Commit Graph

428 Commits

Author SHA1 Message Date
Guang Zeng
be50b2065d kvm: x86: Add support for getting/setting expanded xstate buffer
With KVM_CAP_XSAVE, userspace uses a hardcoded 4KB buffer to get/set
xstate data from/to KVM. This doesn't work when dynamic xfeatures
(e.g. AMX) are exposed to the guest as they require a larger buffer
size.

Introduce a new capability (KVM_CAP_XSAVE2). Userspace VMM gets the
required xstate buffer size via KVM_CHECK_EXTENSION(KVM_CAP_XSAVE2).
KVM_SET_XSAVE is extended to work with both legacy and new capabilities
by doing properly-sized memdup_user() based on the guest fpu container.
KVM_GET_XSAVE is kept for backward-compatible reason. Instead,
KVM_GET_XSAVE2 is introduced under KVM_CAP_XSAVE2 as the preferred
interface for getting xstate buffer (4KB or larger size) from KVM
(Link: https://lkml.org/lkml/2021/12/15/510)

Also, update the api doc with the new KVM_GET_XSAVE2 ioctl.

Signed-off-by: Guang Zeng <guang.zeng@intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-19-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-14 13:44:41 -05:00
Thomas Gleixner
980fe2fddc x86/fpu: Extend fpu_xstate_prctl() with guest permissions
KVM requires a clear separation of host user space and guest permissions
for dynamic XSTATE components.

Add a guest permissions member to struct fpu and a separate set of prctl()
arguments: ARCH_GET_XCOMP_GUEST_PERM and ARCH_REQ_XCOMP_GUEST_PERM.

The semantics are equivalent to the host user space permission control
except for the following constraints:

  1) Permissions have to be requested before the first vCPU is created

  2) Permissions are frozen when the first vCPU is created to ensure
     consistency. Any attempt to expand permissions via the prctl() after
     that point is rejected.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-2-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-07 13:33:03 -05:00
Paolo Bonzini
f5396f2d82 Merge branch 'kvm-5.16-fixes' into kvm-master
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status

* Fix selftests on APICv machines

* Fix sparse warnings

* Fix detection of KVM features in CPUID

* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN

* Fixes and cleanups for MSR bitmap handling

* Cleanups for INVPCID

* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
2021-11-11 11:03:05 -05:00
Paul Durrant
760849b147 KVM: x86: Make sure KVM_CPUID_FEATURES really are KVM_CPUID_FEATURES
Currently when kvm_update_cpuid_runtime() runs, it assumes that the
KVM_CPUID_FEATURES leaf is located at 0x40000001. This is not true,
however, if Hyper-V support is enabled. In this case the KVM leaves will
be offset.

This patch introdues as new 'kvm_cpuid_base' field into struct
kvm_vcpu_arch to track the location of the KVM leaves and function
kvm_update_kvm_cpuid_base() (called from kvm_set_cpuid()) to locate the
leaves using the 'KVMKVMKVM\0\0\0' signature (which is now given a
definition in kvm_para.h). Adjustment of KVM_CPUID_FEATURES will hence now
target the correct leaf.

NOTE: A new for_each_possible_hypervisor_cpuid_base() macro is intoduced
      into processor.h to avoid having duplicate code for the iteration
      over possible hypervisor base leaves.

Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Message-Id: <20211105095101.5384-3-pdurrant@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:21 -05:00
Linus Torvalds
d7e0a795bf ARM:
* More progress on the protected VM front, now with the full
   fixed feature set as well as the limitation of some hypercalls
   after initialisation.
 
 * Cleanup of the RAZ/WI sysreg handling, which was pointlessly
   complicated
 
 * Fixes for the vgic placement in the IPA space, together with a
   bunch of selftests
 
 * More memcg accounting of the memory allocated on behalf of a guest
 
 * Timer and vgic selftests
 
 * Workarounds for the Apple M1 broken vgic implementation
 
 * KConfig cleanups
 
 * New kvmarm.mode=none option, for those who really dislike us
 
 RISC-V:
 * New KVM port.
 
 x86:
 * New API to control TSC offset from userspace
 
 * TSC scaling for nested hypervisors on SVM
 
 * Switch masterclock protection from raw_spin_lock to seqcount
 
 * Clean up function prototypes in the page fault code and avoid
 repeated memslot lookups
 
 * Convey the exit reason to userspace on emulation failure
 
 * Configure time between NX page recovery iterations
 
 * Expose Predictive Store Forwarding Disable CPUID leaf
 
 * Allocate page tracking data structures lazily (if the i915
 KVM-GT functionality is not compiled in)
 
 * Cleanups, fixes and optimizations for the shadow MMU code
 
 s390:
 * SIGP Fixes
 
 * initial preparations for lazy destroy of secure VMs
 
 * storage key improvements/fixes
 
 * Log the guest CPNC
 
 Starting from this release, KVM-PPC patches will come from
 Michael Ellerman's PPC tree.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
 9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
 1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
 XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
 QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
 0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
 =UxKM
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:

   - More progress on the protected VM front, now with the full fixed
     feature set as well as the limitation of some hypercalls after
     initialisation.

   - Cleanup of the RAZ/WI sysreg handling, which was pointlessly
     complicated

   - Fixes for the vgic placement in the IPA space, together with a
     bunch of selftests

   - More memcg accounting of the memory allocated on behalf of a guest

   - Timer and vgic selftests

   - Workarounds for the Apple M1 broken vgic implementation

   - KConfig cleanups

   - New kvmarm.mode=none option, for those who really dislike us

  RISC-V:

   - New KVM port.

  x86:

   - New API to control TSC offset from userspace

   - TSC scaling for nested hypervisors on SVM

   - Switch masterclock protection from raw_spin_lock to seqcount

   - Clean up function prototypes in the page fault code and avoid
     repeated memslot lookups

   - Convey the exit reason to userspace on emulation failure

   - Configure time between NX page recovery iterations

   - Expose Predictive Store Forwarding Disable CPUID leaf

   - Allocate page tracking data structures lazily (if the i915 KVM-GT
     functionality is not compiled in)

   - Cleanups, fixes and optimizations for the shadow MMU code

  s390:

   - SIGP Fixes

   - initial preparations for lazy destroy of secure VMs

   - storage key improvements/fixes

   - Log the guest CPNC

  Starting from this release, KVM-PPC patches will come from Michael
  Ellerman's PPC tree"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
  RISC-V: KVM: fix boolreturn.cocci warnings
  RISC-V: KVM: remove unneeded semicolon
  RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
  RISC-V: KVM: Factor-out FP virtualization into separate sources
  KVM: s390: add debug statement for diag 318 CPNC data
  KVM: s390: pv: properly handle page flags for protected guests
  KVM: s390: Fix handle_sske page fault handling
  KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
  KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
  KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
  KVM: x86: Clarify the kvm_run.emulation_failure structure layout
  KVM: s390: Add a routine for setting userspace CPU state
  KVM: s390: Simplify SIGP Set Arch handling
  KVM: s390: pv: avoid stalls when making pages secure
  KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
  KVM: s390: pv: avoid double free of sida page
  KVM: s390: pv: add macros for UVC CC values
  s390/mm: optimize reset_guest_reference_bit()
  s390/mm: optimize set_guest_storage_key()
  s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
  ...
2021-11-02 11:24:14 -07:00
Linus Torvalds
879dbe9ffe Add a SGX_IOC_VEPC_REMOVE ioctl to the /dev/sgx_vepc virt interface with
which EPC pages can be put back into their uninitialized state without
 having to reopen /dev/sgx_vepc, which could not be possible anymore
 after startup due to security policies.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmF/x7AACgkQEsHwGGHe
 VUqHXA//YWrukmJ5PQZwWqkXGo6h42JWhIdNfSC2c1SVdz1cioGUCCswALTX4g8l
 MYYf3eN12GJ296jPh7m9bz8JvlYjdavSm3Y1yzHIjuQ3q6qywHIuYTbsrMD7waUD
 PkcY1TTYgNJ2+f0AgsC4GZhlcpf9g5DqiftW6wvExx5tLUNsVu3Y3gZy/+fajP4f
 s/TMjcdr2QmPsjun00KfoIY4/z0u8LkyRMSwyoxSV6wYdL6rRtfYFWsbEUS+W6Nw
 /VJ0IKl+aBQ1ztsDc4M5h1uy9II2M/Row5k6JjyrdG4X8D6ACSG7cho6qcMjXgcP
 Gac7Im5IyjPEorxqXAgJiMoAl9lU9a2JMVZqPtihYsQW/ygMTdpzP9sBpcZPMevc
 gxQD4gyixwzUa3cyVDzTPBdk/DEuGc2nwn2k9nPvmNxKMonX1oLEiP7hu265mvet
 56DtwKJF9ddtpepO2zFCg1qX+eZnTuhuZNCPsm/pmdGgzI8cyLznho33OgUSZEQY
 c1UisT7HXNRVC/1Q8VBDTU/D9LtIk+2+Q5lQkcNeftI5PYKTXIVddkOkqJ4GhGWJ
 9EasA4UtnhvsLzJ76gxxuUf677ns+1TCo65e7Hu1+X0eTmBJK3boe3aMHvJeHEWH
 Asd+SMkYWfxAlW/arAYhR2JgT9wgEH3pSx4eXnpGwpeValxBPRs=
 =1UYy
 -----END PGP SIGNATURE-----

Merge tag 'x86_sgx_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 SGX updates from Borislav Petkov:
 "Add a SGX_IOC_VEPC_REMOVE ioctl to the /dev/sgx_vepc virt interface
  with which EPC pages can be put back into their uninitialized state
  without having to reopen /dev/sgx_vepc, which could not be possible
  anymore after startup due to security policies"

* tag 'x86_sgx_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/sgx/virt: implement SGX_IOC_VEPC_REMOVE ioctl
  x86/sgx/virt: extract sgx_vepc_remove_page
2021-11-01 15:54:07 -07:00
Chang S. Bae
db8268df09 x86/arch_prctl: Add controls for dynamic XSTATE components
Dynamically enabled XSTATE features are by default disabled for all
processes. A process has to request permission to use such a feature.

To support this implement a architecture specific prctl() with the options:

   - ARCH_GET_XCOMP_SUPP

     Copies the supported feature bitmap into the user space provided
     u64 storage. The pointer is handed in via arg2

   - ARCH_GET_XCOMP_PERM

     Copies the process wide permitted feature bitmap into the user space
     provided u64 storage. The pointer is handed in via arg2

   - ARCH_REQ_XCOMP_PERM

     Request permission for a feature set. A feature set can be mapped to a
     facility, e.g. AMX, and can require one or more XSTATE components to
     be enabled.

     The feature argument is the number of the highest XSTATE component
     which is required for a facility to work.

     The request argument is not a user supplied bitmap because that makes
     filtering harder (think seccomp) and even impossible because to
     support 32bit tasks the argument would have to be a pointer.

The permission mechanism works this way:

   Task asks for permission for a facility and kernel checks whether that's
   supported. If supported it does:

     1) Check whether permission has already been granted

     2) Compute the size of the required kernel and user space buffer
        (sigframe) size.

     3) Validate that no task has a sigaltstack installed
        which is smaller than the resulting sigframe size

     4) Add the requested feature bit(s) to the permission bitmap of
        current->group_leader->fpu and store the sizes in the group
        leaders fpu struct as well.

If that is successful then the feature is still not enabled for any of the
tasks. The first usage of a related instruction will result in a #NM
trap. The trap handler validates the permission bit of the tasks group
leader and if permitted it installs a larger kernel buffer and transfers
the permission and size info to the new fpstate container which makes all
the FPU functions which require per task information aware of the extended
feature set.

  [ tglx: Adopted to new base code, added missing serialization,
          massaged namings, comments and changelog ]

Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-7-chang.seok.bae@intel.com
2021-10-26 10:18:09 +02:00
Paolo Bonzini
ae095b16fc x86/sgx/virt: implement SGX_IOC_VEPC_REMOVE ioctl
For bare-metal SGX on real hardware, the hardware provides guarantees
SGX state at reboot.  For instance, all pages start out uninitialized.
The vepc driver provides a similar guarantee today for freshly-opened
vepc instances, but guests such as Windows expect all pages to be in
uninitialized state on startup, including after every guest reboot.

Some userspace implementations of virtual SGX would rather avoid having
to close and reopen the /dev/sgx_vepc file descriptor and re-mmap the
virtual EPC.  For example, they could sandbox themselves after the guest
starts and forbid further calls to open(), in order to mitigate exploits
from untrusted guests.

Therefore, add a ioctl that does this with EREMOVE.  Userspace can
invoke the ioctl to bring its vEPC pages back to uninitialized state.
There is a possibility that some pages fail to be removed if they are
SECS pages, and the child and SECS pages could be in separate vEPC
regions.  Therefore, the ioctl returns the number of EREMOVE failures,
telling userspace to try the ioctl again after it's done with all
vEPC regions.  A more verbose description of the correct usage and
the possible error conditions is documented in sgx.rst.

Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20211021201155.1523989-3-pbonzini@redhat.com
2021-10-22 08:32:12 -07:00
Oliver Upton
828ca89628 KVM: x86: Expose TSC offset controls to userspace
To date, VMM-directed TSC synchronization and migration has been a bit
messy. KVM has some baked-in heuristics around TSC writes to infer if
the VMM is attempting to synchronize. This is problematic, as it depends
on host userspace writing to the guest's TSC within 1 second of the last
write.

A much cleaner approach to configuring the guest's views of the TSC is to
simply migrate the TSC offset for every vCPU. Offsets are idempotent,
and thus not subject to change depending on when the VMM actually
reads/writes values from/to KVM. The VMM can then read the TSC once with
KVM_GET_CLOCK to capture a (realtime, host_tsc) pair at the instant when
the guest is paused.

Cc: David Matlack <dmatlack@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210916181538.968978-8-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 14:43:45 -04:00
Maxim Levitsky
61e5f69ef0 KVM: x86: implement KVM_GUESTDBG_BLOCKIRQ
KVM_GUESTDBG_BLOCKIRQ will allow KVM to block all interrupts
while running.

This change is mostly intended for more robust single stepping
of the guest and it has the following benefits when enabled:

* Resuming from a breakpoint is much more reliable.
  When resuming execution from a breakpoint, with interrupts enabled,
  more often than not, KVM would inject an interrupt and make the CPU
  jump immediately to the interrupt handler and eventually return to
  the breakpoint, to trigger it again.

  From the user point of view it looks like the CPU never executed a
  single instruction and in some cases that can even prevent forward
  progress, for example, when the breakpoint is placed by an automated
  script (e.g lx-symbols), which does something in response to the
  breakpoint and then continues the guest automatically.
  If the script execution takes enough time for another interrupt to
  arrive, the guest will be stuck on the same breakpoint RIP forever.

* Normal single stepping is much more predictable, since it won't
  land the debugger into an interrupt handler.

* RFLAGS.TF has less chance to be leaked to the guest:

  We set that flag behind the guest's back to do single stepping
  but if single step lands us into an interrupt/exception handler
  it will be leaked to the guest in the form of being pushed
  to the stack.
  This doesn't completely eliminate this problem as exceptions
  can still happen, but at least this reduces the chances
  of this happening.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210811122927.900604-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-20 16:06:37 -04:00
Linus Torvalds
1423e2660c Fixes and improvements for FPU handling on x86:
- Prevent sigaltstack out of bounds writes. The kernel unconditionally
     writes the FPU state to the alternate stack without checking whether
     the stack is large enough to accomodate it.
 
     Check the alternate stack size before doing so and in case it's too
     small force a SIGSEGV instead of silently corrupting user space data.
 
   - MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never been
     updated despite the fact that the FPU state which is stored on the
     signal stack has grown over time which causes trouble in the field
     when AVX512 is available on a CPU. The kernel does not expose the
     minimum requirements for the alternate stack size depending on the
     available and enabled CPU features.
 
     ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
     Add it to x86 as well
 
   - A major cleanup of the x86 FPU code. The recent discoveries of XSTATE
     related issues unearthed quite some inconsistencies, duplicated code
     and other issues.
 
     The fine granular overhaul addresses this, makes the code more robust
     and maintainable, which allows to integrate upcoming XSTATE related
     features in sane ways.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmDlcpETHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoeP5D/4i+AgYYeiMLgGb+NS7iaKPfoWo6LIz
 y3qdTSA0DQaIYbYivWwRO/g0GYdDMXDWeZalFi7eGnVI8O3eOog+22Zrf/y0UINB
 KJHdYd4ApWHhs401022y5hexrWQvnV8w1yQCuj/zLm6eC+AVhdwt2AY+IBoRrdUj
 wqY97B/4rJNsBvvqTDn9EeDrJA2y0y0Suc7AhIp2BGMI+dpIdxys8RJDamXNWyDL
 gJf0YRgUoiIn3AHKb+fgv60AoxfC175NSg/5/y/scFNXqVlW0Up4YCb7pqG9o2Ga
 f3XvtWfbw1N5PmUYjFkALwEkzGUbM3v0RA3xLY2j2WlWm9fBPPy59dt+i/h/VKyA
 GrA7i7lcIqX8dfVH6XkrReZBkRDSB6t9SZTvV54jAz5fcIZO2Rg++UFUvI/R6GKK
 XCcxukYaArwo+IG62iqDszS3gfLGhcor/cviOeULRC5zMUIO4Jah+IhDnifmShtC
 M5s9QzrwIRD/XMewGRQmvkiN4kBfE7jFoBQr1J9leCXJKrM+2JQmMzVInuubTQIq
 SdlKOaAIn7xtekz+6XdFG9Gmhck0PCLMJMOLNvQkKWI3KqGLRZ+dAWKK0vsCizAx
 0BA7ZeB9w9lFT+D8mQCX77JvW9+VNwyfwIOLIrJRHk3VqVpS5qvoiFTLGJJBdZx4
 /TbbRZu7nXDN2w==
 =Mq1m
 -----END PGP SIGNATURE-----

Merge tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fpu updates from Thomas Gleixner:
 "Fixes and improvements for FPU handling on x86:

   - Prevent sigaltstack out of bounds writes.

     The kernel unconditionally writes the FPU state to the alternate
     stack without checking whether the stack is large enough to
     accomodate it.

     Check the alternate stack size before doing so and in case it's too
     small force a SIGSEGV instead of silently corrupting user space
     data.

   - MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never
     been updated despite the fact that the FPU state which is stored on
     the signal stack has grown over time which causes trouble in the
     field when AVX512 is available on a CPU. The kernel does not expose
     the minimum requirements for the alternate stack size depending on
     the available and enabled CPU features.

     ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
     Add it to x86 as well.

   - A major cleanup of the x86 FPU code. The recent discoveries of
     XSTATE related issues unearthed quite some inconsistencies,
     duplicated code and other issues.

     The fine granular overhaul addresses this, makes the code more
     robust and maintainable, which allows to integrate upcoming XSTATE
     related features in sane ways"

* tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
  x86/fpu/xstate: Clear xstate header in copy_xstate_to_uabi_buf() again
  x86/fpu/signal: Let xrstor handle the features to init
  x86/fpu/signal: Handle #PF in the direct restore path
  x86/fpu: Return proper error codes from user access functions
  x86/fpu/signal: Split out the direct restore code
  x86/fpu/signal: Sanitize copy_user_to_fpregs_zeroing()
  x86/fpu/signal: Sanitize the xstate check on sigframe
  x86/fpu/signal: Remove the legacy alignment check
  x86/fpu/signal: Move initial checks into fpu__restore_sig()
  x86/fpu: Mark init_fpstate __ro_after_init
  x86/pkru: Remove xstate fiddling from write_pkru()
  x86/fpu: Don't store PKRU in xstate in fpu_reset_fpstate()
  x86/fpu: Remove PKRU handling from switch_fpu_finish()
  x86/fpu: Mask PKRU from kernel XRSTOR[S] operations
  x86/fpu: Hook up PKRU into ptrace()
  x86/fpu: Add PKRU storage outside of task XSAVE buffer
  x86/fpu: Dont restore PKRU in fpregs_restore_userspace()
  x86/fpu: Rename xfeatures_mask_user() to xfeatures_mask_uabi()
  x86/fpu: Move FXSAVE_LEAK quirk info __copy_kernel_to_fpregs()
  x86/fpu: Rename __fpregs_load_activate() to fpregs_restore_userregs()
  ...
2021-07-07 11:12:01 -07:00
Linus Torvalds
36824f198c ARM:
- Add MTE support in guests, complete with tag save/restore interface
 
 - Reduce the impact of CMOs by moving them in the page-table code
 
 - Allow device block mappings at stage-2
 
 - Reduce the footprint of the vmemmap in protected mode
 
 - Support the vGIC on dumb systems such as the Apple M1
 
 - Add selftest infrastructure to support multiple configuration
   and apply that to PMU/non-PMU setups
 
 - Add selftests for the debug architecture
 
 - The usual crop of PMU fixes
 
 PPC:
 
 - Support for the H_RPT_INVALIDATE hypercall
 
 - Conversion of Book3S entry/exit to C
 
 - Bug fixes
 
 S390:
 
 - new HW facilities for guests
 
 - make inline assembly more robust with KASAN and co
 
 x86:
 
 - Allow userspace to handle emulation errors (unknown instructions)
 
 - Lazy allocation of the rmap (host physical -> guest physical address)
 
 - Support for virtualizing TSC scaling on VMX machines
 
 - Optimizations to avoid shattering huge pages at the beginning of live migration
 
 - Support for initializing the PDPTRs without loading them from memory
 
 - Many TLB flushing cleanups
 
 - Refuse to load if two-stage paging is available but NX is not (this has
   been a requirement in practice for over a year)
 
 - A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
   CR0/CR4/EFER, using the MMU mode everywhere once it is computed
   from the CPU registers
 
 - Use PM notifier to notify the guest about host suspend or hibernate
 
 - Support for passing arguments to Hyper-V hypercalls using XMM registers
 
 - Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap on
   AMD processors
 
 - Hide Hyper-V hypercalls that are not included in the guest CPUID
 
 - Fixes for live migration of virtual machines that use the Hyper-V
   "enlightened VMCS" optimization of nested virtualization
 
 - Bugfixes (not many)
 
 Generic:
 
 - Support for retrieving statistics without debugfs
 
 - Cleanups for the KVM selftests API
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmDV9UYUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOIRgf/XX8fKLh24RnTOs2ldIu2AfRGVrT4
 QMrr8MxhmtukBAszk2xKvBt8/6gkUjdaIC3xqEnVjxaDaUvZaEtP7CQlF5JV45rn
 iv1zyxUKucXrnIOr+gCioIT7qBlh207zV35ArKioP9Y83cWx9uAs22pfr6g+7RxO
 h8bJZlJbSG6IGr3voANCIb9UyjU1V/l8iEHqRwhmr/A5rARPfD7g8lfMEQeGkzX6
 +/UydX2fumB3tl8e2iMQj6vLVdSOsCkehvpHK+Z33EpkKhan7GwZ2sZ05WmXV/nY
 QLAYfD10KegoNWl5Ay4GTp4hEAIYVrRJCLC+wnLdc0U8udbfCuTC31LK4w==
 =NcRh
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "This covers all architectures (except MIPS) so I don't expect any
  other feature pull requests this merge window.

  ARM:

   - Add MTE support in guests, complete with tag save/restore interface

   - Reduce the impact of CMOs by moving them in the page-table code

   - Allow device block mappings at stage-2

   - Reduce the footprint of the vmemmap in protected mode

   - Support the vGIC on dumb systems such as the Apple M1

   - Add selftest infrastructure to support multiple configuration and
     apply that to PMU/non-PMU setups

   - Add selftests for the debug architecture

   - The usual crop of PMU fixes

  PPC:

   - Support for the H_RPT_INVALIDATE hypercall

   - Conversion of Book3S entry/exit to C

   - Bug fixes

  S390:

   - new HW facilities for guests

   - make inline assembly more robust with KASAN and co

  x86:

   - Allow userspace to handle emulation errors (unknown instructions)

   - Lazy allocation of the rmap (host physical -> guest physical
     address)

   - Support for virtualizing TSC scaling on VMX machines

   - Optimizations to avoid shattering huge pages at the beginning of
     live migration

   - Support for initializing the PDPTRs without loading them from
     memory

   - Many TLB flushing cleanups

   - Refuse to load if two-stage paging is available but NX is not (this
     has been a requirement in practice for over a year)

   - A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
     CR0/CR4/EFER, using the MMU mode everywhere once it is computed
     from the CPU registers

   - Use PM notifier to notify the guest about host suspend or hibernate

   - Support for passing arguments to Hyper-V hypercalls using XMM
     registers

   - Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap
     on AMD processors

   - Hide Hyper-V hypercalls that are not included in the guest CPUID

   - Fixes for live migration of virtual machines that use the Hyper-V
     "enlightened VMCS" optimization of nested virtualization

   - Bugfixes (not many)

  Generic:

   - Support for retrieving statistics without debugfs

   - Cleanups for the KVM selftests API"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (314 commits)
  KVM: x86: rename apic_access_page_done to apic_access_memslot_enabled
  kvm: x86: disable the narrow guest module parameter on unload
  selftests: kvm: Allows userspace to handle emulation errors.
  kvm: x86: Allow userspace to handle emulation errors
  KVM: x86/mmu: Let guest use GBPAGES if supported in hardware and TDP is on
  KVM: x86/mmu: Get CR4.SMEP from MMU, not vCPU, in shadow page fault
  KVM: x86/mmu: Get CR0.WP from MMU, not vCPU, in shadow page fault
  KVM: x86/mmu: Drop redundant rsvd bits reset for nested NPT
  KVM: x86/mmu: Optimize and clean up so called "last nonleaf level" logic
  KVM: x86: Enhance comments for MMU roles and nested transition trickiness
  KVM: x86/mmu: WARN on any reserved SPTE value when making a valid SPTE
  KVM: x86/mmu: Add helpers to do full reserved SPTE checks w/ generic MMU
  KVM: x86/mmu: Use MMU's role to determine PTTYPE
  KVM: x86/mmu: Collapse 32-bit PAE and 64-bit statements for helpers
  KVM: x86/mmu: Add a helper to calculate root from role_regs
  KVM: x86/mmu: Add helper to update paging metadata
  KVM: x86/mmu: Don't update nested guest's paging bitmasks if CR0.PG=0
  KVM: x86/mmu: Consolidate reset_rsvds_bits_mask() calls
  KVM: x86/mmu: Use MMU role_regs to get LA57, and drop vCPU LA57 helper
  KVM: x86/mmu: Get nested MMU's root level from the MMU's role
  ...
2021-06-28 15:40:51 -07:00
Ashish Kalra
0dbb112304 KVM: X86: Introduce KVM_HC_MAP_GPA_RANGE hypercall
This hypercall is used by the SEV guest to notify a change in the page
encryption status to the hypervisor. The hypercall should be invoked
only when the encryption attribute is changed from encrypted -> decrypted
and vice versa. By default all guest pages are considered encrypted.

The hypercall exits to userspace to manage the guest shared regions and
integrate with the userspace VMM's migration code.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <90778988e1ee01926ff9cac447aacb745f954c8c.1623174621.git.ashish.kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 14:25:39 -04:00
Maxim Levitsky
6dba940352 KVM: x86: Introduce KVM_GET_SREGS2 / KVM_SET_SREGS2
This is a new version of KVM_GET_SREGS / KVM_SET_SREGS.

It has the following changes:
   * Has flags for future extensions
   * Has vcpu's PDPTRs, allowing to save/restore them on migration.
   * Lacks obsolete interrupt bitmap (done now via KVM_SET_VCPU_EVENTS)

New capability, KVM_CAP_SREGS2 is added to signal
the userspace of this ioctl.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210607090203.133058-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:47 -04:00
Vineeth Pillai
59d21d67f3 KVM: SVM: Software reserved fields
SVM added support for certain reserved fields to be used by
software or hypervisor. Add the following reserved fields:
  - VMCB offset 0x3e0 - 0x3ff
  - Clean bit 31
  - SVM intercept exit code 0xf0000000

Later patches will make use of this for supporting Hyper-V
nested virtualization enhancements.

Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Message-Id: <a1f17a43a8e9e751a1a9cc0281649d71bdbf721b.1622730232.git.viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17 13:09:37 -04:00
Joe Richey
d06aca989c x86/elf: Use _BITUL() macro in UAPI headers
Replace BIT() in x86's UAPI header with _BITUL(). BIT() is not defined
in the UAPI headers and its usage may cause userspace build errors.

Fixes: 742c45c3ec ("x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2")
Signed-off-by: Joe Richey <joerichey@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210521085849.37676-2-joerichey94@gmail.com
2021-05-21 11:12:52 +02:00
Chang S. Bae
1c33bb0507 x86/elf: Support a new ELF aux vector AT_MINSIGSTKSZ
Historically, signal.h defines MINSIGSTKSZ (2KB) and SIGSTKSZ (8KB), for
use by all architectures with sigaltstack(2). Over time, the hardware state
size grew, but these constants did not evolve. Today, literal use of these
constants on several architectures may result in signal stack overflow, and
thus user data corruption.

A few years ago, the ARM team addressed this issue by establishing
getauxval(AT_MINSIGSTKSZ). This enables the kernel to supply a value
at runtime that is an appropriate replacement on current and future
hardware.

Add getauxval(AT_MINSIGSTKSZ) support to x86, analogous to the support
added for ARM in

  94b07c1f8c ("arm64: signal: Report signal frame size to userspace via auxv").

Also, include a documentation to describe x86-specific auxiliary vectors.

Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Len Brown <len.brown@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20210518200320.17239-4-chang.seok.bae@intel.com
2021-05-19 12:18:45 +02:00
Vitaly Kuznetsov
70f094f4f0 KVM: nVMX: Properly pad 'struct kvm_vmx_nested_state_hdr'
Eliminate the probably unwanted hole in 'struct kvm_vmx_nested_state_hdr':

Pre-patch:
struct kvm_vmx_nested_state_hdr {
        __u64                      vmxon_pa;             /*     0     8 */
        __u64                      vmcs12_pa;            /*     8     8 */
        struct {
                __u16              flags;                /*    16     2 */
        } smm;                                           /*    16     2 */

        /* XXX 2 bytes hole, try to pack */

        __u32                      flags;                /*    20     4 */
        __u64                      preemption_timer_deadline; /*    24     8 */
};

Post-patch:
struct kvm_vmx_nested_state_hdr {
        __u64                      vmxon_pa;             /*     0     8 */
        __u64                      vmcs12_pa;            /*     8     8 */
        struct {
                __u16              flags;                /*    16     2 */
        } smm;                                           /*    16     2 */
        __u16                      pad;                  /*    18     2 */
        __u32                      flags;                /*    20     4 */
        __u64                      preemption_timer_deadline; /*    24     8 */
};

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210503150854.1144255-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-05-07 06:06:13 -04:00
Linus Torvalds
152d32aa84 ARM:
- Stage-2 isolation for the host kernel when running in protected mode
 
 - Guest SVE support when running in nVHE mode
 
 - Force W^X hypervisor mappings in nVHE mode
 
 - ITS save/restore for guests using direct injection with GICv4.1
 
 - nVHE panics now produce readable backtraces
 
 - Guest support for PTP using the ptp_kvm driver
 
 - Performance improvements in the S2 fault handler
 
 x86:
 
 - Optimizations and cleanup of nested SVM code
 
 - AMD: Support for virtual SPEC_CTRL
 
 - Optimizations of the new MMU code: fast invalidation,
   zap under read lock, enable/disably dirty page logging under
   read lock
 
 - /dev/kvm API for AMD SEV live migration (guest API coming soon)
 
 - support SEV virtual machines sharing the same encryption context
 
 - support SGX in virtual machines
 
 - add a few more statistics
 
 - improved directed yield heuristics
 
 - Lots and lots of cleanups
 
 Generic:
 
 - Rework of MMU notifier interface, simplifying and optimizing
 the architecture-specific code
 
 - Some selftests improvements
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
 y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
 c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
 Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
 +2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
 M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
 =AXUi
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "This is a large update by KVM standards, including AMD PSP (Platform
  Security Processor, aka "AMD Secure Technology") and ARM CoreSight
  (debug and trace) changes.

  ARM:

   - CoreSight: Add support for ETE and TRBE

   - Stage-2 isolation for the host kernel when running in protected
     mode

   - Guest SVE support when running in nVHE mode

   - Force W^X hypervisor mappings in nVHE mode

   - ITS save/restore for guests using direct injection with GICv4.1

   - nVHE panics now produce readable backtraces

   - Guest support for PTP using the ptp_kvm driver

   - Performance improvements in the S2 fault handler

  x86:

   - AMD PSP driver changes

   - Optimizations and cleanup of nested SVM code

   - AMD: Support for virtual SPEC_CTRL

   - Optimizations of the new MMU code: fast invalidation, zap under
     read lock, enable/disably dirty page logging under read lock

   - /dev/kvm API for AMD SEV live migration (guest API coming soon)

   - support SEV virtual machines sharing the same encryption context

   - support SGX in virtual machines

   - add a few more statistics

   - improved directed yield heuristics

   - Lots and lots of cleanups

  Generic:

   - Rework of MMU notifier interface, simplifying and optimizing the
     architecture-specific code

   - a handful of "Get rid of oprofile leftovers" patches

   - Some selftests improvements"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
  KVM: selftests: Speed up set_memory_region_test
  selftests: kvm: Fix the check of return value
  KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
  KVM: SVM: Skip SEV cache flush if no ASIDs have been used
  KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
  KVM: SVM: Drop redundant svm_sev_enabled() helper
  KVM: SVM: Move SEV VMCB tracking allocation to sev.c
  KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
  KVM: SVM: Unconditionally invoke sev_hardware_teardown()
  KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
  KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
  KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
  KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
  KVM: SVM: Move SEV module params/variables to sev.c
  KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
  KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
  KVM: SVM: Zero out the VMCB array used to track SEV ASID association
  x86/sev: Drop redundant and potentially misleading 'sev_enabled'
  KVM: x86: Move reverse CPUID helpers to separate header file
  KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
  ...
2021-05-01 10:14:08 -07:00
Linus Torvalds
64f8e73de0 Support for enhanced split lock detection:
Newer CPUs provide a second mechanism to detect operations with lock
   prefix which go accross a cache line boundary. Such operations have to
   take bus lock which causes a system wide performance degradation when
   these operations happen frequently.
 
   The new mechanism is not using the #AC exception. It triggers #DB and is
   restricted to operations in user space. Kernel side split lock access can
   only be detected by the #AC based variant. Contrary to the #AC based
   mechanism the #DB based variant triggers _after_ the instruction was
   executed. The mechanism is CPUID enumerated and contrary to the #AC
   version which is based on the magic TEST_CTRL_MSR and model/family based
   enumeration on the way to become architectural.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmCGkr8THHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYodUKD/9tUXhInR7+1ykEHpMvdmSp48vqY3nc
 sKmT22pPl+OchnJ62mw3T8gKpBYVleJmcCaY2qVx7hfaVcWApLGJvX4tmfXmv422
 XDSJ6b8Os6wfgx5FR//I17z8ZtXnnuKkPrTMoRsQUw2qLq31y6fdQv+GW/cc1Kpw
 mengjmPE+HnpaKbtuQfPdc4a+UvLjvzBMAlDZPTBPKYrP4FFqYVnUVwyTg5aLVDY
 gHz4V8+b502RS/zPfTAtE3J848od+NmcUPdFlcG9DVA+hR0Rl0thvruCTFiD2vVh
 i9DJ7INof5FoJDEzh0dGsD7x+MB6OY8GZyHdUMeGgIRPtWkqrG52feQQIn2YYlaL
 fB3DlpNv7NIJ/0JMlALvh8S0tEoOcYdHqH+M/3K/zbzecg/FAo+lVo8WciGLPqWs
 ykUG5/f/OnlTvgB8po1ebJu0h0jHnoK9heWWXk9zWIRVDPXHFOWKW3kSbTTb3icR
 9hfjP/SNejpmt9Ju1OTwsgnV7NALIdVX+G5jyIEsjFl31Co1RZNYhHLFvi11FWlQ
 /ssvFK9O5ZkliocGCAN9+yuOnM26VqWSCE4fis6/2aSgD2Y4Gpvb//cP96SrcNAH
 u8eXNvGLlniJP3F3JImWIfIPQTrpvQhcU4eZ6NtviXqj/utQXX6c9PZ1PLYpcvUh
 9AWF8rwhT8X4oA==
 =lmi8
 -----END PGP SIGNATURE-----

Merge tag 'x86-splitlock-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 bus lock detection updates from Thomas Gleixner:
 "Support for enhanced split lock detection:

  Newer CPUs provide a second mechanism to detect operations with lock
  prefix which go accross a cache line boundary. Such operations have to
  take bus lock which causes a system wide performance degradation when
  these operations happen frequently.

  The new mechanism is not using the #AC exception. It triggers #DB and
  is restricted to operations in user space. Kernel side split lock
  access can only be detected by the #AC based variant.

  Contrary to the #AC based mechanism the #DB based variant triggers
  _after_ the instruction was executed. The mechanism is CPUID
  enumerated and contrary to the #AC version which is based on the magic
  TEST_CTRL_MSR and model/family based enumeration on the way to become
  architectural"

* tag 'x86-splitlock-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  Documentation/admin-guide: Change doc for split_lock_detect parameter
  x86/traps: Handle #DB for bus lock
  x86/cpufeatures: Enumerate #DB for bus lock detection
2021-04-26 10:09:38 -07:00
Sean Christopherson
3c0c2ad1ae KVM: VMX: Add basic handling of VM-Exit from SGX enclave
Add support for handling VM-Exits that originate from a guest SGX
enclave.  In SGX, an "enclave" is a new CPL3-only execution environment,
wherein the CPU and memory state is protected by hardware to make the
state inaccesible to code running outside of the enclave.  When exiting
an enclave due to an asynchronous event (from the perspective of the
enclave), e.g. exceptions, interrupts, and VM-Exits, the enclave's state
is automatically saved and scrubbed (the CPU loads synthetic state), and
then reloaded when re-entering the enclave.  E.g. after an instruction
based VM-Exit from an enclave, vmcs.GUEST_RIP will not contain the RIP
of the enclave instruction that trigered VM-Exit, but will instead point
to a RIP in the enclave's untrusted runtime (the guest userspace code
that coordinates entry/exit to/from the enclave).

To help a VMM recognize and handle exits from enclaves, SGX adds bits to
existing VMCS fields, VM_EXIT_REASON.VMX_EXIT_REASON_FROM_ENCLAVE and
GUEST_INTERRUPTIBILITY_INFO.GUEST_INTR_STATE_ENCLAVE_INTR.  Define the
new architectural bits, and add a boolean to struct vcpu_vmx to cache
VMX_EXIT_REASON_FROM_ENCLAVE.  Clear the bit in exit_reason so that
checks against exit_reason do not need to account for SGX, e.g.
"if (exit_reason == EXIT_REASON_EXCEPTION_NMI)" continues to work.

KVM is a largely a passive observer of the new bits, e.g. KVM needs to
account for the bits when propagating information to a nested VMM, but
otherwise doesn't need to act differently for the majority of VM-Exits
from enclaves.

The one scenario that is directly impacted is emulation, which is for
all intents and purposes impossible[1] since KVM does not have access to
the RIP or instruction stream that triggered the VM-Exit.  The inability
to emulate is a non-issue for KVM, as most instructions that might
trigger VM-Exit unconditionally #UD in an enclave (before the VM-Exit
check.  For the few instruction that conditionally #UD, KVM either never
sets the exiting control, e.g. PAUSE_EXITING[2], or sets it if and only
if the feature is not exposed to the guest in order to inject a #UD,
e.g. RDRAND_EXITING.

But, because it is still possible for a guest to trigger emulation,
e.g. MMIO, inject a #UD if KVM ever attempts emulation after a VM-Exit
from an enclave.  This is architecturally accurate for instruction
VM-Exits, and for MMIO it's the least bad choice, e.g. it's preferable
to killing the VM.  In practice, only broken or particularly stupid
guests should ever encounter this behavior.

Add a WARN in skip_emulated_instruction to detect any attempt to
modify the guest's RIP during an SGX enclave VM-Exit as all such flows
should either be unreachable or must handle exits from enclaves before
getting to skip_emulated_instruction.

[1] Impossible for all practical purposes.  Not truly impossible
    since KVM could implement some form of para-virtualization scheme.

[2] PAUSE_LOOP_EXITING only affects CPL0 and enclaves exist only at
    CPL3, so we also don't need to worry about that interaction.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <315f54a8507d09c292463ef29104e1d4c62e9090.1618196135.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-20 04:18:54 -04:00
Fenghua Yu
ebb1064e7c x86/traps: Handle #DB for bus lock
Bus locks degrade performance for the whole system, not just for the CPU
that requested the bus lock. Two CPU features "#AC for split lock" and
"#DB for bus lock" provide hooks so that the operating system may choose
one of several mitigation strategies.

#AC for split lock is already implemented. Add code to use the #DB for
bus lock feature to cover additional situations with new options to
mitigate.

split_lock_detect=
		#AC for split lock		#DB for bus lock

off		Do nothing			Do nothing

warn		Kernel OOPs			Warn once per task and
		Warn once per task and		and continues to run.
		disable future checking
	 	When both features are
		supported, warn in #AC

fatal		Kernel OOPs			Send SIGBUS to user.
		Send SIGBUS to user
		When both features are
		supported, fatal in #AC

ratelimit:N	Do nothing			Limit bus lock rate to
						N per second in the
						current non-root user.

Default option is "warn".

Hardware only generates #DB for bus lock detect when CPL>0 to avoid
nested #DB from multiple bus locks while the first #DB is being handled.
So no need to handle #DB for bus lock detected in the kernel.

#DB for bus lock is enabled by bus lock detection bit 2 in DEBUGCTL MSR
while #AC for split lock is enabled by split lock detection bit 29 in
TEST_CTRL MSR.

Both breakpoint and bus lock in the same instruction can trigger one #DB.
The bus lock is handled before the breakpoint in the #DB handler.

Delivery of #DB for bus lock in userspace clears DR6[11], which is set by
the #DB handler right after reading DR6.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20210322135325.682257-3-fenghua.yu@intel.com
2021-03-28 22:52:15 +02:00
Ingo Molnar
d9f6e12fb0 x86: Fix various typos in comments
Fix ~144 single-word typos in arch/x86/ code comments.

Doing this in a single commit should reduce the churn.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
2021-03-18 15:31:53 +01:00
Linus Torvalds
3e10585335 x86:
- Support for userspace to emulate Xen hypercalls
 - Raise the maximum number of user memslots
 - Scalability improvements for the new MMU.  Instead of the complex
   "fast page fault" logic that is used in mmu.c, tdp_mmu.c uses an
   rwlock so that page faults are concurrent, but the code that can run
   against page faults is limited.  Right now only page faults take the
   lock for reading; in the future this will be extended to some
   cases of page table destruction.  I hope to switch the default MMU
   around 5.12-rc3 (some testing was delayed due to Chinese New Year).
 - Cleanups for MAXPHYADDR checks
 - Use static calls for vendor-specific callbacks
 - On AMD, use VMLOAD/VMSAVE to save and restore host state
 - Stop using deprecated jump label APIs
 - Workaround for AMD erratum that made nested virtualization unreliable
 - Support for LBR emulation in the guest
 - Support for communicating bus lock vmexits to userspace
 - Add support for SEV attestation command
 - Miscellaneous cleanups
 
 PPC:
 - Support for second data watchpoint on POWER10
 - Remove some complex workarounds for buggy early versions of POWER9
 - Guest entry/exit fixes
 
 ARM64
 - Make the nVHE EL2 object relocatable
 - Cleanups for concurrent translation faults hitting the same page
 - Support for the standard TRNG hypervisor call
 - A bunch of small PMU/Debug fixes
 - Simplification of the early init hypercall handling
 
 Non-KVM changes (with acks):
 - Detection of contended rwlocks (implemented only for qrwlocks,
   because KVM only needs it for x86)
 - Allow __DISABLE_EXPORTS from assembly code
 - Provide a saner follow_pfn replacements for modules
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmApSRgUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOc7wf9FnlinKoTFaSk7oeuuhF/CoCVwSFs
 Z9+A2sNI99tWHQxFR6dyDkEFeQoXnqSxfLHtUVIdH/JnTg0FkEvFz3NK+0PzY1PF
 PnGNbSoyhP58mSBG4gbBAxdF3ZJZMB8GBgYPeR62PvMX2dYbcHqVBNhlf6W4MQK4
 5mAUuAnbf19O5N267sND+sIg3wwJYwOZpRZB7PlwvfKAGKf18gdBz5dQ/6Ej+apf
 P7GODZITjqM5Iho7SDm/sYJlZprFZT81KqffwJQHWFMEcxFgwzrnYPx7J3gFwRTR
 eeh9E61eCBDyCTPpHROLuNTVBqrAioCqXLdKOtO5gKvZI3zmomvAsZ8uXQ==
 =uFZU
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "x86:

   - Support for userspace to emulate Xen hypercalls

   - Raise the maximum number of user memslots

   - Scalability improvements for the new MMU.

     Instead of the complex "fast page fault" logic that is used in
     mmu.c, tdp_mmu.c uses an rwlock so that page faults are concurrent,
     but the code that can run against page faults is limited. Right now
     only page faults take the lock for reading; in the future this will
     be extended to some cases of page table destruction. I hope to
     switch the default MMU around 5.12-rc3 (some testing was delayed
     due to Chinese New Year).

   - Cleanups for MAXPHYADDR checks

   - Use static calls for vendor-specific callbacks

   - On AMD, use VMLOAD/VMSAVE to save and restore host state

   - Stop using deprecated jump label APIs

   - Workaround for AMD erratum that made nested virtualization
     unreliable

   - Support for LBR emulation in the guest

   - Support for communicating bus lock vmexits to userspace

   - Add support for SEV attestation command

   - Miscellaneous cleanups

  PPC:

   - Support for second data watchpoint on POWER10

   - Remove some complex workarounds for buggy early versions of POWER9

   - Guest entry/exit fixes

  ARM64:

   - Make the nVHE EL2 object relocatable

   - Cleanups for concurrent translation faults hitting the same page

   - Support for the standard TRNG hypervisor call

   - A bunch of small PMU/Debug fixes

   - Simplification of the early init hypercall handling

  Non-KVM changes (with acks):

   - Detection of contended rwlocks (implemented only for qrwlocks,
     because KVM only needs it for x86)

   - Allow __DISABLE_EXPORTS from assembly code

   - Provide a saner follow_pfn replacements for modules"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (192 commits)
  KVM: x86/xen: Explicitly pad struct compat_vcpu_info to 64 bytes
  KVM: selftests: Don't bother mapping GVA for Xen shinfo test
  KVM: selftests: Fix hex vs. decimal snafu in Xen test
  KVM: selftests: Fix size of memslots created by Xen tests
  KVM: selftests: Ignore recently added Xen tests' build output
  KVM: selftests: Add missing header file needed by xAPIC IPI tests
  KVM: selftests: Add operand to vmsave/vmload/vmrun in svm.c
  KVM: SVM: Make symbol 'svm_gp_erratum_intercept' static
  locking/arch: Move qrwlock.h include after qspinlock.h
  KVM: PPC: Book3S HV: Fix host radix SLB optimisation with hash guests
  KVM: PPC: Book3S HV: Ensure radix guest has no SLB entries
  KVM: PPC: Don't always report hash MMU capability for P9 < DD2.2
  KVM: PPC: Book3S HV: Save and restore FSCR in the P9 path
  KVM: PPC: remove unneeded semicolon
  KVM: PPC: Book3S HV: Use POWER9 SLBIA IH=6 variant to clear SLB
  KVM: PPC: Book3S HV: No need to clear radix host SLB before loading HPT guest
  KVM: PPC: Book3S HV: Fix radix guest SLB side channel
  KVM: PPC: Book3S HV: Remove support for running HPT guest on RPT host without mixed mode support
  KVM: PPC: Book3S HV: Introduce new capability for 2nd DAWR
  KVM: PPC: Book3S HV: Add infrastructure to support 2nd DAWR
  ...
2021-02-21 13:31:43 -08:00
Chenyi Qiang
fe6b6bc802 KVM: VMX: Enable bus lock VM exit
Virtual Machine can exploit bus locks to degrade the performance of
system. Bus lock can be caused by split locked access to writeback(WB)
memory or by using locks on uncacheable(UC) memory. The bus lock is
typically >1000 cycles slower than an atomic operation within a cache
line. It also disrupts performance on other cores (which must wait for
the bus lock to be released before their memory operations can
complete).

To address the threat, bus lock VM exit is introduced to notify the VMM
when a bus lock was acquired, allowing it to enforce throttling or other
policy based mitigations.

A VMM can enable VM exit due to bus locks by setting a new "Bus Lock
Detection" VM-execution control(bit 30 of Secondary Processor-based VM
execution controls). If delivery of this VM exit was preempted by a
higher priority VM exit (e.g. EPT misconfiguration, EPT violation, APIC
access VM exit, APIC write VM exit, exception bitmap exiting), bit 26 of
exit reason in vmcs field is set to 1.

In current implementation, the KVM exposes this capability through
KVM_CAP_X86_BUS_LOCK_EXIT. The user can get the supported mode bitmap
(i.e. off and exit) and enable it explicitly (disabled by default). If
bus locks in guest are detected by KVM, exit to user space even when
current exit reason is handled by KVM internally. Set a new field
KVM_RUN_BUS_LOCK in vcpu->run->flags to inform the user space that there
is a bus lock detected in guest.

Document for Bus Lock VM exit is now available at the latest "Intel
Architecture Instruction Set Extensions Programming Reference".

Document Link:
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html

Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20201106090315.18606-4-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:21 -05:00
Andy Lutomirski
8ece53ef7f x86/vm86/32: Remove VM86_SCREEN_BITMAP support
The implementation was rather buggy.  It unconditionally marked PTEs
read-only, even for VM_SHARED mappings.  I'm not sure whether this is
actually a problem, but it certainly seems unwise.  More importantly, it
released the mmap lock before flushing the TLB, which could allow a racing
CoW operation to falsely believe that the underlying memory was not
writable.

I can't find any users at all of this mechanism, so just remove it.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Stas Sergeev <stsp2@yandex.ru>
Link: https://lkml.kernel.org/r/f3086de0babcab36f69949b5780bde851f719bc8.1611078018.git.luto@kernel.org
2021-01-21 20:08:53 +01:00
Linus Torvalds
6a447b0e31 ARM:
* PSCI relay at EL2 when "protected KVM" is enabled
 * New exception injection code
 * Simplification of AArch32 system register handling
 * Fix PMU accesses when no PMU is enabled
 * Expose CSV3 on non-Meltdown hosts
 * Cache hierarchy discovery fixes
 * PV steal-time cleanups
 * Allow function pointers at EL2
 * Various host EL2 entry cleanups
 * Simplification of the EL2 vector allocation
 
 s390:
 * memcg accouting for s390 specific parts of kvm and gmap
 * selftest for diag318
 * new kvm_stat for when async_pf falls back to sync
 
 x86:
 * Tracepoints for the new pagetable code from 5.10
 * Catch VFIO and KVM irqfd events before userspace
 * Reporting dirty pages to userspace with a ring buffer
 * SEV-ES host support
 * Nested VMX support for wait-for-SIPI activity state
 * New feature flag (AVX512 FP16)
 * New system ioctl to report Hyper-V-compatible paravirtualization features
 
 Generic:
 * Selftest improvements
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl/bdL4UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNgQQgAnTH6rhXa++Zd5F0EM2NwXwz3iEGb
 lOq1DZSGjs6Eekjn8AnrWbmVQr+CBCuGU9MrxpSSzNDK/awryo3NwepOWAZw9eqk
 BBCVwGBbJQx5YrdgkGC0pDq2sNzcpW/VVB3vFsmOxd9eHblnuKSIxEsCCXTtyqIt
 XrLpQ1UhvI4yu102fDNhuFw2EfpzXm+K0Lc0x6idSkdM/p7SyeOxiv8hD4aMr6+G
 bGUQuMl4edKZFOWFigzr8NovQAvDHZGrwfihu2cLRYKLhV97QuWVmafv/yYfXcz2
 drr+wQCDNzDOXyANnssmviazrhOX0QmTAhbIXGGX/kTxYKcfPi83ZLoI3A==
 =ISud
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "Much x86 work was pushed out to 5.12, but ARM more than made up for it.

  ARM:
   - PSCI relay at EL2 when "protected KVM" is enabled
   - New exception injection code
   - Simplification of AArch32 system register handling
   - Fix PMU accesses when no PMU is enabled
   - Expose CSV3 on non-Meltdown hosts
   - Cache hierarchy discovery fixes
   - PV steal-time cleanups
   - Allow function pointers at EL2
   - Various host EL2 entry cleanups
   - Simplification of the EL2 vector allocation

  s390:
   - memcg accouting for s390 specific parts of kvm and gmap
   - selftest for diag318
   - new kvm_stat for when async_pf falls back to sync

  x86:
   - Tracepoints for the new pagetable code from 5.10
   - Catch VFIO and KVM irqfd events before userspace
   - Reporting dirty pages to userspace with a ring buffer
   - SEV-ES host support
   - Nested VMX support for wait-for-SIPI activity state
   - New feature flag (AVX512 FP16)
   - New system ioctl to report Hyper-V-compatible paravirtualization features

  Generic:
   - Selftest improvements"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
  KVM: SVM: fix 32-bit compilation
  KVM: SVM: Add AP_JUMP_TABLE support in prep for AP booting
  KVM: SVM: Provide support to launch and run an SEV-ES guest
  KVM: SVM: Provide an updated VMRUN invocation for SEV-ES guests
  KVM: SVM: Provide support for SEV-ES vCPU loading
  KVM: SVM: Provide support for SEV-ES vCPU creation/loading
  KVM: SVM: Update ASID allocation to support SEV-ES guests
  KVM: SVM: Set the encryption mask for the SVM host save area
  KVM: SVM: Add NMI support for an SEV-ES guest
  KVM: SVM: Guest FPU state save/restore not needed for SEV-ES guest
  KVM: SVM: Do not report support for SMM for an SEV-ES guest
  KVM: x86: Update __get_sregs() / __set_sregs() to support SEV-ES
  KVM: SVM: Add support for CR8 write traps for an SEV-ES guest
  KVM: SVM: Add support for CR4 write traps for an SEV-ES guest
  KVM: SVM: Add support for CR0 write traps for an SEV-ES guest
  KVM: SVM: Add support for EFER write traps for an SEV-ES guest
  KVM: SVM: Support string IO operations for an SEV-ES guest
  KVM: SVM: Support MMIO for an SEV-ES guest
  KVM: SVM: Create trace events for VMGEXIT MSR protocol processing
  KVM: SVM: Create trace events for VMGEXIT processing
  ...
2020-12-20 10:44:05 -08:00
Tom Lendacky
d1949b93c6 KVM: SVM: Add support for CR8 write traps for an SEV-ES guest
For SEV-ES guests, the interception of control register write access
is not recommended. Control register interception occurs prior to the
control register being modified and the hypervisor is unable to modify
the control register itself because the register is located in the
encrypted register state.

SEV-ES guests introduce new control register write traps. These traps
provide intercept support of a control register write after the control
register has been modified. The new control register value is provided in
the VMCB EXITINFO1 field, allowing the hypervisor to track the setting
of the guest control registers.

Add support to track the value of the guest CR8 register using the control
register write trap so that the hypervisor understands the guest operating
mode.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <5a01033f4c8b3106ca9374b7cadf8e33da852df1.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15 05:20:54 -05:00
Tom Lendacky
5b51cb1316 KVM: SVM: Add support for CR4 write traps for an SEV-ES guest
For SEV-ES guests, the interception of control register write access
is not recommended. Control register interception occurs prior to the
control register being modified and the hypervisor is unable to modify
the control register itself because the register is located in the
encrypted register state.

SEV-ES guests introduce new control register write traps. These traps
provide intercept support of a control register write after the control
register has been modified. The new control register value is provided in
the VMCB EXITINFO1 field, allowing the hypervisor to track the setting
of the guest control registers.

Add support to track the value of the guest CR4 register using the control
register write trap so that the hypervisor understands the guest operating
mode.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <c3880bf2db8693aa26f648528fbc6e967ab46e25.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15 05:20:53 -05:00
Tom Lendacky
f27ad38aac KVM: SVM: Add support for CR0 write traps for an SEV-ES guest
For SEV-ES guests, the interception of control register write access
is not recommended. Control register interception occurs prior to the
control register being modified and the hypervisor is unable to modify
the control register itself because the register is located in the
encrypted register state.

SEV-ES support introduces new control register write traps. These traps
provide intercept support of a control register write after the control
register has been modified. The new control register value is provided in
the VMCB EXITINFO1 field, allowing the hypervisor to track the setting
of the guest control registers.

Add support to track the value of the guest CR0 register using the control
register write trap so that the hypervisor understands the guest operating
mode.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <182c9baf99df7e40ad9617ff90b84542705ef0d7.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15 05:20:52 -05:00
Tom Lendacky
2985afbcdb KVM: SVM: Add support for EFER write traps for an SEV-ES guest
For SEV-ES guests, the interception of EFER write access is not
recommended. EFER interception occurs prior to EFER being modified and
the hypervisor is unable to modify EFER itself because the register is
located in the encrypted register state.

SEV-ES support introduces a new EFER write trap. This trap provides
intercept support of an EFER write after it has been modified. The new
EFER value is provided in the VMCB EXITINFO1 field, allowing the
hypervisor to track the setting of the guest EFER.

Add support to track the value of the guest EFER value using the EFER
write trap so that the hypervisor understands the guest operating mode.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <8993149352a3a87cd0625b3b61bfd31ab28977e1.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15 05:20:51 -05:00
Tom Lendacky
291bd20d5d KVM: SVM: Add initial support for a VMGEXIT VMEXIT
SEV-ES adds a new VMEXIT reason code, VMGEXIT. Initial support for a
VMGEXIT includes mapping the GHCB based on the guest GPA, which is
obtained from a new VMCB field, and then validating the required inputs
for the VMGEXIT exit reason.

Since many of the VMGEXIT exit reasons correspond to existing VMEXIT
reasons, the information from the GHCB is copied into the VMCB control
exit code areas and KVM register areas. The standard exit handlers are
invoked, similar to standard VMEXIT processing. Before restarting the
vCPU, the GHCB is updated with any registers that have been updated by
the hypervisor.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <c6a4ed4294a369bd75c44d03bd7ce0f0c3840e50.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15 05:20:47 -05:00
Linus Torvalds
0ca2ce81eb arm64 updates for 5.11:
- Expose tag address bits in siginfo. The original arm64 ABI did not
   expose any of the bits 63:56 of a tagged address in siginfo. In the
   presence of user ASAN or MTE, this information may be useful. The
   implementation is generic to other architectures supporting tags (like
   SPARC ADI, subject to wiring up the arch code). The user will have to
   opt in via sigaction(SA_EXPOSE_TAGBITS) so that the extra bits, if
   available, become visible in si_addr.
 
 - Default to 32-bit wide ZONE_DMA. Previously, ZONE_DMA was set to the
   lowest 1GB to cope with the Raspberry Pi 4 limitations, to the
   detriment of other platforms. With these changes, the kernel scans the
   Device Tree dma-ranges and the ACPI IORT information before deciding
   on a smaller ZONE_DMA.
 
 - Strengthen READ_ONCE() to acquire when CONFIG_LTO=y. When building
   with LTO, there is an increased risk of the compiler converting an
   address dependency headed by a READ_ONCE() invocation into a control
   dependency and consequently allowing for harmful reordering by the
   CPU.
 
 - Add CPPC FFH support using arm64 AMU counters.
 
 - set_fs() removal on arm64. This renders the User Access Override (UAO)
   ARMv8 feature unnecessary.
 
 - Perf updates: PMU driver for the ARM DMC-620 memory controller, sysfs
   identifier file for SMMUv3, stop event counters support for i.MX8MP,
   enable the perf events-based hard lockup detector.
 
 - Reorganise the kernel VA space slightly so that 52-bit VA
   configurations can use more virtual address space.
 
 - Improve the robustness of the arm64 memory offline event notifier.
 
 - Pad the Image header to 64K following the EFI header definition
   updated recently to increase the section alignment to 64K.
 
 - Support CONFIG_CMDLINE_EXTEND on arm64.
 
 - Do not use tagged PC in the kernel (TCR_EL1.TBID1==1), freeing up 8
   bits for PtrAuth.
 
 - Switch to vmapped shadow call stacks.
 
 - Miscellaneous clean-ups.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl/XcSgACgkQa9axLQDI
 XvGkwg//SLknimELD/cphf2UzZm5RFuCU0x1UnIXs9XYo5BrOpgVLLA//+XkCrKN
 0GLAdtBDfw1axWJudzgMBiHrv6wSGh4p3YWjLIW06u/PJu3m3U8oiiolvvF8d7Yq
 UKDseKGQnQkrl97J0SyA+Da/u8D11GEzp52SWL5iRxzt6vInEC27iTOp9n1yoaoP
 f3y7qdp9kv831ryUM3rXFYpc8YuMWXk+JpBSNaxqmjlvjMzipA5PhzBLmNzfc657
 XcrRX5qsgjEeJW8UUnWUVNB42j7tVzN77yraoUpoVVCzZZeWOQxqq5EscKPfIhRt
 AjtSIQNOs95ZVE0SFCTjXnUUb823coUs4dMCdftqlE62JNRwdR+3bkfa+QjPTg1F
 O9ohW1AzX0/JB19QBxMaOgbheB8GFXh3DVJ6pizTgxJgyPvQQtFuEhT1kq8Cst0U
 Pe+pEWsg9t41bUXNz+/l9tUWKWpeCfFNMTrBXLmXrNlTLeOvDh/0UiF0+2lYJYgf
 YAboibQ5eOv2wGCcSDEbNMJ6B2/6GtubDJxH4du680F6Emb6pCSw0ntPwB7mSGLG
 5dXz+9FJxDLjmxw7BXxQgc5MoYIrt5JQtaOQ6UxU8dPy53/+py4Ck6tXNkz0+Ap7
 gPPaGGy1GqobQFu3qlHtOK1VleQi/sWcrpmPHrpiiFUf6N7EmcY=
 =zXFk
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - Expose tag address bits in siginfo. The original arm64 ABI did not
   expose any of the bits 63:56 of a tagged address in siginfo. In the
   presence of user ASAN or MTE, this information may be useful. The
   implementation is generic to other architectures supporting tags
   (like SPARC ADI, subject to wiring up the arch code). The user will
   have to opt in via sigaction(SA_EXPOSE_TAGBITS) so that the extra
   bits, if available, become visible in si_addr.

 - Default to 32-bit wide ZONE_DMA. Previously, ZONE_DMA was set to the
   lowest 1GB to cope with the Raspberry Pi 4 limitations, to the
   detriment of other platforms. With these changes, the kernel scans
   the Device Tree dma-ranges and the ACPI IORT information before
   deciding on a smaller ZONE_DMA.

 - Strengthen READ_ONCE() to acquire when CONFIG_LTO=y. When building
   with LTO, there is an increased risk of the compiler converting an
   address dependency headed by a READ_ONCE() invocation into a control
   dependency and consequently allowing for harmful reordering by the
   CPU.

 - Add CPPC FFH support using arm64 AMU counters.

 - set_fs() removal on arm64. This renders the User Access Override
   (UAO) ARMv8 feature unnecessary.

 - Perf updates: PMU driver for the ARM DMC-620 memory controller, sysfs
   identifier file for SMMUv3, stop event counters support for i.MX8MP,
   enable the perf events-based hard lockup detector.

 - Reorganise the kernel VA space slightly so that 52-bit VA
   configurations can use more virtual address space.

 - Improve the robustness of the arm64 memory offline event notifier.

 - Pad the Image header to 64K following the EFI header definition
   updated recently to increase the section alignment to 64K.

 - Support CONFIG_CMDLINE_EXTEND on arm64.

 - Do not use tagged PC in the kernel (TCR_EL1.TBID1==1), freeing up 8
   bits for PtrAuth.

 - Switch to vmapped shadow call stacks.

 - Miscellaneous clean-ups.

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (78 commits)
  perf/imx_ddr: Add system PMU identifier for userspace
  bindings: perf: imx-ddr: add compatible string
  arm64: Fix build failure when HARDLOCKUP_DETECTOR_PERF is enabled
  arm64: mte: fix prctl(PR_GET_TAGGED_ADDR_CTRL) if TCF0=NONE
  arm64: mark __system_matches_cap as __maybe_unused
  arm64: uaccess: remove vestigal UAO support
  arm64: uaccess: remove redundant PAN toggling
  arm64: uaccess: remove addr_limit_user_check()
  arm64: uaccess: remove set_fs()
  arm64: uaccess cleanup macro naming
  arm64: uaccess: split user/kernel routines
  arm64: uaccess: refactor __{get,put}_user
  arm64: uaccess: simplify __copy_user_flushcache()
  arm64: uaccess: rename privileged uaccess routines
  arm64: sdei: explicitly simulate PAN/UAO entry
  arm64: sdei: move uaccess logic to arch/arm64/
  arm64: head.S: always initialize PSTATE
  arm64: head.S: cleanup SCTLR_ELx initialization
  arm64: head.S: rename el2_setup -> init_kernel_el
  arm64: add C wrappers for SET_PSTATE_*()
  ...
2020-12-14 16:24:30 -08:00
Mauro Carvalho Chehab
bab8c183d1 x86/sgx: Fix a typo in kernel-doc markup
Fix the following kernel-doc warning:

  arch/x86/include/uapi/asm/sgx.h:19: warning: expecting prototype \
    for enum sgx_epage_flags. Prototype was for enum sgx_page_flags instead

 [ bp: Launder the commit message. ]

Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/ca11a4540d981cbd5f026b6cbc8931aa55654e00.1606897462.git.mchehab+huawei@kernel.org
2020-12-02 12:54:47 +01:00
Peter Collingbourne
1d82b7898f arch: move SA_* definitions to generic headers
Most architectures with the exception of alpha, mips, parisc and
sparc use the same values for these flags. Move their definitions into
asm-generic/signal-defs.h and allow the architectures with non-standard
values to override them. Also, document the non-standard flag values
in order to make it easier to add new generic flags in the future.

A consequence of this change is that on powerpc and x86, the constants'
values aside from SA_RESETHAND change signedness from unsigned
to signed. This is not expected to impact realistic use of these
constants. In particular the typical use of the constants where they
are or'ed together and assigned to sa_flags (or another int variable)
would not be affected.

Signed-off-by: Peter Collingbourne <pcc@google.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Link: https://linux-review.googlesource.com/id/Ia3849f18b8009bf41faca374e701cdca36974528
Link: https://lkml.kernel.org/r/b6d0d1ec34f9ee93e1105f14f288fba5f89d1f24.1605235762.git.pcc@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-11-23 10:31:05 -06:00
Sean Christopherson
8466436952 x86/vdso: Implement a vDSO for Intel SGX enclave call
Enclaves encounter exceptions for lots of reasons: everything from enclave
page faults to NULL pointer dereferences, to system calls that must be
“proxied” to the kernel from outside the enclave.

In addition to the code contained inside an enclave, there is also
supporting code outside the enclave called an “SGX runtime”, which is
virtually always implemented inside a shared library.  The runtime helps
build the enclave and handles things like *re*building the enclave if it
got destroyed by something like a suspend/resume cycle.

The rebuilding has traditionally been handled in SIGSEGV handlers,
registered by the library.  But, being process-wide, shared state, signal
handling and shared libraries do not mix well.

Introduce a vDSO function call that wraps the enclave entry functions
(EENTER/ERESUME functions of the ENCLU instruciton) and returns information
about any exceptions to the caller in the SGX runtime.

Instead of generating a signal, the kernel places exception information in
RDI, RSI and RDX. The kernel-provided userspace portion of the vDSO handler
will place this information in a user-provided buffer or trigger a
user-provided callback at the time of the exception.

The vDSO function calling convention uses the standard RDI RSI, RDX, RCX,
R8 and R9 registers.  This makes it possible to declare the vDSO as a C
prototype, but other than that there is no specific support for SystemV
ABI. Things like storing XSAVE are the responsibility of the enclave and
the runtime.

 [ bp: Change vsgx.o build dependency to CONFIG_X86_SGX. ]

Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Cedric Xing <cedric.xing@intel.com>
Signed-off-by: Cedric Xing <cedric.xing@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-20-jarkko@kernel.org
2020-11-18 18:02:50 +01:00
Jarkko Sakkinen
c82c618650 x86/sgx: Add SGX_IOC_ENCLAVE_PROVISION
The whole point of SGX is to create a hardware protected place to do
“stuff”. But, before someone is willing to hand over the keys to
the castle , an enclave must often prove that it is running on an
SGX-protected processor. Provisioning enclaves play a key role in
providing proof.

There are actually three different enclaves in play in order to make this
happen:

1. The application enclave.  The familiar one we know and love that runs
   the actual code that’s doing real work.  There can be many of these on
   a single system, or even in a single application.
2. The quoting enclave  (QE).  The QE is mentioned in lots of silly
   whitepapers, but, for the purposes of kernel enabling, just pretend they
   do not exist.
3. The provisioning enclave.  There is typically only one of these
   enclaves per system.  Provisioning enclaves have access to a special
   hardware key.

   They can use this key to help to generate certificates which serve as
   proof that enclaves are running on trusted SGX hardware.  These
   certificates can be passed around without revealing the special key.

Any user who can create a provisioning enclave can access the
processor-unique Provisioning Certificate Key which has privacy and
fingerprinting implications. Even if a user is permitted to create
normal application enclaves (via /dev/sgx_enclave), they should not be
able to create provisioning enclaves. That means a separate permissions
scheme is needed to control provisioning enclave privileges.

Implement a separate device file (/dev/sgx_provision) which allows
creating provisioning enclaves. This device will typically have more
strict permissions than the plain enclave device.

The actual device “driver” is an empty stub.  Open file descriptors for
this device will represent a token which allows provisioning enclave duty.
This file descriptor can be passed around and ultimately given as an
argument to the /dev/sgx_enclave driver ioctl().

 [ bp: Touchups. ]

Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: linux-security-module@vger.kernel.org
Link: https://lkml.kernel.org/r/20201112220135.165028-16-jarkko@kernel.org
2020-11-18 18:02:50 +01:00
Jarkko Sakkinen
9d0c151b41 x86/sgx: Add SGX_IOC_ENCLAVE_INIT
Enclaves have two basic states. They are either being built and are
malleable and can be modified by doing things like adding pages. Or,
they are locked down and not accepting changes. They can only be run
after they have been locked down. The ENCLS[EINIT] function induces the
transition from being malleable to locked-down.

Add an ioctl() that performs ENCLS[EINIT]. After this, new pages can
no longer be added with ENCLS[EADD]. This is also the time where the
enclave can be measured to verify its integrity.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-15-jarkko@kernel.org
2020-11-18 18:02:49 +01:00
Jarkko Sakkinen
c6d26d3707 x86/sgx: Add SGX_IOC_ENCLAVE_ADD_PAGES
SGX enclave pages are inaccessible to normal software. They must be
populated with data by copying from normal memory with the help of the
EADD and EEXTEND functions of the ENCLS instruction.

Add an ioctl() which performs EADD that adds new data to an enclave, and
optionally EEXTEND functions that hash the page contents and use the
hash as part of enclave “measurement” to ensure enclave integrity.

The enclave author gets to decide which pages will be included in the
enclave measurement with EEXTEND. Measurement is very slow and has
sometimes has very little value. For instance, an enclave _could_
measure every page of data and code, but would be slow to initialize.
Or, it might just measure its code and then trust that code to
initialize the bulk of its data after it starts running.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-14-jarkko@kernel.org
2020-11-18 18:02:49 +01:00
Jarkko Sakkinen
888d249117 x86/sgx: Add SGX_IOC_ENCLAVE_CREATE
Add an ioctl() that performs the ECREATE function of the ENCLS
instruction, which creates an SGX Enclave Control Structure (SECS).

Although the SECS is an in-memory data structure, it is present in
enclave memory and is not directly accessible by software.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-13-jarkko@kernel.org
2020-11-18 18:02:49 +01:00
Peter Xu
fb04a1eddb KVM: X86: Implement ring-based dirty memory tracking
This patch is heavily based on previous work from Lei Cao
<lei.cao@stratus.com> and Paolo Bonzini <pbonzini@redhat.com>. [1]

KVM currently uses large bitmaps to track dirty memory.  These bitmaps
are copied to userspace when userspace queries KVM for its dirty page
information.  The use of bitmaps is mostly sufficient for live
migration, as large parts of memory are be dirtied from one log-dirty
pass to another.  However, in a checkpointing system, the number of
dirty pages is small and in fact it is often bounded---the VM is
paused when it has dirtied a pre-defined number of pages. Traversing a
large, sparsely populated bitmap to find set bits is time-consuming,
as is copying the bitmap to user-space.

A similar issue will be there for live migration when the guest memory
is huge while the page dirty procedure is trivial.  In that case for
each dirty sync we need to pull the whole dirty bitmap to userspace
and analyse every bit even if it's mostly zeros.

The preferred data structure for above scenarios is a dense list of
guest frame numbers (GFN).  This patch series stores the dirty list in
kernel memory that can be memory mapped into userspace to allow speedy
harvesting.

This patch enables dirty ring for X86 only.  However it should be
easily extended to other archs as well.

[1] https://patchwork.kernel.org/patch/10471409/

Signed-off-by: Lei Cao <lei.cao@stratus.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012222.5767-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15 09:49:15 -05:00
Yadong Qi
bf0cd88ce3 KVM: x86: emulate wait-for-SIPI and SIPI-VMExit
Background: We have a lightweight HV, it needs INIT-VMExit and
SIPI-VMExit to wake-up APs for guests since it do not monitor
the Local APIC. But currently virtual wait-for-SIPI(WFS) state
is not supported in nVMX, so when running on top of KVM, the L1
HV cannot receive the INIT-VMExit and SIPI-VMExit which cause
the L2 guest cannot wake up the APs.

According to Intel SDM Chapter 25.2 Other Causes of VM Exits,
SIPIs cause VM exits when a logical processor is in
wait-for-SIPI state.

In this patch:
    1. introduce SIPI exit reason,
    2. introduce wait-for-SIPI state for nVMX,
    3. advertise wait-for-SIPI support to guest.

When L1 hypervisor is not monitoring Local APIC, L0 need to emulate
INIT-VMExit and SIPI-VMExit to L1 to emulate INIT-SIPI-SIPI for
L2. L2 LAPIC write would be traped by L0 Hypervisor(KVM), L0 should
emulate the INIT/SIPI vmexit to L1 hypervisor to set proper state
for L2's vcpu state.

Handle procdure:
Source vCPU:
    L2 write LAPIC.ICR(INIT).
    L0 trap LAPIC.ICR write(INIT): inject a latched INIT event to target
       vCPU.
Target vCPU:
    L0 emulate an INIT VMExit to L1 if is guest mode.
    L1 set guest VMCS, guest_activity_state=WAIT_SIPI, vmresume.
    L0 set vcpu.mp_state to INIT_RECEIVED if (vmcs12.guest_activity_state
       == WAIT_SIPI).

Source vCPU:
    L2 write LAPIC.ICR(SIPI).
    L0 trap LAPIC.ICR write(INIT): inject a latched SIPI event to traget
       vCPU.
Target vCPU:
    L0 emulate an SIPI VMExit to L1 if (vcpu.mp_state == INIT_RECEIVED).
    L1 set CS:IP, guest_activity_state=ACTIVE, vmresume.
    L0 resume to L2.
    L2 start-up.

Signed-off-by: Yadong Qi <yadong.qi@intel.com>
Message-Id: <20200922052343.84388-1-yadong.qi@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20201106065122.403183-1-yadong.qi@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15 09:49:09 -05:00
David Woodhouse
5a169bf04c x86/kvm: Reserve KVM_FEATURE_MSI_EXT_DEST_ID
No functional change; just reserve the feature bit for now so that VMMs
can start to implement it.

This will allow the host to indicate that MSI emulation supports 15-bit
destination IDs, allowing up to 32768 CPUs without interrupt remapping.

cf. https://patchwork.kernel.org/patch/11816693/ for qemu

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <4cd59bed05f4b7410d3d1ffd1e997ab53683874d.camel@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-28 13:52:05 -04:00
Linus Torvalds
f9a705ad1c ARM:
- New page table code for both hypervisor and guest stage-2
 - Introduction of a new EL2-private host context
 - Allow EL2 to have its own private per-CPU variables
 - Support of PMU event filtering
 - Complete rework of the Spectre mitigation
 
 PPC:
 - Fix for running nested guests with in-kernel IRQ chip
 - Fix race condition causing occasional host hard lockup
 - Minor cleanups and bugfixes
 
 x86:
 - allow trapping unknown MSRs to userspace
 - allow userspace to force #GP on specific MSRs
 - INVPCID support on AMD
 - nested AMD cleanup, on demand allocation of nested SVM state
 - hide PV MSRs and hypercalls for features not enabled in CPUID
 - new test for MSR_IA32_TSC writes from host and guest
 - cleanups: MMU, CPUID, shared MSRs
 - LAPIC latency optimizations ad bugfixes
 
 For x86, also included in this pull request is a new alternative and
 (in the future) more scalable implementation of extended page tables
 that does not need a reverse map from guest physical addresses to
 host physical addresses.  For now it is disabled by default because
 it is still lacking a few of the existing MMU's bells and whistles.
 However it is a very solid piece of work and it is already available
 for people to hammer on it.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+S8dsUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroM40Af+M46NJmuS5rcwFfybvK/c42KT6svX
 Co1NrZDwzSQ2mMy3WQzH9qeLvb+nbY4sT3n5BPNPNsT+aIDPOTDt//qJ2/Ip9UUs
 tRNea0MAR96JWLE7MSeeRxnTaQIrw/AAZC0RXFzZvxcgytXwdqBExugw4im+b+dn
 Dcz8QxX1EkwT+4lTm5HC0hKZAuo4apnK1QkqCq4SdD2QVJ1YE6+z7pgj4wX7xitr
 STKD6q/Yt/0ndwqS0GSGbyg0jy6mE620SN6isFRkJYwqfwLJci6KnqvEK67EcNMu
 qeE017K+d93yIVC46/6TfVHzLR/D1FpQ8LZ16Yl6S13OuGIfAWBkQZtPRg==
 =AD6a
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "For x86, there is a new alternative and (in the future) more scalable
  implementation of extended page tables that does not need a reverse
  map from guest physical addresses to host physical addresses.

  For now it is disabled by default because it is still lacking a few of
  the existing MMU's bells and whistles. However it is a very solid
  piece of work and it is already available for people to hammer on it.

  Other updates:

  ARM:
   - New page table code for both hypervisor and guest stage-2
   - Introduction of a new EL2-private host context
   - Allow EL2 to have its own private per-CPU variables
   - Support of PMU event filtering
   - Complete rework of the Spectre mitigation

  PPC:
   - Fix for running nested guests with in-kernel IRQ chip
   - Fix race condition causing occasional host hard lockup
   - Minor cleanups and bugfixes

  x86:
   - allow trapping unknown MSRs to userspace
   - allow userspace to force #GP on specific MSRs
   - INVPCID support on AMD
   - nested AMD cleanup, on demand allocation of nested SVM state
   - hide PV MSRs and hypercalls for features not enabled in CPUID
   - new test for MSR_IA32_TSC writes from host and guest
   - cleanups: MMU, CPUID, shared MSRs
   - LAPIC latency optimizations ad bugfixes"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
  kvm: x86/mmu: NX largepage recovery for TDP MMU
  kvm: x86/mmu: Don't clear write flooding count for direct roots
  kvm: x86/mmu: Support MMIO in the TDP MMU
  kvm: x86/mmu: Support write protection for nesting in tdp MMU
  kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
  kvm: x86/mmu: Support dirty logging for the TDP MMU
  kvm: x86/mmu: Support changed pte notifier in tdp MMU
  kvm: x86/mmu: Add access tracking for tdp_mmu
  kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
  kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
  kvm: x86/mmu: Add TDP MMU PF handler
  kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
  kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
  KVM: Cache as_id in kvm_memory_slot
  kvm: x86/mmu: Add functions to handle changed TDP SPTEs
  kvm: x86/mmu: Allocate and free TDP MMU roots
  kvm: x86/mmu: Init / Uninit the TDP MMU
  kvm: x86/mmu: Introduce tdp_iter
  KVM: mmu: extract spte.h and spte.c
  KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
  ...
2020-10-23 11:17:56 -07:00
Alexander Graf
1a155254ff KVM: x86: Introduce MSR filtering
It's not desireable to have all MSRs always handled by KVM kernel space. Some
MSRs would be useful to handle in user space to either emulate behavior (like
uCode updates) or differentiate whether they are valid based on the CPU model.

To allow user space to specify which MSRs it wants to see handled by KVM,
this patch introduces a new ioctl to push filter rules with bitmaps into
KVM. Based on these bitmaps, KVM can then decide whether to reject MSR access.
With the addition of KVM_CAP_X86_USER_SPACE_MSR it can also deflect the
denied MSR events to user space to operate on.

If no filter is populated, MSR handling stays identical to before.

Signed-off-by: Alexander Graf <graf@amazon.com>

Message-Id: <20200925143422.21718-8-graf@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:58:08 -04:00
Alexander Graf
51de8151bd KVM: x86: Add infrastructure for MSR filtering
In the following commits we will add pieces of MSR filtering.
To ensure that code compiles even with the feature half-merged, let's add
a few stubs and struct definitions before the real patches start.

Signed-off-by: Alexander Graf <graf@amazon.com>

Message-Id: <20200925143422.21718-4-graf@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:58:05 -04:00
Babu Moger
4407a797e9 KVM: SVM: Enable INVPCID feature on AMD
The following intercept bit has been added to support VMEXIT
for INVPCID instruction:
Code    Name            Cause
A2h     VMEXIT_INVPCID  INVPCID instruction

The following bit has been added to the VMCB layout control area
to control intercept of INVPCID:
Byte Offset     Bit(s)    Function
14h             2         intercept INVPCID

Enable the interceptions when the the guest is running with shadow
page table enabled and handle the tlbflush based on the invpcid
instruction type.

For the guests with nested page table (NPT) support, the INVPCID
feature works as running it natively. KVM does not need to do any
special handling in this case.

AMD documentation for INVPCID feature is available at "AMD64
Architecture Programmer’s Manual Volume 2: System Programming,
Pub. 24593 Rev. 3.34(or later)"

The documentation can be obtained at the links below:
Link: https://www.amd.com/system/files/TechDocs/24593.pdf
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537

Signed-off-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <159985255929.11252.17346684135277453258.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-09-28 07:57:17 -04:00
Joerg Roedel
4ca68e023b x86/sev-es: Handle NMI State
When running under SEV-ES, the kernel has to tell the hypervisor when to
open the NMI window again after an NMI was injected. This is done with
an NMI-complete message to the hypervisor.

Add code to the kernel's NMI handler to send this message right at the
beginning of do_nmi(). This always allows nesting NMIs.

 [ bp: Mark __sev_es_nmi_complete() noinstr:
   vmlinux.o: warning: objtool: exc_nmi()+0x17: call to __sev_es_nmi_complete()
	leaves .noinstr.text section
   While at it, use __pa_nodebug() for the same reason due to
   CONFIG_DEBUG_VIRTUAL=y:
   vmlinux.o: warning: objtool: __sev_es_nmi_complete()+0xd9: call to __phys_addr()
   	leaves .noinstr.text section ]

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-71-joro@8bytes.org
2020-09-09 18:02:35 +02:00
Joerg Roedel
094794f597 x86/sev-es: Support CPU offline/online
Add a play_dead handler when running under SEV-ES. This is needed
because the hypervisor can't deliver an SIPI request to restart the AP.
Instead, the kernel has to issue a VMGEXIT to halt the VCPU until the
hypervisor wakes it up again.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-70-joro@8bytes.org
2020-09-09 11:33:20 +02:00
Tom Lendacky
8940ac9ced x86/realmode: Setup AP jump table
As part of the GHCB specification, the booting of APs under SEV-ES
requires an AP jump table when transitioning from one layer of code to
another (e.g. when going from UEFI to the OS). As a result, each layer
that parks an AP must provide the physical address of an AP jump table
to the next layer via the hypervisor.

Upon booting of the kernel, read the AP jump table address from the
hypervisor. Under SEV-ES, APs are started using the INIT-SIPI-SIPI
sequence. Before issuing the first SIPI request for an AP, the start
CS and IP is programmed into the AP jump table. Upon issuing the SIPI
request, the AP will awaken and jump to that start CS:IP address.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
[ jroedel@suse.de: - Adapted to different code base
                   - Moved AP table setup from SIPI sending path to
		     real-mode setup code
		   - Fix sparse warnings ]
Co-developed-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-67-joro@8bytes.org
2020-09-09 11:33:20 +02:00