve precision. This happens to be the same value as the
clock->shift. To improve readability add xtime_shift to the timekeeper
and use it instead of the clock->shift. Likewise add ntp_error_shift
and replace all (NTP_SCALE_SHIFT - clock->shift) expressions.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134809.871899606@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add struct timekeeper to keep the internal values timekeeping.c needs
in regard to the currently selected clock source. This moves the
timekeeping intervals, xtime_nsec and the ntp error value from struct
clocksource to struct timekeeper. The raw_time is removed from the
clocksource as well. It gets treated like xtime as a global variable.
Eventually xtime raw_time should be moved to struct timekeeper.
[ tglx: minor cleanup ]
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134809.613209842@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move the downgrade of an unstable clocksource from the timer interrupt
context into the process context of a work queue thread. This is
needed to be able to do the clocksource switch with stop_machine.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134809.354926067@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Refactor clocksource watchdog code to make it more readable. Add
clocksource_dequeue_watchdog to remove a clocksource from the watchdog
list when it is unregistered.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134809.110881699@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To resume the clocksource watchdog just remove the CLOCK_SOURCE_WATCHDOG
bit from the watched clocksource.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134808.880925790@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The clocksource watchdog marks a clock as highres capable before it
checked the deviation from the watchdog clocksource even for a single
time. Make sure that the deviation is at least checked once before
doing the switch to highres mode.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134808.627795883@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If a non high-resolution clocksource is first set as override clock
and then registered it becomes active even if the system is in one-shot
mode. Move the override check from sysfs_override_clocksource to the
clocksource selection. That fixes the bug and simplifies the code. The
check in clocksource_register for double registration of the same
clocksource is removed without replacement.
To find the initial clocksource a new weak function in jiffies.c is
defined that returns the jiffies clocksource. The architecture code
can then override the weak function with a more suitable clocksource,
e.g. the TOD clock on s390.
[ tglx: Folded in a fix from John Stultz ]
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134808.388024160@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
change_clocksource resets the cycle_last value to zero then sets it to
a value read from the clocksource. The reset to zero is required only
for the TSC clocksource to make the read_tsc function work after a
resume. The reason is that the TSC read function uses cycle_last to
detect backwards going TSCs. In the resume case cycle_last contains
the TSC value from the last update before the suspend. On resume the
TSC starts counting from 0 again and would trip over the cycle_last
comparison.
This is subtle and surprising. Move the reset to a resume function in
the tsc code.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134808.142191175@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The three inline functions clocksource_read, clocksource_enable and
clocksource_disable are simple wrappers of an indirect call plus the
copy from and to the mult_orig value. The functions are exclusively
used by the timekeeping code which has intimate knowledge of the
clocksource anyway. Therefore remove the inline functions. No
functional change.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Daniel Walker <dwalker@fifo99.com>
LKML-Reference: <20090814134807.903108946@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move the adjustment of xtime, wall_to_monotonic and the update of the
vsyscall variables to the timekeeping code.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
LKML-Reference: <20090814134807.609730216@de.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Writing a zero length string to sys/.../current_clocksource will cause
a NULL pointer dereference if the clock events system is in one shot
(highres or nohz) mode.
Pointed-out-by: Dan Carpenter <error27@gmail.com>
LKML-Reference: <alpine.DEB.2.00.0907191545580.12306@bicker>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The timer migration expiry check should prevent the migration of a
timer to another CPU when the timer expires before the next event is
scheduled on the other CPU. Migrating the timer might delay it because
we can not reprogram the clock event device on the other CPU. But the
code implementing that check has two flaws:
- for !HIGHRES the check compares the expiry value with the clock
events device expiry value which is wrong for CLOCK_REALTIME based
timers.
- the check is racy. It holds the hrtimer base lock of the target CPU,
but the clock event device expiry value can be modified
nevertheless, e.g. by an timer interrupt firing.
The !HIGHRES case is easy to fix as we can enqueue the timer on the
cpu which was selected by the load balancer. It runs the idle
balancing code once per jiffy anyway. So the maximum delay for the
timer is the same as when we keep the tick on the current cpu going.
In the HIGHRES case we can get the next expiry value from the hrtimer
cpu_base of the target CPU and serialize the update with the cpu_base
lock. This moves the lock section in hrtimer_interrupt() so we can set
next_event to KTIME_MAX while we are handling the expired timers and
set it to the next expiry value after we handled the timers under the
base lock. While the expired timers are processed timer migration is
blocked because the expiry time of the timer is always <= KTIME_MAX.
Also remove the now useless clockevents_get_next_event() function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The ktime_get() functions for GENERIC_TIME=n are still located in
hrtimer.c. Move them to time/timekeeping.c where they belong.
LKML-Reference: <new-submission>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The generic ktime_get function defined in kernel/hrtimer.c is suboptimial
for GENERIC_TIME=y:
0) | ktime_get() {
0) | ktime_get_ts() {
0) | getnstimeofday() {
0) | read_tod_clock() {
0) 0.601 us | }
0) 1.938 us | }
0) | set_normalized_timespec() {
0) 0.602 us | }
0) 4.375 us | }
0) 5.523 us | }
Overall there are two read_seqbegin/read_seqretry loops and a lot of
unnecessary struct timespec calculations. ktime_get returns a nano second
value which is the sum of xtime, wall_to_monotonic and the nano second
delta from the clock source.
ktime_get can be optimized for GENERIC_TIME=y. The new version only calls
clocksource_read:
0) | ktime_get() {
0) | read_tod_clock() {
0) 0.610 us | }
0) 1.977 us | }
It uses a single read_seqbegin/readseqretry loop and just adds everthing
to a nano second value.
ktime_get_ts is optimized in a similar fashion.
[ tglx: added WARN_ON(timekeeping_suspended) as in getnstimeofday() ]
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: john stultz <johnstul@us.ibm.com>
LKML-Reference: <20090707112728.3005244d@skybase>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When the kernel is configured with CONFIG_TIMER_STATS but timer
stats are runtime disabled we still get calls to
__timer_stats_timer_set_start_info which initializes some
fields in the corresponding struct timer_list.
So add some quick checks in the the timer stats setup functions
to avoid function calls to __timer_stats_timer_set_start_info
when timer stats are disabled.
In an artificial workload that does nothing but playing ping
pong with a single tcp packet via loopback this decreases cpu
consumption by 1 - 1.5%.
This is part of a modified function trace output on SLES11:
perl-2497 [00] 28630647177732388 [+ 125]: sk_reset_timer <-tcp_v4_rcv
perl-2497 [00] 28630647177732513 [+ 125]: mod_timer <-sk_reset_timer
perl-2497 [00] 28630647177732638 [+ 125]: __timer_stats_timer_set_start_info <-mod_timer
perl-2497 [00] 28630647177732763 [+ 125]: __mod_timer <-mod_timer
perl-2497 [00] 28630647177732888 [+ 125]: __timer_stats_timer_set_start_info <-__mod_timer
perl-2497 [00] 28630647177733013 [+ 93]: lock_timer_base <-__mod_timer
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mustafa Mesanovic <mustafa.mesanovic@de.ibm.com>
Cc: Arjan van de Ven <arjan@infradead.org>
LKML-Reference: <20090623153811.GA4641@osiris.boeblingen.de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'timers-for-linus-migration' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timers: Logic to move non pinned timers
timers: /proc/sys sysctl hook to enable timer migration
timers: Identifying the existing pinned timers
timers: Framework for identifying pinned timers
timers: allow deferrable timers for intervals tv2-tv5 to be deferred
Fix up conflicts in kernel/sched.c and kernel/timer.c manually
* 'timers-for-linus-clockevents' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
clockevent: export register_device and delta2ns
clockevents: tick_broadcast_device can become static
* 'timers-for-linus-clocksource' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
clocksource: prevent selection of low resolution clocksourse also for nohz=on
clocksource: sanity check sysfs clocksource changes
commit 3f68535ada (clocksource: sanity check sysfs clocksource
changes) prevents selection of non high resolution capable
clocksources when high resolution mode is active, but did not take
into account that the same rules apply for highres=off nohz=on.
Check the tick device mode instead of hrtimer_hres_active() to verify
whether the system needs to be protected from a switch to jiffies or
other non highres capable clock sources.
Reported-by: Luming Yu <luming.yu@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Thomas, Andrew and Ingo pointed out that we don't have any safety checks
in the clocksource sysfs entries to make sure sysadmins don't try to
change the clocksource to a non high-res timer capable clocksource (such
as jiffies) when high-res timers (HRT) is enabled. Doing so will likely
hang a system.
Correct this by filtering non HRT clocksources from available_clocksources
and not accepting non HRT clocksources with HRT enabled.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A call from irq_exit() may occasionally pause the timing
info for cpufreq ondemand governor. This results in the
cpufreq ondemand governor to fail to calculate the
system load properly. Thus, relocate the checks for this
particular case to keep the governor always functional.
Signed-off-by: Eero Nurkkala <ext-eero.nurkkala@nokia.com>
Reported-by: Tero Kristo <tero.kristo@nokia.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Dimitri Sivanich noticed that xtime_lock is held write locked across
calc_load() which iterates over all online CPUs. That can cause long
latencies for xtime_lock readers on large SMP systems.
The load average calculation is an rough estimate anyway so there is
no real need to protect the readers vs. the update. It's not a problem
when the avenrun array is updated while a reader copies the values.
Instead of iterating over all online CPUs let the scheduler_tick code
update the number of active tasks shortly before the avenrun update
happens. The avenrun update itself is handled by the CPU which calls
do_timer().
[ Impact: reduce xtime_lock write locked section ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
* Arun R Bharadwaj <arun@linux.vnet.ibm.com> [2009-04-16 12:11:36]:
This patch migrates all non pinned timers and hrtimers to the current
idle load balancer, from all the idle CPUs. Timers firing on busy CPUs
are not migrated.
While migrating hrtimers, care should be taken to check if migrating
a hrtimer would result in a latency or not. So we compare the expiry of the
hrtimer with the next timer interrupt on the target cpu and migrate the
hrtimer only if it expires *after* the next interrupt on the target cpu.
So, added a clockevents_get_next_event() helper function to return the
next_event on the target cpu's clock_event_device.
[ tglx: cleanups and simplifications ]
Signed-off-by: Arun R Bharadwaj <arun@linux.vnet.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* Arun R Bharadwaj <arun@linux.vnet.ibm.com> [2009-04-16 12:11:36]:
The following pinned hrtimers have been identified and marked:
1)sched_rt_period_timer
2)tick_sched_timer
3)stack_trace_timer_fn
[ tglx: fixup the hrtimer pinned mode ]
Signed-off-by: Arun R Bharadwaj <arun@linux.vnet.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Export the following symbols using EXPORT_SYMBOL_GPL:
- clockevent_delta2ns
- clockevents_register_device
This allows us to build SuperH clockevent and clocksource
drivers as modules, see drivers/clocksource/sh_*.c
[ Impact: allow modular build of clockevent drivers ]
Signed-off-by: Magnus Damm <damm@igel.co.jp>
LKML-Reference: <20090501055247.8286.64067.sendpatchset@rx1.opensource.se>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Some arches don't supply their own clocksource. This is mainly the
case in architectures that get their inter-tick times by reading the
counter on their interval timer. Since these timers wrap every tick,
they're not really useful as clocksources. Wrapping them to act like
one is possible but not very efficient. So we provide a callout these
arches can implement for use with the jiffies clocksource to provide
finer then tick granular time.
[ Impact: ease the migration to generic time keeping ]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Setup clocksource mult_orig in clocksource_enable().
Clocksource drivers can save power by using keeping the
device clock disabled while the clocksource is unused.
In practice this means that the enable() and disable()
callbacks perform clk_enable() and clk_disable().
The enable() callback may also use clk_get_rate() to get
the clock rate from the clock framework. This information
can then be used to calculate the shift and mult variables.
Currently the mult_orig variable is setup from mult at
registration time only. This is conflicting with the above
case since the clock is disabled and the mult variable is
not yet calculated at the time of registration.
Moving the mult_orig setup code to clocksource_enable()
allows us to both handle the common case with no enable()
callback and the mult-changed-after-enable() case.
[ Impact: allow dynamic clock source usage ]
Signed-off-by: Magnus Damm <damm@igel.co.jp>
LKML-Reference: <20090501054546.8193.10688.sendpatchset@rx1.opensource.se>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The variable tick_broadcast_device is not used outside of the
file where it is defined, so let's make it static.
Signed-off-by: Dmitri Vorobiev <dmitri.vorobiev@movial.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
tick_handle_periodic() can lock up hard when a one shot clock event
device is used in combination with jiffies clocksource.
Avoid an endless loop issue by requiring that a highres valid
clocksource be installed before we call tick_periodic() in a loop when
using ONESHOT mode. The result is we will only increment jiffies once
per interrupt until a continuous hardware clocksource is available.
Without this, we can run into a endless loop, where each cycle through
the loop, jiffies is updated which increments time by tick_period or
more (due to clock steering), which can cause the event programming to
think the next event was before the newly incremented time and fail
causing tick_periodic() to be called again and the whole process loops
forever.
[ Impact: prevent hard lock up ]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
Add enable() and disable() callbacks for clocksources.
This allows us to put unused clocksources in power save mode. The
functions clocksource_enable() and clocksource_disable() wrap the
callbacks and are inserted in the timekeeping code to enable before use
and disable after switching to a new clocksource.
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pass clocksource pointer to the read() callback for clocksources. This
allows us to share the callback between multiple instances.
[hugh@veritas.com: fix powerpc build of clocksource pass clocksource mods]
[akpm@linux-foundation.org: cleanup]
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The time_status conditional was accidentally placed right after we clear
the checked time_status bits, which causes us to take the conditional
every time through. This fixes it by moving the conditional to before we
clear the time_status bits.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Clark Williams <williams@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
The 'time_adj' local variable is named in a very confusing
way because it almost shadows the 'time_adjust' global
variable - which is used in this same function.
Rename it to 'delta' - to make them stand apart more clearly.
kernel/time/ntp.o:
text data bss dec hex filename
2545 114 144 2803 af3 ntp.o.before
2545 114 144 2803 af3 ntp.o.after
md5:
1bf0b3be564512279ba7cee299d1d2be ntp.o.before.asm
1bf0b3be564512279ba7cee299d1d2be ntp.o.after.asm
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: micro-optimization
Convert the (internal) ntp_tick_adj value we store from unscaled
units to scaled units. This is a constant that we never modify,
so scaling it up once during bootup is enough - we dont have to
do it for every adjustment step.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
Further simplify do_adjtimex():
- introduce the ntp_start_leap_timer() helper function
- eliminate the goto adj_done complication
Signed-off-by: Ingo Molnar <mingo@elte.hu>