When a system is lightly loaded (i.e. no more than 1 job per cpu),
attempt to pull job to a cpu before putting it to idle is unnecessary and
can be skipped. This patch adds an indicator so the scheduler can know
when there's no more than 1 active job is on any CPU in the system to
skip needless job pulls.
On a 4 socket machine with a request/response kind of workload from
clients, we saw about 0.13 msec delay when we go through a full load
balance to try pull job from all the other cpus. While 0.1 msec was
spent on processing the request and generating a response, the 0.13 msec
load balance overhead was actually more than the actual work being done.
This overhead can be skipped much of the time for lightly loaded systems.
With this patch, we tested with a netperf request/response workload that
has the server busy with half the cpus in a 4 socket system. We found
the patch eliminated 75% of the load balance attempts before idling a cpu.
The overhead of setting/clearing the indicator is low as we already gather
the necessary info while we call add_nr_running() and update_sd_lb_stats.()
We switch to full load balance load immediately if any cpu got more than
one job on its run queue in add_nr_running. We'll clear the indicator
to avoid load balance when we detect no cpu's have more than one job
when we scan the work queues in update_sg_lb_stats(). We are aggressive
in turning on the load balance and opportunistic in skipping the load
balance.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Jason Low <jason.low2@hp.com>
Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403551009.2970.613.camel@schen9-DESK
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We don't need 'broadcast' to be set to 'zero or one', but to 'zero or non-zero'
and so the extra operation to convert it to 'zero or one' can be skipped.
Also change type of 'broadcast' to unsigned int, i.e. type of
drv->states[*].flags.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/0dfbe2976aa108c53e08d3477ea90f6360c1f54c.1403584026.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a task has been dequeued, it has been accounted. Do not project
cycles that may or may not ever be accounted to a dequeued task, as
that may make clock_gettime() both inaccurate and non-monotonic.
Protect update_rq_clock() from slight TSC skew while at it.
Signed-off-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: kosaki.motohiro@jp.fujitsu.com
Cc: pjt@google.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403588980.29711.11.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
distribute_cfs_runtime() intentionally only hands out enough runtime to
bring each cfs_rq to 1 ns of runtime, expecting the cfs_rqs to then take
the runtime they need only once they actually get to run. However, if
they get to run sufficiently quickly, the period timer is still in
distribute_cfs_runtime() and no runtime is available, causing them to
throttle. Then distribute has to handle them again, and this can go on
until distribute has handed out all of the runtime 1ns at a time, which
takes far too long.
Instead allow access to the same runtime that distribute is handing out,
accepting that corner cases with very low quota may be able to spend the
entire cfs_b->runtime during distribute_cfs_runtime, meaning that the
runtime directly handed out by distribute_cfs_runtime was over quota. In
addition, if a cfs_rq does manage to throttle like this, make sure the
existing distribute_cfs_runtime no longer loops over it again.
Signed-off-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140620222120.13814.21652.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sched_can_stop_tick() is using 7 spaces instead of 8 spaces or a 'tab' at the
beginning of few lines. Which doesn't align well with the Coding Guidelines.
Also remove local variable 'rq' as it is used at only one place and we can
directly use this_rq() instead.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: fweisbec@gmail.com
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/afb781733e4a9ffbced5eb9fd25cc0aa5c6ffd7a.1403596966.git.viresh.kumar@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit ac1bea8578 (Make cond_resched() report RCU quiescent states)
fixed a problem where a CPU looping in the kernel with but one runnable
task would give RCU CPU stall warnings, even if the in-kernel loop
contained cond_resched() calls. Unfortunately, in so doing, it introduced
performance regressions in Anton Blanchard's will-it-scale "open1" test.
The problem appears to be not so much the increased cond_resched() path
length as an increase in the rate at which grace periods complete, which
increased per-update grace-period overhead.
This commit takes a different approach to fixing this bug, mainly by
moving the RCU-visible quiescent state from cond_resched() to
rcu_note_context_switch(), and by further reducing the check to a
simple non-zero test of a single per-CPU variable. However, this
approach requires that the force-quiescent-state processing send
resched IPIs to the offending CPUs. These will be sent only once
the grace period has reached an age specified by the boot/sysfs
parameter rcutree.jiffies_till_sched_qs, or once the grace period
reaches an age halfway to the point at which RCU CPU stall warnings
will be emitted, whichever comes first.
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@gentwo.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
[ paulmck: Made rcu_momentary_dyntick_idle() as suggested by the
ktest build robot. Also fixed smp_mb() comment as noted by
Oleg Nesterov. ]
Merge with e552592e (Reduce overhead of cond_resched() checks for RCU)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When computing cache hot, we should check if the migration dst cpu is idle,
instead of the current cpu. Though they are same in normal balancing, that
is false nowadays in nohz idle balancing at least.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140607090452.4696E301D2@webmail.sinamail.sina.com.cn
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is possible that at task_numa_placement() time, the task's
numa_preferred_nid does not change, but the task is not
actually running on the preferred node at the time.
In that case, we still want to attempt migration to the
preferred node.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140604163315.1dbc7b56@cuia.bos.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The first thing task_numa_migrate() does is check to see if there is
CPU capacity available on the preferred node, in order to move the
task there.
However, if the preferred node is all busy, we would skip considering
that node for tasks swaps in the subsequent loop. This prevents NUMA
convergence of tasks on busy systems.
However, swapping locations with a task on our preferred nid, when
the preferred nid is busy, is perfectly fine.
The fix is to also look for a CPU on our preferred nid when it is
totally busy.
This changes "perf bench numa mem -p 4 -t 20 -m -0 -P 1000" from
not converging in 15 minutes on my 4 node system, to converging in
10-20 seconds.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140604160942.6969b101@cuia.bos.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A full dynticks CPU is allowed to stop its tick when a single task runs.
Meanwhile when a new task gets enqueued, the CPU must be notified so that
it can restart its tick to maintain local fairness and other accounting
details.
This notification is performed by way of an IPI. Then when the target
receives the IPI, we expect it to see the new value of rq->nr_running.
Hence the following ordering scenario:
CPU 0 CPU 1
write rq->running get IPI
smp_wmb() smp_rmb()
send IPI read rq->nr_running
But Paul Mckenney says that nowadays IPIs imply a full barrier on
all architectures. So we can safely remove this pair and rely on the
implicit barriers that come along IPI send/receive. Lets
just comment on this new assumption.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Now that we have a nohz full remote kick based on irq work, lets use
it to notify a CPU that it's exiting single task mode.
This unbloats a bit the scheduler IPI that the nohz code was abusing
for its cool "callable anywhere/anytime" properties.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
When a new timer is enqueued on a full dynticks target, that CPU must
re-evaluate the next tick to handle the timer correctly.
This is currently performed through the scheduler IPI. Meanwhile this
happens at the cost of off-topic workarounds in that fast path to make
it call irq_exit().
As we plan to remove this hack off the scheduler IPI, lets use
the nohz full kick instead. Pretty much any IPI fits for that job
as long at it calls irq_exit(). The nohz full kick just happens to be
handy and readily available here.
If it happens to be too much an overkill in the future, we can still
turn that timer kick into an empty IPI.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull more scheduler updates from Ingo Molnar:
"Second round of scheduler changes:
- try-to-wakeup and IPI reduction speedups, from Andy Lutomirski
- continued power scheduling cleanups and refactorings, from Nicolas
Pitre
- misc fixes and enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Delete extraneous extern for to_ratio()
sched/idle: Optimize try-to-wake-up IPI
sched/idle: Simplify wake_up_idle_cpu()
sched/idle: Clear polling before descheduling the idle thread
sched, trace: Add a tracepoint for IPI-less remote wakeups
cpuidle: Set polling in poll_idle
sched: Remove redundant assignment to "rt_rq" in update_curr_rt(...)
sched: Rename capacity related flags
sched: Final power vs. capacity cleanups
sched: Remove remaining dubious usage of "power"
sched: Let 'struct sched_group_power' care about CPU capacity
sched/fair: Disambiguate existing/remaining "capacity" usage
sched/fair: Change "has_capacity" to "has_free_capacity"
sched/fair: Remove "power" from 'struct numa_stats'
sched: Fix signedness bug in yield_to()
sched/fair: Use time_after() in record_wakee()
sched/balancing: Reduce the rate of needless idle load balancing
sched/fair: Fix unlocked reads of some cfs_b->quota/period
Pull more perf updates from Ingo Molnar:
"A second round of perf updates:
- wide reaching kprobes sanitization and robustization, with the hope
of fixing all 'probe this function crashes the kernel' bugs, by
Masami Hiramatsu.
- uprobes updates from Oleg Nesterov: tmpfs support, corner case
fixes and robustization work.
- perf tooling updates and fixes from Jiri Olsa, Namhyung Ki, Arnaldo
et al:
* Add support to accumulate hist periods (Namhyung Kim)
* various fixes, refactorings and enhancements"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
perf: Differentiate exec() and non-exec() comm events
perf: Fix perf_event_comm() vs. exec() assumption
uprobes/x86: Rename arch_uprobe->def to ->defparam, minor comment updates
perf/documentation: Add description for conditional branch filter
perf/x86: Add conditional branch filtering support
perf/tool: Add conditional branch filter 'cond' to perf record
perf: Add new conditional branch filter 'PERF_SAMPLE_BRANCH_COND'
uprobes: Teach copy_insn() to support tmpfs
uprobes: Shift ->readpage check from __copy_insn() to uprobe_register()
perf/x86: Use common PMU interrupt disabled code
perf/ARM: Use common PMU interrupt disabled code
perf: Disable sampled events if no PMU interrupt
perf: Fix use after free in perf_remove_from_context()
perf tools: Fix 'make help' message error
perf record: Fix poll return value propagation
perf tools: Move elide bool into perf_hpp_fmt struct
perf tools: Remove elide setup for SORT_MODE__MEMORY mode
perf tools: Fix "==" into "=" in ui_browser__warning assignment
perf tools: Allow overriding sysfs and proc finding with env var
perf tools: Consider header files outside perf directory in tags target
...
Fix this dependency on the locking tree's smp_mb*() API changes:
kernel/sched/idle.c:247:3: error: implicit declaration of function ‘smp_mb__after_atomic’ [-Werror=implicit-function-declaration]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull cgroup updates from Tejun Heo:
"A lot of activities on cgroup side. Heavy restructuring including
locking simplification took place to improve the code base and enable
implementation of the unified hierarchy, which currently exists behind
a __DEVEL__ mount option. The core support is mostly complete but
individual controllers need further work. To explain the design and
rationales of the the unified hierarchy
Documentation/cgroups/unified-hierarchy.txt
is added.
Another notable change is css (cgroup_subsys_state - what each
controller uses to identify and interact with a cgroup) iteration
update. This is part of continuing updates on css object lifetime and
visibility. cgroup started with reference count draining on removal
way back and is now reaching a point where csses behave and are
iterated like normal refcnted objects albeit with some complexities to
allow distinguishing the state where they're being deleted. The css
iteration update isn't taken advantage of yet but is planned to be
used to simplify memcg significantly"
* 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (77 commits)
cgroup: disallow disabled controllers on the default hierarchy
cgroup: don't destroy the default root
cgroup: disallow debug controller on the default hierarchy
cgroup: clean up MAINTAINERS entries
cgroup: implement css_tryget()
device_cgroup: use css_has_online_children() instead of has_children()
cgroup: convert cgroup_has_live_children() into css_has_online_children()
cgroup: use CSS_ONLINE instead of CGRP_DEAD
cgroup: iterate cgroup_subsys_states directly
cgroup: introduce CSS_RELEASED and reduce css iteration fallback window
cgroup: move cgroup->serial_nr into cgroup_subsys_state
cgroup: link all cgroup_subsys_states in their sibling lists
cgroup: move cgroup->sibling and ->children into cgroup_subsys_state
cgroup: remove cgroup->parent
device_cgroup: remove direct access to cgroup->children
memcg: update memcg_has_children() to use css_next_child()
memcg: remove tasks/children test from mem_cgroup_force_empty()
cgroup: remove css_parent()
cgroup: skip refcnting on normal root csses and cgrp_dfl_root self css
cgroup: use cgroup->self.refcnt for cgroup refcnting
...
This function is supposed to return true if the new load imbalance is
worse than the old one. It didn't. I can only hope brown paper bags
are in style.
Now things converge much better on both the 4 node and 8 node systems.
I am not sure why this did not seem to impact specjbb performance on the
4 node system, which is the system I have full-time access to.
This bug was introduced recently, with commit e63da03639 ("sched/numa:
Allow task switch if load imbalance improves")
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.
* accumulated work in next: (6809 commits)
ufs: sb mutex merge + mutex_destroy
powerpc: update comments for generic idle conversion
cris: update comments for generic idle conversion
idle: remove cpu_idle() forward declarations
nbd: zero from and len fields in NBD_CMD_DISCONNECT.
mm: convert some level-less printks to pr_*
MAINTAINERS: adi-buildroot-devel is moderated
MAINTAINERS: add linux-api for review of API/ABI changes
mm/kmemleak-test.c: use pr_fmt for logging
fs/dlm/debug_fs.c: replace seq_printf by seq_puts
fs/dlm/lockspace.c: convert simple_str to kstr
fs/dlm/config.c: convert simple_str to kstr
mm: mark remap_file_pages() syscall as deprecated
mm: memcontrol: remove unnecessary memcg argument from soft limit functions
mm: memcontrol: clean up memcg zoneinfo lookup
mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
mm/mempool.c: update the kmemleak stack trace for mempool allocations
lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
mm: introduce kmemleak_update_trace()
mm/kmemleak.c: use %u to print ->checksum
...
Pull scheduler fixes from Ingo Molnar:
"Four misc fixes: each was deemed serious enough to warrant v3.15
inclusion"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Fix tg_set_cfs_bandwidth() deadlock on rq->lock
sched/dl: Fix race in dl_task_timer()
sched: Fix sched_policy < 0 comparison
sched/numa: Fix use of spin_{un}lock_irq() when interrupts are disabled
There was a prototype for it added to kernel/sched/sched.h
at the same time the extern was added, so the extern in
the C file was never really ever needed.
See commit 332ac17ef5
("sched/deadline: Add bandwidth management for SCHED_DEADLINE
tasks") for details.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dario Faggioli <raistlin@linux.it>
Link: http://lkml.kernel.org/r/1400013605-18717-1-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[ This series reduces the number of IPIs on Andy's workload by something like
99%. It's down from many hundreds per second to very few.
The basic idea behind this series is to make TIF_POLLING_NRFLAG be a
reliable indication that the idle task is polling. Once that's done,
the rest is reasonably straightforward. ]
When enqueueing tasks on remote LLC domains, we send an IPI to do the
work 'locally' and avoid bouncing all the cachelines over.
However, when the remote CPU is idle (and polling, say x86 mwait), we
don't need to send an IPI, we can simply kick the TIF word to wake it
up and have the 'idle' loop do the work.
So when _TIF_POLLING_NRFLAG is set, but _TIF_NEED_RESCHED is not (yet)
set, set _TIF_NEED_RESCHED and avoid sending the IPI.
Much-requested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
[Edited by Andy Lutomirski, but this is mostly Peter Zijlstra's code.]
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: umgwanakikbuti@gmail.com
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/ce06f8b02e7e337be63e97597fc4b248d3aa6f9b.1401902905.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the only real guarantee provided by the polling bit is
that, if you hold rq->lock and the polling bit is set, then you can
set need_resched to force a reschedule.
The only reason the lock is needed is that the idle thread might not
be running at all when setting its need_resched bit, and rq->lock
keeps it pinned.
This is easy to fix: just clear the polling bit before scheduling.
Now the idle thread's polling bit is only ever set when
rq->curr == rq->idle.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: umgwanakikbuti@gmail.com
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/b2059fcb4c613d520cb503b6fad6e47033c7c203.1401902905.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Variable "rt_rq" is used only in block "for_each_sched_rt_entity" so the
value assigned to it at the beginning of the update_curr_rt(...) gets
overwritten without ever being read. Remove redundant assignment and
move variable declaration to the block in which it is being used.
Signed-off-by: Giedrius Rekasius <giedrius.rekasius@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: kernel-janitors@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1401027811-30066-1-git-send-email-giedrius.rekasius@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
Let's rename the following feature flags since they do relate to capacity:
SD_SHARE_CPUPOWER -> SD_SHARE_CPUCAPACITY
ARCH_POWER -> ARCH_CAPACITY
NONTASK_POWER -> NONTASK_CAPACITY
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Andy Fleming <afleming@freescale.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: devicetree@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/n/tip-e93lpnxb87owfievqatey6b5@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
This contains the architecture visible changes. Incidentally, only ARM
takes advantage of the available pow^H^H^Hcapacity scaling hooks and
therefore those changes outside kernel/sched/ are confined to one ARM
specific file. The default arch_scale_smt_power() hook is not overridden
by anyone.
Replacements are as follows:
arch_scale_freq_power --> arch_scale_freq_capacity
arch_scale_smt_power --> arch_scale_smt_capacity
SCHED_POWER_SCALE --> SCHED_CAPACITY_SCALE
SCHED_POWER_SHIFT --> SCHED_CAPACITY_SHIFT
The local usage of "power" in arch/arm/kernel/topology.c is also changed
to "capacity" as appropriate.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Brown <broonie@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: devicetree@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-48zba9qbznvglwelgq2cfygh@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
This is the remaining "power" -> "capacity" rename for local symbols.
Those symbols visible to the rest of the kernel are not included yet.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-yyyhohzhkwnaotr3lx8zd5aa@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
Since struct sched_group_power is really about compute capacity of sched
groups, let's rename it to struct sched_group_capacity. Similarly sgp
becomes sgc. Related variables and functions dealing with groups are also
adjusted accordingly.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-5yeix833vvgf2uyj5o36hpu9@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have "power" (which should actually become "capacity") and "capacity"
which is a scaled down "capacity factor" in terms of unitary tasks.
Let's use "capacity_factor" to make room for proper usage of "capacity"
later.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-gk1co8sqdev3763opqm6ovml@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The capacity of a CPU/group should be some intrinsic value that doesn't
change with task placement. It is like a container which capacity is
stable regardless of the amount of liquid in it (its "utilization")...
unless the container itself is crushed that is, but that's another story.
Therefore let's rename "has_capacity" to "has_free_capacity" in order to
better convey the wanted meaning.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-djzkk027jm0e8x8jxy70opzh@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is better not to think about compute capacity as being equivalent
to "CPU power". The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.
To make things explicit and not create more confusion with the existing
"capacity" member, let's rename things as follows:
power -> compute_capacity
capacity -> task_capacity
Note: none of those fields are actually used outside update_numa_stats().
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-2e2ndymj5gyshyjq8am79f20@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
yield_to() is supposed to return -ESRCH if there is no task to
yield to, but because the type is bool that is the same as returning
true.
The only place I see which cares is kvm_vcpu_on_spin().
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Raghavendra <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/20140523102042.GA7267@mwanda
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To be future-proof and for better readability the time comparisons are modified
to use time_after() instead of plain, error-prone math.
Signed-off-by: Manuel Schölling <manuel.schoelling@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1400780723-24626-1-git-send-email-manuel.schoelling@gmx.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current no_hz idle load balancer do load balancing for *all* idle cpus,
even though the time due to load balance for a particular
idle cpu could be still a while in the future. This introduces a much
higher load balancing rate than what is necessary. The patch
changes the behavior by only doing idle load balancing on
behalf of an idle cpu only when it is due for load balancing.
On SGI's systems with over 3000 cores, the cpu responsible for idle balancing
got overwhelmed with idle balancing, and introduces a lot of OS noise
to workloads. This patch fixes the issue.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Russ Anderson <rja@sgi.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Hedi Berriche <hedi@sgi.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: MichelLespinasse <walken@google.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1400621967.2970.280.camel@schen9-DESK
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sched_cfs_period_timer() reads cfs_b->period without locks before calling
do_sched_cfs_period_timer(), and similarly unthrottle_offline_cfs_rqs()
would read cfs_b->period without the right lock. Thus a simultaneous
change of bandwidth could cause corruption on any platform where ktime_t
or u64 writes/reads are not atomic.
Extend cfs_b->lock from do_sched_cfs_period_timer() to include the read of
cfs_b->period to solve that issue; unthrottle_offline_cfs_rqs() can just
use 1 rather than the exact quota, much like distribute_cfs_runtime()
does.
There is also an unlocked read of cfs_b->runtime_expires, but a race
there would only delay runtime expiry by a tick. Still, the comparison
should just be != anyway, which clarifies even that problem.
Signed-off-by: Ben Segall <bsegall@google.com>
Tested-by: Roman Gushchin <klamm@yandex-team.ru>
[peterz: Fix compile warn]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140519224945.20303.93530.stgit@sword-of-the-dawn.mtv.corp.google.com
Cc: pjt@google.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
tg_set_cfs_bandwidth() sets cfs_b->timer_active to 0 to
force the period timer restart. It's not safe, because
can lead to deadlock, described in commit 927b54fccb:
"__start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock,
waiting for the hrtimer to finish. However, if sched_cfs_period_timer
runs for another loop iteration, the hrtimer can attempt to take
rq->lock, resulting in deadlock."
Three CPUs must be involved:
CPU0 CPU1 CPU2
take rq->lock period timer fired
... take cfs_b lock
... ... tg_set_cfs_bandwidth()
throttle_cfs_rq() release cfs_b lock take cfs_b lock
... distribute_cfs_runtime() timer_active = 0
take cfs_b->lock wait for rq->lock ...
__start_cfs_bandwidth()
{wait for timer callback
break if timer_active == 1}
So, CPU0 and CPU1 are deadlocked.
Instead of resetting cfs_b->timer_active, tg_set_cfs_bandwidth can
wait for period timer callbacks (ignoring cfs_b->timer_active) and
restart the timer explicitly.
Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/87wqdi9g8e.wl\%klamm@yandex-team.ru
Cc: pjt@google.com
Cc: chris.j.arges@canonical.com
Cc: gregkh@linuxfoundation.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Throttled task is still on rq, and it may be moved to other cpu
if user is playing with sched_setaffinity(). Therefore, unlocked
task_rq() access makes the race.
Juri Lelli reports he got this race when dl_bandwidth_enabled()
was not set.
Other thing, pointed by Peter Zijlstra:
"Now I suppose the problem can still actually happen when
you change the root domain and trigger a effective affinity
change that way".
To fix that we do the same as made in __task_rq_lock(). We do not
use __task_rq_lock() itself, because it has a useful lockdep check,
which is not correct in case of dl_task_timer(). We do not need
pi_lock locked here. This case is an exception (PeterZ):
"The only reason we don't strictly need ->pi_lock now is because
we're guaranteed to have p->state == TASK_RUNNING here and are
thus free of ttwu races".
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # v3.14+
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/3056991400578422@web14g.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
attr.sched_policy is u32, therefore a comparison against < 0 is never true.
Fix this by casting sched_policy to int.
This issue was reported by coverity CID 1219934.
Fixes: dbdb22754f ("sched: Disallow sched_attr::sched_policy < 0")
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1401741514-7045-1-git-send-email-richard@nod.at
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As Peter Zijlstra told me, we have the following path:
do_exit()
exit_itimers()
itimer_delete()
spin_lock_irqsave(&timer->it_lock, &flags);
timer_delete_hook(timer);
kc->timer_del(timer) := posix_cpu_timer_del()
put_task_struct()
__put_task_struct()
task_numa_free()
spin_lock(&grp->lock);
Which means that task_numa_free() can be called with interrupts
disabled, which means that we should not be using spin_lock_irq() but
spin_lock_irqsave() instead. Otherwise we are enabling interrupts while
holding an interrupt unsafe lock!
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner<tglx@linutronix.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140527182541.GH11096@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Two of the three prink_deferred uses are really printk_once style
uses, so add a printk_deferred_once macro to simplify those call
sites.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After learning we'll need some sort of deferred printk functionality in
the timekeeping core, Peter suggested we rename the printk_sched function
so it can be reused by needed subsystems.
This only changes the function name. No logic changes.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull scheduler updates from Ingo Molnar:
"The main scheduling related changes in this cycle were:
- various sched/numa updates, for better performance
- tree wide cleanup of open coded nice levels
- nohz fix related to rq->nr_running use
- cpuidle changes and continued consolidation to improve the
kernel/sched/idle.c high level idle scheduling logic. As part of
this effort I pulled cpuidle driver changes from Rafael as well.
- standardized idle polling amongst architectures
- continued work on preparing better power/energy aware scheduling
- sched/rt updates
- misc fixlets and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits)
sched/numa: Decay ->wakee_flips instead of zeroing
sched/numa: Update migrate_improves/degrades_locality()
sched/numa: Allow task switch if load imbalance improves
sched/rt: Fix 'struct sched_dl_entity' and dl_task_time() comments, to match the current upstream code
sched: Consolidate open coded implementations of nice level frobbing into nice_to_rlimit() and rlimit_to_nice()
sched: Initialize rq->age_stamp on processor start
sched, nohz: Change rq->nr_running to always use wrappers
sched: Fix the rq->next_balance logic in rebalance_domains() and idle_balance()
sched: Use clamp() and clamp_val() to make sys_nice() more readable
sched: Do not zero sg->cpumask and sg->sgp->power in build_sched_groups()
sched/numa: Fix initialization of sched_domain_topology for NUMA
sched: Call select_idle_sibling() when not affine_sd
sched: Simplify return logic in sched_read_attr()
sched: Simplify return logic in sched_copy_attr()
sched: Fix exec_start/task_hot on migrated tasks
arm64: Remove TIF_POLLING_NRFLAG
metag: Remove TIF_POLLING_NRFLAG
sched/idle: Make cpuidle_idle_call() void
sched/idle: Reflow cpuidle_idle_call()
sched/idle: Delay clearing the polling bit
...
Pull RCU changes from Ingo Molnar:
"The main RCU changes in this cycle were:
- RCU torture-test changes.
- variable-name renaming cleanup.
- update RCU documentation.
- miscellaneous fixes.
- patch to suppress RCU stall warnings while sysrq requests are being
processed"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (68 commits)
rcu: Provide API to suppress stall warnings while sysrc runs
rcu: Variable name changed in tree_plugin.h and used in tree.c
torture: Remove unused definition
torture: Remove __init from torture_init_begin/end
torture: Check for multiple concurrent torture tests
locktorture: Remove reference to nonexistent Kconfig parameter
rcutorture: Run rcu_torture_writer at normal priority
rcutorture: Note diffs from git commits
rcutorture: Add missing destroy_timer_on_stack()
rcutorture: Explicitly test synchronous grace-period primitives
rcutorture: Add tests for get_state_synchronize_rcu()
rcutorture: Test RCU-sched primitives in TREE_PREEMPT_RCU kernels
torture: Use elapsed time to detect hangs
rcutorture: Check for rcu_torture_fqs creation errors
torture: Better summary diagnostics for build failures
torture: Notice if an all-zero cpumask is passed inside a critical section
rcutorture: Make rcu_torture_reader() use cond_resched()
sched,rcu: Make cond_resched() report RCU quiescent states
percpu: Fix raw_cpu_inc_return()
rcutorture: Export RCU grace-period kthread wait state to rcutorture
...
Pull scheduler fixes from Ingo Molnar:
"Various fixlets, mostly related to the (root-only) SCHED_DEADLINE
policy, but also a hotplug bug fix and a fix for a NR_CPUS related
overallocation bug causing a suspend/resume regression"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Fix hotplug vs. set_cpus_allowed_ptr()
sched/cpupri: Replace NR_CPUS arrays
sched/deadline: Replace NR_CPUS arrays
sched/deadline: Restrict user params max value to 2^63 ns
sched/deadline: Change sched_getparam() behaviour vs SCHED_DEADLINE
sched: Disallow sched_attr::sched_policy < 0
sched: Make sched_setattr() correctly return -EFBIG
Pull scheduler fixes from Ingo Molnar:
"The biggest commit is an irqtime accounting loop latency fix, the rest
are misc fixes all over the place: deadline scheduling, docs, numa,
balancer and a bad to-idle latency fix"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/numa: Initialize newidle balance stats in sd_numa_init()
sched: Fix updating rq->max_idle_balance_cost and rq->next_balance in idle_balance()
sched: Skip double execution of pick_next_task_fair()
sched: Use CPUPRI_NR_PRIORITIES instead of MAX_RT_PRIO in cpupri check
sched/deadline: Fix memory leak
sched/deadline: Fix sched_yield() behavior
sched: Sanitize irq accounting madness
sched/docbook: Fix 'make htmldocs' warnings caused by missing description
Pull RCU updates from Paul E. McKenney:
" 1. Update RCU documentation. These were posted to LKML at
https://lkml.org/lkml/2014/4/28/634.
2. Miscellaneous fixes. These were posted to LKML at
https://lkml.org/lkml/2014/4/28/645.
3. Torture-test changes. These were posted to LKML at
https://lkml.org/lkml/2014/4/28/667.
4. Variable-name renaming cleanup, sent separately due to conflicts.
This was posted to LKML at https://lkml.org/lkml/2014/5/13/854.
5. Patch to suppress RCU stall warnings while sysrq requests are
being processed. This patch is the RCU portions of the patch
that Rik posted to LKML at https://lkml.org/lkml/2014/4/29/457.
The reason for pushing this patch ahead instead of waiting until
3.17 is that the NMI-based stack traces are messing up sysrq
output, and in some cases also messing up the system as well."
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Affine wakeups have the potential to interfere with NUMA placement.
If a task wakes up too many other tasks, affine wakeups will get
disabled.
However, regardless of how many other tasks it wakes up, it gets
re-enabled once a second, potentially interfering with NUMA
placement of other tasks.
By decaying wakee_wakes in half instead of zeroing it, we can avoid
that problem for some workloads.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: chegu_vinod@hp.com
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20140516001332.67f91af2@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Update the migrate_improves/degrades_locality() functions with
knowledge of pseudo-interleaving.
Do not consider moving tasks around within the set of group's active
nodes as improving or degrading locality. Instead, leave the load
balancer free to balance the load between a numa_group's active nodes.
Also, switch from the group/task_weight functions to the group/task_fault
functions. The "weight" functions involve a division, but both calls use
the same divisor, so there's no point in doing that from these functions.
On a 4 node (x10 core) system, performance of SPECjbb2005 seems
unaffected, though the number of migrations with 2 8-warehouse wide
instances seems to have almost halved, due to the scheduler running
each instance on a single node.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Link: http://lkml.kernel.org/r/20140515130306.61aae7db@cuia.bos.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the NUMA balancing code only allows moving tasks between NUMA
nodes when the load on both nodes is in balance. This breaks down when
the load was imbalanced to begin with.
Allow tasks to be moved between NUMA nodes if the imbalance is small,
or if the new imbalance is be smaller than the original one.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/20140514132221.274b3463@annuminas.surriel.com
If the sched_clock time starts at a large value, the kernel will spin
in sched_avg_update for a long time while rq->age_stamp catches up
with rq->clock.
The comment in kernel/sched/clock.c says that there is no strict promise
that it starts at zero. So initialize rq->age_stamp when a cpu starts up
to avoid this.
I was seeing long delays on a simulator that didn't start the clock at
zero. This might also be an issue on reboots on processors that don't
re-initialize the timer to zero on reset, and when using kexec.
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1399574859-11714-1-git-send-email-minyard@acm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sometimes ->nr_running may cross 2 but interrupt is not being
sent to rq's cpu. In this case we don't reenable the timer.
Looks like this may be the reason for rare unexpected effects,
if nohz is enabled.
Patch replaces all places of direct changing of nr_running
and makes add_nr_running() caring about crossing border.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140508225830.2469.97461.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, in idle_balance(), we update rq->next_balance when we pull_tasks.
However, it is also important to update this in the !pulled_tasks case too.
When the CPU is "busy" (the CPU isn't idle), rq->next_balance gets computed
using sd->busy_factor (so we increase the balance interval when the CPU is
busy). However, when the CPU goes idle, rq->next_balance could still be set
to a large value that was computed with the sd->busy_factor.
Thus, we need to also update rq->next_balance in idle_balance() in the cases
where !pulled_tasks too, so that rq->next_balance gets updated without taking
the busy_factor into account when the CPU is about to go idle.
This patch makes rq->next_balance get updated independently of whether or
not we pulled_task. Also, we add logic to ensure that we always traverse
at least 1 of the sched domains to get a proper next_balance value for
updating rq->next_balance.
Additionally, since load_balance() modifies the sd->balance_interval, we
need to re-obtain the sched domain's interval after the call to
load_balance() in rebalance_domains() before we update rq->next_balance.
This patch adds and uses 2 new helper functions, update_next_balance() and
get_sd_balance_interval() to update next_balance and obtain the sched
domain's balance_interval.
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: daniel.lezcano@linaro.org
Cc: alex.shi@linaro.org
Cc: efault@gmx.de
Cc: vincent.guittot@linaro.org
Cc: morten.rasmussen@arm.com
Cc: aswin@hp.com
Link: http://lkml.kernel.org/r/1399596562.2200.7.camel@j-VirtualBox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no need to zero struct sched_group member cpumask and struct
sched_group_power member power since both structures are already allocated
as zeroed memory in __sdt_alloc().
This patch has been tested with
BUG_ON(!cpumask_empty(sched_group_cpus(sg))); and BUG_ON(sg->sgp->power);
in build_sched_groups() on ARM TC2 and INTEL i5 M520 platform including
CPU hotplug scenarios.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1398865178-12577-1-git-send-email-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Jet Chen has reported a kernel panics when booting qemu-system-x86_64 with
kvm64 cpu. A panic occured while building the sched_domain.
In sched_init_numa, we create a new topology table in which both default
levels and numa levels are copied. The last row of the table must have a null
pointer in the mask field.
The current implementation doesn't add this last row in the computation of the
table size. So we add 1 row in the allocation size that will be used as the
last row of the table. The kzalloc will ensure that the mask field is NULL.
Reported-by: Jet Chen <jet.chen@intel.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: fengguang.wu@intel.com
Link: http://lkml.kernel.org/r/1399972261-25693-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On smaller systems, the top level sched domain will be an affine
domain, and select_idle_sibling is invoked for every SD_WAKE_AFFINE
wakeup. This seems to be working well.
On larger systems, with the node distance between far away NUMA nodes
being > RECLAIM_DISTANCE, select_idle_sibling is only called if the
waker and the wakee are on nodes less than RECLAIM_DISTANCE apart.
This patch leaves in place the policy of not pulling the task across
nodes on such systems, while fixing the issue that select_idle_sibling
is not called at all in certain circumstances.
The code will look for an idle CPU in the same CPU package as the
CPU where the task ran previously.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: morten.rasmussen@arm.com
Cc: george.mccollister@gmail.com
Cc: ktkhai@parallels.com
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Link: http://lkml.kernel.org/r/20140514114037.2d93266f@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Gotos are chained pointlessly here, and the 'out' label
can be dispensed with.
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/536CEC29.9090503@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The logic in this function is a little contorted, clean it up:
* Rather than having chained gotos for the -EFBIG case, just
return -EFBIG directly.
* Now, the label 'out' is no longer needed, and 'ret' must be zero
zero by the time we fall through to this point, so just return 0.
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/536CEC24.9080201@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_hot checks exec_start on any runnable task, but if it has been
migrated since the it last ran, then exec_start is a clock_task from
another cpu. If the old cpu's clock_task was sufficiently far ahead of
this cpu's then the task will not be considered for another migration
until it has run. Instead reset exec_start whenever a task is migrated,
since it is presumably no longer hot anyway.
Signed-off-by: Ben Segall <bsegall@google.com>
[ Made it compile. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140515225920.7179.13924.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Lai found that:
WARNING: CPU: 1 PID: 13 at arch/x86/kernel/smp.c:124 native_smp_send_reschedule+0x2d/0x4b()
...
migration_cpu_stop+0x1d/0x22
was caused by set_cpus_allowed_ptr() assuming that cpu_active_mask is
always a sub-set of cpu_online_mask.
This isn't true since 5fbd036b55 ("sched: Cleanup cpu_active madness").
So set active and online at the same time to avoid this particular
problem.
Fixes: 5fbd036b55 ("sched: Cleanup cpu_active madness")
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael wang <wangyun@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/53758B12.8060609@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tejun reported that his resume was failing due to order-3 allocations
from sched_domain building.
Replace the NR_CPUS arrays in there with a dynamically allocated
array.
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-7cysnkw1gik45r864t1nkudh@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tejun reported that his resume was failing due to order-3 allocations
from sched_domain building.
Replace the NR_CPUS arrays in there with a dynamically allocated
array.
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-kat4gl1m5a6dwy6nzuqox45e@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Michael Kerrisk noticed that creating SCHED_DEADLINE reservations
with certain parameters (e.g, a runtime of something near 2^64 ns)
can cause a system freeze for some amount of time.
The problem is that in the interface we have
u64 sched_runtime;
while internally we need to have a signed runtime (to cope with
budget overruns)
s64 runtime;
At the time we setup a new dl_entity we copy the first value in
the second. The cast turns out with negative values when
sched_runtime is too big, and this causes the scheduler to go crazy
right from the start.
Moreover, considering how we deal with deadlines wraparound
(s64)(a - b) < 0
we also have to restrict acceptable values for sched_{deadline,period}.
This patch fixes the thing checking that user parameters are always
below 2^63 ns (still large enough for everyone).
It also rewrites other conditions that we check, since in
__checkparam_dl we don't have to deal with deadline wraparounds
and what we have now erroneously fails when the difference between
values is too big.
Reported-by: Michael Kerrisk <mtk.manpages@gmail.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Dario Faggioli<raistlin@linux.it>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140513141131.20d944f81633ee937f256385@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The way we read POSIX one should only call sched_getparam() when
sched_getscheduler() returns either SCHED_FIFO or SCHED_RR.
Given that we currently return sched_param::sched_priority=0 for all
others, extend the same behaviour to SCHED_DEADLINE.
Requested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: linux-man <linux-man@vger.kernel.org>
Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20140512205034.GH13467@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The scheduler uses policy=-1 to preserve the current policy state to
implement sys_sched_setparam(), this got exposed to userspace by
accident through sys_sched_setattr(), cure this.
Reported-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140509085311.GJ30445@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The documented[1] behavior of sched_attr() in the proposed man page text is:
sched_attr::size must be set to the size of the structure, as in
sizeof(struct sched_attr), if the provided structure is smaller
than the kernel structure, any additional fields are assumed
'0'. If the provided structure is larger than the kernel structure,
the kernel verifies all additional fields are '0' if not the
syscall will fail with -E2BIG.
As currently implemented, sched_copy_attr() returns -EFBIG for
for this case, but the logic in sys_sched_setattr() converts that
error to -EFAULT. This patch fixes the behavior.
[1] http://thread.gmane.org/gmane.linux.kernel/1615615/focus=1697760
Signed-off-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/536CEC17.9070903@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cgroup in general is moving towards using cgroup_subsys_state as the
fundamental structural component and css_parent() was introduced to
convert from using cgroup->parent to css->parent. It was quite some
time ago and we're moving forward with making css more prominent.
This patch drops the trivial wrapper css_parent() and let the users
dereference css->parent. While at it, explicitly mark fields of css
which are public and immutable.
v2: New usage from device_cgroup.c converted.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Given a CPU running a loop containing cond_resched(), with no
other tasks runnable on that CPU, RCU will eventually report RCU
CPU stall warnings due to lack of quiescent states. Fortunately,
every call to cond_resched() is a perfectly good quiescent state.
Unfortunately, invoking rcu_note_context_switch() is a bit heavyweight
for cond_resched(), especially given the need to disable preemption,
and, for RCU-preempt, interrupts as well.
This commit therefore maintains a per-CPU counter that causes
cond_resched(), cond_resched_lock(), and cond_resched_softirq() to call
rcu_note_context_switch(), but only about once per 256 invocations.
This ratio was chosen in keeping with the relative time constants of
RCU grace periods.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The only value ever returned by cpuidle_idle_call() is 0 and its
only caller ignores that value anyway, so make it void.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/4717784.WmVEpDoliM@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the generic idle functions assuming !polling we should only clear
the polling bit at the very last opportunity in order to avoid
spurious IPIs.
Ideally we'd flip the default to polling, but that means auditing all
arch idle functions.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-vq7719foqzf6z5h4j7eh7f9e@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because mwait_idle_with_hints() gets called from !idle context it must
call current_clr_polling(). This however means that resched_task() is
very likely to send an IPI even when we were polling:
CPU0 CPU1
if (current_set_polling_and_test())
goto out;
__monitor(&ti->flags);
if (!need_resched())
__mwait(eax, ecx);
set_tsk_need_resched(p);
smp_mb();
out:
current_clr_polling();
if (!tsk_is_polling(p))
smp_send_reschedule(cpu);
So while it is correct (extra IPIs aren't a problem, whereas a missed
IPI would be) it is a performance problem (for some).
Avoid this issue by using fetch_or() to atomically set NEED_RESCHED
and test if POLLING_NRFLAG is set.
Since a CPU stuck in mwait is unlikely to modify the flags word,
contention on the cmpxchg is unlikely and thus we should mostly
succeed in a single go.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-kf5suce6njh5xf5d3od13rr0@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It was found that when running some workloads (such as AIM7) on large
systems with many cores, CPUs do not remain idle for long. Thus, tasks
can wake/get enqueued while doing idle balancing.
In this patch, while traversing the domains in idle balance, in
addition to checking for pulled_task, we add an extra check for
this_rq->nr_running for determining if we should stop searching for
tasks to pull. If there are runnable tasks on this rq, then we will
stop traversing the domains. This reduces the chance that idle balance
delays a task from running.
This patch resulted in approximately a 6% performance improvement when
running a Java Server workload on an 8 socket machine.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: daniel.lezcano@linaro.org
Cc: alex.shi@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: efault@gmx.de
Cc: vincent.guittot@linaro.org
Cc: morten.rasmussen@arm.com
Cc: aswin@hp.com
Cc: chegu_vinod@hp.com
Link: http://lkml.kernel.org/r/1398303035-18255-4-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A new flag SD_SHARE_POWERDOMAIN is created to reflect whether groups of CPUs
in a sched_domain level can or not reach different power state. As an example,
the flag should be cleared at CPU level if groups of cores can be power gated
independently. This information can be used in the load balance decision or to
add load balancing level between group of CPUs that can power gate
independantly.
This flag is part of the topology flags that can be set by arch.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: schwidefsky@de.ibm.com
Cc: cmetcalf@tilera.com
Cc: benh@kernel.crashing.org
Cc: preeti@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1397209481-28542-5-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We replace the old way to configure the scheduler topology with a new method
which enables a platform to declare additionnal level (if needed).
We still have a default topology table definition that can be used by platform
that don't want more level than the SMT, MC, CPU and NUMA ones. This table can
be overwritten by an arch which either wants to add new level where a load
balance make sense like BOOK or powergating level or wants to change the flags
configuration of some levels.
For each level, we need a function pointer that returns cpumask for each cpu,
a function pointer that returns the flags for the level and a name. Only flags
that describe topology, can be set by an architecture. The current topology
flags are:
SD_SHARE_CPUPOWER
SD_SHARE_PKG_RESOURCES
SD_NUMA
SD_ASYM_PACKING
Then, each level must be a subset on the next one. The build sequence of the
sched_domain will take care of removing useless levels like those with 1 CPU
and those with the same CPU span and no more relevant information for
load balancing than its children.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux390@de.ibm.com
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Link: http://lkml.kernel.org/r/1397209481-28542-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Setting the numa_preferred_node for a task in task_numa_migrate
does nothing on a 2-node system. Either we migrate to the node
that already was our preferred node, or we stay where we were.
On a 4-node system, it can slightly decrease overhead, by not
calling the NUMA code as much. Since every node tends to be
directly connected to every other node, running on the wrong
node for a while does not do much damage.
However, on an 8 node system, there are far more bad nodes
than there are good ones, and pretending that a second choice
is actually the preferred node can greatly delay, or even
prevent, a workload from converging.
The only time we can safely pretend that a second choice
node is the preferred node is when the task is part of a
workload that spans multiple NUMA nodes.
Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Vinod Chegu <chegu_vinod@hp.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1397235629-16328-4-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When tasks have not converged on their preferred nodes yet, we want
to retry fairly often, to make sure we do not migrate a task's memory
to an undesirable location, only to have to move it again later.
This patch reduces the interval at which migration is retried,
when the task's numa_scan_period is small.
Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Vinod Chegu <chegu_vinod@hp.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1397235629-16328-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The NUMA code is smart enough to distribute the memory of workloads
that span multiple NUMA nodes across those NUMA nodes.
However, it still has a pretty high scan rate for such workloads,
because any memory that is left on a node other than the node of
the CPU that faulted on the memory is counted as non-local, which
causes the scan rate to go up.
Counting the memory on any node where the task's numa group is
actively running as local, allows the scan rate to slow down
once the application is settled in.
This should reduce the overhead of the automatic NUMA placement
code, when a workload spans multiple NUMA nodes.
Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Vinod Chegu <chegu_vinod@hp.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1397235629-16328-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
e5fc66119e ("sched: Fix race in idle_balance()")
can potentially cause rq->max_idle_balance_cost to not be updated,
even when load_balance(NEWLY_IDLE) is attempted and the per-sd
max cost value is updated.
Preeti noticed a similar issue with updating rq->next_balance.
In this patch, we fix this by making sure we still check/update those values
even if a task gets enqueued while browsing the domains.
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: morten.rasmussen@arm.com
Cc: aswin@hp.com
Cc: daniel.lezcano@linaro.org
Cc: alex.shi@linaro.org
Cc: efault@gmx.de
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1398725155-7591-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tim wrote:
"The current code will call pick_next_task_fair a second time in the
slow path if we did not pull any task in our first try. This is
really unnecessary as we already know no task can be pulled and it
doubles the delay for the cpu to enter idle.
We instrumented some network workloads and that saw that
pick_next_task_fair is frequently called twice before a cpu enters
idle. The call to pick_next_task_fair can add non trivial latency as
it calls load_balance which runs find_busiest_group on an hierarchy of
sched domains spanning the cpus for a large system. For some 4 socket
systems, we saw almost 0.25 msec spent per call of pick_next_task_fair
before a cpu can be idled."
Optimize the second call away for the common case and document the
dependency.
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Len Brown <len.brown@intel.com>
Link: http://lkml.kernel.org/r/20140424100047.GP11096@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The check at the beginning of cpupri_find() makes sure that the task_pri
variable does not exceed the cp->pri_to_cpu array length. But that length
is CPUPRI_NR_PRIORITIES not MAX_RT_PRIO, where it will miss the last two
priorities in that array.
As task_pri is computed from convert_prio() which should never be bigger
than CPUPRI_NR_PRIORITIES, if the check should cause a panic if it is
hit.
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1397015410.5212.13.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
yield_task_dl() is broken:
o it forces current to be throttled setting its runtime to zero;
o it sets current's dl_se->dl_new to one, expecting that dl_task_timer()
will queue it back with proper parameters at replenish time.
Unfortunately, dl_task_timer() has this check at the very beginning:
if (!dl_task(p) || dl_se->dl_new)
goto unlock;
So, it just bails out and the task is never replenished. It actually
yielded forever.
To fix this, introduce a new flag indicating that the task properly yielded
the CPU before its current runtime expired. While this is a little overdoing
at the moment, the flag would be useful in the future to discriminate between
"good" jobs (of which remaining runtime could be reclaimed, i.e. recycled)
and "bad" jobs (for which dl_throttled task has been set) that needed to be
stopped.
Reported-by: yjay.kim <yjay.kim@lge.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140429103953.e68eba1b2ac3309214e3dc5a@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Russell reported, that irqtime_account_idle_ticks() takes ages due to:
for (i = 0; i < ticks; i++)
irqtime_account_process_tick(current, 0, rq);
It's sad, that this code was written way _AFTER_ the NOHZ idle
functionality was available. I charge myself guitly for not paying
attention when that crap got merged with commit abb74cefa ("sched:
Export ns irqtimes through /proc/stat")
So instead of looping nr_ticks times just apply the whole thing at
once.
As a side note: The whole cputime_t vs. u64 business in that context
wants to be cleaned up as well. There is no point in having all these
back and forth conversions. Lets standardise on u64 nsec for all
kernel internal accounting and be done with it. Everything else does
not make sense at all for fine grained accounting. Frederic, can you
please take care of that?
Reported-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Shaun Ruffell <sruffell@digium.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1405022307000.6261@ionos.tec.linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As requested by Linus add explicit __visible to the asmlinkage users.
This marks functions visible to assembler.
Tree sweep for rest of tree.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1398984278-29319-4-git-send-email-andi@firstfloor.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Since both cpuidle_enabled() and cpuidle_select() are only called by
cpuidle_idle_call(), it is not really useful to keep them separate
and combining them will help to avoid complicating cpuidle_idle_call()
even further if governors are changed to return error codes sometimes.
This code modification shouldn't lead to any functional changes.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Use NOKPROBE_SYMBOL macro to protect functions from
kprobes instead of __kprobes annotation in sched/core.c.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/20140417081842.26341.83959.stgit@ltc230.yrl.intra.hitachi.co.jp
Introduce NOKPROBE_SYMBOL() macro which builds a kprobes
blacklist at kernel build time.
The usage of this macro is similar to EXPORT_SYMBOL(),
placed after the function definition:
NOKPROBE_SYMBOL(function);
Since this macro will inhibit inlining of static/inline
functions, this patch also introduces a nokprobe_inline macro
for static/inline functions. In this case, we must use
NOKPROBE_SYMBOL() for the inline function caller.
When CONFIG_KPROBES=y, the macro stores the given function
address in the "_kprobe_blacklist" section.
Since the data structures are not fully initialized by the
macro (because there is no "size" information), those
are re-initialized at boot time by using kallsyms.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Link: http://lkml.kernel.org/r/20140417081705.26341.96719.stgit@ltc230.yrl.intra.hitachi.co.jp
Cc: Alok Kataria <akataria@vmware.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christopher Li <sparse@chrisli.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jan-Simon Möller <dl9pf@gmx.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-sparse@vger.kernel.org
Cc: virtualization@lists.linux-foundation.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When 'flags' argument to sched_{set,get}attr() syscalls were
added in:
6d35ab4809 ("sched: Add 'flags' argument to sched_{set,get}attr() syscalls")
no description for 'flags' was added. It causes the following warnings on "make htmldocs":
Warning(/kernel/sched/core.c:3645): No description found for parameter 'flags'
Warning(/kernel/sched/core.c:3789): No description found for parameter 'flags'
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1397753955-2914-1-git-send-email-standby24x7@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit 4c6c4e38c4 ("sched/core: Fix endless loop in
pick_next_task()"), which is not necessary after ("sched/rt: Substract number
of tasks of throttled queues from rq->nr_running").
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
[conflict resolution with stop task checking patch]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835307.18748.34.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now rq->rt becomes to be able to be in dequeued or enqueued state.
We add new member rt_rq->rt_queued, which is used to indicate this.
The member is used only for top queue rq->rt_rq.
The goal is to fit generic scheme which is used in deadline and
fair classes, i.e. throttled rt_rq's rt_nr_running is beeing
substracted from rq->nr_running.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835300.18748.33.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
{inc,dec}_rt_tasks() used to count entities which are directly queued
on the rt_rq. If an entity was not a task (i.e., it is some queue), its
children were not counted.
There is no problem here, but now we want to count number of all tasks
which are actually queued under the rt_rq in all the hierarchy (except
throttled rt queues).
Empty queues are not able to be queued and all of the places, which
use ->rt_nr_running, just compare it with zero, so we do not break
anything here.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835289.18748.31.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
[ Twiddled the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Just switched pinned task is not able to be pushed. If the rq had had
several RT tasks before they have already been considered as candidates
to be pushed (or pulled).
Signed-off-by: Kirill V Tkhai <tkhai@yandex.ru>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140312061833.3a43aa64@gandalf.local.home
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike reported that, while unlikely, its entirely possible for
scale_rt_power() to see the time go backwards. This yields rather
'interesting' results.
So like all other sites that deal with clocks; make this one ignore
backward clock movement too.
Reported-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140227094035.GZ9987@twins.programming.kicks-ass.net
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the smp_mb__{before,after}*() ops are fundamentally dependent on
how an arch can implement atomics it doesn't make sense to have 3
variants of them. They must all be the same.
Furthermore, the 3 variants suggest they're only valid for those 3
atomic ops, while we have many more where they could be applied.
So move away from
smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}() and reduce the
interface to just the two: smp_mb__{before,after}_atomic().
This patch prepares the way by introducing default implementations in
asm-generic/barrier.h that default to a full barrier and providing
__deprecated inlines for the previous 6 barriers if they're not
provided by the arch.
This should allow for a mostly painless transition (lots of deprecated
warns in the interim).
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/n/tip-wr59327qdyi9mbzn6x937s4e@git.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "Chen, Gong" <gong.chen@linux.intel.com>
Cc: John Sullivan <jsrhbz@kanargh.force9.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mauro Carvalho Chehab <m.chehab@samsung.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We need to do it like we do for the other higher priority classes..
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Cc: Michael wang <wangyun@linux.vnet.ibm.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/336561397137116@web27h.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sasha reported that lockdep claims that the following commit:
made numa_group.lock interrupt unsafe:
156654f491 ("sched/numa: Move task_numa_free() to __put_task_struct()")
While I don't see how that could be, given the commit in question moved
task_numa_free() from one irq enabled region to another, the below does
make both gripes and lockups upon gripe with numa=fake=4 go away.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Fixes: 156654f491 ("sched/numa: Move task_numa_free() to __put_task_struct()")
Signed-off-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: torvalds@linux-foundation.org
Cc: mgorman@suse.com
Cc: akpm@linux-foundation.org
Cc: Dave Jones <davej@redhat.com>
Link: http://lkml.kernel.org/r/1396860915.5170.5.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge second patch-bomb from Andrew Morton:
- the rest of MM
- zram updates
- zswap updates
- exit
- procfs
- exec
- wait
- crash dump
- lib/idr
- rapidio
- adfs, affs, bfs, ufs
- cris
- Kconfig things
- initramfs
- small amount of IPC material
- percpu enhancements
- early ioremap support
- various other misc things
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (156 commits)
MAINTAINERS: update Intel C600 SAS driver maintainers
fs/ufs: remove unused ufs_super_block_third pointer
fs/ufs: remove unused ufs_super_block_second pointer
fs/ufs: remove unused ufs_super_block_first pointer
fs/ufs/super.c: add __init to init_inodecache()
doc/kernel-parameters.txt: add early_ioremap_debug
arm64: add early_ioremap support
arm64: initialize pgprot info earlier in boot
x86: use generic early_ioremap
mm: create generic early_ioremap() support
x86/mm: sparse warning fix for early_memremap
lglock: map to spinlock when !CONFIG_SMP
percpu: add preemption checks to __this_cpu ops
vmstat: use raw_cpu_ops to avoid false positives on preemption checks
slub: use raw_cpu_inc for incrementing statistics
net: replace __this_cpu_inc in route.c with raw_cpu_inc
modules: use raw_cpu_write for initialization of per cpu refcount.
mm: use raw_cpu ops for determining current NUMA node
percpu: add raw_cpu_ops
slub: fix leak of 'name' in sysfs_slab_add
...
To increase compiler portability there is <linux/compiler.h> which
provides convenience macros for various gcc constructs. Eg: __weak for
__attribute__((weak)). I've replaced all instances of gcc attributes
with the right macro in the kernel subsystem.
Signed-off-by: Gideon Israel Dsouza <gidisrael@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the final piece in the puzzle, as all patches to remove the
last users of \(interruptible_\|\)sleep_on\(_timeout\|\) have made it
into the 3.15 merge window. The work was long overdue, and this
interface in particular should not have survived the BKL removal
that was done a couple of years ago.
Citing Jon Corbet from http://lwn.net/2001/0201/kernel.php3":
"[...] it was suggested that the janitors look for and fix all code
that calls sleep_on() [...] since (1) almost all such code is
incorrect, and (2) Linus has agreed that those functions should
be removed in the 2.5 development series".
We haven't quite made it for 2.5, but maybe we can merge this for 3.15.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge first patch-bomb from Andrew Morton:
- Various misc bits
- kmemleak fixes
- small befs, codafs, cifs, efs, freexxfs, hfsplus, minixfs, reiserfs things
- fanotify
- I appear to have become SuperH maintainer
- ocfs2 updates
- direct-io tweaks
- a bit of the MM queue
- printk updates
- MAINTAINERS maintenance
- some backlight things
- lib/ updates
- checkpatch updates
- the rtc queue
- nilfs2 updates
- Small Documentation/ updates
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (237 commits)
Documentation/SubmittingPatches: remove references to patch-scripts
Documentation/SubmittingPatches: update some dead URLs
Documentation/filesystems/ntfs.txt: remove changelog reference
Documentation/kmemleak.txt: updates
fs/reiserfs/super.c: add __init to init_inodecache
fs/reiserfs: move prototype declaration to header file
fs/hfsplus/attributes.c: add __init to hfsplus_create_attr_tree_cache()
fs/hfsplus/extents.c: fix concurrent acess of alloc_blocks
fs/hfsplus/extents.c: remove unused variable in hfsplus_get_block
nilfs2: update project's web site in nilfs2.txt
nilfs2: update MAINTAINERS file entries fix
nilfs2: verify metadata sizes read from disk
nilfs2: add FITRIM ioctl support for nilfs2
nilfs2: add nilfs_sufile_trim_fs to trim clean segs
nilfs2: implementation of NILFS_IOCTL_SET_SUINFO ioctl
nilfs2: add nilfs_sufile_set_suinfo to update segment usage
nilfs2: add struct nilfs_suinfo_update and flags
nilfs2: update MAINTAINERS file entries
fs/coda/inode.c: add __init to init_inodecache()
BEFS: logging cleanup
...
Code that is obj-y (always built-in) or dependent on a bool Kconfig
(built-in or absent) can never be modular. So using module_init as an
alias for __initcall can be somewhat misleading.
Fix these up now, so that we can relocate module_init from init.h into
module.h in the future. If we don't do this, we'd have to add module.h
to obviously non-modular code, and that would be a worse thing.
The audit targets the following module_init users for change:
kernel/user.c obj-y
kernel/kexec.c bool KEXEC (one instance per arch)
kernel/profile.c bool PROFILING
kernel/hung_task.c bool DETECT_HUNG_TASK
kernel/sched/stats.c bool SCHEDSTATS
kernel/user_namespace.c bool USER_NS
Note that direct use of __initcall is discouraged, vs. one of the
priority categorized subgroups. As __initcall gets mapped onto
device_initcall, our use of subsys_initcall (which makes sense for these
files) will thus change this registration from level 6-device to level
4-subsys (i.e. slightly earlier). However no observable impact of that
difference has been observed during testing.
Also, two instances of missing ";" at EOL are fixed in kexec.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"A lot updates for cgroup:
- The biggest one is cgroup's conversion to kernfs. cgroup took
after the long abandoned vfs-entangled sysfs implementation and
made it even more convoluted over time. cgroup's internal objects
were fused with vfs objects which also brought in vfs locking and
object lifetime rules. Naturally, there are places where vfs rules
don't fit and nasty hacks, such as credential switching or lock
dance interleaving inode mutex and cgroup_mutex with object serial
number comparison thrown in to decide whether the operation is
actually necessary, needed to be employed.
After conversion to kernfs, internal object lifetime and locking
rules are mostly isolated from vfs interactions allowing shedding
of several nasty hacks and overall simplification. This will also
allow implmentation of operations which may affect multiple cgroups
which weren't possible before as it would have required nesting
i_mutexes.
- Various simplifications including dropping of module support,
easier cgroup name/path handling, simplified cgroup file type
handling and task_cg_lists optimization.
- Prepatory changes for the planned unified hierarchy, which is still
a patchset away from being actually operational. The dummy
hierarchy is updated to serve as the default unified hierarchy.
Controllers which aren't claimed by other hierarchies are
associated with it, which BTW was what the dummy hierarchy was for
anyway.
- Various fixes from Li and others. This pull request includes some
patches to add missing slab.h to various subsystems. This was
triggered xattr.h include removal from cgroup.h. cgroup.h
indirectly got included a lot of files which brought in xattr.h
which brought in slab.h.
There are several merge commits - one to pull in kernfs updates
necessary for converting cgroup (already in upstream through
driver-core), others for interfering changes in the fixes branch"
* 'for-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (74 commits)
cgroup: remove useless argument from cgroup_exit()
cgroup: fix spurious lockdep warning in cgroup_exit()
cgroup: Use RCU_INIT_POINTER(x, NULL) in cgroup.c
cgroup: break kernfs active_ref protection in cgroup directory operations
cgroup: fix cgroup_taskset walking order
cgroup: implement CFTYPE_ONLY_ON_DFL
cgroup: make cgrp_dfl_root mountable
cgroup: drop const from @buffer of cftype->write_string()
cgroup: rename cgroup_dummy_root and related names
cgroup: move ->subsys_mask from cgroupfs_root to cgroup
cgroup: treat cgroup_dummy_root as an equivalent hierarchy during rebinding
cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}()
cgroup: use cgroup_setup_root() to initialize cgroup_dummy_root
cgroup: reorganize cgroup bootstrapping
cgroup: relocate setting of CGRP_DEAD
cpuset: use rcu_read_lock() to protect task_cs()
cgroup_freezer: document freezer_fork() subtleties
cgroup: update cgroup_transfer_tasks() to either succeed or fail
cgroup: drop task_lock() protection around task->cgroups
cgroup: update how a newly forked task gets associated with css_set
...
Pull sched/idle changes from Ingo Molnar:
"More idle code reorganization, to prepare for more integration.
(Sent separately because it depended on pending timer work, which is
now upstream)"
* 'sched-idle-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/idle: Add more comments to the code
sched/idle: Move idle conditions in cpuidle_idle main function
sched/idle: Reorganize the idle loop
cpuidle/idle: Move the cpuidle_idle_call function to idle.c
idle/cpuidle: Split cpuidle_idle_call main function into smaller functions
Pull core block layer updates from Jens Axboe:
"This is the pull request for the core block IO bits for the 3.15
kernel. It's a smaller round this time, it contains:
- Various little blk-mq fixes and additions from Christoph and
myself.
- Cleanup of the IPI usage from the block layer, and associated
helper code. From Frederic Weisbecker and Jan Kara.
- Duplicate code cleanup in bio-integrity from Gu Zheng. This will
give you a merge conflict, but that should be easy to resolve.
- blk-mq notify spinlock fix for RT from Mike Galbraith.
- A blktrace partial accounting bug fix from Roman Pen.
- Missing REQ_SYNC detection fix for blk-mq from Shaohua Li"
* 'for-3.15/core' of git://git.kernel.dk/linux-block: (25 commits)
blk-mq: add REQ_SYNC early
rt,blk,mq: Make blk_mq_cpu_notify_lock a raw spinlock
blk-mq: support partial I/O completions
blk-mq: merge blk_mq_insert_request and blk_mq_run_request
blk-mq: remove blk_mq_alloc_rq
blk-mq: don't dump CPU -> hw queue map on driver load
blk-mq: fix wrong usage of hctx->state vs hctx->flags
blk-mq: allow blk_mq_init_commands() to return failure
block: remove old blk_iopoll_enabled variable
blktrace: fix accounting of partially completed requests
smp: Rename __smp_call_function_single() to smp_call_function_single_async()
smp: Remove wait argument from __smp_call_function_single()
watchdog: Simplify a little the IPI call
smp: Move __smp_call_function_single() below its safe version
smp: Consolidate the various smp_call_function_single() declensions
smp: Teach __smp_call_function_single() to check for offline cpus
smp: Remove unused list_head from csd
smp: Iterate functions through llist_for_each_entry_safe()
block: Stop abusing rq->csd.list in blk-softirq
block: Remove useless IPI struct initialization
...
Pull timer changes from Thomas Gleixner:
"This assorted collection provides:
- A new timer based timer broadcast feature for systems which do not
provide a global accessible timer device. That allows those
systems to put CPUs into deep idle states where the per cpu timer
device stops.
- A few NOHZ_FULL related improvements to the timer wheel
- The usual updates to timer devices found in ARM SoCs
- Small improvements and updates all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
tick: Remove code duplication in tick_handle_periodic()
tick: Fix spelling mistake in tick_handle_periodic()
x86: hpet: Use proper destructor for delayed work
workqueue: Provide destroy_delayed_work_on_stack()
clocksource: CMT, MTU2, TMU and STI should depend on GENERIC_CLOCKEVENTS
timer: Remove code redundancy while calling get_nohz_timer_target()
hrtimer: Rearrange comments in the order struct members are declared
timer: Use variable head instead of &work_list in __run_timers()
clocksource: exynos_mct: silence a static checker warning
arm: zynq: Add support for cpufreq
arm: zynq: Don't use arm_global_timer with cpufreq
clocksource/cadence_ttc: Overhaul clocksource frequency adjustment
clocksource/cadence_ttc: Call clockevents_update_freq() with IRQs enabled
clocksource: Add Kconfig entries for CMT, MTU2, TMU and STI
sh: Remove Kconfig entries for TMU, CMT and MTU2
ARM: shmobile: Remove CMT, TMU and STI Kconfig entries
clocksource: armada-370-xp: Use atomic access for shared registers
clocksource: orion: Use atomic access for shared registers
clocksource: timer-keystone: Delete unnecessary variable
clocksource: timer-keystone: introduce clocksource driver for Keystone
...
Pull timer updates from Ingo Molnar:
"The main purpose is to fix a full dynticks bug related to
virtualization, where steal time accounting appears to be zero in
/proc/stat even after a few seconds of competing guests running busy
loops in a same host CPU. It's not a regression though as it was
there since the beginning.
The other commits are preparatory work to fix the bug and various
cleanups"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arch: Remove stub cputime.h headers
sched: Remove needless round trip nsecs <-> tick conversion of steal time
cputime: Fix jiffies based cputime assumption on steal accounting
cputime: Bring cputime -> nsecs conversion
cputime: Default implementation of nsecs -> cputime conversion
cputime: Fix nsecs_to_cputime() return type cast
Pull s390 updates from Martin Schwidefsky:
"There are two memory management related changes, the CMMA support for
KVM to avoid swap-in of freed pages and the split page table lock for
the PMD level. These two come with common code changes in mm/.
A fix for the long standing theoretical TLB flush problem, this one
comes with a common code change in kernel/sched/.
Another set of changes is Heikos uaccess work, included is the initial
set of patches with more to come.
And fixes and cleanups as usual"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (36 commits)
s390/con3270: optionally disable auto update
s390/mm: remove unecessary parameter from pgste_ipte_notify
s390/mm: remove unnecessary parameter from gmap_do_ipte_notify
s390/mm: fixing comment so that parameter name match
s390/smp: limit number of cpus in possible cpu mask
hypfs: Add clarification for "weight_min" attribute
s390: update defconfigs
s390/ptrace: add support for PTRACE_SINGLEBLOCK
s390/perf: make print_debug_cf() static
s390/topology: Remove call to update_cpu_masks()
s390/compat: remove compat exec domain
s390: select CONFIG_TTY for use of tty in unconditional keyboard driver
s390/appldata_os: fix cpu array size calculation
s390/checksum: remove memset() within csum_partial_copy_from_user()
s390/uaccess: remove copy_from_user_real()
s390/sclp_early: Return correct HSA block count also for zero
s390: add some drivers/subsystems to the MAINTAINERS file
s390: improve debug feature usage
s390/airq: add support for irq ranges
s390/mm: enable split page table lock for PMD level
...
There are only two users of get_nohz_timer_target(): timer and hrtimer. Both
call it under same circumstances, i.e.
#ifdef CONFIG_NO_HZ_COMMON
if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
return get_nohz_timer_target();
#endif
So, it makes more sense to get all this as part of get_nohz_timer_target()
instead of duplicating code at two places. For this another parameter is
required to be passed to this routine, pinned.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: fweisbec@gmail.com
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1e1b53537217d58d48c2d7a222a9c3ac47d5b64c.1395140107.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When update_rq_clock_task() accounts the pending steal time for a task,
it converts the steal delta from nsecs to tick then from tick to nsecs.
There is no apparent good reason for doing that though because both
the task clock and the prev steal delta are u64 and store values
in nsecs.
So lets remove the needless conversion.
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The steal guest time accounting code assumes that cputime_t is based on
jiffies. So when CONFIG_NO_HZ_FULL=y, which implies that cputime_t
is based on nsecs, steal_account_process_tick() passes the delta in
jiffies to account_steal_time() which then accounts it as if it's a
value in nsecs.
As a result, accounting 1 second of steal time (with HZ=100 that would
be 100 jiffies) is spuriously accounted as 100 nsecs.
As such /proc/stat may report 0 values of steal time even when two
guests have run concurrently for a few seconds on the same host and
same CPU.
In order to fix this, lets convert the nsecs based steal delta to
cputime instead of jiffies by using the right conversion API.
Given that the steal time is stored in cputime_t and this type can have
a smaller granularity than nsecs, we only account the rounded converted
value and leave the remaining nsecs for the next deltas.
Reported-by: Huiqingding <huding@redhat.com>
Reported-by: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The tmp value has been already calculated in:
scaled_busy_load_per_task =
(busiest->load_per_task * SCHED_POWER_SCALE) /
busiest->group_power;
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394555166-22894-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I decided to run my tests on linux-next, and my wakeup_rt tracer was
broken. After running a bisect, I found that the problem commit was:
linux-next commit c365c292d0
"sched: Consider pi boosting in setscheduler()"
And the reason the wake_rt tracer test was failing, was because it had
no RT task to trace. I first noticed this when running with
sched_switch event and saw that my RT task still had normal SCHED_OTHER
priority. Looking at the problem commit, I found:
- p->normal_prio = normal_prio(p);
- p->prio = rt_mutex_getprio(p);
With no
+ p->normal_prio = normal_prio(p);
+ p->prio = rt_mutex_getprio(p);
Reading what the commit is suppose to do, I realize that the p->prio
can't be set if the task is boosted with a higher prio, but the
p->normal_prio still needs to be set regardless, otherwise, when the
task is deboosted, it wont get the new priority.
The p->prio has to be set before "check_class_changed()" is called,
otherwise the class wont be changed.
Also added fix to newprio to include a check for deadline policy that
was missing. This change was suggested by Juri Lelli.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: SebastianAndrzej Siewior <bigeasy@linutronix.de>
Cc: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140306120438.638bfe94@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Check for fair tasks number to decide, that we've pulled a task.
rq's nr_running may contain throttled RT tasks.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394118975.19290.104.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1) Single cpu machine case.
When rq has only RT tasks, but no one of them can be picked
because of throttling, we enter in endless loop.
pick_next_task_{dl,rt} return NULL.
In pick_next_task_fair() we permanently go to retry
if (rq->nr_running != rq->cfs.h_nr_running)
return RETRY_TASK;
(rq->nr_running is not being decremented when rt_rq becomes
throttled).
No chances to unthrottle any rt_rq or to wake fair here,
because of rq is locked permanently and interrupts are
disabled.
2) In case of SMP this can cause a hang too. Although we unlock
rq in idle_balance(), interrupts are still disabled.
The solution is to check for available tasks in DL and RT
classes instead of checking for sum.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394098321.19290.11.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We close idle_exit_fair() bracket in case of we've pulled something or we've received
task of high priority class.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/1394098315.19290.10.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The problems:
1) We check for rt_nr_running before call of put_prev_task().
If previous task is RT, its rt_rq may become throttled
and dequeued after this call.
In case of p is from rt->rq this just causes picking a task
from throttled queue, but in case of its rt_rq is child
we are guaranteed catch BUG_ON.
2) The same with deadline class. The only difference we operate
on only dl_rq.
This patch fixes all the above problems and it adds a small skip in the
DL update like we've already done for RT class:
if (unlikely((s64)delta_exec <= 0))
return;
This will optimize sequential update_curr_dl() calls a little.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Link: http://lkml.kernel.org/r/1393946746.3643.3.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we have the main cpuidle function in idle.c, move some code from
the idle mainloop to this function for the sake of clarity.
That removes if then else indentation difficult to follow when looking at the
code. This patch does not change the current behavior.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: tglx@linutronix.de
Cc: rjw@rjwysocki.net
Cc: preeti@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1393832934-11625-3-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpuidle_idle_call does nothing more than calling the three individuals
function and is no longer used by any arch specific code but only in the
cpuidle framework code.
We can move this function into the idle task code to ensure better
proximity to the scheduler code.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: rjw@rjwysocki.net
Cc: preeti@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1393832934-11625-2-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Prevent tracing of preempt_disable/enable() in sched_clock_cpu().
When CONFIG_DEBUG_PREEMPT is enabled, preempt_disable/enable() are
traced and this causes trace_clock() users (and probably others) to
go into an infinite recursion. Systems with a stable sched_clock()
are not affected.
This problem is similar to that fixed by upstream commit 95ef1e5292
("KVM guest: prevent tracing recursion with kvmclock").
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1394083528.4524.3.camel@nexus
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Deny the use of SCHED_DEADLINE policy to unprivileged users.
Even if root users can set the policy for normal users, we
don't want the latter to be able to change their parameters
(safest behavior).
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1393844961-18097-1-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Michael spotted that the idle_balance() push down created a task
priority problem.
Previously, when we called idle_balance() before pick_next_task() it
wasn't a problem when -- because of the rq->lock droppage -- an rt/dl
task slipped in.
Similarly for pre_schedule(), rt pre-schedule could have a dl task
slip in.
But by pulling it into the pick_next_task() loop, we'll not try a
higher task priority again.
Cure this by creating a re-start condition in pick_next_task(); and
triggering this from pick_next_task_{rt,fair}().
It also fixes a live-lock where we get stuck in pick_next_task_fair()
due to idle_balance() seeing !0 nr_running but there not actually
being any fair tasks about.
Reported-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140224121218.GR15586@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The struct sched_avg of struct rq is only used in case group
scheduling is enabled inside __update_tg_runnable_avg() to update
per-cpu representation of a task group. I.e. that there is no need to
maintain the runnable avg of a rq in the !CONFIG_FAIR_GROUP_SCHED case.
This patch guards struct sched_avg of struct rq and
update_rq_runnable_avg() with CONFIG_FAIR_GROUP_SCHED.
There is an extra empty definition for update_rq_runnable_avg()
necessary for the !CONFIG_FAIR_GROUP_SCHED && CONFIG_SMP case.
The function print_cfs_group_stats() which prints out struct sched_avg
of struct rq is already guarded with CONFIG_FAIR_GROUP_SCHED.
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/530DCDC5.1060406@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kirill Tkhai noted:
Since deadline tasks share rt bandwidth, we must care about
bandwidth timer set. Otherwise rt_time may grow up to infinity
in update_curr_dl(), if there are no other available RT tasks
on top level bandwidth.
RT task were in fact throttled right after they got enqueued,
and never executed again (rt_time never again went below rt_runtime).
Peter then proposed to accrue DL execution on rt_time only when
rt timer is active, and proposed a patch (this patch is a slight
modification of that) to implement that behavior. While this
solves Kirill problem, it has a drawback.
Indeed, Kirill noted again:
It looks we may get into a situation, when all CPU time is shared
between RT and DL tasks:
rt_runtime = n
rt_period = 2n
| RT working, DL sleeping | DL working, RT sleeping |
-----------------------------------------------------------
| (1) duration = n | (2) duration = n | (repeat)
|--------------------------|------------------------------|
| (rt_bw timer is running) | (rt_bw timer is not running) |
No time for fair tasks at all.
While this can happen during the first period, if rq is always backlogged,
RT tasks won't have the opportunity to execute anymore: rt_time reached
rt_runtime during (1), suppose after (2) RT is enqueued back, it gets
throttled since rt timer didn't fire, replenishment is from now on eaten up
by DL tasks that accrue their execution on rt_time (while rt timer is
active - we have an RT task waiting for replenishment). FAIR tasks are
not touched after this first period. Ok, this is not ideal, and the situation
is even worse!
What above (the nice case), practically never happens in reality, where
your rt timer is not aligned to tasks periods, tasks are in general not
periodic, etc.. Long story short, you always risk to overload your system.
This patch is based on Peter's idea, but exploits an additional fact:
if you don't have RT tasks enqueued, it makes little sense to continue
incrementing rt_time once you reached the upper limit (DL tasks have their
own mechanism for throttling).
This cures both problems:
- no matter how many DL instances in the past, you'll have an rt_time
slightly above rt_runtime when an RT task is enqueued, and from that
point on (after the first replenishment), the task will normally execute;
- you can still eat up all bandwidth during the first period, but not
anymore after that, remember that DL execution will increment rt_time
till the upper limit is reached.
The situation is still not perfect! But, we have a simple solution for now,
that limits how much you can jeopardize your system, as we keep working
towards the right answer: RT groups scheduled using deadline servers.
Reported-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140225151515.617714e2f2cd6c558531ba61@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In deadline class we do not have group scheduling.
So, let's remove unnecessary
X = X;
equations.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Link: http://lkml.kernel.org/r/1393343543.4089.5.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
dequeue_entity() is called when p->on_rq and sets se->on_rq = 0
which appears to guarentee that the !se->on_rq condition is met.
If the task has done set_current_state(TASK_INTERRUPTIBLE) without
schedule() the second condition will be met and vruntime will be
incorrectly adjusted twice.
In certain cases this can result in the task's vruntime never increasing
past the vruntime of other tasks on the CFS' run queue, starving them of
CPU time.
This patch changes switched_from_fair() to use !p->on_rq instead of
!se->on_rq.
I'm able to cause a task with a priority of 120 to starve all other
tasks with the same priority on an ARM platform running 3.2.51-rt72
PREEMPT RT by writing one character at time to a serial tty (16550 UART)
in a tight loop. I'm also able to verify making this change corrects the
problem on that platform and kernel version.
Signed-off-by: George McCollister <george.mccollister@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1392767811-28916-1-git-send-email-george.mccollister@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The name __smp_call_function_single() doesn't tell much about the
properties of this function, especially when compared to
smp_call_function_single().
The comments above the implementation are also misleading. The main
point of this function is actually not to be able to embed the csd
in an object. This is actually a requirement that result from the
purpose of this function which is to raise an IPI asynchronously.
As such it can be called with interrupts disabled. And this feature
comes at the cost of the caller who then needs to serialize the
IPIs on this csd.
Lets rename the function and enhance the comments so that they reflect
these properties.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@fb.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>