Pull siginfo updates from Eric Biederman:
"This set of changes close the known issues with setting si_code to an
invalid value, and with not fully initializing struct siginfo. There
remains work to do on nds32, arc, unicore32, powerpc, arm, arm64, ia64
and x86 to get the code that generates siginfo into a simpler and more
maintainable state. Most of that work involves refactoring the signal
handling code and thus careful code review.
Also not included is the work to shrink the in kernel version of
struct siginfo. That depends on getting the number of places that
directly manipulate struct siginfo under control, as it requires the
introduction of struct kernel_siginfo for the in kernel things.
Overall this set of changes looks like it is making good progress, and
with a little luck I will be wrapping up the siginfo work next
development cycle"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits)
signal/sh: Stop gcc warning about an impossible case in do_divide_error
signal/mips: Report FPE_FLTUNK for undiagnosed floating point exceptions
signal/um: More carefully relay signals in relay_signal.
signal: Extend siginfo_layout with SIL_FAULT_{MCEERR|BNDERR|PKUERR}
signal: Remove unncessary #ifdef SEGV_PKUERR in 32bit compat code
signal/signalfd: Add support for SIGSYS
signal/signalfd: Remove __put_user from signalfd_copyinfo
signal/xtensa: Use force_sig_fault where appropriate
signal/xtensa: Consistenly use SIGBUS in do_unaligned_user
signal/um: Use force_sig_fault where appropriate
signal/sparc: Use force_sig_fault where appropriate
signal/sparc: Use send_sig_fault where appropriate
signal/sh: Use force_sig_fault where appropriate
signal/s390: Use force_sig_fault where appropriate
signal/riscv: Replace do_trap_siginfo with force_sig_fault
signal/riscv: Use force_sig_fault where appropriate
signal/parisc: Use force_sig_fault where appropriate
signal/parisc: Use force_sig_mceerr where appropriate
signal/openrisc: Use force_sig_fault where appropriate
signal/nios2: Use force_sig_fault where appropriate
...
Pull x86 store buffer fixes from Thomas Gleixner:
"Two fixes for the SSBD mitigation code:
- expose SSBD properly to guests. This got broken when the CPU
feature flags got reshuffled.
- simplify the CPU detection logic to avoid duplicate entries in the
tables"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Simplify the CPU bug detection logic
KVM/VMX: Expose SSBD properly to guests
PPC:
- Close a hole which could possibly lead to the host timebase getting
out of sync.
- Three fixes relating to PTEs and TLB entries for radix guests.
- Fix a bug which could lead to an interrupt never getting delivered
to the guest, if it is pending for a guest vCPU when the vCPU gets
offlined.
s390:
- Fix false negatives in VSIE validity check (Cc stable)
x86:
- Fix time drift of VMX preemption timer when a guest uses LAPIC timer
in periodic mode (Cc stable)
- Unconditionally expose CPUID.IA32_ARCH_CAPABILITIES to allow
migration from hosts that don't need retpoline mitigation (Cc stable)
- Fix guest crashes on reboot by properly coupling CR4.OSXSAVE and
CPUID.OSXSAVE (Cc stable)
- Report correct RIP after Hyper-V hypercall #UD (introduced in -rc6)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJbCXxHAAoJEED/6hsPKofon5oIAKTwpbpBi0UKIyYcHQ2pwIoP
+qITTZUGGhEaIfe+aDkzE4vxVIA2ywYCbaC2+OSy4gNVThnytRL8WuhLyV8WLmlC
sDVSQ87RWaN8mW6hEJ95qXMS7FS0TsDJdytaw+c8OpODrsykw1XMSyV2rMLb0sMT
SmfioO2kuDx5JQGyiAPKFFXKHjAnnkH+OtffNemAEHGoPpenJ4qLRuXvrjQU8XT6
tVARIBZsutee5ITIsBKVDmI2n98mUoIe9na21M7N2QaJ98IF+qRz5CxZyL1CgvFk
tHqG8PZ/bqhnmuIIR5Di919UmhamOC3MODsKUVeciBLDS6LHlhado+HEpj6B8mI=
=ygB7
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Radim Krčmář:
"PPC:
- Close a hole which could possibly lead to the host timebase getting
out of sync.
- Three fixes relating to PTEs and TLB entries for radix guests.
- Fix a bug which could lead to an interrupt never getting delivered
to the guest, if it is pending for a guest vCPU when the vCPU gets
offlined.
s390:
- Fix false negatives in VSIE validity check (Cc stable)
x86:
- Fix time drift of VMX preemption timer when a guest uses LAPIC
timer in periodic mode (Cc stable)
- Unconditionally expose CPUID.IA32_ARCH_CAPABILITIES to allow
migration from hosts that don't need retpoline mitigation (Cc
stable)
- Fix guest crashes on reboot by properly coupling CR4.OSXSAVE and
CPUID.OSXSAVE (Cc stable)
- Report correct RIP after Hyper-V hypercall #UD (introduced in
-rc6)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: fix #UD address of failed Hyper-V hypercalls
kvm: x86: IA32_ARCH_CAPABILITIES is always supported
KVM: x86: Update cpuid properly when CR4.OSXAVE or CR4.PKE is changed
x86/kvm: fix LAPIC timer drift when guest uses periodic mode
KVM: s390: vsie: fix < 8k check for the itdba
KVM: PPC: Book 3S HV: Do ptesync in radix guest exit path
KVM: PPC: Book3S HV: XIVE: Resend re-routed interrupts on CPU priority change
KVM: PPC: Book3S HV: Make radix clear pte when unmapping
KVM: PPC: Book3S HV: Make radix use correct tlbie sequence in kvmppc_radix_tlbie_page
KVM: PPC: Book3S HV: Snapshot timebase offset on guest entry
If the hypercall was called from userspace or real mode, KVM injects #UD
and then advances RIP, so it looks like #UD was caused by the following
instruction. This probably won't cause more than confusion, but could
give an unexpected access to guest OS' instruction emulator.
Also, refactor the code to count hv hypercalls that were handled by the
virt userspace.
Fixes: 6356ee0c96 ("x86: Delay skip of emulated hypercall instruction")
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
If there is a possibility that a VM may migrate to a Skylake host,
then the hypervisor should report IA32_ARCH_CAPABILITIES.RSBA[bit 2]
as being set (future work, of course). This implies that
CPUID.(EAX=7,ECX=0):EDX.ARCH_CAPABILITIES[bit 29] should be
set. Therefore, kvm should report this CPUID bit as being supported
whether or not the host supports it. Userspace is still free to clear
the bit if it chooses.
For more information on RSBA, see Intel's white paper, "Retpoline: A
Branch Target Injection Mitigation" (Document Number 337131-001),
currently available at https://bugzilla.kernel.org/show_bug.cgi?id=199511.
Since the IA32_ARCH_CAPABILITIES MSR is emulated in kvm, there is no
dependency on hardware support for this feature.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Fixes: 28c1c9fabf ("KVM/VMX: Emulate MSR_IA32_ARCH_CAPABILITIES")
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The CPUID bits of OSXSAVE (function=0x1) and OSPKE (func=0x7, leaf=0x0)
allows user apps to detect if OS has set CR4.OSXSAVE or CR4.PKE. KVM is
supposed to update these CPUID bits when CR4 is updated. Current KVM
code doesn't handle some special cases when updates come from emulator.
Here is one example:
Step 1: guest boots
Step 2: guest OS enables XSAVE ==> CR4.OSXSAVE=1 and CPUID.OSXSAVE=1
Step 3: guest hot reboot ==> QEMU reset CR4 to 0, but CPUID.OSXAVE==1
Step 4: guest os checks CPUID.OSXAVE, detects 1, then executes xgetbv
Step 4 above will cause an #UD and guest crash because guest OS hasn't
turned on OSXAVE yet. This patch solves the problem by comparing the the
old_cr4 with cr4. If the related bits have been changed,
kvm_update_cpuid() needs to be called.
Signed-off-by: Wei Huang <wei@redhat.com>
Reviewed-by: Bandan Das <bsd@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Since 4.10, commit 8003c9ae20 (KVM: LAPIC: add APIC Timer
periodic/oneshot mode VMX preemption timer support), guests using
periodic LAPIC timers (such as FreeBSD 8.4) would see their timers
drift significantly over time.
Differences in the underlying clocks and numerical errors means the
periods of the two timers (hv and sw) are not the same. This
difference will accumulate with every expiry resulting in a large
error between the hv and sw timer.
This means the sw timer may be running slow when compared to the hv
timer. When the timer is switched from hv to sw, the now active sw
timer will expire late. The guest VCPU is reentered and it switches to
using the hv timer. This timer catches up, injecting multiple IRQs
into the guest (of which the guest only sees one as it does not get to
run until the hv timer has caught up) and thus the guest's timer rate
is low (and becomes increasing slower over time as the sw timer lags
further and further behind).
I believe a similar problem would occur if the hv timer is the slower
one, but I have not observed this.
Fix this by synchronizing the deadlines for both timers to the same
time source on every tick. This prevents the errors from accumulating.
Fixes: 8003c9ae20
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: David Vrabel <david.vrabel@nutanix.com>
Cc: stable@vger.kernel.org
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The X86_FEATURE_SSBD is an synthetic CPU feature - that is
it bit location has no relevance to the real CPUID 0x7.EBX[31]
bit position. For that we need the new CPU feature name.
Fixes: 52817587e7 ("x86/cpufeatures: Disentangle SSBD enumeration")
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lkml.kernel.org/r/20180521215449.26423-2-konrad.wilk@oracle.com
Merge speculative store buffer bypass fixes from Thomas Gleixner:
- rework of the SPEC_CTRL MSR management to accomodate the new fancy
SSBD (Speculative Store Bypass Disable) bit handling.
- the CPU bug and sysfs infrastructure for the exciting new Speculative
Store Bypass 'feature'.
- support for disabling SSB via LS_CFG MSR on AMD CPUs including
Hyperthread synchronization on ZEN.
- PRCTL support for dynamic runtime control of SSB
- SECCOMP integration to automatically disable SSB for sandboxed
processes with a filter flag for opt-out.
- KVM integration to allow guests fiddling with SSBD including the new
software MSR VIRT_SPEC_CTRL to handle the LS_CFG based oddities on
AMD.
- BPF protection against SSB
.. this is just the core and x86 side, other architecture support will
come separately.
* 'speck-v20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits)
bpf: Prevent memory disambiguation attack
x86/bugs: Rename SSBD_NO to SSB_NO
KVM: SVM: Implement VIRT_SPEC_CTRL support for SSBD
x86/speculation, KVM: Implement support for VIRT_SPEC_CTRL/LS_CFG
x86/bugs: Rework spec_ctrl base and mask logic
x86/bugs: Remove x86_spec_ctrl_set()
x86/bugs: Expose x86_spec_ctrl_base directly
x86/bugs: Unify x86_spec_ctrl_{set_guest,restore_host}
x86/speculation: Rework speculative_store_bypass_update()
x86/speculation: Add virtualized speculative store bypass disable support
x86/bugs, KVM: Extend speculation control for VIRT_SPEC_CTRL
x86/speculation: Handle HT correctly on AMD
x86/cpufeatures: Add FEATURE_ZEN
x86/cpufeatures: Disentangle SSBD enumeration
x86/cpufeatures: Disentangle MSR_SPEC_CTRL enumeration from IBRS
x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP
KVM: SVM: Move spec control call after restore of GS
x86/cpu: Make alternative_msr_write work for 32-bit code
x86/bugs: Fix the parameters alignment and missing void
x86/bugs: Make cpu_show_common() static
...
Expose the new virtualized architectural mechanism, VIRT_SSBD, for using
speculative store bypass disable (SSBD) under SVM. This will allow guests
to use SSBD on hardware that uses non-architectural mechanisms for enabling
SSBD.
[ tglx: Folded the migration fixup from Paolo Bonzini ]
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
AMD is proposing a VIRT_SPEC_CTRL MSR to handle the Speculative Store
Bypass Disable via MSR_AMD64_LS_CFG so that guests do not have to care
about the bit position of the SSBD bit and thus facilitate migration.
Also, the sibling coordination on Family 17H CPUs can only be done on
the host.
Extend x86_spec_ctrl_set_guest() and x86_spec_ctrl_restore_host() with an
extra argument for the VIRT_SPEC_CTRL MSR.
Hand in 0 from VMX and in SVM add a new virt_spec_ctrl member to the CPU
data structure which is going to be used in later patches for the actual
implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Intel and AMD have different CPUID bits hence for those use synthetic bits
which get set on the respective vendor's in init_speculation_control(). So
that debacles like what the commit message of
c65732e4f7 ("x86/cpu: Restore CPUID_8000_0008_EBX reload")
talks about don't happen anymore.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20180504161815.GG9257@pd.tnic
svm_vcpu_run() invokes x86_spec_ctrl_restore_host() after VMEXIT, but
before the host GS is restored. x86_spec_ctrl_restore_host() uses 'current'
to determine the host SSBD state of the thread. 'current' is GS based, but
host GS is not yet restored and the access causes a triple fault.
Move the call after the host GS restore.
Fixes: 885f82bfbc x86/process: Allow runtime control of Speculative Store Bypass
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Anthoine reported:
The period used by Windows change over time but it can be 1
milliseconds or less. I saw the limit_periodic_timer_frequency
print so 500 microseconds is sometimes reached.
As suggested by Paolo, lower the default timer frequency limit to a
smaller interval of 200 us (5000 Hz) to leave some headroom. This
is required due to Windows 10 changing the scheduler tick limit
from 1024 Hz to 2048 Hz.
Reported-by: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
Cc: Darren Kenny <darren.kenny@oracle.com>
Cc: Jan Kiszka <jan.kiszka@web.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update SECONDARY_EXEC_DESC for UMIP emulation if and only UMIP
is actually being emulated. Skipping the VMCS update eliminates
unnecessary VMREAD/VMWRITE when UMIP is supported in hardware,
and on platforms that don't have SECONDARY_VM_EXEC_CONTROL. The
latter case resolves a bug where KVM would fill the kernel log
with warnings due to failed VMWRITEs on older platforms.
Fixes: 0367f205a3 ("KVM: vmx: add support for emulating UMIP")
Cc: stable@vger.kernel.org #4.16
Reported-by: Paolo Zeppegno <pzeppegno@gmail.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Suggested-by: Radim KrÄmář <rkrcmar@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the PCIDE bit is not set in CR4, then the MSb of CR3 is a reserved
bit. If the guest tries to set it, that should cause a #GP fault. So
mask out the bit only when the PCIDE bit is set.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even though the eventfd is released after the KVM SRCU grace period
elapses, the conn_to_evt data structure itself is not; it uses RCU
internally, instead. Fix the read-side critical section to happen
under rcu_read_lock/unlock; the result is still protected by
vcpu->kvm->srcu.
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The IP increment should be done after the hypercall emulation, after
calling the various handlers. In this way, these handlers can accurately
identify the the IP of the VMCALL if they need it.
This patch keeps the same functionality for the Hyper-V handler which does
not use the return code of the standard kvm_skip_emulated_instruction()
call.
Signed-off-by: Marian Rotariu <mrotariu@bitdefender.com>
[Hyper-V hypercalls also need kvm_skip_emulated_instruction() - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel collateral will reference the SSB mitigation bit in IA32_SPEC_CTL[2]
as SSBD (Speculative Store Bypass Disable).
Hence changing it.
It is unclear yet what the MSR_IA32_ARCH_CAPABILITIES (0x10a) Bit(4) name
is going to be. Following the rename it would be SSBD_NO but that rolls out
to Speculative Store Bypass Disable No.
Also fixed the missing space in X86_FEATURE_AMD_SSBD.
[ tglx: Fixup x86_amd_rds_enable() and rds_tif_to_amd_ls_cfg() as well ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since the commit "8003c9ae204e: add APIC Timer periodic/oneshot mode VMX
preemption timer support", a Windows 10 guest has some erratic timer
spikes.
Here the results on a 150000 times 1ms timer without any load:
Before 8003c9ae20 | After 8003c9ae20
Max 1834us | 86000us
Mean 1100us | 1021us
Deviation 59us | 149us
Here the results on a 150000 times 1ms timer with a cpu-z stress test:
Before 8003c9ae20 | After 8003c9ae20
Max 32000us | 140000us
Mean 1006us | 1997us
Deviation 140us | 11095us
The root cause of the problem is starting hrtimer with an expiry time
already in the past can take more than 20 milliseconds to trigger the
timer function. It can be solved by forward such past timers
immediately, rather than submitting them to hrtimer_start().
In case the timer is periodic, update the target expiration and call
hrtimer_start with it.
v2: Check if the tsc deadline is already expired. Thank you Mika.
v3: Execute the past timers immediately rather than submitting them to
hrtimer_start().
v4: Rearm the periodic timer with advance_periodic_target_expiration() a
simpler version of set_target_expiration(). Thank you Paolo.
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
8003c9ae20 ("KVM: LAPIC: add APIC Timer periodic/oneshot mode VMX preemption timer support")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Having everything in nospec-branch.h creates a hell of dependencies when
adding the prctl based switching mechanism. Move everything which is not
required in nospec-branch.h to spec-ctrl.h and fix up the includes in the
relevant files.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Expose the CPUID.7.EDX[31] bit to the guest, and also guard against various
combinations of SPEC_CTRL MSR values.
The handling of the MSR (to take into account the host value of SPEC_CTRL
Bit(2)) is taken care of in patch:
KVM/SVM/VMX/x86/spectre_v2: Support the combination of guest and host IBRS
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
A guest may modify the SPEC_CTRL MSR from the value used by the
kernel. Since the kernel doesn't use IBRS, this means a value of zero is
what is needed in the host.
But the 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to
the other bits as reserved so the kernel should respect the boot time
SPEC_CTRL value and use that.
This allows to deal with future extensions to the SPEC_CTRL interface if
any at all.
Note: This uses wrmsrl() instead of native_wrmsl(). I does not make any
difference as paravirt will over-write the callq *0xfff.. with the wrmsrl
assembler code.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Move DISABLE_EXITS KVM capability bits to the UAPI just like the rest of
capabilities.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Currently, KVM flushes the TLB after a change to the APIC access page
address or the APIC mode when EPT mode is enabled. However, even in
shadow paging mode, a TLB flush is needed if VPIDs are being used, as
specified in the Intel SDM Section 29.4.5.
So replace vmx_flush_tlb_ept_only() with vmx_flush_tlb(), which will
flush if either EPT or VPIDs are in use.
Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Call clear_siginfo to ensure every stack allocated siginfo is properly
initialized before being passed to the signal sending functions.
Note: It is not safe to depend on C initializers to initialize struct
siginfo on the stack because C is allowed to skip holes when
initializing a structure.
The initialization of struct siginfo in tracehook_report_syscall_exit
was moved from the helper user_single_step_siginfo into
tracehook_report_syscall_exit itself, to make it clear that the local
variable siginfo gets fully initialized.
In a few cases the scope of struct siginfo has been reduced to make it
clear that siginfo siginfo is not used on other paths in the function
in which it is declared.
Instances of using memset to initialize siginfo have been replaced
with calls clear_siginfo for clarity.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
writing nested virtualization tests.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJa1MZMAAoJEL/70l94x66DupgH/jIRQ6wsZ9Hq5qBJ39sLFXNe
cAIAbaCUAck4tl5YNDgv/SOQ644ClmDVP/4CgezqosoY29eLY0+P71GQZEIQ7aB5
Taa7UI5qYnIctBmxFwD1+iV717Vyb+QLpRnMb8zjLkfT/3S8HsQvpcYJlQrrN3PP
w4VIvhZjPx11wvXDCuY6ire7sBEb/vSQQewGWg9dLt4hnDz1tRFMtAg/7GVT+rG9
SjuH57NrXAKWiNVlQvYfLSfaTyPf5J41i49nwFJJVPY1kMaXvOSDDOfejTD/SjTs
pYye7o8TGbrsY9O8H85gxdppHz4K0+sP9xNunUqk1wQ+zo9lWTejIaDoN2rzyuA=
=GKBC
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Bug fixes, plus a new test case and the associated infrastructure for
writing nested virtualization tests"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: selftests: add vmx_tsc_adjust_test
kvm: x86: move MSR_IA32_TSC handling to x86.c
X86/KVM: Properly update 'tsc_offset' to represent the running guest
kvm: selftests: add -std=gnu99 cflags
x86: Add check for APIC access address for vmentry of L2 guests
KVM: X86: fix incorrect reference of trace_kvm_pi_irte_update
X86/KVM: Do not allow DISABLE_EXITS_MWAIT when LAPIC ARAT is not available
kvm: selftests: fix spelling mistake: "divisable" and "divisible"
X86/VMX: Disable VMX preemption timer if MWAIT is not intercepted
Update 'tsc_offset' on vmentry/vmexit of L2 guests to ensure that it always
captures the TSC_OFFSET of the running guest whether it is the L1 or L2
guest.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
[AMD changes, fix update_ia32_tsc_adjust_msr. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to the sub-section titled 'VM-Execution Control Fields' in the
section titled 'Basic VM-Entry Checks' in Intel SDM vol. 3C, the following
vmentry check must be enforced:
If the 'virtualize APIC-accesses' VM-execution control is 1, the
APIC-access address must satisfy the following checks:
- Bits 11:0 of the address must be 0.
- The address should not set any bits beyond the processor's
physical-address width.
This patch adds the necessary check to conform to this rule. If the check
fails, we cause the L2 VMENTRY to fail which is what the associated unit
test (following patch) expects.
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In arch/x86/kvm/trace.h, this function is declared as host_irq the
first input, and vcpu_id the second, instead of otherwise.
Signed-off-by: hu huajun <huhuajun@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the processor does not have an "Always Running APIC Timer" (aka ARAT),
we should not give guests direct access to MWAIT. The LAPIC timer would
stop ticking in deep C-states, so any host deadlines would not wakeup the
host kernel.
The host kernel intel_idle driver handles this by switching to broadcast
mode when ARAT is not available and MWAIT is issued with a deep C-state
that would stop the LAPIC timer. When MWAIT is passed through, we can not
tell when MWAIT is issued.
So just disable this capability when LAPIC ARAT is not available. I am not
even sure if there are any CPUs with VMX support but no LAPIC ARAT or not.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Reported-by: Wanpeng Li <kernellwp@gmail.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The VMX-preemption timer is used by KVM as a way to set deadlines for the
guest (i.e. timer emulation). That was safe till very recently when
capability KVM_X86_DISABLE_EXITS_MWAIT to disable intercepting MWAIT was
introduced. According to Intel SDM 25.5.1:
"""
The VMX-preemption timer operates in the C-states C0, C1, and C2; it also
operates in the shutdown and wait-for-SIPI states. If the timer counts down
to zero in any state other than the wait-for SIPI state, the logical
processor transitions to the C0 C-state and causes a VM exit; the timer
does not cause a VM exit if it counts down to zero in the wait-for-SIPI
state. The timer is not decremented in C-states deeper than C2.
"""
Now once the guest issues the MWAIT with a c-state deeper than
C2 the preemption timer will never wake it up again since it stopped
ticking! Usually this is compensated by other activities in the system that
would wake the core from the deep C-state (and cause a VMExit). For
example, if the host itself is ticking or it received interrupts, etc!
So disable the VMX-preemption timer if MWAIT is exposed to the guest!
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Fixes: 4d5422cea3
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past invalid
privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as of now)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
=bPlD
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past
invalid privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as
of now)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
kvm: x86: fix a prototype warning
kvm: selftests: add sync_regs_test
kvm: selftests: add API testing infrastructure
kvm: x86: fix a compile warning
KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
KVM: X86: Introduce handle_ud()
KVM: vmx: unify adjacent #ifdefs
x86: kvm: hide the unused 'cpu' variable
KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
kvm: Add emulation for movups/movupd
KVM: VMX: raise internal error for exception during invalid protected mode state
KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
KVM: x86: Fix misleading comments on handling pending exceptions
KVM: x86: Rename interrupt.pending to interrupt.injected
KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
x86/kvm: use Enlightened VMCS when running on Hyper-V
x86/hyper-v: detect nested features
x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
...
Make the function static to avoid a
warning: no previous prototype for ‘vmx_enable_tdp’
Signed-off-by: Peng Hao <peng.hao2@zte.com.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is no easy way to force KVM to run an instruction through the emulator
(by design as that will expose the x86 emulator as a significant attack-surface).
However, we do wish to expose the x86 emulator in case we are testing it
(e.g. via kvm-unit-tests). Therefore, this patch adds a "force emulation prefix"
that is designed to raise #UD which KVM will trap and it's #UD exit-handler will
match "force emulation prefix" to run instruction after prefix by the x86 emulator.
To not expose the x86 emulator by default, we add a module parameter that should
be off by default.
A simple testcase here:
#include <stdio.h>
#include <string.h>
#define HYPERVISOR_INFO 0x40000000
#define CPUID(idx, eax, ebx, ecx, edx) \
asm volatile (\
"ud2a; .ascii \"kvm\"; cpuid" \
:"=b" (*ebx), "=a" (*eax), "=c" (*ecx), "=d" (*edx) \
:"0"(idx) );
void main()
{
unsigned int eax, ebx, ecx, edx;
char string[13];
CPUID(HYPERVISOR_INFO, &eax, &ebx, &ecx, &edx);
*(unsigned int *)(string + 0) = ebx;
*(unsigned int *)(string + 4) = ecx;
*(unsigned int *)(string + 8) = edx;
string[12] = 0;
if (strncmp(string, "KVMKVMKVM\0\0\0", 12) == 0)
printf("kvm guest\n");
else
printf("bare hardware\n");
}
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Correctly handle usermode exits. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce handle_ud() to handle invalid opcode, this function will be
used by later patches.
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim KrÄmář <rkrcmar@redhat.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_save_host_state has multiple ifdefs for CONFIG_X86_64 that have
no other code between them. Simplify by reducing them to a single
conditional.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The local variable was newly introduced but is only accessed in one
place on x86_64, but not on 32-bit:
arch/x86/kvm/vmx.c: In function 'vmx_save_host_state':
arch/x86/kvm/vmx.c:2175:6: error: unused variable 'cpu' [-Werror=unused-variable]
This puts it into another #ifdef.
Fixes: 35060ed6a1 ("x86/kvm/vmx: avoid expensive rdmsr for MSR_GS_BASE")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the WARN_ON in handle_ept_misconfig() as it is unnecessary
and causes false positives. Return the unmodified result of
kvm_mmu_page_fault() instead of converting a system error code to
KVM_EXIT_UNKNOWN so that userspace sees the error code of the
actual failure, not a generic "we don't know what went wrong".
* kvm_mmu_page_fault() will WARN if reserved bits are set in the
SPTEs, i.e. it covers the case where an EPT misconfig occurred
because of a KVM bug.
* The WARN_ON will fire on any system error code that is hit while
handling the fault, e.g. -ENOMEM from mmu_topup_memory_caches()
while handling a legitmate MMIO EPT misconfig or -EFAULT from
kvm_handle_bad_page() if the corresponding HVA is invalid. In
either case, userspace should receive the original error code
and firing a warning is incorrect behavior as KVM is operating
as designed.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The bug that led to commit 95e057e258
was a benign warning (no adverse affects other than the warning
itself) that was detected by syzkaller. Further inspection shows
that the WARN_ON in question, in handle_ept_misconfig(), is
unnecessary and flawed (this was also briefly discussed in the
original patch: https://patchwork.kernel.org/patch/10204649).
* The WARN_ON is unnecessary as kvm_mmu_page_fault() will WARN
if reserved bits are set in the SPTEs, i.e. it covers the case
where an EPT misconfig occurred because of a KVM bug.
* The WARN_ON is flawed because it will fire on any system error
code that is hit while handling the fault, e.g. -ENOMEM can be
returned by mmu_topup_memory_caches() while handling a legitmate
MMIO EPT misconfig.
The original behavior of returning -EFAULT when userspace munmaps
an HVA without first removing the memslot is correct and desirable,
i.e. KVM is letting userspace know it has generated a bad address.
Returning RET_PF_EMULATE masks the WARN_ON in the EPT misconfig path,
but does not fix the underlying bug, i.e. the WARN_ON is bogus.
Furthermore, returning RET_PF_EMULATE has the unwanted side effect of
causing KVM to attempt to emulate an instruction on any page fault
with an invalid HVA translation, e.g. a not-present EPT violation
on a VM_PFNMAP VMA whose fault handler failed to insert a PFN.
* There is no guarantee that the fault is directly related to the
instruction, i.e. the fault could have been triggered by a side
effect memory access in the guest, e.g. while vectoring a #DB or
writing a tracing record. This could cause KVM to effectively
mask the fault if KVM doesn't model the behavior leading to the
fault, i.e. emulation could succeed and resume the guest.
* If emulation does fail, KVM will return EMULATION_FAILED instead
of -EFAULT, which is a red herring as the user will either debug
a bogus emulation attempt or scratch their head wondering why we
were attempting emulation in the first place.
TL;DR: revert to returning -EFAULT and remove the bogus WARN_ON in
handle_ept_misconfig in a future patch.
This reverts commit 95e057e258.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is very similar to the aligned versions movaps/movapd.
We have seen the corresponding emulation failures with openbsd as guest
and with Windows 10 with intel HD graphics pass through.
Signed-off-by: Christian Ehrhardt <christian_ehrhardt@genua.de>
Signed-off-by: Stefan Fritsch <sf@sfritsch.de>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Exit to userspace with KVM_INTERNAL_ERROR_EMULATION if we encounter
an exception in Protected Mode while emulating guest due to invalid
guest state. Unlike Big RM, KVM doesn't support emulating exceptions
in PM, i.e. PM exceptions are always injected via the VMCS. Because
we will never do VMRESUME due to emulation_required, the exception is
never realized and we'll keep emulating the faulting instruction over
and over until we receive a signal.
Exit to userspace iff there is a pending exception, i.e. don't exit
simply on a requested event. The purpose of this check and exit is to
aid in debugging a guest that is in all likelihood already doomed.
Invalid guest state in PM is extremely limited in normal operation,
e.g. it generally only occurs for a few instructions early in BIOS,
and any exception at this time is all but guaranteed to be fatal.
Non-vectored interrupts, e.g. INIT, SIPI and SMI, can be cleanly
handled/emulated, while checking for vectored interrupts, e.g. INTR
and NMI, without hitting false positives would add a fair amount of
complexity for almost no benefit (getting hit by lightning seems
more likely than encountering this specific scenario).
Add a WARN_ON_ONCE to vmx_queue_exception() if we try to inject an
exception via the VMCS and emulation_required is true.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Pull x86 cleanups and msr updates from Ingo Molnar:
"The main change is a performance/latency improvement to /dev/msr
access. The rest are misc cleanups"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/msr: Make rdmsrl_safe_on_cpu() scheduling safe as well
x86/cpuid: Allow cpuid_read() to schedule
x86/msr: Allow rdmsr_safe_on_cpu() to schedule
x86/rtc: Stop using deprecated functions
x86/dumpstack: Unify show_regs()
x86/fault: Do not print IP in show_fault_oops()
x86/MSR: Move native_* variants to msr.h
PPC:
- Fix a bug causing occasional machine check exceptions on POWER8 hosts
(introduced in 4.16-rc1)
x86:
- Fix a guest crashing regression with nested VMX and restricted guest
(introduced in 4.16-rc1)
- Fix dependency check for pv tlb flush (The wrong dependency that
effectively disabled the feature was added in 4.16-rc4, the original
feature in 4.16-rc1, so it got decent testing.)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJavUt5AAoJEED/6hsPKofo8uQH/RuijrsAIUnymkYY+6BYFXlh
Ri8qhG8VB+C3SpWEtsqcqNVkjJTepCD2Ej5BJTL4Gc9BSTWy7Ht6kqskEgwcnzu2
xRfkg0q0vTj1+GDd+UiTZfxiinoHtB9x3fiXali5UNTCd1fweLxdidETfO+GqMMq
KDhTR+S8dXE5VG7r+iJ80LZPtHQJ94f0fh9XpQk3X2ExTG5RBxag1U2nCfiKRAZk
xRv1CNAxNaBxS38CgYfHzg31NJx38fnq/qREsIdOx0Ju9WQkglBFkhLAGUb4vL0I
nn8YX/oV9cW2G8tyPWjC245AouABOLbzu0xyj5KgCY/z1leA9tdLFX/ET6Zye+E=
=++uZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Radim Krčmář:
"PPC:
- Fix a bug causing occasional machine check exceptions on POWER8
hosts (introduced in 4.16-rc1)
x86:
- Fix a guest crashing regression with nested VMX and restricted
guest (introduced in 4.16-rc1)
- Fix dependency check for pv tlb flush (the wrong dependency that
effectively disabled the feature was added in 4.16-rc4, the
original feature in 4.16-rc1, so it got decent testing)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: Fix pv tlb flush dependencies
KVM: nVMX: sync vmcs02 segment regs prior to vmx_set_cr0
KVM: PPC: Book3S HV: Fix duplication of host SLB entries
When vCPU runs L2 and there is a pending event that requires to exit
from L2 to L1 and nested_run_pending=1, vcpu_enter_guest() will request
an immediate-exit from L2 (See req_immediate_exit).
Since now handling of req_immediate_exit also makes sure to set
KVM_REQ_EVENT, there is no need to also set it on vmx_vcpu_run() when
nested_run_pending=1.
This optimizes cases where VMRESUME was executed by L1 to enter L2 and
there is no pending events that require exit from L2 to L1. Previously,
this would have set KVM_REQ_EVENT unnecessarly.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
In case L2 VMExit to L0 during event-delivery, VMCS02 is filled with
IDT-vectoring-info which vmx_complete_interrupts() makes sure to
reinject before next resume of L2.
While handling the VMExit in L0, an IPI could be sent by another L1 vCPU
to the L1 vCPU which currently runs L2 and exited to L0.
When L0 will reach vcpu_enter_guest() and call inject_pending_event(),
it will note that a previous event was re-injected to L2 (by
IDT-vectoring-info) and therefore won't check if there are pending L1
events which require exit from L2 to L1. Thus, L0 enters L2 without
immediate VMExit even though there are pending L1 events!
This commit fixes the issue by making sure to check for L1 pending
events even if a previous event was reinjected to L2 and bailing out
from inject_pending_event() before evaluating a new pending event in
case an event was already reinjected.
The bug was observed by the following setup:
* L0 is a 64CPU machine which runs KVM.
* L1 is a 16CPU machine which runs KVM.
* L0 & L1 runs with APICv disabled.
(Also reproduced with APICv enabled but easier to analyze below info
with APICv disabled)
* L1 runs a 16CPU L2 Windows Server 2012 R2 guest.
During L2 boot, L1 hangs completely and analyzing the hang reveals that
one L1 vCPU is holding KVM's mmu_lock and is waiting forever on an IPI
that he has sent for another L1 vCPU. And all other L1 vCPUs are
currently attempting to grab mmu_lock. Therefore, all L1 vCPUs are stuck
forever (as L1 runs with kernel-preemption disabled).
Observing /sys/kernel/debug/tracing/trace_pipe reveals the following
series of events:
(1) qemu-system-x86-19066 [030] kvm_nested_vmexit: rip:
0xfffff802c5dca82f reason: EPT_VIOLATION ext_inf1: 0x0000000000000182
ext_inf2: 0x00000000800000d2 ext_int: 0x00000000 ext_int_err: 0x00000000
(2) qemu-system-x86-19054 [028] kvm_apic_accept_irq: apicid f
vec 252 (Fixed|edge)
(3) qemu-system-x86-19066 [030] kvm_inj_virq: irq 210
(4) qemu-system-x86-19066 [030] kvm_entry: vcpu 15
(5) qemu-system-x86-19066 [030] kvm_exit: reason EPT_VIOLATION
rip 0xffffe00069202690 info 83 0
(6) qemu-system-x86-19066 [030] kvm_nested_vmexit: rip:
0xffffe00069202690 reason: EPT_VIOLATION ext_inf1: 0x0000000000000083
ext_inf2: 0x0000000000000000 ext_int: 0x00000000 ext_int_err: 0x00000000
(7) qemu-system-x86-19066 [030] kvm_nested_vmexit_inject: reason:
EPT_VIOLATION ext_inf1: 0x0000000000000083 ext_inf2: 0x0000000000000000
ext_int: 0x00000000 ext_int_err: 0x00000000
(8) qemu-system-x86-19066 [030] kvm_entry: vcpu 15
Which can be analyzed as follows:
(1) L2 VMExit to L0 on EPT_VIOLATION during delivery of vector 0xd2.
Therefore, vmx_complete_interrupts() will set KVM_REQ_EVENT and reinject
a pending-interrupt of 0xd2.
(2) L1 sends an IPI of vector 0xfc (CALL_FUNCTION_VECTOR) to destination
vCPU 15. This will set relevant bit in LAPIC's IRR and set KVM_REQ_EVENT.
(3) L0 reach vcpu_enter_guest() which calls inject_pending_event() which
notes that interrupt 0xd2 was reinjected and therefore calls
vmx_inject_irq() and returns. Without checking for pending L1 events!
Note that at this point, KVM_REQ_EVENT was cleared by vcpu_enter_guest()
before calling inject_pending_event().
(4) L0 resumes L2 without immediate-exit even though there is a pending
L1 event (The IPI pending in LAPIC's IRR).
We have already reached the buggy scenario but events could be
furthered analyzed:
(5+6) L2 VMExit to L0 on EPT_VIOLATION. This time not during
event-delivery.
(7) L0 decides to forward the VMExit to L1 for further handling.
(8) L0 resumes into L1. Note that because KVM_REQ_EVENT is cleared, the
LAPIC's IRR is not examined and therefore the IPI is still not delivered
into L1!
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The reason that exception.pending should block re-injection of
NMI/interrupt is not described correctly in comment in code.
Instead, it describes why a pending exception should be injected
before a pending NMI/interrupt.
Therefore, move currently present comment to code-block evaluating
a new pending event which explains why exception.pending is evaluated
first.
In addition, create a new comment describing that exception.pending
blocks re-injection of NMI/interrupt because the exception was
queued by handling vmexit which was due to NMI/interrupt delivery.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@orcle.com>
[Used a comment from Sean J <sean.j.christopherson@intel.com>. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
For exceptions & NMIs events, KVM code use the following
coding convention:
*) "pending" represents an event that should be injected to guest at
some point but it's side-effects have not yet occurred.
*) "injected" represents an event that it's side-effects have already
occurred.
However, interrupts don't conform to this coding convention.
All current code flows mark interrupt.pending when it's side-effects
have already taken place (For example, bit moved from LAPIC IRR to
ISR). Therefore, it makes sense to just rename
interrupt.pending to interrupt.injected.
This change follows logic of previous commit 664f8e26b0 ("KVM: X86:
Fix loss of exception which has not yet been injected") which changed
exception to follow this coding convention as well.
It is important to note that in case !lapic_in_kernel(vcpu),
interrupt.pending usage was and still incorrect.
In this case, interrrupt.pending can only be set using one of the
following ioctls: KVM_INTERRUPT, KVM_SET_VCPU_EVENTS and
KVM_SET_SREGS. Looking at how QEMU uses these ioctls, one can see that
QEMU uses them either to re-set an "interrupt.pending" state it has
received from KVM (via KVM_GET_VCPU_EVENTS interrupt.pending or
via KVM_GET_SREGS interrupt_bitmap) or by dispatching a new interrupt
from QEMU's emulated LAPIC which reset bit in IRR and set bit in ISR
before sending ioctl to KVM. So it seems that indeed "interrupt.pending"
in this case is also suppose to represent "interrupt.injected".
However, kvm_cpu_has_interrupt() & kvm_cpu_has_injectable_intr()
is misusing (now named) interrupt.injected in order to return if
there is a pending interrupt.
This leads to nVMX/nSVM not be able to distinguish if it should exit
from L2 to L1 on EXTERNAL_INTERRUPT on pending interrupt or should
re-inject an injected interrupt.
Therefore, add a FIXME at these functions for handling this issue.
This patch introduce no semantics change.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>