forked from Minki/linux
3a1e24fa70
3627 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
b6bb70f9ab |
Several core optimizations:
* threadgroup_rwsem write locking is skipped when configuring controllers in empty subtrees. Combined with CLONE_INTO_CGROUP, this allows the common static usage pattern to not grab threadgroup_rwsem at all (glibc still doesn't seem ready for CLONE_INTO_CGROUP unfortunately). * threadgroup_rwsem used to be put into non-percpu mode by default due to latency concerns in specific use cases. There's no reason for everyone else to pay for it. Make the behavior optional. * psi no longer allocates memory when disabled. along with some code cleanups. -----BEGIN PGP SIGNATURE----- iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCYugHIQ4cdGpAa2VybmVs Lm9yZwAKCRCxYfJx3gVYGd+oAP9lfD3fTRdNo4qWV2VsZsYzoOxzNIuJSwN/dnYx IEbQOwD/cd2YMfeo6zcb427U/VfTFqjJjFK04OeljYtJU8fFywo= =sucy -----END PGP SIGNATURE----- Merge tag 'cgroup-for-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "Several core optimizations: - threadgroup_rwsem write locking is skipped when configuring controllers in empty subtrees. Combined with CLONE_INTO_CGROUP, this allows the common static usage pattern to not grab threadgroup_rwsem at all (glibc still doesn't seem ready for CLONE_INTO_CGROUP unfortunately). - threadgroup_rwsem used to be put into non-percpu mode by default due to latency concerns in specific use cases. There's no reason for everyone else to pay for it. Make the behavior optional. - psi no longer allocates memory when disabled. ... along with some code cleanups" * tag 'cgroup-for-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: Skip subtree root in cgroup_update_dfl_csses() cgroup: remove "no" prefixed mount options cgroup: Make !percpu threadgroup_rwsem operations optional cgroup: Add "no" prefixed mount options cgroup: Elide write-locking threadgroup_rwsem when updating csses on an empty subtree cgroup.c: remove redundant check for mixable cgroup in cgroup_migrate_vet_dst cgroup.c: add helper __cset_cgroup_from_root to cleanup duplicated codes psi: dont alloc memory for psi by default |
||
Ben Dooks
|
87514b2c24 |
sched/rt: Fix Sparse warnings due to undefined rt.c declarations
There are several symbols defined in kernel/sched/sched.h but get wrapped in CONFIG_CGROUP_SCHED, even though dummy versions get built in rt.c and therefore trigger Sparse warnings: kernel/sched/rt.c:309:6: warning: symbol 'unregister_rt_sched_group' was not declared. Should it be static? kernel/sched/rt.c:311:6: warning: symbol 'free_rt_sched_group' was not declared. Should it be static? kernel/sched/rt.c:313:5: warning: symbol 'alloc_rt_sched_group' was not declared. Should it be static? Fix this by moving them outside the CONFIG_CGROUP_SCHED block. [ mingo: Refreshed to the latest scheduler tree, tweaked changelog. ] Signed-off-by: Ben Dooks <ben-linux@fluff.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20220721145155.358366-1-ben-linux@fluff.org |
||
Waiman Long
|
b6e8d40d43 |
sched, cpuset: Fix dl_cpu_busy() panic due to empty cs->cpus_allowed
With cgroup v2, the cpuset's cpus_allowed mask can be empty indicating
that the cpuset will just use the effective CPUs of its parent. So
cpuset_can_attach() can call task_can_attach() with an empty mask.
This can lead to cpumask_any_and() returns nr_cpu_ids causing the call
to dl_bw_of() to crash due to percpu value access of an out of bound
CPU value. For example:
[80468.182258] BUG: unable to handle page fault for address: ffffffff8b6648b0
:
[80468.191019] RIP: 0010:dl_cpu_busy+0x30/0x2b0
:
[80468.207946] Call Trace:
[80468.208947] cpuset_can_attach+0xa0/0x140
[80468.209953] cgroup_migrate_execute+0x8c/0x490
[80468.210931] cgroup_update_dfl_csses+0x254/0x270
[80468.211898] cgroup_subtree_control_write+0x322/0x400
[80468.212854] kernfs_fop_write_iter+0x11c/0x1b0
[80468.213777] new_sync_write+0x11f/0x1b0
[80468.214689] vfs_write+0x1eb/0x280
[80468.215592] ksys_write+0x5f/0xe0
[80468.216463] do_syscall_64+0x5c/0x80
[80468.224287] entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix that by using effective_cpus instead. For cgroup v1, effective_cpus
is the same as cpus_allowed. For v2, effective_cpus is the real cpumask
to be used by tasks within the cpuset anyway.
Also update task_can_attach()'s 2nd argument name to cs_effective_cpus to
reflect the change. In addition, a check is added to task_can_attach()
to guard against the possibility that cpumask_any_and() may return a
value >= nr_cpu_ids.
Fixes:
|
||
Linus Torvalds
|
7d9d077c78 |
RCU pull request for v5.20 (or whatever)
This pull request contains the following branches: doc.2022.06.21a: Documentation updates. fixes.2022.07.19a: Miscellaneous fixes. nocb.2022.07.19a: Callback-offload updates, perhaps most notably a new RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be offloaded at boot time, regardless of kernel boot parameters. This is useful to battery-powered systems such as ChromeOS and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot parameter prevents offloaded callbacks from interfering with real-time workloads and with energy-efficiency mechanisms. poll.2022.07.21a: Polled grace-period updates, perhaps most notably making these APIs account for both normal and expedited grace periods. rcu-tasks.2022.06.21a: Tasks RCU updates, perhaps most notably reducing the CPU overhead of RCU tasks trace grace periods by more than a factor of two on a system with 15,000 tasks. The reduction is expected to increase with the number of tasks, so it seems reasonable to hypothesize that a system with 150,000 tasks might see a 20-fold reduction in CPU overhead. torture.2022.06.21a: Torture-test updates. ctxt.2022.07.05a: Updates that merge RCU's dyntick-idle tracking into context tracking, thus reducing the overhead of transitioning to kernel mode from either idle or nohz_full userspace execution for kernels that track context independently of RCU. This is expected to be helpful primarily for kernels built with CONFIG_NO_HZ_FULL=y. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmLgMcgTHHBhdWxtY2tA a2VybmVsLm9yZwAKCRCevxLzctn7jArXD/0fjbCwqpRjHVTzjMY8jN4zDkqZZD6m g8Fx27hZ4ToNFwRptyHwNezrNj14skjAJEXfdjaVw32W62ivXvf0HINvSzsTLCSq k2kWyBdXLc9CwY5p5W4smnpn5VoAScjg5PoPL59INoZ/Zziji323C7Zepl/1DYJt 0T6bPCQjo1ZQoDUCyVpSjDmAqxnderWG0MeJVt74GkLqmnYLANg0GH8c7mH4+9LL kVGlLp5nlPgNJ4FEoFdMwNU8T/ETmaVld/m2dkiawjkXjJzB2XKtBigU91DDmXz5 7DIdV4ABrxiy4kGNqtIe/jFgnKyVD7xiDpyfjd6KTeDr/rDS8u2ZH7+1iHsyz3g0 Np/tS3vcd0KR+gI/d0eXxPbgm5sKlCmKw/nU2eArpW/+4LmVXBUfHTG9Jg+LJmBc JrUh6aEdIZJZHgv/nOQBNig7GJW43IG50rjuJxAuzcxiZNEG5lUSS23ysaA9CPCL PxRWKSxIEfK3kdmvVO5IIbKTQmIBGWlcWMTcYictFSVfBgcCXpPAksGvqA5JiUkc egW+xLFo/7K+E158vSKsVqlWZcEeUbsNJ88QOlpqnRgH++I2Yv/LhK41XfJfpH+Y ALxVaDd+mAq6v+qSHNVq9wT3ozXIPy/zK1hDlMIqx40h2YvaEsH4je+521oSoN9r vX60+QNxvUBLwA== =vUNm -----END PGP SIGNATURE----- Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU updates from Paul McKenney: - Documentation updates - Miscellaneous fixes - Callback-offload updates, perhaps most notably a new RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be offloaded at boot time, regardless of kernel boot parameters. This is useful to battery-powered systems such as ChromeOS and Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot parameter prevents offloaded callbacks from interfering with real-time workloads and with energy-efficiency mechanisms - Polled grace-period updates, perhaps most notably making these APIs account for both normal and expedited grace periods - Tasks RCU updates, perhaps most notably reducing the CPU overhead of RCU tasks trace grace periods by more than a factor of two on a system with 15,000 tasks. The reduction is expected to increase with the number of tasks, so it seems reasonable to hypothesize that a system with 150,000 tasks might see a 20-fold reduction in CPU overhead - Torture-test updates - Updates that merge RCU's dyntick-idle tracking into context tracking, thus reducing the overhead of transitioning to kernel mode from either idle or nohz_full userspace execution for kernels that track context independently of RCU. This is expected to be helpful primarily for kernels built with CONFIG_NO_HZ_FULL=y * tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits) rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings rcu: Diagnose extended sync_rcu_do_polled_gp() loops rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings rcutorture: Test polled expedited grace-period primitives rcu: Add polled expedited grace-period primitives rcutorture: Verify that polled GP API sees synchronous grace periods rcu: Make Tiny RCU grace periods visible to polled APIs rcu: Make polled grace-period API account for expedited grace periods rcu: Switch polled grace-period APIs to ->gp_seq_polled rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty rcu/nocb: Add option to opt rcuo kthreads out of RT priority rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread() rcu/nocb: Add an option to offload all CPUs on boot rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order rcu/nocb: Add/del rdp to iterate from rcuog itself rcu/tree: Add comment to describe GP-done condition in fqs loop rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs() rcu/kvfree: Remove useless monitor_todo flag rcu: Cleanup RCU urgency state for offline CPU ... |
||
Linus Torvalds
|
b349b1181d |
for-5.20/io_uring-2022-07-29
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmLkm5gQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgpmKMD/4l3QIrLbjYIxlfrzQcHbmYuUkbQtj3SbZg 6ejbnGVhCs1P9DdXH8MgE2BxgpiXQE0CqOK7vbSoo5ep2n2UTLI2DIxAl74SMIo7 0wmJXtUJySuViKr3NYVHqlN180MkQYddBz0nGElhkQBPBCMhW8CrtPCeURr/YyHp 2RxSYBXiUx2gRyig+klnp6oPEqelcBZJUyNHdA9yVrgl/RhB/t2rKj7D++8ukQM3 Zuyh8WIkTeTfUz9hdGG7fuCEdZN4DlO2CCEc7uy0cKi6VRCKH4hYUCqClJ+/cfd2 43dUI2O7B6D1t/ObFh8AGIDXBDqVA6ePQohQU6gooRkfQiBPKkc9d0ts4yIhRqca AjkzNM+0Eve3A01loJ8J84w8oZnvNpYEv5n8/sZVLWcyU3UIs0I88nC2OBiFtoRq d77CtFLwOTo+r3STtAhnZOqez90rhS6BqKtqlUP346PCuFItl6/MbGtwdTbLYEFj CVNIb2pERWSr2NxGv4lFyXaX/cRwruxojWH7yc3rRYjr4Ykevd1pe/fMGNiMAnKw 5em/3QU3qq0ZVcXLMihksKeHHFIQwGDRMuyuv/fktV10+yYXQ0t16WzkJT3aR8Xo cqs0r8+6Jnj3uYcOMzj/FoLcpEPr21hnwAtzLto1mG1Wh4JRn/D7Nx5zqxPLxcW+ NiU6VihPOw== =gxeV -----END PGP SIGNATURE----- Merge tag 'for-5.20/io_uring-2022-07-29' of git://git.kernel.dk/linux-block Pull io_uring updates from Jens Axboe: - As per (valid) complaint in the last merge window, fs/io_uring.c has grown quite large these days. io_uring isn't really tied to fs either, as it supports a wide variety of functionality outside of that. Move the code to io_uring/ and split it into files that either implement a specific request type, and split some code into helpers as well. The code is organized a lot better like this, and io_uring.c is now < 4K LOC (me). - Deprecate the epoll_ctl opcode. It'll still work, just trigger a warning once if used. If we don't get any complaints on this, and I don't expect any, then we can fully remove it in a future release (me). - Improve the cancel hash locking (Hao) - kbuf cleanups (Hao) - Efficiency improvements to the task_work handling (Dylan, Pavel) - Provided buffer improvements (Dylan) - Add support for recv/recvmsg multishot support. This is similar to the accept (or poll) support for have for multishot, where a single SQE can trigger everytime data is received. For applications that expect to do more than a few receives on an instantiated socket, this greatly improves efficiency (Dylan). - Efficiency improvements for poll handling (Pavel) - Poll cancelation improvements (Pavel) - Allow specifiying a range for direct descriptor allocations (Pavel) - Cleanup the cqe32 handling (Pavel) - Move io_uring types to greatly cleanup the tracing (Pavel) - Tons of great code cleanups and improvements (Pavel) - Add a way to do sync cancelations rather than through the sqe -> cqe interface, as that's a lot easier to use for some use cases (me). - Add support to IORING_OP_MSG_RING for sending direct descriptors to a different ring. This avoids the usually problematic SCM case, as we disallow those. (me) - Make the per-command alloc cache we use for apoll generic, place limits on it, and use it for netmsg as well (me). - Various cleanups (me, Michal, Gustavo, Uros) * tag 'for-5.20/io_uring-2022-07-29' of git://git.kernel.dk/linux-block: (172 commits) io_uring: ensure REQ_F_ISREG is set async offload net: fix compat pointer in get_compat_msghdr() io_uring: Don't require reinitable percpu_ref io_uring: fix types in io_recvmsg_multishot_overflow io_uring: Use atomic_long_try_cmpxchg in __io_account_mem io_uring: support multishot in recvmsg net: copy from user before calling __get_compat_msghdr net: copy from user before calling __copy_msghdr io_uring: support 0 length iov in buffer select in compat io_uring: fix multishot ending when not polled io_uring: add netmsg cache io_uring: impose max limit on apoll cache io_uring: add abstraction around apoll cache io_uring: move apoll cache to poll.c io_uring: consolidate hash_locked io-wq handling io_uring: clear REQ_F_HASH_LOCKED on hash removal io_uring: don't race double poll setting REQ_F_ASYNC_DATA io_uring: don't miss setting REQ_F_DOUBLE_POLL io_uring: disable multishot recvmsg io_uring: only trace one of complete or overflow ... |
||
Zhen Lei
|
0f03d6805b |
sched/debug: Print each field value left-aligned in sched_show_task()
Currently, the values of some fields are printed right-aligned, causing the field value to be next to the next field name rather than next to its own field name. So print each field value left-aligned, to make it more readable. Before: stack: 0 pid: 307 ppid: 2 flags:0x00000008 After: stack:0 pid:308 ppid:2 flags:0x0000000a This also makes them print in the same style as the other two fields: task:demo0 state:R running task Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Link: https://lore.kernel.org/r/20220727060819.1085-1-thunder.leizhen@huawei.com |
||
Dietmar Eggemann
|
b3f53daacc |
sched/deadline: Use sched_dl_entity's dl_density in dl_task_fits_capacity()
Save a multiplication in dl_task_fits_capacity() by using already maintained per-sched_dl_entity (i.e. per-task) `dl_runtime/dl_deadline` (dl_density). cap_scale(dl_deadline, cap) >= dl_runtime dl_deadline * cap >> SCHED_CAPACITY_SHIFT >= dl_runtime cap >= dl_runtime << SCHED_CAPACITY_SHIFT / dl_deadline cap >= (dl_runtime << BW_SHIFT / dl_deadline) >> BW_SHIFT - SCHED_CAPACITY_SHIFT cap >= dl_density >> BW_SHIFT - SCHED_CAPACITY_SHIFT __sched_setscheduler()->__checkparam_dl() ensures that the 2 corner cases (if conditions) `runtime == RUNTIME_INF (-1)` and `period == 0` of to_ratio(deadline, runtime) are not met when setting dl_density in __sched_setscheduler()-> __setscheduler_params()->__setparam_dl(). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20220729111305.1275158-4-dietmar.eggemann@arm.com |
||
Dietmar Eggemann
|
6092478bcb |
sched/deadline: Make dl_cpuset_cpumask_can_shrink() capacity-aware
dl_cpuset_cpumask_can_shrink() is used to validate whether there is still enough CPU capacity for DL tasks in the reduced cpuset. Currently it still operates on `# remaining CPUs in the cpuset` (1). Change this to use the already capacity-aware DL admission control __dl_overflow() for the `cpumask can shrink` test. dl_b->bw = sched_rt_period << BW_SHIFT / sched_rt_period dl_b->bw * (1) >= currently allocated bandwidth in root_domain (rd) Replace (1) w/ `\Sum CPU capacity in rd >> SCHED_CAPACITY_SHIFT` Adapt __dl_bw_capacity() to take a cpumask instead of a CPU number argument so that `rd->span` and `cpumask of the reduced cpuset` can be used here. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20220729111305.1275158-3-dietmar.eggemann@arm.com |
||
Dietmar Eggemann
|
740cf8a760 |
sched/core: Introduce sched_asym_cpucap_active()
Create an inline helper for conditional code to be only executed on asymmetric CPU capacity systems. This makes these (currently ~10 and future) conditions a lot more readable. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20220729111305.1275158-2-dietmar.eggemann@arm.com |
||
Linus Torvalds
|
b167fdffe9 |
This cycle's scheduler updates for v6.0 are:
Load-balancing improvements: ============================ - Improve NUMA balancing on AMD Zen systems for affine workloads. - Improve the handling of reduced-capacity CPUs in load-balancing. - Energy Model improvements: fix & refine all the energy fairness metrics (PELT), and remove the conservative threshold requiring 6% energy savings to migrate a task. Doing this improves power efficiency for most workloads, and also increases the reliability of energy-efficiency scheduling. - Optimize/tweak select_idle_cpu() to spend (much) less time searching for an idle CPU on overloaded systems. There's reports of several milliseconds spent there on large systems with large workloads ... [ Since the search logic changed, there might be behavioral side effects. ] - Improve NUMA imbalance behavior. On certain systems with spare capacity, initial placement of tasks is non-deterministic, and such an artificial placement imbalance can persist for a long time, hurting (and sometimes helping) performance. The fix is to make fork-time task placement consistent with runtime NUMA balancing placement. Note that some performance regressions were reported against this, caused by workloads that are not memory bandwith limited, which benefit from the artificial locality of the placement bug(s). Mel Gorman's conclusion, with which we concur, was that consistency is better than random workload benefits from non-deterministic bugs: "Given there is no crystal ball and it's a tradeoff, I think it's better to be consistent and use similar logic at both fork time and runtime even if it doesn't have universal benefit." - Improve core scheduling by fixing a bug in sched_core_update_cookie() that caused unnecessary forced idling. - Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs for newly woken tasks. - Fix a newidle balancing bug that introduced unnecessary wakeup latencies. ABI improvements/fixes: ======================= - Do not check capabilities and do not issue capability check denial messages when a scheduler syscall doesn't require privileges. (Such as increasing niceness.) - Add forced-idle accounting to cgroups too. - Fix/improve the RSEQ ABI to not just silently accept unknown flags. (No existing tooling is known to have learned to rely on the previous behavior.) - Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags. Optimizations: ============== - Optimize & simplify leaf_cfs_rq_list() - Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg(). Misc fixes & cleanups: ====================== - Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems. - Fix a full-NOHZ bug that can in some cases result in the tick not being re-enabled when the last SCHED_RT task is gone from a runqueue but there's still SCHED_OTHER tasks around. - Various PREEMPT_RT related fixes. - Misc cleanups & smaller fixes. Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLn2ywRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1iNfxAAhPJMwM4tYCpIM6PhmxKiHl6kkiT2tt42 HhEmiJVLjczLybWaWwmGA2dSFkv1f4+hG7nqdZTm9QYn0Pqat2UTSRcwoKQc+gpB x85Hwt2IUmnUman52fRl5r1miH9LTdCI6agWaFLQae5ds1XmOugFo52t2ahax+Gn dB8LxS2fa/GrKj229EhkJSPWAK4Y94asoTProwpKLuKEeXhDkqUNrOWbKhz+wEnA pVZySpA9uEOdNLVSr1s0VB6mZoh5/z6yQefj5YSNntsG71XWo9jxKCIm5buVdk2U wjdn6UzoTThOy/5Ygm64eYRexMHG71UamF1JYUdmvDeUJZ5fhG6RD0FECUQNVcJB Msu2fce6u1AV0giZGYtiooLGSawB/+e6MoDkjTl8guFHi/peve9CezKX1ZgDWPfE eGn+EbYkUS9RMafXCKuEUBAC1UUqAavGN9sGGN1ufyR4za6ogZplOqAFKtTRTGnT /Ne3fHTtvv73DLGW9ohO5vSS2Rp7zhAhB6FunhibhxCWlt7W6hA4Ze2vU9hf78Yn SJDLAJjOEilLaKUkRG/d9uM3FjKJM1tqxuT76+sUbM0MNxdyiKcviQlP1b8oq5Um xE1KNZUevnr/WXqOTGDKHH/HNPFgwxbwavMiP7dNFn8h/hEk4t9dkf5siDmVHtn4 nzDVOob1LgE= =xr2b -----END PGP SIGNATURE----- Merge tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "Load-balancing improvements: - Improve NUMA balancing on AMD Zen systems for affine workloads. - Improve the handling of reduced-capacity CPUs in load-balancing. - Energy Model improvements: fix & refine all the energy fairness metrics (PELT), and remove the conservative threshold requiring 6% energy savings to migrate a task. Doing this improves power efficiency for most workloads, and also increases the reliability of energy-efficiency scheduling. - Optimize/tweak select_idle_cpu() to spend (much) less time searching for an idle CPU on overloaded systems. There's reports of several milliseconds spent there on large systems with large workloads ... [ Since the search logic changed, there might be behavioral side effects. ] - Improve NUMA imbalance behavior. On certain systems with spare capacity, initial placement of tasks is non-deterministic, and such an artificial placement imbalance can persist for a long time, hurting (and sometimes helping) performance. The fix is to make fork-time task placement consistent with runtime NUMA balancing placement. Note that some performance regressions were reported against this, caused by workloads that are not memory bandwith limited, which benefit from the artificial locality of the placement bug(s). Mel Gorman's conclusion, with which we concur, was that consistency is better than random workload benefits from non-deterministic bugs: "Given there is no crystal ball and it's a tradeoff, I think it's better to be consistent and use similar logic at both fork time and runtime even if it doesn't have universal benefit." - Improve core scheduling by fixing a bug in sched_core_update_cookie() that caused unnecessary forced idling. - Improve wakeup-balancing by allowing same-LLC wakeup of idle CPUs for newly woken tasks. - Fix a newidle balancing bug that introduced unnecessary wakeup latencies. ABI improvements/fixes: - Do not check capabilities and do not issue capability check denial messages when a scheduler syscall doesn't require privileges. (Such as increasing niceness.) - Add forced-idle accounting to cgroups too. - Fix/improve the RSEQ ABI to not just silently accept unknown flags. (No existing tooling is known to have learned to rely on the previous behavior.) - Depreciate the (unused) RSEQ_CS_FLAG_NO_RESTART_ON_* flags. Optimizations: - Optimize & simplify leaf_cfs_rq_list() - Micro-optimize set_nr_{and_not,if}_polling() via try_cmpxchg(). Misc fixes & cleanups: - Fix the RSEQ self-tests on RISC-V and Glibc 2.35 systems. - Fix a full-NOHZ bug that can in some cases result in the tick not being re-enabled when the last SCHED_RT task is gone from a runqueue but there's still SCHED_OTHER tasks around. - Various PREEMPT_RT related fixes. - Misc cleanups & smaller fixes" * tag 'sched-core-2022-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) rseq: Kill process when unknown flags are encountered in ABI structures rseq: Deprecate RSEQ_CS_FLAG_NO_RESTART_ON_* flags sched/core: Fix the bug that task won't enqueue into core tree when update cookie nohz/full, sched/rt: Fix missed tick-reenabling bug in dequeue_task_rt() sched/core: Always flush pending blk_plug sched/fair: fix case with reduced capacity CPU sched/core: Use try_cmpxchg in set_nr_{and_not,if}_polling sched/core: add forced idle accounting for cgroups sched/fair: Remove the energy margin in feec() sched/fair: Remove task_util from effective utilization in feec() sched/fair: Use the same cpumask per-PD throughout find_energy_efficient_cpu() sched/fair: Rename select_idle_mask to select_rq_mask sched, drivers: Remove max param from effective_cpu_util()/sched_cpu_util() sched/fair: Decay task PELT values during wakeup migration sched/fair: Provide u64 read for 32-bits arch helper sched/fair: Introduce SIS_UTIL to search idle CPU based on sum of util_avg sched: only perform capability check on privileged operation sched: Remove unused function group_first_cpu() sched/fair: Remove redundant word " *" selftests/rseq: check if libc rseq support is registered ... |
||
Jens Axboe
|
ed29b0b4fd |
io_uring: move to separate directory
In preparation for splitting io_uring up a bit, move it into its own top level directory. It didn't really belong in fs/ anyway, as it's not a file system only API. This adds io_uring/ and moves the core files in there, and updates the MAINTAINERS file for the new location. Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Paul E. McKenney
|
34bc7b454d |
Merge branch 'ctxt.2022.07.05a' into HEAD
ctxt.2022.07.05a: Linux-kernel memory model development branch. |
||
Cruz Zhao
|
91caa5ae24 |
sched/core: Fix the bug that task won't enqueue into core tree when update cookie
In function sched_core_update_cookie(), a task will enqueue into the core tree only when it enqueued before, that is, if an uncookied task is cookied, it will not enqueue into the core tree until it enqueue again, which will result in unnecessary force idle. Here follows the scenario: CPU x and CPU y are a pair of SMT siblings. 1. Start task a running on CPU x without sleeping, and task b and task c running on CPU y without sleeping. 2. We create a cookie and share it to task a and task b, and then we create another cookie and share it to task c. 3. Simpling core_forceidle_sum of task a and b from /proc/PID/sched And we will find out that core_forceidle_sum of task a takes 30% time of the sampling period, which shouldn't happen as task a and b have the same cookie. Then we migrate task a to CPU x', migrate task b and c to CPU y', where CPU x' and CPU y' are a pair of SMT siblings, and sampling again, we will found out that core_forceidle_sum of task a and b are almost zero. To solve this problem, we enqueue the task into the core tree if it's on rq. Fixes: 6e33cad0af49("sched: Trivial core scheduling cookie management") Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1656403045-100840-2-git-send-email-CruzZhao@linux.alibaba.com |
||
Nicolas Saenz Julienne
|
5c66d1b9b3 |
nohz/full, sched/rt: Fix missed tick-reenabling bug in dequeue_task_rt()
dequeue_task_rt() only decrements 'rt_rq->rt_nr_running' after having
called sched_update_tick_dependency() preventing it from re-enabling the
tick on systems that no longer have pending SCHED_RT tasks but have
multiple runnable SCHED_OTHER tasks:
dequeue_task_rt()
dequeue_rt_entity()
dequeue_rt_stack()
dequeue_top_rt_rq()
sub_nr_running() // decrements rq->nr_running
sched_update_tick_dependency()
sched_can_stop_tick() // checks rq->rt.rt_nr_running,
...
__dequeue_rt_entity()
dec_rt_tasks() // decrements rq->rt.rt_nr_running
...
Every other scheduler class performs the operation in the opposite
order, and sched_update_tick_dependency() expects the values to be
updated as such. So avoid the misbehaviour by inverting the order in
which the above operations are performed in the RT scheduler.
Fixes:
|
||
Juri Lelli
|
ddfc710395 |
sched/deadline: Fix BUG_ON condition for deboosted tasks
Tasks the are being deboosted from SCHED_DEADLINE might enter
enqueue_task_dl() one last time and hit an erroneous BUG_ON condition:
since they are not boosted anymore, the if (is_dl_boosted()) branch is
not taken, but the else if (!dl_prio) is and inside this one we
BUG_ON(!is_dl_boosted), which is of course false (BUG_ON triggered)
otherwise we had entered the if branch above. Long story short, the
current condition doesn't make sense and always leads to triggering of a
BUG.
Fix this by only checking enqueue flags, properly: ENQUEUE_REPLENISH has
to be present, but additional flags are not a problem.
Fixes:
|
||
John Keeping
|
401e4963bf |
sched/core: Always flush pending blk_plug
With CONFIG_PREEMPT_RT, it is possible to hit a deadlock between two
normal priority tasks (SCHED_OTHER, nice level zero):
INFO: task kworker/u8:0:8 blocked for more than 491 seconds.
Not tainted 5.15.49-rt46 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u8:0 state:D stack: 0 pid: 8 ppid: 2 flags:0x00000000
Workqueue: writeback wb_workfn (flush-7:0)
[<c08a3a10>] (__schedule) from [<c08a3d84>] (schedule+0xdc/0x134)
[<c08a3d84>] (schedule) from [<c08a65a0>] (rt_mutex_slowlock_block.constprop.0+0xb8/0x174)
[<c08a65a0>] (rt_mutex_slowlock_block.constprop.0) from [<c08a6708>]
+(rt_mutex_slowlock.constprop.0+0xac/0x174)
[<c08a6708>] (rt_mutex_slowlock.constprop.0) from [<c0374d60>] (fat_write_inode+0x34/0x54)
[<c0374d60>] (fat_write_inode) from [<c0297304>] (__writeback_single_inode+0x354/0x3ec)
[<c0297304>] (__writeback_single_inode) from [<c0297998>] (writeback_sb_inodes+0x250/0x45c)
[<c0297998>] (writeback_sb_inodes) from [<c0297c20>] (__writeback_inodes_wb+0x7c/0xb8)
[<c0297c20>] (__writeback_inodes_wb) from [<c0297f24>] (wb_writeback+0x2c8/0x2e4)
[<c0297f24>] (wb_writeback) from [<c0298c40>] (wb_workfn+0x1a4/0x3e4)
[<c0298c40>] (wb_workfn) from [<c0138ab8>] (process_one_work+0x1fc/0x32c)
[<c0138ab8>] (process_one_work) from [<c0139120>] (worker_thread+0x22c/0x2d8)
[<c0139120>] (worker_thread) from [<c013e6e0>] (kthread+0x16c/0x178)
[<c013e6e0>] (kthread) from [<c01000fc>] (ret_from_fork+0x14/0x38)
Exception stack(0xc10e3fb0 to 0xc10e3ff8)
3fa0: 00000000 00000000 00000000 00000000
3fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
3fe0: 00000000 00000000 00000000 00000000 00000013 00000000
INFO: task tar:2083 blocked for more than 491 seconds.
Not tainted 5.15.49-rt46 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:tar state:D stack: 0 pid: 2083 ppid: 2082 flags:0x00000000
[<c08a3a10>] (__schedule) from [<c08a3d84>] (schedule+0xdc/0x134)
[<c08a3d84>] (schedule) from [<c08a41b0>] (io_schedule+0x14/0x24)
[<c08a41b0>] (io_schedule) from [<c08a455c>] (bit_wait_io+0xc/0x30)
[<c08a455c>] (bit_wait_io) from [<c08a441c>] (__wait_on_bit_lock+0x54/0xa8)
[<c08a441c>] (__wait_on_bit_lock) from [<c08a44f4>] (out_of_line_wait_on_bit_lock+0x84/0xb0)
[<c08a44f4>] (out_of_line_wait_on_bit_lock) from [<c0371fb0>] (fat_mirror_bhs+0xa0/0x144)
[<c0371fb0>] (fat_mirror_bhs) from [<c0372a68>] (fat_alloc_clusters+0x138/0x2a4)
[<c0372a68>] (fat_alloc_clusters) from [<c0370b14>] (fat_alloc_new_dir+0x34/0x250)
[<c0370b14>] (fat_alloc_new_dir) from [<c03787c0>] (vfat_mkdir+0x58/0x148)
[<c03787c0>] (vfat_mkdir) from [<c0277b60>] (vfs_mkdir+0x68/0x98)
[<c0277b60>] (vfs_mkdir) from [<c027b484>] (do_mkdirat+0xb0/0xec)
[<c027b484>] (do_mkdirat) from [<c0100060>] (ret_fast_syscall+0x0/0x1c)
Exception stack(0xc2e1bfa8 to 0xc2e1bff0)
bfa0: 01ee42f0 01ee4208 01ee42f0 000041ed 00000000 00004000
bfc0: 01ee42f0 01ee4208 00000000 00000027 01ee4302 00000004 000dcb00 01ee4190
bfe0: 000dc368 bed11924 0006d4b0 b6ebddfc
Here the kworker is waiting on msdos_sb_info::s_lock which is held by
tar which is in turn waiting for a buffer which is locked waiting to be
flushed, but this operation is plugged in the kworker.
The lock is a normal struct mutex, so tsk_is_pi_blocked() will always
return false on !RT and thus the behaviour changes for RT.
It seems that the intent here is to skip blk_flush_plug() in the case
where a non-preemptible lock (such as a spinlock) has been converted to
a rtmutex on RT, which is the case covered by the SM_RTLOCK_WAIT
schedule flag. But sched_submit_work() is only called from schedule()
which is never called in this scenario, so the check can simply be
deleted.
Looking at the history of the -rt patchset, in fact this change was
present from v5.9.1-rt20 until being dropped in v5.13-rt1 as it was part
of a larger patch [1] most of which was replaced by commit
|
||
Vincent Guittot
|
c82a69629c |
sched/fair: fix case with reduced capacity CPU
The capacity of the CPU available for CFS tasks can be reduced because of other activities running on the latter. In such case, it's worth trying to move CFS tasks on a CPU with more available capacity. The rework of the load balance has filtered the case when the CPU is classified to be fully busy but its capacity is reduced. Check if CPU's capacity is reduced while gathering load balance statistic and classify it group_misfit_task instead of group_fully_busy so we can try to move the load on another CPU. Reported-by: David Chen <david.chen@nutanix.com> Reported-by: Zhang Qiao <zhangqiao22@huawei.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: David Chen <david.chen@nutanix.com> Tested-by: Zhang Qiao <zhangqiao22@huawei.com> Link: https://lkml.kernel.org/r/20220708154401.21411-1-vincent.guittot@linaro.org |
||
Frederic Weisbecker
|
e67198cc05 |
context_tracking: Take idle eqs entrypoints over RCU
The RCU dynticks counter is going to be merged into the context tracking subsystem. Start with moving the idle extended quiescent states entrypoints to context tracking. For now those are dumb redirections to existing RCU calls. [ paulmck: Apply kernel test robot feedback. ] Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Nicolas Saenz Julienne <nsaenz@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com> Cc: Yu Liao <liaoyu15@huawei.com> Cc: Phil Auld <pauld@redhat.com> Cc: Paul Gortmaker<paul.gortmaker@windriver.com> Cc: Alex Belits <abelits@marvell.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> |
||
Uros Bizjak
|
c02d5546ea |
sched/core: Use try_cmpxchg in set_nr_{and_not,if}_polling
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) != old in
set_nr_{and_not,if}_polling. x86 cmpxchg returns success in ZF flag,
so this change saves a compare after cmpxchg.
The definition of cmpxchg based fetch_or was changed in the
same way as atomic_fetch_##op definitions were changed
in
|
||
Josh Don
|
1fcf54deb7 |
sched/core: add forced idle accounting for cgroups
|
||
Frederic Weisbecker
|
24a9c54182 |
context_tracking: Split user tracking Kconfig
Context tracking is going to be used not only to track user transitions but also idle/IRQs/NMIs. The user tracking part will then become a separate feature. Prepare Kconfig for that. [ frederic: Apply Max Filippov feedback. ] Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Nicolas Saenz Julienne <nsaenz@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com> Cc: Yu Liao <liaoyu15@huawei.com> Cc: Phil Auld <pauld@redhat.com> Cc: Paul Gortmaker<paul.gortmaker@windriver.com> Cc: Alex Belits <abelits@marvell.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> |
||
Vincent Donnefort
|
b812fc9768 |
sched/fair: Remove the energy margin in feec()
find_energy_efficient_cpu() integrates a margin to protect tasks from bouncing back and forth from a CPU to another. This margin is set as being 6% of the total current energy estimated on the system. This however does not work for two reasons: 1. The energy estimation is not a good absolute value: compute_energy() used in feec() is a good estimation for task placement as it allows to compare the energy with and without a task. The computed delta will give a good overview of the cost for a certain task placement. It, however, doesn't work as an absolute estimation for the total energy of the system. First it adds the contribution to idle CPUs into the energy, second it mixes util_avg with util_est values. util_avg contains the near history for a CPU usage, it doesn't tell at all what the current utilization is. A system that has been quite busy in the near past will hold a very high energy and then a high margin preventing any task migration to a lower capacity CPU, wasting energy. It even creates a negative feedback loop: by holding the tasks on a less efficient CPU, the margin contributes in keeping the energy high. 2. The margin handicaps small tasks: On a system where the workload is composed mostly of small tasks (which is often the case on Android), the overall energy will be high enough to create a margin none of those tasks can cross. On a Pixel4, a small utilization of 5% on all the CPUs creates a global estimated energy of 140 joules, as per the Energy Model declaration of that same device. This means, after applying the 6% margin that any migration must save more than 8 joules to happen. No task with a utilization lower than 40 would then be able to migrate away from the biggest CPU of the system. The 6% of the overall system energy was brought by the following patch: ( |
||
Vincent Donnefort
|
3e8c6c9aac |
sched/fair: Remove task_util from effective utilization in feec()
The energy estimation in find_energy_efficient_cpu() (feec()) relies on the computation of the effective utilization for each CPU of a perf domain (PD). This effective utilization is then used as an estimation of the busy time for this pd. The function effective_cpu_util() which gives this value, scales the utilization relative to IRQ pressure on the CPU to take into account that the IRQ time is hidden from the task clock. The IRQ scaling is as follow: effective_cpu_util = irq + (cpu_cap - irq)/cpu_cap * util Where util is the sum of CFS/RT/DL utilization, cpu_cap the capacity of the CPU and irq the IRQ avg time. If now we take as an example a task placement which doesn't raise the OPP on the candidate CPU, we can write the energy delta as: delta = OPPcost/cpu_cap * (effective_cpu_util(cpu_util + task_util) - effective_cpu_util(cpu_util)) = OPPcost/cpu_cap * (cpu_cap - irq)/cpu_cap * task_util We end-up with an energy delta depending on the IRQ avg time, which is a problem: first the time spent on IRQs by a CPU has no effect on the additional energy that would be consumed by a task. Second, we don't want to favour a CPU with a higher IRQ avg time value. Nonetheless, we need to take the IRQ avg time into account. If a task placement raises the PD's frequency, it will increase the energy cost for the entire time where the CPU is busy. A solution is to only use effective_cpu_util() with the CPU contribution part. The task contribution is added separately and scaled according to prev_cpu's IRQ time. No change for the FREQUENCY_UTIL component of the energy estimation. We still want to get the actual frequency that would be selected after the task placement. Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Link: https://lkml.kernel.org/r/20220621090414.433602-7-vdonnefort@google.com |
||
Dietmar Eggemann
|
9b340131a4 |
sched/fair: Use the same cpumask per-PD throughout find_energy_efficient_cpu()
The Perf Domain (PD) cpumask (struct em_perf_domain.cpus) stays invariant after Energy Model creation, i.e. it is not updated after CPU hotplug operations. That's why the PD mask is used in conjunction with the cpu_online_mask (or Sched Domain cpumask). Thereby the cpu_online_mask is fetched multiple times (in compute_energy()) during a run-queue selection for a task. cpu_online_mask may change during this time which can lead to wrong energy calculations. To be able to avoid this, use the select_rq_mask per-cpu cpumask to create a cpumask out of PD cpumask and cpu_online_mask and pass it through the function calls of the EAS run-queue selection path. The PD cpumask for max_spare_cap_cpu/compute_prev_delta selection (find_energy_efficient_cpu()) is now ANDed not only with the SD mask but also with the cpu_online_mask. This is fine since this cpumask has to be in syc with the one used for energy computation (compute_energy()). An exclusive cpuset setup with at least one asymmetric CPU capacity island (hence the additional AND with the SD cpumask) is the obvious exception here. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Link: https://lkml.kernel.org/r/20220621090414.433602-6-vdonnefort@google.com |
||
Dietmar Eggemann
|
ec4fc801a0 |
sched/fair: Rename select_idle_mask to select_rq_mask
On 21/06/2022 11:04, Vincent Donnefort wrote:
> From: Dietmar Eggemann <dietmar.eggemann@arm.com>
https://lkml.kernel.org/r/202206221253.ZVyGQvPX-lkp@intel.com discovered
that this patch doesn't build anymore (on tip sched/core or linux-next)
because of commit
|
||
Dietmar Eggemann
|
bb44799949 |
sched, drivers: Remove max param from effective_cpu_util()/sched_cpu_util()
effective_cpu_util() already has a `int cpu' parameter which allows to retrieve the CPU capacity scale factor (or maximum CPU capacity) inside this function via an arch_scale_cpu_capacity(cpu). A lot of code calling effective_cpu_util() (or the shim sched_cpu_util()) needs the maximum CPU capacity, i.e. it will call arch_scale_cpu_capacity() already. But not having to pass it into effective_cpu_util() will make the EAS wake-up code easier, especially when the maximum CPU capacity reduced by the thermal pressure is passed through the EAS wake-up functions. Due to the asymmetric CPU capacity support of arm/arm64 architectures, arch_scale_cpu_capacity(int cpu) is a per-CPU variable read access via per_cpu(cpu_scale, cpu) on such a system. On all other architectures it is a a compile-time constant (SCHED_CAPACITY_SCALE). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Link: https://lkml.kernel.org/r/20220621090414.433602-4-vdonnefort@google.com |
||
Vincent Donnefort
|
e2f3e35f1f |
sched/fair: Decay task PELT values during wakeup migration
Before being migrated to a new CPU, a task sees its PELT values synchronized with rq last_update_time. Once done, that same task will also have its sched_avg last_update_time reset. This means the time between the migration and the last clock update will not be accounted for in util_avg and a discontinuity will appear. This issue is amplified by the PELT clock scaling. It takes currently one tick after the CPU being idle to let clock_pelt catching up clock_task. This is especially problematic for asymmetric CPU capacity systems which need stable util_avg signals for task placement and energy estimation. Ideally, this problem would be solved by updating the runqueue clocks before the migration. But that would require taking the runqueue lock which is quite expensive [1]. Instead estimate the missing time and update the task util_avg with that value. To that end, we need sched_clock_cpu() but it is a costly function. Limit the usage to the case where the source CPU is idle as we know this is when the clock is having the biggest risk of being outdated. See comment in migrate_se_pelt_lag() for more details about how the PELT value is estimated. Notice though this estimation doesn't take into account IRQ and Paravirt time. [1] https://lkml.kernel.org/r/20190709115759.10451-1-chris.redpath@arm.com Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Link: https://lkml.kernel.org/r/20220621090414.433602-3-vdonnefort@google.com |
||
Vincent Donnefort
|
d05b43059d |
sched/fair: Provide u64 read for 32-bits arch helper
Introducing macro helpers u64_u32_{store,load}() to factorize lockless accesses to u64 variables for 32-bits architectures. Users are for now cfs_rq.min_vruntime and sched_avg.last_update_time. To accommodate the later where the copy lies outside of the structure (cfs_rq.last_udpate_time_copy instead of sched_avg.last_update_time_copy), use the _copy() version of those helpers. Those new helpers encapsulate smp_rmb() and smp_wmb() synchronization and therefore, have a small penalty for 32-bits machines in set_task_rq_fair() and init_cfs_rq(). Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Lukasz Luba <lukasz.luba@arm.com> Link: https://lkml.kernel.org/r/20220621090414.433602-2-vdonnefort@google.com |
||
Chen Yu
|
70fb5ccf2e |
sched/fair: Introduce SIS_UTIL to search idle CPU based on sum of util_avg
[Problem Statement]
select_idle_cpu() might spend too much time searching for an idle CPU,
when the system is overloaded.
The following histogram is the time spent in select_idle_cpu(),
when running 224 instances of netperf on a system with 112 CPUs
per LLC domain:
@usecs:
[0] 533 | |
[1] 5495 | |
[2, 4) 12008 | |
[4, 8) 239252 | |
[8, 16) 4041924 |@@@@@@@@@@@@@@ |
[16, 32) 12357398 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[32, 64) 14820255 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[64, 128) 13047682 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[128, 256) 8235013 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[256, 512) 4507667 |@@@@@@@@@@@@@@@ |
[512, 1K) 2600472 |@@@@@@@@@ |
[1K, 2K) 927912 |@@@ |
[2K, 4K) 218720 | |
[4K, 8K) 98161 | |
[8K, 16K) 37722 | |
[16K, 32K) 6715 | |
[32K, 64K) 477 | |
[64K, 128K) 7 | |
netperf latency usecs:
=======
case load Lat_99th std%
TCP_RR thread-224 257.39 ( 0.21)
The time spent in select_idle_cpu() is visible to netperf and might have a negative
impact.
[Symptom analysis]
The patch [1] from Mel Gorman has been applied to track the efficiency
of select_idle_sibling. Copy the indicators here:
SIS Search Efficiency(se_eff%):
A ratio expressed as a percentage of runqueues scanned versus
idle CPUs found. A 100% efficiency indicates that the target,
prev or recent CPU of a task was idle at wakeup. The lower the
efficiency, the more runqueues were scanned before an idle CPU
was found.
SIS Domain Search Efficiency(dom_eff%):
Similar, except only for the slower SIS
patch.
SIS Fast Success Rate(fast_rate%):
Percentage of SIS that used target, prev or
recent CPUs.
SIS Success rate(success_rate%):
Percentage of scans that found an idle CPU.
The test is based on Aubrey's schedtests tool, including netperf, hackbench,
schbench and tbench.
Test on vanilla kernel:
schedstat_parse.py -f netperf_vanilla.log
case load se_eff% dom_eff% fast_rate% success_rate%
TCP_RR 28 threads 99.978 18.535 99.995 100.000
TCP_RR 56 threads 99.397 5.671 99.964 100.000
TCP_RR 84 threads 21.721 6.818 73.632 100.000
TCP_RR 112 threads 12.500 5.533 59.000 100.000
TCP_RR 140 threads 8.524 4.535 49.020 100.000
TCP_RR 168 threads 6.438 3.945 40.309 99.999
TCP_RR 196 threads 5.397 3.718 32.320 99.982
TCP_RR 224 threads 4.874 3.661 25.775 99.767
UDP_RR 28 threads 99.988 17.704 99.997 100.000
UDP_RR 56 threads 99.528 5.977 99.970 100.000
UDP_RR 84 threads 24.219 6.992 76.479 100.000
UDP_RR 112 threads 13.907 5.706 62.538 100.000
UDP_RR 140 threads 9.408 4.699 52.519 100.000
UDP_RR 168 threads 7.095 4.077 44.352 100.000
UDP_RR 196 threads 5.757 3.775 35.764 99.991
UDP_RR 224 threads 5.124 3.704 28.748 99.860
schedstat_parse.py -f schbench_vanilla.log
(each group has 28 tasks)
case load se_eff% dom_eff% fast_rate% success_rate%
normal 1 mthread 99.152 6.400 99.941 100.000
normal 2 mthreads 97.844 4.003 99.908 100.000
normal 3 mthreads 96.395 2.118 99.917 99.998
normal 4 mthreads 55.288 1.451 98.615 99.804
normal 5 mthreads 7.004 1.870 45.597 61.036
normal 6 mthreads 3.354 1.346 20.777 34.230
normal 7 mthreads 2.183 1.028 11.257 21.055
normal 8 mthreads 1.653 0.825 7.849 15.549
schedstat_parse.py -f hackbench_vanilla.log
(each group has 28 tasks)
case load se_eff% dom_eff% fast_rate% success_rate%
process-pipe 1 group 99.991 7.692 99.999 100.000
process-pipe 2 groups 99.934 4.615 99.997 100.000
process-pipe 3 groups 99.597 3.198 99.987 100.000
process-pipe 4 groups 98.378 2.464 99.958 100.000
process-pipe 5 groups 27.474 3.653 89.811 99.800
process-pipe 6 groups 20.201 4.098 82.763 99.570
process-pipe 7 groups 16.423 4.156 77.398 99.316
process-pipe 8 groups 13.165 3.920 72.232 98.828
process-sockets 1 group 99.977 5.882 99.999 100.000
process-sockets 2 groups 99.927 5.505 99.996 100.000
process-sockets 3 groups 99.397 3.250 99.980 100.000
process-sockets 4 groups 79.680 4.258 98.864 99.998
process-sockets 5 groups 7.673 2.503 63.659 92.115
process-sockets 6 groups 4.642 1.584 58.946 88.048
process-sockets 7 groups 3.493 1.379 49.816 81.164
process-sockets 8 groups 3.015 1.407 40.845 75.500
threads-pipe 1 group 99.997 0.000 100.000 100.000
threads-pipe 2 groups 99.894 2.932 99.997 100.000
threads-pipe 3 groups 99.611 4.117 99.983 100.000
threads-pipe 4 groups 97.703 2.624 99.937 100.000
threads-pipe 5 groups 22.919 3.623 87.150 99.764
threads-pipe 6 groups 18.016 4.038 80.491 99.557
threads-pipe 7 groups 14.663 3.991 75.239 99.247
threads-pipe 8 groups 12.242 3.808 70.651 98.644
threads-sockets 1 group 99.990 6.667 99.999 100.000
threads-sockets 2 groups 99.940 5.114 99.997 100.000
threads-sockets 3 groups 99.469 4.115 99.977 100.000
threads-sockets 4 groups 87.528 4.038 99.400 100.000
threads-sockets 5 groups 6.942 2.398 59.244 88.337
threads-sockets 6 groups 4.359 1.954 49.448 87.860
threads-sockets 7 groups 2.845 1.345 41.198 77.102
threads-sockets 8 groups 2.871 1.404 38.512 74.312
schedstat_parse.py -f tbench_vanilla.log
case load se_eff% dom_eff% fast_rate% success_rate%
loopback 28 threads 99.976 18.369 99.995 100.000
loopback 56 threads 99.222 7.799 99.934 100.000
loopback 84 threads 19.723 6.819 70.215 100.000
loopback 112 threads 11.283 5.371 55.371 99.999
loopback 140 threads 0.000 0.000 0.000 0.000
loopback 168 threads 0.000 0.000 0.000 0.000
loopback 196 threads 0.000 0.000 0.000 0.000
loopback 224 threads 0.000 0.000 0.000 0.000
According to the test above, if the system becomes busy, the
SIS Search Efficiency(se_eff%) drops significantly. Although some
benchmarks would finally find an idle CPU(success_rate% = 100%), it is
doubtful whether it is worth it to search the whole LLC domain.
[Proposal]
It would be ideal to have a crystal ball to answer this question:
How many CPUs must a wakeup path walk down, before it can find an idle
CPU? Many potential metrics could be used to predict the number.
One candidate is the sum of util_avg in this LLC domain. The benefit
of choosing util_avg is that it is a metric of accumulated historic
activity, which seems to be smoother than instantaneous metrics
(such as rq->nr_running). Besides, choosing the sum of util_avg
would help predict the load of the LLC domain more precisely, because
SIS_PROP uses one CPU's idle time to estimate the total LLC domain idle
time.
In summary, the lower the util_avg is, the more select_idle_cpu()
should scan for idle CPU, and vice versa. When the sum of util_avg
in this LLC domain hits 85% or above, the scan stops. The reason to
choose 85% as the threshold is that this is the imbalance_pct(117)
when a LLC sched group is overloaded.
Introduce the quadratic function:
y = SCHED_CAPACITY_SCALE - p * x^2
and y'= y / SCHED_CAPACITY_SCALE
x is the ratio of sum_util compared to the CPU capacity:
x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
y' is the ratio of CPUs to be scanned in the LLC domain,
and the number of CPUs to scan is calculated by:
nr_scan = llc_weight * y'
Choosing quadratic function is because:
[1] Compared to the linear function, it scans more aggressively when the
sum_util is low.
[2] Compared to the exponential function, it is easier to calculate.
[3] It seems that there is no accurate mapping between the sum of util_avg
and the number of CPUs to be scanned. Use heuristic scan for now.
For a platform with 112 CPUs per LLC, the number of CPUs to scan is:
sum_util% 0 5 15 25 35 45 55 65 75 85 86 ...
scan_nr 112 111 108 102 93 81 65 47 25 1 0 ...
For a platform with 16 CPUs per LLC, the number of CPUs to scan is:
sum_util% 0 5 15 25 35 45 55 65 75 85 86 ...
scan_nr 16 15 15 14 13 11 9 6 3 0 0 ...
Furthermore, to minimize the overhead of calculating the metrics in
select_idle_cpu(), borrow the statistics from periodic load balance.
As mentioned by Abel, on a platform with 112 CPUs per LLC, the
sum_util calculated by periodic load balance after 112 ms would
decay to about 0.5 * 0.5 * 0.5 * 0.7 = 8.75%, thus bringing a delay
in reflecting the latest utilization. But it is a trade-off.
Checking the util_avg in newidle load balance would be more frequent,
but it brings overhead - multiple CPUs write/read the per-LLC shared
variable and introduces cache contention. Tim also mentioned that,
it is allowed to be non-optimal in terms of scheduling for the
short-term variations, but if there is a long-term trend in the load
behavior, the scheduler can adjust for that.
When SIS_UTIL is enabled, the select_idle_cpu() uses the nr_scan
calculated by SIS_UTIL instead of the one from SIS_PROP. As Peter and
Mel suggested, SIS_UTIL should be enabled by default.
This patch is based on the util_avg, which is very sensitive to the
CPU frequency invariance. There is an issue that, when the max frequency
has been clamp, the util_avg would decay insanely fast when
the CPU is idle. Commit
|
||
Christian Göttsche
|
700a78335f |
sched: only perform capability check on privileged operation
sched_setattr(2) issues via kernel/sched/core.c:__sched_setscheduler() a CAP_SYS_NICE audit event unconditionally, even when the requested operation does not require that capability / is unprivileged, i.e. for reducing niceness. This is relevant in connection with SELinux, where a capability check results in a policy decision and by default a denial message on insufficient permission is issued. It can lead to three undesired cases: 1. A denial message is generated, even in case the operation was an unprivileged one and thus the syscall succeeded, creating noise. 2. To avoid the noise from 1. the policy writer adds a rule to ignore those denial messages, hiding future syscalls, where the task performs an actual privileged operation, leading to hidden limited functionality of that task. 3. To avoid the noise from 1. the policy writer adds a rule to allow the task the capability CAP_SYS_NICE, while it does not need it, violating the principle of least privilege. Conduct privilged/unprivileged categorization first and perform a capable test (and at most once) only if needed. Signed-off-by: Christian Göttsche <cgzones@googlemail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220615152505.310488-1-cgzones@googlemail.com |
||
Zhang Qiao
|
c64b551f6a |
sched: Remove unused function group_first_cpu()
As of commit
|
||
Zhang Qiao
|
fb95a5a04d |
sched/fair: Remove redundant word " *"
" *" is redundant. so remove it. Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220617181151.29980-2-zhangqiao22@huawei.com |
||
Paul E. McKenney
|
e386b67257 |
rcu-tasks: Eliminate RCU Tasks Trace IPIs to online CPUs
Currently, the RCU Tasks Trace grace-period kthread IPIs each online CPU using smp_call_function_single() in order to track any tasks currently in RCU Tasks Trace read-side critical sections during which the corresponding task has neither blocked nor been preempted. These IPIs are annoying and are also not strictly necessary because any task that blocks or is preempted within its current RCU Tasks Trace read-side critical section will be tracked on one of the per-CPU rcu_tasks_percpu structure's ->rtp_blkd_tasks list. So the only time that this is a problem is if one of the CPUs runs through a long-duration RCU Tasks Trace read-side critical section without a context switch. Note that the task_call_func() function cannot help here because there is no safe way to identify the target task. Of course, the task_call_func() function will be very useful later, when processing the list of tasks, but it needs to know the task. This commit therefore creates a cpu_curr_snapshot() function that returns a pointer the task_struct structure of some task that happened to be running on the specified CPU more or less during the time that the cpu_curr_snapshot() function was executing. If there was no context switch during this time, this function will return a pointer to the task_struct structure of the task that was running throughout. If there was a context switch, then the outgoing task will be taken care of by RCU's context-switch hook, and the incoming task was either already taken care during some previous context switch, or it is not currently within an RCU Tasks Trace read-side critical section. And in this latter case, the grace period already started, so there is no need to wait on this task. This new cpu_curr_snapshot() function is invoked on each CPU early in the RCU Tasks Trace grace-period processing, and the resulting tasks are queued for later quiescent-state inspection. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Martin KaFai Lau <kafai@fb.com> Cc: KP Singh <kpsingh@kernel.org> |
||
Tianchen Ding
|
f3dd3f6745 |
sched: Remove the limitation of WF_ON_CPU on wakelist if wakee cpu is idle
Wakelist can help avoid cache bouncing and offload the overhead of waker
cpu. So far, using wakelist within the same llc only happens on
WF_ON_CPU, and this limitation could be removed to further improve
wakeup performance.
The commit
|
||
Tianchen Ding
|
28156108fe |
sched: Fix the check of nr_running at queue wakelist
The commit
|
||
Josh Don
|
792b9f65a5 |
sched: Allow newidle balancing to bail out of load_balance
While doing newidle load balancing, it is possible for new tasks to arrive, such as with pending wakeups. newidle_balance() already accounts for this by exiting the sched_domain load_balance() iteration if it detects these cases. This is very important for minimizing wakeup latency. However, if we are already in load_balance(), we may stay there for a while before returning back to newidle_balance(). This is most exacerbated if we enter a 'goto redo' loop in the LBF_ALL_PINNED case. A very straightforward workaround to this is to adjust should_we_balance() to bail out if we're doing a CPU_NEWLY_IDLE balance and new tasks are detected. This was tested with the following reproduction: - two threads that take turns sleeping and waking each other up are affined to two cores - a large number of threads with 100% utilization are pinned to all other cores Without this patch, wakeup latency was ~120us for the pair of threads, almost entirely spent in load_balance(). With this patch, wakeup latency is ~6us. Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220609025515.2086253-1-joshdon@google.com |
||
Yajun Deng
|
2ed81e7654 |
sched/deadline: Use proc_douintvec_minmax() limit minimum value
sysctl_sched_dl_period_max and sysctl_sched_dl_period_min are unsigned integer, but proc_dointvec() wouldn't return error even if we set a negative number. Use proc_douintvec_minmax() instead of proc_dointvec(). Add extra1 for sysctl_sched_dl_period_max and extra2 for sysctl_sched_dl_period_min. It's just an optimization for match data and proc_handler in struct ctl_table. The 'if (period < min || period > max)' in __checkparam_dl() will work fine even if there hasn't this patch. Signed-off-by: Yajun Deng <yajun.deng@linux.dev> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org> Link: https://lore.kernel.org/r/20220607101807.249965-1-yajun.deng@linux.dev |
||
Chengming Zhou
|
51bf903b64 |
sched/fair: Optimize and simplify rq leaf_cfs_rq_list
We notice the rq leaf_cfs_rq_list has two problems when do bugfix backports and some test profiling. 1. cfs_rqs under throttled subtree could be added to the list, and make their fully decayed ancestors on the list, even though not needed. 2. #1 also make the leaf_cfs_rq_list management complex and error prone, this is the list of related bugfix so far: commit |
||
K Prateek Nayak
|
f5b2eeb499 |
sched/fair: Consider CPU affinity when allowing NUMA imbalance in find_idlest_group()
In the case of systems containing multiple LLCs per socket, like AMD Zen systems, users want to spread bandwidth hungry applications across multiple LLCs. Stream is one such representative workload where the best performance is obtained by limiting one stream thread per LLC. To ensure this, users are known to pin the tasks to a specify a subset of the CPUs consisting of one CPU per LLC while running such bandwidth hungry tasks. Suppose we kickstart a multi-threaded task like stream with 8 threads using taskset or numactl to run on a subset of CPUs on a 2 socket Zen3 server where each socket contains 128 CPUs (0-63,128-191 in one socket, 64-127,192-255 in another socket) Eg: numactl -C 0,16,32,48,64,80,96,112 ./stream8 Here each CPU in the list is from a different LLC and 4 of those LLCs are on one socket, while the other 4 are on another socket. Ideally we would prefer that each stream thread runs on a different CPU from the allowed list of CPUs. However, the current heuristics in find_idlest_group() do not allow this during the initial placement. Suppose the first socket (0-63,128-191) is our local group from which we are kickstarting the stream tasks. The first four stream threads will be placed in this socket. When it comes to placing the 5th thread, all the allowed CPUs are from the local group (0,16,32,48) would have been taken. However, the current scheduler code simply checks if the number of tasks in the local group is fewer than the allowed numa-imbalance threshold. This threshold was previously 25% of the NUMA domain span (in this case threshold = 32) but after the v6 of Mel's patchset "Adjust NUMA imbalance for multiple LLCs", got merged in sched-tip, Commit: |
||
Mel Gorman
|
026b98a93b |
sched/numa: Adjust imb_numa_nr to a better approximation of memory channels
For a single LLC per node, a NUMA imbalance is allowed up until 25% of CPUs sharing a node could be active. One intent of the cut-off is to avoid an imbalance of memory channels but there is no topological information based on active memory channels. Furthermore, there can be differences between nodes depending on the number of populated DIMMs. A cut-off of 25% was arbitrary but generally worked. It does have a severe corner cases though when an parallel workload is using 25% of all available CPUs over-saturates memory channels. This can happen due to the initial forking of tasks that get pulled more to one node after early wakeups (e.g. a barrier synchronisation) that is not quickly corrected by the load balancer. The LB may fail to act quickly as the parallel tasks are considered to be poor migrate candidates due to locality or cache hotness. On a range of modern Intel CPUs, 12.5% appears to be a better cut-off assuming all memory channels are populated and is used as the new cut-off point. A minimum of 1 is specified to allow a communicating pair to remain local even for CPUs with low numbers of cores. For modern AMDs, there are multiple LLCs and are not affected. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20220520103519.1863-5-mgorman@techsingularity.net |
||
Mel Gorman
|
cb29a5c19d |
sched/numa: Apply imbalance limitations consistently
The imbalance limitations are applied inconsistently at fork time and at runtime. At fork, a new task can remain local until there are too many running tasks even if the degree of imbalance is larger than NUMA_IMBALANCE_MIN which is different to runtime. Secondly, the imbalance figure used during load balancing is different to the one used at NUMA placement. Load balancing uses the number of tasks that must move to restore imbalance where as NUMA balancing uses the total imbalance. In combination, it is possible for a parallel workload that uses a small number of CPUs without applying scheduler policies to have very variable run-to-run performance. [lkp@intel.com: Fix build breakage for arc-allyesconfig] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20220520103519.1863-4-mgorman@techsingularity.net |
||
Mel Gorman
|
13ede33150 |
sched/numa: Do not swap tasks between nodes when spare capacity is available
If a destination node has spare capacity but there is an imbalance then two tasks are selected for swapping. If the tasks have no numa group or are within the same NUMA group, it's simply shuffling tasks around without having any impact on the compute imbalance. Instead, it's just punishing one task to help another. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20220520103519.1863-3-mgorman@techsingularity.net |
||
Mel Gorman
|
70ce3ea9aa |
sched/numa: Initialise numa_migrate_retry
On clone, numa_migrate_retry is inherited from the parent which means that the first NUMA placement of a task is non-deterministic. This affects when load balancing recognises numa tasks and whether to migrate "regular", "remote" or "all" tasks between NUMA scheduler domains. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20220520103519.1863-2-mgorman@techsingularity.net |
||
Peter Zijlstra
|
04193d590b |
sched: Fix balance_push() vs __sched_setscheduler()
The purpose of balance_push() is to act as a filter on task selection
in the case of CPU hotplug, specifically when taking the CPU out.
It does this by (ab)using the balance callback infrastructure, with
the express purpose of keeping all the unlikely/odd cases in a single
place.
In order to serve its purpose, the balance_push_callback needs to be
(exclusively) on the callback list at all times (noting that the
callback always places itself back on the list the moment it runs,
also noting that when the CPU goes down, regular balancing concerns
are moot, so ignoring them is fine).
And here-in lies the problem, __sched_setscheduler()'s use of
splice_balance_callbacks() takes the callbacks off the list across a
lock-break, making it possible for, an interleaving, __schedule() to
see an empty list and not get filtered.
Fixes:
|
||
Chen Wandun
|
5f69a6577b |
psi: dont alloc memory for psi by default
Memory about struct psi_group is allocated by default for each cgroup even if psi_disabled is true, in this case, these allocated memory is waste, so alloc memory for struct psi_group only when psi_disabled is false. Signed-off-by: Chen Wandun <chenwandun@huawei.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
Linus Torvalds
|
bc1e02c3e5 |
Fix the fallout of sysctl code move which placed the init function wrong.
-----BEGIN PGP SIGNATURE----- iQJGBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKcc+ATHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYobuAD/i9gZZ1b1Qtr9vCeioy8hXkP1QltXC5 sBK/l+LH8kWMi2eQtqhr5T8Xhca0K84Ml2gCLimnhX5PZxUJ7VTL9DVhhU0vPbFx 7dKVAF6xU6B0gV92Ojn4ztHXM/qulqbOExESaxOXpIQ8Rh5QUqokVSeTFVzQmxve GykHUGK6DFi3+W1aID4oW5BsGgG1i+5Qn4HuSP35vfvS4e0K056s5ANfJdzt4+Sz q4APbOrB5Dgbg351vRk+ms49TariVrdWOBc4ujPAYJms+oCrDHpTbHtTAKt/n1UF z5AbfFkebSK7hf2nplo1Qr+QZ0vLlWchbc+IdjhPvkXrZwqbgdJKJUznieHyUEOO xUUYKErEAcDNuF6wkhum5hhRARuHpHOdd6qAIFGsexTN7gOIgFF3Mdq2GD4YBebF O86tinGdOD1hzzxzW+r+AIgZgCUILmP0+lRasEZuJMT/iTWAiU1MjrNNPL45ZX1e Ldie5b7rGubwKaCwCv1R//D9NI6OTalVnmCyf1NRIeb9py4bG3SgCQecHP0pZeh5 +xmsO8rrMlkq2fOe9K6N57vWeRcvQzTMGb17wZh/fAWCa2Ny7Si52NFgRwPNExCu YKR2bptFSZmKe0cZ8Q6mdw7J1tCJm+4Htgw9LSgaf/jvmvHyTV261ZZTHeglsdTQ JDGbad9Vt6h1 =arj3 -----END PGP SIGNATURE----- Merge tag 'sched-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fix from Thomas Gleixner: "Fix the fallout of sysctl code move which placed the init function wrong" * tag 'sched-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/autogroup: Fix sysctl move |
||
Linus Torvalds
|
67850b7bdc |
While looking at the ptrace problems with PREEMPT_RT and the problems
of Peter Zijlstra was encountering with ptrace in his freezer rewrite I identified some cleanups to ptrace_stop that make sense on their own and move make resolving the other problems much simpler. The biggest issue is the habbit of the ptrace code to change task->__state from the tracer to suppress TASK_WAKEKILL from waking up the tracee. No other code in the kernel does that and it is straight forward to update signal_wake_up and friends to make that unnecessary. Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying on the fact that all stopped states except the special stop states can tolerate spurious wake up and recover their state. The state of stopped and traced tasked is changed to be stored in task->jobctl as well as in task->__state. This makes it possible for the freezer to recover tasks in these special states, as well as serving as a general cleanup. With a little more work in that direction I believe TASK_STOPPED can learn to tolerate spurious wake ups and become an ordinary stop state. The TASK_TRACED state has to remain a special state as the registers for a process are only reliably available when the process is stopped in the scheduler. Fundamentally ptrace needs acess to the saved register values of a task. There are bunch of semi-random ptrace related cleanups that were found while looking at these issues. One cleanup that deserves to be called out is from commit |
||
Linus Torvalds
|
1ec6574a3c |
This set of changes updates init and user mode helper tasks to be
ordinary user mode tasks. In commit |
||
Peter Zijlstra
|
82f586f923 |
sched/autogroup: Fix sysctl move
Ivan reported /proc/sys/kernel/sched_autogroup_enabled went walk-about
and using the noautogroup command line parameter would result in a
boot error message.
Turns out the sysctl move placed the init function wrong.
Fixes:
|
||
Linus Torvalds
|
44d35720c9 |
sysctl changes for v5.19-rc1
For two kernel releases now kernel/sysctl.c has been being cleaned up slowly, since the tables were grossly long, sprinkled with tons of #ifdefs and all this caused merge conflicts with one susbystem or another. This tree was put together to help try to avoid conflicts with these cleanups going on different trees at time. So nothing exciting on this pull request, just cleanups. I actually had this sysctl-next tree up since v5.18 but I missed sending a pull request for it on time during the last merge window. And so these changes have been being soaking up on sysctl-next and so linux-next for a while. The last change was merged May 4th. Most of the compile issues were reported by 0day and fixed. To help avoid a conflict with bpf folks at Daniel Borkmann's request I merged bpf-next/pr/bpf-sysctl into sysctl-next to get the effor which moves the BPF sysctls from kernel/sysctl.c to BPF core. Possible merge conflicts and known resolutions as per linux-next: bfp: https://lkml.kernel.org/r/20220414112812.652190b5@canb.auug.org.au rcu: https://lkml.kernel.org/r/20220420153746.4790d532@canb.auug.org.au powerpc: https://lkml.kernel.org/r/20220520154055.7f964b76@canb.auug.org.au -----BEGIN PGP SIGNATURE----- iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmKOq8ASHG1jZ3JvZkBr ZXJuZWwub3JnAAoJEM4jHQowkoinDAkQAJVo5YVM9f74UwYp4PQhTpjxJBCjRoZD z1u9bp5rMj2ujTC8Fr7VmzKaHrb8+r1C1WvCvZtIzemYNB4lZUrHpVDYfXuXiPRB ihPmEjhlPO5PFBx6cVCpI3cu9bEhG00rLc1QXnABx/pXwNPcOTJAGZJVamZvqubk chjgZrb7N+adHPfvS55v1+zpwdeKfpp5U3zuu5qlT/nn0GS0HCVzOj5fj4oC4wtJ IqfUubo+FX50Ga58yQABWNrjaPD9Crykz5ohVazy3ElQl0hJ4VsK65ct3blqc2vz 1Bb8kPpWuv6aZ5nr1lCVE8qvF4ZIL33ySvpg5BSdWLQEDrBbSpzvJe9Yn7wgR+eq y7fhpO24+zRM82EoDMEvyxX9u1n1RsvoXRtf3ds9BGf63MUxk8a1cgjlU6vuyO2U JhDmfM1xzdKvPoY4COOnHzcAiIqzItTqKd09N5y0cahmYstROU8lvp9huhTAHqk1 SjQMbLIZG7OnX8ZeQcR1EB8sq/IOPZT48ejj0iJmQ8FyMaep71MOQLYyLPAq4lgh JHXm8P6QdB57jfJbqAeNSyZoK0qdxOUR/83Zcah7Jjns6vkju1DNatEsaEEI2y2M 4n7/rkHeZ3TyFHBUX4e9FomKvGLsAalDBRiqsuxLSOPMU8rGrNLAslOAtKwvp90X 4ht3M2VP098l =btwh -----END PGP SIGNATURE----- Merge tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux Pull sysctl updates from Luis Chamberlain: "For two kernel releases now kernel/sysctl.c has been being cleaned up slowly, since the tables were grossly long, sprinkled with tons of #ifdefs and all this caused merge conflicts with one susbystem or another. This tree was put together to help try to avoid conflicts with these cleanups going on different trees at time. So nothing exciting on this pull request, just cleanups. Thanks a lot to the Uniontech and Huawei folks for doing some of this nasty work" * tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (28 commits) sched: Fix build warning without CONFIG_SYSCTL reboot: Fix build warning without CONFIG_SYSCTL kernel/kexec_core: move kexec_core sysctls into its own file sysctl: minor cleanup in new_dir() ftrace: fix building with SYSCTL=y but DYNAMIC_FTRACE=n fs/proc: Introduce list_for_each_table_entry for proc sysctl mm: fix unused variable kernel warning when SYSCTL=n latencytop: move sysctl to its own file ftrace: fix building with SYSCTL=n but DYNAMIC_FTRACE=y ftrace: Fix build warning ftrace: move sysctl_ftrace_enabled to ftrace.c kernel/do_mount_initrd: move real_root_dev sysctls to its own file kernel/delayacct: move delayacct sysctls to its own file kernel/acct: move acct sysctls to its own file kernel/panic: move panic sysctls to its own file kernel/lockdep: move lockdep sysctls to its own file mm: move page-writeback sysctls to their own file mm: move oom_kill sysctls to their own file kernel/reboot: move reboot sysctls to its own file sched: Move energy_aware sysctls to topology.c ... |
||
Linus Torvalds
|
6f3f04c190 |
Scheduler changes in this cycle were:
- Updates to scheduler metrics: - PELT fixes & enhancements - PSI fixes & enhancements - Refactor cpu_util_without() - Updates to instrumentation/debugging: - Remove sched_trace_*() helper functions - can be done via debug info - Fix double update_rq_clock() warnings - Introduce & use "preemption model accessors" to simplify some of the Kconfig complexity. - Make softirq handling RT-safe. - Misc smaller fixes & cleanups. Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmKLvXYRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1hcXg//fJ1jAB9pQOg/Su9wwwbcOeaXNUpQA38e 970nXdK6i7w+YeAT2x1ikIQZq5S/px7k9S4Fzks8U9LMhnKPxhjdnG6J69h5XLuB z1BtRJBB6W8BAYWzAeq1M+R8whQylciOMZOBSjeTIEdpYBK7c9QA/R1DkDqPRlBA 7nW0mFbpYcK8Q1n1ItjP0wkpiHG4q8orp+BXiPG8rjiHdCa3GFt7g38hiqNls64H fOQ/Ka25tBSYrmeqQY3QsWKnKNHKQRLNareHAwI/x4V8F8d4tn/OmJzmWGDdtprn 6/gi/E99ej1j5Do8sgx/oTp/aVg4j8AsurrpGFd4/er+euoG4UyHr42UhX6zmFM6 /KIinp0Z/V2n9okgI9LUZ2x7mD682iXDilNDgiSAwu1bNDUvxBXPD30gThh+KasA HxeKxTzb4/dZV4ih4xUMsCOjUT4NFZT2rmiMorUystgyNRk28DtFCdBMtrs/zVtG qAktb7v5g76pKAmV4nQu4imZeSD+f+RJP2fuSUYQCJbCxQfthTZkn8GfCMYEdY7Y sDyBx4Te8Vu/dcnal9qMpY/m5EPruPQAkvC9zK4YvkvLUmGC742PG/xHfCdC9J2m Adbl/Cmn7tD9dOGYbHPsrViqwIiZUcjbnBlMN5DjJXQF6kWNOIXUEguZpBocminP 1CSy0+gyI6o= =GY8N -----END PGP SIGNATURE----- Merge tag 'sched-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Updates to scheduler metrics: - PELT fixes & enhancements - PSI fixes & enhancements - Refactor cpu_util_without() - Updates to instrumentation/debugging: - Remove sched_trace_*() helper functions - can be done via debug info - Fix double update_rq_clock() warnings - Introduce & use "preemption model accessors" to simplify some of the Kconfig complexity. - Make softirq handling RT-safe. - Misc smaller fixes & cleanups. * tag 'sched-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: topology: Remove unused cpu_cluster_mask() sched: Reverse sched_class layout sched/deadline: Remove superfluous rq clock update in push_dl_task() sched/core: Avoid obvious double update_rq_clock warning smp: Make softirq handling RT safe in flush_smp_call_function_queue() smp: Rename flush_smp_call_function_from_idle() sched: Fix missing prototype warnings sched/fair: Remove cfs_rq_tg_path() sched/fair: Remove sched_trace_*() helper functions sched/fair: Refactor cpu_util_without() sched/fair: Revise comment about lb decision matrix sched/psi: report zeroes for CPU full at the system level sched/fair: Delete useless condition in tg_unthrottle_up() sched/fair: Fix cfs_rq_clock_pelt() for throttled cfs_rq sched/fair: Move calculate of avg_load to a better location mailmap: Update my email address to @redhat.com MAINTAINERS: Add myself as scheduler topology reviewer psi: Fix trigger being fired unexpectedly at initial ftrace: Use preemption model accessors for trace header printout kcsan: Use preemption model accessors |
||
Linus Torvalds
|
2319be1356 |
Locking changes in this cycle were:
- rwsem cleanups & optimizations/fixes: - Conditionally wake waiters in reader/writer slowpaths - Always try to wake waiters in out_nolock path - Add try_cmpxchg64() implementation, with arch optimizations - and use it to micro-optimize sched_clock_{local,remote}() - Various force-inlining fixes to address objdump instrumentation-check warnings - Add lock contention tracepoints: lock:contention_begin lock:contention_end - Misc smaller fixes & cleanups Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmKLsrERHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1js3g//cPR9PYlvZv87T2hI8VWKfNzapgSmwCsH 1P+nk27Pef+jfxHr/N7YScvSD06+z2wIroLE3npPNETmNd1X8obBDThmeD4VI899 J6h4sE0cFOpTG/mHeECFxqnDuzhdHiRHWS52RxOwTjZTpdbeKWZYueC0Mvqn+tIp UM2D2yTseIHs67ikxYtayU/iJgSZ+PYrMPv9nSVUjIFILmg7gMIz38OZYQzR84++ auL3m8sAq/i2pjzDBbXMpfYeu177/tPHpPJr2rOErLEXWqK2K6op8+CbX4z3yv3z EBBhGiUNqDmFaFuIgg7Mx94SvPh8MBGexUnT0XA2aXPwyP9oAaenCk2CZ1j9u15m /Xp1A4KNvg1WY8jHu5ZM4VIEXQ7d6Gwtbej7IeovUxBD6y7Trb3+rxb7PVdZX941 uVGjss1Lgk70wUQqBqBPmBm08O6NUF3vekHlona5CZTQgEF84zD7+7D++QPaAZo7 kiuNUptdgfq6X0xqgP88GX1KU85gJYoF5Q13vb7lAcv19QhRG5JBJeWMYiXEmg12 Ktl97Sru0zCpCY1NCvwsBll09SLVO9kX3Lq+QFD8bFMZ0obsGIBotHq1qH6U7cH8 RY6esVBF/1/+qdrxOKs8qowlJ4EUp/3bX0R/MKYHJJbulj/aaE916HvMsoN/QR4Y oW7GcxMQGLE= =gaS5 -----END PGP SIGNATURE----- Merge tag 'locking-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Ingo Molnar: - rwsem cleanups & optimizations/fixes: - Conditionally wake waiters in reader/writer slowpaths - Always try to wake waiters in out_nolock path - Add try_cmpxchg64() implementation, with arch optimizations - and use it to micro-optimize sched_clock_{local,remote}() - Various force-inlining fixes to address objdump instrumentation-check warnings - Add lock contention tracepoints: lock:contention_begin lock:contention_end - Misc smaller fixes & cleanups * tag 'locking-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/clock: Use try_cmpxchg64 in sched_clock_{local,remote} locking/atomic/x86: Introduce arch_try_cmpxchg64 locking/atomic: Add generic try_cmpxchg64 support futex: Remove a PREEMPT_RT_FULL reference. locking/qrwlock: Change "queue rwlock" to "queued rwlock" lockdep: Delete local_irq_enable_in_hardirq() locking/mutex: Make contention tracepoints more consistent wrt adaptive spinning locking: Apply contention tracepoints in the slow path locking: Add lock contention tracepoints locking/rwsem: Always try to wake waiters in out_nolock path locking/rwsem: Conditionally wake waiters in reader/writer slowpaths locking/rwsem: No need to check for handoff bit if wait queue empty lockdep: Fix -Wunused-parameter for _THIS_IP_ x86/mm: Force-inline __phys_addr_nodebug() x86/kvm/svm: Force-inline GHCB accessors task_stack, x86/cea: Force-inline stack helpers |
||
Linus Torvalds
|
1e57930e9f |
RCU pull request for v5.19
This pull request contains the following branches: docs.2022.04.20a: Documentation updates. fixes.2022.04.20a: Miscellaneous fixes. nocb.2022.04.11b: Callback-offloading updates, mainly simplifications. rcu-tasks.2022.04.11b: RCU-tasks updates, including some -rt fixups, handling of systems with sparse CPU numbering, and a fix for a boot-time race-condition failure. srcu.2022.05.03a: Put SRCU on a memory diet in order to reduce the size of the srcu_struct structure. torture.2022.04.11b: Torture-test updates fixing some bugs in tests and closing some testing holes. torture-tasks.2022.04.20a: Torture-test updates for the RCU tasks flavors, most notably ensuring that building rcutorture and friends does not change the RCU-tasks-related Kconfig options. torturescript.2022.04.20a: Torture-test scripting updates. exp.2022.05.11a: Expedited grace-period updates, most notably providing milliseconds-scale (not all that) soft real-time response from synchronize_rcu_expedited(). This is also the first time in almost 30 years of RCU that someone other than me has pushed for a reduction in the RCU CPU stall-warning timeout, in this case by more than three orders of magnitude from 21 seconds to 20 milliseconds. This tighter timeout applies only to expedited grace periods. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmKG2zcTHHBhdWxtY2tA a2VybmVsLm9yZwAKCRCevxLzctn7jGXgD/90xtRtZyN0umlN/IOBBn8fIOM+BAMu 5k3ef6wLsXKXlLO13WTjSitypX9LEFwytTeVhEyN4ODeX0cI9mUmts6Z8/6sV92D fN8vqTavveE7m5YfFfLRvDRfVHpB0LpLMM+V0qWPu/F8dWPDKA0225rX9IC7iICP LkxCuNVNzJ0cLaVTvsUWlxMdHcogydXZb1gPDVRhnR6iVFWCBtL4RRpU41CoSNh4 fWRSLQak6OhZRFE7hVoLQhZyLE0GIw1fuUJgj2fCllhgGogDx78FQ8jHdDzMEhVk cD4Yel5vUPiy2AKphGfi28bKFYcyhVBnD/Jq733VJV0/szyddxNbz0xKpEA0/8qh w1T7IjBN6MAKHSh0uUitm6U24VN13m4r30HrUQSpp71VFZkUD4QS6TismKsaRNjR lK4q2QKBprBb3Hv7KPAGYT1Us3aS7qLPrgPf3gzSxL1aY5QV0A5UpPP6RKTLbWPl CEQxEno6g5LTHwKd5QD74dG8ccphg9377lDMJpeesYShBqlLNrNWCxqJoZk2HnSf f2dTQeQWrtRJjeTGy/4cfONCGZTghE0Pch43XMzLLt3ZTuDc8FVM0t3Xs9J5Kg22 zmThQh6LRXTGjrb1vLiOrjPf5JaTnX2Sz8OUJTo/ZxwcixxP/mj8Ja+W81NjfqnK LLZ1D6UN4a8n9A== =4spH -----END PGP SIGNATURE----- Merge tag 'rcu.2022.05.19a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU update from Paul McKenney: - Documentation updates - Miscellaneous fixes - Callback-offloading updates, mainly simplifications - RCU-tasks updates, including some -rt fixups, handling of systems with sparse CPU numbering, and a fix for a boot-time race-condition failure - Put SRCU on a memory diet in order to reduce the size of the srcu_struct structure - Torture-test updates fixing some bugs in tests and closing some testing holes - Torture-test updates for the RCU tasks flavors, most notably ensuring that building rcutorture and friends does not change the RCU-tasks-related Kconfig options - Torture-test scripting updates - Expedited grace-period updates, most notably providing milliseconds-scale (not all that) soft real-time response from synchronize_rcu_expedited(). This is also the first time in almost 30 years of RCU that someone other than me has pushed for a reduction in the RCU CPU stall-warning timeout, in this case by more than three orders of magnitude from 21 seconds to 20 milliseconds. This tighter timeout applies only to expedited grace periods * tag 'rcu.2022.05.19a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (80 commits) rcu: Move expedited grace period (GP) work to RT kthread_worker rcu: Introduce CONFIG_RCU_EXP_CPU_STALL_TIMEOUT srcu: Drop needless initialization of sdp in srcu_gp_start() srcu: Prevent expedited GPs and blocking readers from consuming CPU srcu: Add contention check to call_srcu() srcu_data ->lock acquisition srcu: Automatically determine size-transition strategy at boot rcutorture: Make torture.sh allow for --kasan rcutorture: Make torture.sh refscale and rcuscale specify Tasks Trace RCU rcutorture: Make kvm.sh allow more memory for --kasan runs torture: Save "make allmodconfig" .config file scftorture: Remove extraneous "scf" from per_version_boot_params rcutorture: Adjust scenarios' Kconfig options for CONFIG_PREEMPT_DYNAMIC torture: Enable CSD-lock stall reports for scftorture torture: Skip vmlinux check for kvm-again.sh runs scftorture: Adjust for TASKS_RCU Kconfig option being selected rcuscale: Allow rcuscale without RCU Tasks Rude/Trace rcuscale: Allow rcuscale without RCU Tasks refscale: Allow refscale without RCU Tasks Rude/Trace refscale: Allow refscale without RCU Tasks rcutorture: Allow specifying per-scenario stat_interval ... |
||
Peter Zijlstra
|
546a3fee17 |
sched: Reverse sched_class layout
Because GCC-12 is fully stupid about array bounds and it's just really hard to get a solid array definition from a linker script, flip the array order to avoid needing negative offsets :-/ This makes the whole relational pointer magic a little less obvious, but alas. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/YoOLLmLG7HRTXeEm@hirez.programming.kicks-ass.net |
||
Uros Bizjak
|
8491d1bdf5 |
sched/clock: Use try_cmpxchg64 in sched_clock_{local,remote}
Use try_cmpxchg64 instead of cmpxchg64 (*ptr, old, new) != old in sched_clock_{local,remote}. x86 cmpxchg returns success in ZF flag, so this change saves a compare after cmpxchg (and related move instruction in front of cmpxchg). Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220518184953.3446778-1-ubizjak@gmail.com |
||
Delyan Kratunov
|
9c2136be08 |
sched/tracing: Append prev_state to tp args instead
Commit |
||
Eric W. Biederman
|
2500ad1c7f |
ptrace: Don't change __state
Stop playing with tsk->__state to remove TASK_WAKEKILL while a ptrace command is executing. Instead remove TASK_WAKEKILL from the definition of TASK_TRACED, and implement a new jobctl flag TASK_PTRACE_FROZEN. This new flag is set in jobctl_freeze_task and cleared when ptrace_stop is awoken or in jobctl_unfreeze_task (when ptrace_stop remains asleep). In signal_wake_up add __TASK_TRACED to state along with TASK_WAKEKILL when the wake up is for a fatal signal. Skip adding __TASK_TRACED when TASK_PTRACE_FROZEN is not set. This has the same effect as changing TASK_TRACED to __TASK_TRACED as all of the wake_ups that use TASK_KILLABLE go through signal_wake_up. Handle a ptrace_stop being called with a pending fatal signal. Previously it would have been handled by schedule simply failing to sleep. As TASK_WAKEKILL is no longer part of TASK_TRACED schedule will sleep with a fatal_signal_pending. The code in signal_wake_up guarantees that the code will be awaked by any fatal signal that codes after TASK_TRACED is set. Previously the __state value of __TASK_TRACED was changed to TASK_RUNNING when woken up or back to TASK_TRACED when the code was left in ptrace_stop. Now when woken up ptrace_stop now clears JOBCTL_PTRACE_FROZEN and when left sleeping ptrace_unfreezed_traced clears JOBCTL_PTRACE_FROZEN. Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-10-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> |
||
Eric W. Biederman
|
b3f9916d81 |
sched: Update task_tick_numa to ignore tasks without an mm
Qian Cai <quic_qiancai@quicinc.com> wrote: > Reverting the last 3 commits of the series fixed a boot crash. > > |
||
Hao Jia
|
734387ec2f |
sched/deadline: Remove superfluous rq clock update in push_dl_task()
The change to call update_rq_clock() before activate_task() commit |
||
Hao Jia
|
2679a83731 |
sched/core: Avoid obvious double update_rq_clock warning
When we use raw_spin_rq_lock() to acquire the rq lock and have to update the rq clock while holding the lock, the kernel may issue a WARN_DOUBLE_CLOCK warning. Since we directly use raw_spin_rq_lock() to acquire rq lock instead of rq_lock(), there is no corresponding change to rq->clock_update_flags. In particular, we have obtained the rq lock of other CPUs, the rq->clock_update_flags of this CPU may be RQCF_UPDATED at this time, and then calling update_rq_clock() will trigger the WARN_DOUBLE_CLOCK warning. So we need to clear RQCF_UPDATED of rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. For the sched_rt_period_timer() and migrate_task_rq_dl() cases we simply replace raw_spin_rq_lock()/raw_spin_rq_unlock() with rq_lock()/rq_unlock(). For the {pull,push}_{rt,dl}_task() cases, we add the double_rq_clock_clear_update() function to clear RQCF_UPDATED of rq->clock_update_flags, and call double_rq_clock_clear_update() before double_lock_balance()/double_rq_lock() returns to avoid the WARN_DOUBLE_CLOCK warning. Some call trace reports: Call Trace 1: <IRQ> sched_rt_period_timer+0x10f/0x3a0 ? enqueue_top_rt_rq+0x110/0x110 __hrtimer_run_queues+0x1a9/0x490 hrtimer_interrupt+0x10b/0x240 __sysvec_apic_timer_interrupt+0x8a/0x250 sysvec_apic_timer_interrupt+0x9a/0xd0 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x12/0x20 Call Trace 2: <TASK> activate_task+0x8b/0x110 push_rt_task.part.108+0x241/0x2c0 push_rt_tasks+0x15/0x30 finish_task_switch+0xaa/0x2e0 ? __switch_to+0x134/0x420 __schedule+0x343/0x8e0 ? hrtimer_start_range_ns+0x101/0x340 schedule+0x4e/0xb0 do_nanosleep+0x8e/0x160 hrtimer_nanosleep+0x89/0x120 ? hrtimer_init_sleeper+0x90/0x90 __x64_sys_nanosleep+0x96/0xd0 do_syscall_64+0x34/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Call Trace 3: <TASK> deactivate_task+0x93/0xe0 pull_rt_task+0x33e/0x400 balance_rt+0x7e/0x90 __schedule+0x62f/0x8e0 do_task_dead+0x3f/0x50 do_exit+0x7b8/0xbb0 do_group_exit+0x2d/0x90 get_signal+0x9df/0x9e0 ? preempt_count_add+0x56/0xa0 ? __remove_hrtimer+0x35/0x70 arch_do_signal_or_restart+0x36/0x720 ? nanosleep_copyout+0x39/0x50 ? do_nanosleep+0x131/0x160 ? audit_filter_inodes+0xf5/0x120 exit_to_user_mode_prepare+0x10f/0x1e0 syscall_exit_to_user_mode+0x17/0x30 do_syscall_64+0x40/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae Call Trace 4: update_rq_clock+0x128/0x1a0 migrate_task_rq_dl+0xec/0x310 set_task_cpu+0x84/0x1e4 try_to_wake_up+0x1d8/0x5c0 wake_up_process+0x1c/0x30 hrtimer_wakeup+0x24/0x3c __hrtimer_run_queues+0x114/0x270 hrtimer_interrupt+0xe8/0x244 arch_timer_handler_phys+0x30/0x50 handle_percpu_devid_irq+0x88/0x140 generic_handle_domain_irq+0x40/0x60 gic_handle_irq+0x48/0xe0 call_on_irq_stack+0x2c/0x60 do_interrupt_handler+0x80/0x84 Steps to reproduce: 1. Enable CONFIG_SCHED_DEBUG when compiling the kernel 2. echo 1 > /sys/kernel/debug/clear_warn_once echo "WARN_DOUBLE_CLOCK" > /sys/kernel/debug/sched/features echo "NO_RT_PUSH_IPI" > /sys/kernel/debug/sched/features 3. Run some rt/dl tasks that periodically work and sleep, e.g. Create 2*n rt or dl (90% running) tasks via rt-app (on a system with n CPUs), and Dietmar Eggemann reports Call Trace 4 when running on PREEMPT_RT kernel. Signed-off-by: Hao Jia <jiahao.os@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20220430085843.62939-2-jiahao.os@bytedance.com |
||
YueHaibing
|
494dcdf46e |
sched: Fix build warning without CONFIG_SYSCTL
IF CONFIG_SYSCTL is n, build warn:
kernel/sched/core.c:1782:12: warning: ‘sysctl_sched_uclamp_handler’ defined but not used [-Wunused-function]
static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
^~~~~~~~~~~~~~~~~~~~~~~~~~~
sysctl_sched_uclamp_handler() is used while CONFIG_SYSCTL enabled,
wrap all related code with CONFIG_SYSCTL to fix this.
Fixes:
|
||
Ingo Molnar
|
d70522fc54 |
Linux 5.18-rc5
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmJu9FYeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGAyEH/16xtJSpLmLwrQzG o+4ToQxSQ+/9UHyu0RTEvHg2THm9/8emtIuYyc/5FgdoWctcSa3AaDcveWmuWmkS KYcdhfJsaEqjNHS3OPYXN84fmo9Hel7263shu5+IYmP/sN0DfQp6UWTryX1q4B3Q 4Pdutkuq63Uwd8nBZ5LXQBumaBrmkkuMgWEdT4+6FOo1mPzwdIGBxCuz1UsNNl5k chLWxkQfe2eqgWbYJrgCQfrVdORXVtoU2fGilZUNrHRVGkkldXkkz5clJfapyZD3 odmZCEbrE4GPKgZwCmDERMfD1hzhZDtYKiHfOQ506szH5ykJjPBcOjHed7dA60eB J3+wdek= =39Ca -----END PGP SIGNATURE----- Merge tag 'v5.18-rc5' into sched/core to pull in fixes & to resolve a conflict - sched/core is on a pretty old -rc1 base - refresh it to include recent fixes. - this also allows up to resolve a (trivial) .mailmap conflict Conflicts: .mailmap Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Thomas Gleixner
|
16bf5a5e1e |
smp: Rename flush_smp_call_function_from_idle()
This is invoked from the stopper thread too, which is definitely not idle. Rename it to flush_smp_call_function_queue() and fixup the callers. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220413133024.305001096@linutronix.de |
||
Thomas Gleixner
|
d664e39912 |
sched: Fix missing prototype warnings
A W=1 build emits more than a dozen missing prototype warnings related to scheduler and scheduler specific includes. Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220413133024.249118058@linutronix.de |
||
Dietmar Eggemann
|
97956dd278 |
sched/fair: Remove cfs_rq_tg_path()
cfs_rq_tg_path() is used by a tracepoint-to traceevent (tp-2-te) converter to format the path of a taskgroup or autogroup respectively. It doesn't have any in-kernel users after the removal of the sched_trace_cfs_rq_path() helper function. cfs_rq_tg_path() can be coded in a tp-2-te converter. Remove it from kernel/sched/fair.c. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220428144338.479094-3-qais.yousef@arm.com |
||
Dietmar Eggemann
|
50e7b416d2 |
sched/fair: Remove sched_trace_*() helper functions
We no longer need them as we can use DWARF debug info or BTF + pahole to re-generate the required structs to compile against them for a given kernel. This moves the burden of maintaining these helper functions to the module. https://github.com/qais-yousef/sched_tp Note that pahole v1.15 is required at least for using DWARF. And for BTF v1.23 which is not yet released will be required. There's alignment problem that will lead to crashes in earlier versions when used with BTF. We should have enough infrastructure to make these helper functions now obsolete, so remove them. [Rewrote commit message to reflect the new alternative] Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220428144338.479094-2-qais.yousef@arm.com |
||
Dietmar Eggemann
|
4e3c7d338a |
sched/fair: Refactor cpu_util_without()
Except the 'task has no contribution or is new' condition at the
beginning of cpu_util_without(), which it shares with the load and
runnable counterpart functions, a cpu_util_next(..., dst_cpu = -1)
call can replace the rest of it.
The UTIL_EST specific check that task util_est has to be subtracted
from the CPU one in case of an enqueued (or current (to cater for the
wakeup - lb race)) task has to be moved to cpu_util_next().
This was initially introduced by commit
|
||
Tao Zhou
|
a658353167 |
sched/fair: Revise comment about lb decision matrix
If busiest group type is group_misfit_task, the local
group type must be group_has_spare according to below
code in update_sd_pick_busiest():
if (sgs->group_type == group_misfit_task &&
(!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
sds->local_stat.group_type != group_has_spare))
return false;
group type imbalanced and overloaded and fully_busy are filtered in here.
misfit and asym are filtered before in update_sg_lb_stats().
So, change the decision matrix to:
busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
has_spare nr_idle balanced N/A N/A balanced balanced
fully_busy nr_idle nr_idle N/A N/A balanced balanced
misfit_task force N/A N/A N/A *N/A* *N/A*
asym_packing force force N/A N/A force force
imbalanced force force N/A N/A force force
overloaded force force N/A N/A force avg_load
Fixes:
|
||
Chengming Zhou
|
890d550d7d |
sched/psi: report zeroes for CPU full at the system level
Martin find it confusing when look at the /proc/pressure/cpu output, and found no hint about that CPU "full" line in psi Documentation. % cat /proc/pressure/cpu some avg10=0.92 avg60=0.91 avg300=0.73 total=933490489 full avg10=0.22 avg60=0.23 avg300=0.16 total=358783277 The PSI_CPU_FULL state is introduced by commit |
||
Chengming Zhou
|
0a00a35464 |
sched/fair: Delete useless condition in tg_unthrottle_up()
We have tested cfs_rq->load.weight in cfs_rq_is_decayed(), the first condition "!cfs_rq_is_decayed(cfs_rq)" is enough to cover the second condition "cfs_rq->nr_running". Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ben Segall <bsegall@google.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20220408115309.81603-2-zhouchengming@bytedance.com |
||
Chengming Zhou
|
64eaf50731 |
sched/fair: Fix cfs_rq_clock_pelt() for throttled cfs_rq
Since commit |
||
zgpeng
|
0635490078 |
sched/fair: Move calculate of avg_load to a better location
In calculate_imbalance function, when the value of local->avg_load is greater than or equal to busiest->avg_load, the calculated sds->avg_load is not used. So this calculation can be placed in a more appropriate position. Signed-off-by: zgpeng <zgpeng@tencent.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Samuel Liao <samuelliao@tencent.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/1649239025-10010-1-git-send-email-zgpeng@tencent.com |
||
Hailong Liu
|
915a087e4c |
psi: Fix trigger being fired unexpectedly at initial
When a trigger being created, its win.start_value and win.start_time are reset to zero. If group->total[PSI_POLL][t->state] has accumulated before, this trigger will be fired unexpectedly in the next period, even if its growth time does not reach its threshold. So set the window of the new trigger to the current state value. Signed-off-by: Hailong Liu <liuhailong@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Suren Baghdasaryan <surenb@google.com> Link: https://lore.kernel.org/r/1648789811-3788971-1-git-send-email-liuhailong@linux.alibaba.com |
||
kuyo chang
|
40f5aa4c5e |
sched/pelt: Fix attach_entity_load_avg() corner case
The warning in cfs_rq_is_decayed() triggered:
SCHED_WARN_ON(cfs_rq->avg.load_avg ||
cfs_rq->avg.util_avg ||
cfs_rq->avg.runnable_avg)
There exists a corner case in attach_entity_load_avg() which will
cause load_sum to be zero while load_avg will not be.
Consider se_weight is 88761 as per the sched_prio_to_weight[] table.
Further assume the get_pelt_divider() is 47742, this gives:
se->avg.load_avg is 1.
However, calculating load_sum:
se->avg.load_sum = div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
se->avg.load_sum = 1*47742/88761 = 0.
Then enqueue_load_avg() adds this to the cfs_rq totals:
cfs_rq->avg.load_avg += se->avg.load_avg;
cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
Resulting in load_avg being 1 with load_sum is 0, which will trigger
the WARN.
Fixes:
|
||
Zhen Ni
|
8a0441415b |
sched: Move energy_aware sysctls to topology.c
move energy_aware sysctls to topology.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Zhen Ni
|
d4ae80ffa6 |
sched: Move cfs_bandwidth_slice sysctls to fair.c
move cfs_bandwidth_slice sysctls to fair.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Zhen Ni
|
3267e0156c |
sched: Move uclamp_util sysctls to core.c
move uclamp_util sysctls to core.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Baisong Zhong
|
28f152cd09 |
sched/rt: fix build error when CONFIG_SYSCTL is disable
Avoid random build errors which do not select CONFIG_SYSCTL by depending on it in Kconfig. This fixes the following warning: In file included from kernel/sched/build_policy.c:43: At top level: kernel/sched/rt.c:3017:12: error: ‘sched_rr_handler’ defined but not used [-Werror=unused-function] 3017 | static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, | ^~~~~~~~~~~~~~~~ kernel/sched/rt.c:2978:12: error: ‘sched_rt_handler’ defined but not used [-Werror=unused-function] 2978 | static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, | ^~~~~~~~~~~~~~~~ cc1: all warnings being treated as errors make[2]: *** [scripts/Makefile.build:310: kernel/sched/build_policy.o] Error 1 make[1]: *** [scripts/Makefile.build:638: kernel/sched] Error 2 make[1]: *** Waiting for unfinished jobs.... Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Baisong Zhong <zhongbaisong@huawei.com> [mcgrof: small build fix, we need sched_rt_can_attach() even when CONFIG_SYSCTL is disabled] Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Zhen Ni
|
dafd7a9dad |
sched: Move rr_timeslice sysctls to rt.c
move rr_timeslice sysctls to rt.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Zhen Ni
|
84227c1288 |
sched: Move deadline_period sysctls to deadline.c
move deadline_period sysctls to deadline.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Zhen Ni
|
d9ab0e63fa |
sched: Move rt_period/runtime sysctls to rt.c
move rt_period/runtime sysctls to rt.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Zhen Ni
|
f5ef06d58b |
sched: Move schedstats sysctls to core.c
move schedstats sysctls to core.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Zhen Ni
|
a60707d74b |
sched: Move child_runs_first sysctls to fair.c
move child_runs_first sysctls to fair.c and use the new register_sysctl_init() to register the sysctl interface. Signed-off-by: Zhen Ni <nizhen@uniontech.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> |
||
Valentin Schneider
|
cfe43f478b |
preempt/dynamic: Introduce preemption model accessors
CONFIG_PREEMPT{_NONE, _VOLUNTARY} designate either: o The build-time preemption model when !PREEMPT_DYNAMIC o The default boot-time preemption model when PREEMPT_DYNAMIC IOW, using those on PREEMPT_DYNAMIC kernels is meaningless - the actual model could have been set to something else by the "preempt=foo" cmdline parameter. Same problem applies to CONFIG_PREEMPTION. Introduce a set of helpers to determine the actual preemption model used by the live kernel. Suggested-by: Marco Elver <elver@google.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Marco Elver <elver@google.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20211112185203.280040-3-valentin.schneider@arm.com |
||
Nick Desaulniers
|
8b023accc8 |
lockdep: Fix -Wunused-parameter for _THIS_IP_
While looking into a bug related to the compiler's handling of addresses of labels, I noticed some uses of _THIS_IP_ seemed unused in lockdep. Drive by cleanup. -Wunused-parameter: kernel/locking/lockdep.c:1383:22: warning: unused parameter 'ip' kernel/locking/lockdep.c:4246:48: warning: unused parameter 'ip' kernel/locking/lockdep.c:4844:19: warning: unused parameter 'ip' Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Waiman Long <longman@redhat.com> Link: https://lore.kernel.org/r/20220314221909.2027027-1-ndesaulniers@google.com |
||
Sebastian Andrzej Siewior
|
386ef214c3 |
sched: Teach the forced-newidle balancer about CPU affinity limitation.
try_steal_cookie() looks at task_struct::cpus_mask to decide if the
task could be moved to `this' CPU. It ignores that the task might be in
a migration disabled section while not on the CPU. In this case the task
must not be moved otherwise per-CPU assumption are broken.
Use is_cpu_allowed(), as suggested by Peter Zijlstra, to decide if the a
task can be moved.
Fixes:
|
||
Peter Zijlstra
|
5b6547ed97 |
sched/core: Fix forceidle balancing
Steve reported that ChromeOS encounters the forceidle balancer being
ran from rt_mutex_setprio()'s balance_callback() invocation and
explodes.
Now, the forceidle balancer gets queued every time the idle task gets
selected, set_next_task(), which is strictly too often.
rt_mutex_setprio() also uses set_next_task() in the 'change' pattern:
queued = task_on_rq_queued(p); /* p->on_rq == TASK_ON_RQ_QUEUED */
running = task_current(rq, p); /* rq->curr == p */
if (queued)
dequeue_task(...);
if (running)
put_prev_task(...);
/* change task properties */
if (queued)
enqueue_task(...);
if (running)
set_next_task(...);
However, rt_mutex_setprio() will explicitly not run this pattern on
the idle task (since priority boosting the idle task is quite insane).
Most other 'change' pattern users are pidhash based and would also not
apply to idle.
Also, the change pattern doesn't contain a __balance_callback()
invocation and hence we could have an out-of-band balance-callback,
which *should* trigger the WARN in rq_pin_lock() (which guards against
this exact anti-pattern).
So while none of that explains how this happens, it does indicate that
having it in set_next_task() might not be the most robust option.
Instead, explicitly queue the forceidle balancer from pick_next_task()
when it does indeed result in forceidle selection. Having it here,
ensures it can only be triggered under the __schedule() rq->lock
instance, and hence must be ran from that context.
This also happens to clean up the code a little, so win-win.
Fixes:
|
||
Linus Torvalds
|
1930a6e739 |
ptrace: Cleanups for v5.18
This set of changes removes tracehook.h, moves modification of all of the ptrace fields inside of siglock to remove races, adds a missing permission check to ptrace.c The removal of tracehook.h is quite significant as it has been a major source of confusion in recent years. Much of that confusion was around task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled making the semantics clearer). For people who don't know tracehook.h is a vestiage of an attempt to implement uprobes like functionality that was never fully merged, and was later superseeded by uprobes when uprobes was merged. For many years now we have been removing what tracehook functionaly a little bit at a time. To the point where now anything left in tracehook.h is some weird strange thing that is difficult to understand. Eric W. Biederman (15): ptrace: Move ptrace_report_syscall into ptrace.h ptrace/arm: Rename tracehook_report_syscall report_syscall ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h ptrace: Remove arch_syscall_{enter,exit}_tracehook ptrace: Remove tracehook_signal_handler task_work: Remove unnecessary include from posix_timers.h task_work: Introduce task_work_pending task_work: Call tracehook_notify_signal from get_signal on all architectures task_work: Decouple TIF_NOTIFY_SIGNAL and task_work signal: Move set_notify_signal and clear_notify_signal into sched/signal.h resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume resume_user_mode: Move to resume_user_mode.h tracehook: Remove tracehook.h ptrace: Move setting/clearing ptrace_message into ptrace_stop ptrace: Return the signal to continue with from ptrace_stop Jann Horn (1): ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE Yang Li (1): ptrace: Remove duplicated include in ptrace.c MAINTAINERS | 1 - arch/Kconfig | 5 +- arch/alpha/kernel/ptrace.c | 5 +- arch/alpha/kernel/signal.c | 4 +- arch/arc/kernel/ptrace.c | 5 +- arch/arc/kernel/signal.c | 4 +- arch/arm/kernel/ptrace.c | 12 +- arch/arm/kernel/signal.c | 4 +- arch/arm64/kernel/ptrace.c | 14 +-- arch/arm64/kernel/signal.c | 4 +- arch/csky/kernel/ptrace.c | 5 +- arch/csky/kernel/signal.c | 4 +- arch/h8300/kernel/ptrace.c | 5 +- arch/h8300/kernel/signal.c | 4 +- arch/hexagon/kernel/process.c | 4 +- arch/hexagon/kernel/signal.c | 1 - arch/hexagon/kernel/traps.c | 6 +- arch/ia64/kernel/process.c | 4 +- arch/ia64/kernel/ptrace.c | 6 +- arch/ia64/kernel/signal.c | 1 - arch/m68k/kernel/ptrace.c | 5 +- arch/m68k/kernel/signal.c | 4 +- arch/microblaze/kernel/ptrace.c | 5 +- arch/microblaze/kernel/signal.c | 4 +- arch/mips/kernel/ptrace.c | 5 +- arch/mips/kernel/signal.c | 4 +- arch/nds32/include/asm/syscall.h | 2 +- arch/nds32/kernel/ptrace.c | 5 +- arch/nds32/kernel/signal.c | 4 +- arch/nios2/kernel/ptrace.c | 5 +- arch/nios2/kernel/signal.c | 4 +- arch/openrisc/kernel/ptrace.c | 5 +- arch/openrisc/kernel/signal.c | 4 +- arch/parisc/kernel/ptrace.c | 7 +- arch/parisc/kernel/signal.c | 4 +- arch/powerpc/kernel/ptrace/ptrace.c | 8 +- arch/powerpc/kernel/signal.c | 4 +- arch/riscv/kernel/ptrace.c | 5 +- arch/riscv/kernel/signal.c | 4 +- arch/s390/include/asm/entry-common.h | 1 - arch/s390/kernel/ptrace.c | 1 - arch/s390/kernel/signal.c | 5 +- arch/sh/kernel/ptrace_32.c | 5 +- arch/sh/kernel/signal_32.c | 4 +- arch/sparc/kernel/ptrace_32.c | 5 +- arch/sparc/kernel/ptrace_64.c | 5 +- arch/sparc/kernel/signal32.c | 1 - arch/sparc/kernel/signal_32.c | 4 +- arch/sparc/kernel/signal_64.c | 4 +- arch/um/kernel/process.c | 4 +- arch/um/kernel/ptrace.c | 5 +- arch/x86/kernel/ptrace.c | 1 - arch/x86/kernel/signal.c | 5 +- arch/x86/mm/tlb.c | 1 + arch/xtensa/kernel/ptrace.c | 5 +- arch/xtensa/kernel/signal.c | 4 +- block/blk-cgroup.c | 2 +- fs/coredump.c | 1 - fs/exec.c | 1 - fs/io-wq.c | 6 +- fs/io_uring.c | 11 +- fs/proc/array.c | 1 - fs/proc/base.c | 1 - include/asm-generic/syscall.h | 2 +- include/linux/entry-common.h | 47 +------- include/linux/entry-kvm.h | 2 +- include/linux/posix-timers.h | 1 - include/linux/ptrace.h | 81 ++++++++++++- include/linux/resume_user_mode.h | 64 ++++++++++ include/linux/sched/signal.h | 17 +++ include/linux/task_work.h | 5 + include/linux/tracehook.h | 226 ----------------------------------- include/uapi/linux/ptrace.h | 2 +- kernel/entry/common.c | 19 +-- kernel/entry/kvm.c | 9 +- kernel/exit.c | 3 +- kernel/livepatch/transition.c | 1 - kernel/ptrace.c | 47 +++++--- kernel/seccomp.c | 1 - kernel/signal.c | 62 +++++----- kernel/task_work.c | 4 +- kernel/time/posix-cpu-timers.c | 1 + mm/memcontrol.c | 2 +- security/apparmor/domain.c | 1 - security/selinux/hooks.c | 1 - 85 files changed, 372 insertions(+), 495 deletions(-) Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmJCQkoACgkQC/v6Eiaj j0DCWQ/5AZVFU+hX32obUNCLackHTwgcCtSOs3JNBmNA/zL/htPiYYG0ghkvtlDR Dw5J5DnxC6P7PVAdAqrpvx2uX2FebHYU0bRlyLx8LYUEP5dhyNicxX9jA882Z+vw Ud0Ue9EojwGWS76dC9YoKUj3slThMATbhA2r4GVEoof8fSNJaBxQIqath44t0FwU DinWa+tIOvZANGBZr6CUUINNIgqBIZCH/R4h6ArBhMlJpuQ5Ufk2kAaiWFwZCkX4 0LuuAwbKsCKkF8eap5I2KrIg/7zZVgxAg9O3cHOzzm8OPbKzRnNnQClcDe8perqp S6e/f3MgpE+eavd1EiLxevZ660cJChnmikXVVh8ZYYoefaMKGqBaBSsB38bNcLjY 3+f2dB+TNBFRnZs1aCujK3tWBT9QyjZDKtCBfzxDNWBpXGLhHH6j6lA5Lj+Cef5K /HNHFb+FuqedlFZh5m1Y+piFQ70hTgCa2u8b+FSOubI2hW9Zd+WzINV0ANaZ2LvZ 4YGtcyDNk1q1+c87lxP9xMRl/xi6rNg+B9T2MCo4IUnHgpSVP6VEB3osgUmrrrN0 eQlUI154G/AaDlqXLgmn1xhRmlPGfmenkxpok1AuzxvNJsfLKnpEwQSc13g3oiZr disZQxNY0kBO2Nv3G323Z6PLinhbiIIFez6cJzK5v0YJ2WtO3pY= =uEro -----END PGP SIGNATURE----- Merge tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull ptrace cleanups from Eric Biederman: "This set of changes removes tracehook.h, moves modification of all of the ptrace fields inside of siglock to remove races, adds a missing permission check to ptrace.c The removal of tracehook.h is quite significant as it has been a major source of confusion in recent years. Much of that confusion was around task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled making the semantics clearer). For people who don't know tracehook.h is a vestiage of an attempt to implement uprobes like functionality that was never fully merged, and was later superseeded by uprobes when uprobes was merged. For many years now we have been removing what tracehook functionaly a little bit at a time. To the point where anything left in tracehook.h was some weird strange thing that was difficult to understand" * tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: ptrace: Remove duplicated include in ptrace.c ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE ptrace: Return the signal to continue with from ptrace_stop ptrace: Move setting/clearing ptrace_message into ptrace_stop tracehook: Remove tracehook.h resume_user_mode: Move to resume_user_mode.h resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume signal: Move set_notify_signal and clear_notify_signal into sched/signal.h task_work: Decouple TIF_NOTIFY_SIGNAL and task_work task_work: Call tracehook_notify_signal from get_signal on all architectures task_work: Introduce task_work_pending task_work: Remove unnecessary include from posix_timers.h ptrace: Remove tracehook_signal_handler ptrace: Remove arch_syscall_{enter,exit}_tracehook ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h ptrace/arm: Rename tracehook_report_syscall report_syscall ptrace: Move ptrace_report_syscall into ptrace.h |
||
Linus Torvalds
|
3bf03b9a08 |
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton: - A few misc subsystems: kthread, scripts, ntfs, ocfs2, block, and vfs - Most the MM patches which precede the patches in Willy's tree: kasan, pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap, sparsemem, vmalloc, pagealloc, memory-failure, mlock, hugetlb, userfaultfd, vmscan, compaction, mempolicy, oom-kill, migration, thp, cma, autonuma, psi, ksm, page-poison, madvise, memory-hotplug, rmap, zswap, uaccess, ioremap, highmem, cleanups, kfence, hmm, and damon. * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (227 commits) mm/damon/sysfs: remove repeat container_of() in damon_sysfs_kdamond_release() Docs/ABI/testing: add DAMON sysfs interface ABI document Docs/admin-guide/mm/damon/usage: document DAMON sysfs interface selftests/damon: add a test for DAMON sysfs interface mm/damon/sysfs: support DAMOS stats mm/damon/sysfs: support DAMOS watermarks mm/damon/sysfs: support schemes prioritization mm/damon/sysfs: support DAMOS quotas mm/damon/sysfs: support DAMON-based Operation Schemes mm/damon/sysfs: support the physical address space monitoring mm/damon/sysfs: link DAMON for virtual address spaces monitoring mm/damon: implement a minimal stub for sysfs-based DAMON interface mm/damon/core: add number of each enum type values mm/damon/core: allow non-exclusive DAMON start/stop Docs/damon: update outdated term 'regions update interval' Docs/vm/damon/design: update DAMON-Idle Page Tracking interference handling Docs/vm/damon: call low level monitoring primitives the operations mm/damon: remove unnecessary CONFIG_DAMON option mm/damon/paddr,vaddr: remove damon_{p,v}a_{target_valid,set_operations}() mm/damon/dbgfs-test: fix is_target_id() change ... |
||
Huang Ying
|
c574bbe917 |
NUMA balancing: optimize page placement for memory tiering system
With the advent of various new memory types, some machines will have multiple types of memory, e.g. DRAM and PMEM (persistent memory). The memory subsystem of these machines can be called memory tiering system, because the performance of the different types of memory are usually different. In such system, because of the memory accessing pattern changing etc, some pages in the slow memory may become hot globally. So in this patch, the NUMA balancing mechanism is enhanced to optimize the page placement among the different memory types according to hot/cold dynamically. In a typical memory tiering system, there are CPUs, fast memory and slow memory in each physical NUMA node. The CPUs and the fast memory will be put in one logical node (called fast memory node), while the slow memory will be put in another (faked) logical node (called slow memory node). That is, the fast memory is regarded as local while the slow memory is regarded as remote. So it's possible for the recently accessed pages in the slow memory node to be promoted to the fast memory node via the existing NUMA balancing mechanism. The original NUMA balancing mechanism will stop to migrate pages if the free memory of the target node becomes below the high watermark. This is a reasonable policy if there's only one memory type. But this makes the original NUMA balancing mechanism almost do not work to optimize page placement among different memory types. Details are as follows. It's the common cases that the working-set size of the workload is larger than the size of the fast memory nodes. Otherwise, it's unnecessary to use the slow memory at all. So, there are almost always no enough free pages in the fast memory nodes, so that the globally hot pages in the slow memory node cannot be promoted to the fast memory node. To solve the issue, we have 2 choices as follows, a. Ignore the free pages watermark checking when promoting hot pages from the slow memory node to the fast memory node. This will create some memory pressure in the fast memory node, thus trigger the memory reclaiming. So that, the cold pages in the fast memory node will be demoted to the slow memory node. b. Define a new watermark called wmark_promo which is higher than wmark_high, and have kswapd reclaiming pages until free pages reach such watermark. The scenario is as follows: when we want to promote hot-pages from a slow memory to a fast memory, but fast memory's free pages would go lower than high watermark with such promotion, we wake up kswapd with wmark_promo watermark in order to demote cold pages and free us up some space. So, next time we want to promote hot-pages we might have a chance of doing so. The choice "a" may create high memory pressure in the fast memory node. If the memory pressure of the workload is high, the memory pressure may become so high that the memory allocation latency of the workload is influenced, e.g. the direct reclaiming may be triggered. The choice "b" works much better at this aspect. If the memory pressure of the workload is high, the hot pages promotion will stop earlier because its allocation watermark is higher than that of the normal memory allocation. So in this patch, choice "b" is implemented. A new zone watermark (WMARK_PROMO) is added. Which is larger than the high watermark and can be controlled via watermark_scale_factor. In addition to the original page placement optimization among sockets, the NUMA balancing mechanism is extended to be used to optimize page placement according to hot/cold among different memory types. So the sysctl user space interface (numa_balancing) is extended in a backward compatible way as follow, so that the users can enable/disable these functionality individually. The sysctl is converted from a Boolean value to a bits field. The definition of the flags is, - 0: NUMA_BALANCING_DISABLED - 1: NUMA_BALANCING_NORMAL - 2: NUMA_BALANCING_MEMORY_TIERING We have tested the patch with the pmbench memory accessing benchmark with the 80:20 read/write ratio and the Gauss access address distribution on a 2 socket Intel server with Optane DC Persistent Memory Model. The test results shows that the pmbench score can improve up to 95.9%. Thanks Andrew Morton to help fix the document format error. Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Wei Xu <weixugc@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Feng Tang <feng.tang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
3fe2f7446f |
Changes in this cycle were:
- Cleanups for SCHED_DEADLINE - Tracing updates/fixes - CPU Accounting fixes - First wave of changes to optimize the overhead of the scheduler build, from the fast-headers tree - including placeholder *_api.h headers for later header split-ups. - Preempt-dynamic using static_branch() for ARM64 - Isolation housekeeping mask rework; preperatory for further changes - NUMA-balancing: deal with CPU-less nodes - NUMA-balancing: tune systems that have multiple LLC cache domains per node (eg. AMD) - Updates to RSEQ UAPI in preparation for glibc usage - Lots of RSEQ/selftests, for same - Add Suren as PSI co-maintainer Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI5rg8RHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1hGrw/+M3QOk6fH7G48wjlNnBvcOife6ls+Ni4k ixOAcF4JKoixO8HieU5vv0A7yf/83tAa6fpeXeMf1hkCGc0NSlmLtuIux+WOmoAL LzCyDEYfiP8KnVh0A1Tui/lK0+AkGo21O6ADhQE2gh8o2LpslOHQMzvtyekSzeeb mVxMYQN+QH0m518xdO2D8IQv9ctOYK0eGjmkqdNfntOlytypPZHeNel/tCzwklP/ dElJUjNiSKDlUgTBPtL3DfpoLOI/0mHF2p6NEXvNyULxSOqJTu8pv9Z2ADb2kKo1 0D56iXBDngMi9MHIJLgvzsA8gKzHLFSuPbpODDqkTZCa28vaMB9NYGhJ643NtEie IXTJEvF1rmNkcLcZlZxo0yjL0fjvPkczjw4Vj27gbrUQeEBfb4mfuI4BRmij63Ep qEkgQTJhduCqqrQP1rVyhwWZRk1JNcVug+F6N42qWW3fg1xhj0YSrLai2c9nPez6 3Zt98H8YGS1Z/JQomSw48iGXVqfTp/ETI7uU7jqHK8QcjzQ4lFK5H4GZpwuqGBZi NJJ1l97XMEas+rPHiwMEN7Z1DVhzJLCp8omEj12QU+tGLofxxwAuuOVat3CQWLRk f80Oya3TLEgd22hGIKDRmHa22vdWnNQyS0S15wJotawBzQf+n3auS9Q3/rh979+t ES/qvlGxTIs= =Z8uT -----END PGP SIGNATURE----- Merge tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Cleanups for SCHED_DEADLINE - Tracing updates/fixes - CPU Accounting fixes - First wave of changes to optimize the overhead of the scheduler build, from the fast-headers tree - including placeholder *_api.h headers for later header split-ups. - Preempt-dynamic using static_branch() for ARM64 - Isolation housekeeping mask rework; preperatory for further changes - NUMA-balancing: deal with CPU-less nodes - NUMA-balancing: tune systems that have multiple LLC cache domains per node (eg. AMD) - Updates to RSEQ UAPI in preparation for glibc usage - Lots of RSEQ/selftests, for same - Add Suren as PSI co-maintainer * tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (81 commits) sched/headers: ARM needs asm/paravirt_api_clock.h too sched/numa: Fix boot crash on arm64 systems headers/prep: Fix header to build standalone: <linux/psi.h> sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y cgroup: Fix suspicious rcu_dereference_check() usage warning sched/preempt: Tell about PREEMPT_DYNAMIC on kernel headers sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity() sched/deadline,rt: Remove unused functions for !CONFIG_SMP sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy() sched/deadline: Move bandwidth mgmt and reclaim functions into sched class source file sched/deadline: Remove unused def_dl_bandwidth sched/tracing: Report TASK_RTLOCK_WAIT tasks as TASK_UNINTERRUPTIBLE sched/tracing: Don't re-read p->state when emitting sched_switch event sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race sched/cpuacct: Remove redundant RCU read lock sched/cpuacct: Optimize away RCU read lock sched/cpuacct: Fix charge percpu cpuusage sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h dependencies ... |
||
Huang, Ying
|
ab31c7fd2d |
sched/numa: Fix boot crash on arm64 systems
Qian Cai reported a boot crash on arm64 systems, caused by: |
||
Linus Torvalds
|
616355cc81 |
for-5.18/block-2022-03-18
-----BEGIN PGP SIGNATURE----- iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmI0+GcQHGF4Ym9lQGtl cm5lbC5kawAKCRD301j7KXHgprUpD/9aTJEnj7VCw7UouSsg098sdjtoy9ilslU3 ew47K8CIXHbCB4CDqLnFyvCwAdG1XGgS+fUmFAxvTr29R9SZeS5d+bXL6sZzEo0C bwxsJy9MM2QRtMvB+giAt1myXbwB8cG+ketMBWXqwXXRHRzPbbQfMZia7FqWMnfY KQanH9IwYHp1oa5U/W6Qcjm4oCnLgBMRwqByzUCtiF3y9qgaLkK+3IgkNwjJQjLA DTeUJ/9CgxGQQbzA+LPktbw2xfTqiUfcKq0mWx6Zt4wwNXn1ClqUDUXX6QSM8/5u 3OimbscSkEPPTIYZbVBPkhFnAlQb4JaJEgOrbXvYKVV2Dh+eZY81XwNeE/E8gdBY TnHOTOCjkN/4sR3hIrWazlJzPLdpPA0eOYrhguCraQsX9mcsYNxlJ9otRv/Ve99g uqL0RZg3+NoK84fm79FCGy/ZmPQJvJttlBT9CKVwylv/Lky42xWe7AdM3OipKluY 2nh+zN5Ai7WxZdTKXQFRhCSWfWQ+1qW51tB3dcGW+BooZr/oox47qKQVcHsEWbq1 RNR45F5a4AuPwYUHF/P36WviLnEuq9AvX7OTTyYOplyVQohKIoDXp9chVzLNzBiZ KBR00W6MLKKKN+8foalQWgNyb2i2PH7Ib4xRXvXj/22Vwxg5UmUoBmSDSas9SZUS +dMo7CtNgA== =DpgP -----END PGP SIGNATURE----- Merge tag 'for-5.18/block-2022-03-18' of git://git.kernel.dk/linux-block Pull block updates from Jens Axboe: - BFQ cleanups and fixes (Yu, Zhang, Yahu, Paolo) - blk-rq-qos completion fix (Tejun) - blk-cgroup merge fix (Tejun) - Add offline error return value to distinguish it from an IO error on the device (Song) - IO stats fixes (Zhang, Christoph) - blkcg refcount fixes (Ming, Yu) - Fix for indefinite dispatch loop softlockup (Shin'ichiro) - blk-mq hardware queue management improvements (Ming) - sbitmap dead code removal (Ming, John) - Plugging merge improvements (me) - Show blk-crypto capabilities in sysfs (Eric) - Multiple delayed queue run improvement (David) - Block throttling fixes (Ming) - Start deprecating auto module loading based on dev_t (Christoph) - bio allocation improvements (Christoph, Chaitanya) - Get rid of bio_devname (Christoph) - bio clone improvements (Christoph) - Block plugging improvements (Christoph) - Get rid of genhd.h header (Christoph) - Ensure drivers use appropriate flush helpers (Christoph) - Refcounting improvements (Christoph) - Queue initialization and teardown improvements (Ming, Christoph) - Misc fixes/improvements (Barry, Chaitanya, Colin, Dan, Jiapeng, Lukas, Nian, Yang, Eric, Chengming) * tag 'for-5.18/block-2022-03-18' of git://git.kernel.dk/linux-block: (127 commits) block: cancel all throttled bios in del_gendisk() block: let blkcg_gq grab request queue's refcnt block: avoid use-after-free on throttle data block: limit request dispatch loop duration block/bfq-iosched: Fix spelling mistake "tenative" -> "tentative" sr: simplify the local variable initialization in sr_block_open() block: don't merge across cgroup boundaries if blkcg is enabled block: fix rq-qos breakage from skipping rq_qos_done_bio() block: flush plug based on hardware and software queue order block: ensure plug merging checks the correct queue at least once block: move rq_qos_exit() into disk_release() block: do more work in elevator_exit block: move blk_exit_queue into disk_release block: move q_usage_counter release into blk_queue_release block: don't remove hctx debugfs dir from blk_mq_exit_queue block: move blkcg initialization/destroy into disk allocation/release handler sr: implement ->free_disk to simplify refcounting sd: implement ->free_disk to simplify refcounting sd: delay calling free_opal_dev sd: call sd_zbc_release_disk before releasing the scsi_device reference ... |
||
Ingo Molnar
|
a7b2553b5e |
sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y
This header is not (yet) standalone. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
ccacfe56d7 |
Merge branch 'sched/fast-headers' into sched/core
Merge the scheduler build speedup of the fast-headers tree. Cumulative scheduler (kernel/sched/) build time speedup on a Linux distribution's config, which enables all scheduler features, compared to the vanilla kernel: _____________________________________________________________________________ | | Vanilla kernel (v5.13-rc7): |_____________________________________________________________________________ | | Performance counter stats for 'make -j96 kernel/sched/' (3 runs): | | 126,975,564,374 instructions # 1.45 insn per cycle ( +- 0.00% ) | 87,637,847,671 cycles # 3.959 GHz ( +- 0.30% ) | 22,136.96 msec cpu-clock # 7.499 CPUs utilized ( +- 0.29% ) | | 2.9520 +- 0.0169 seconds time elapsed ( +- 0.57% ) |_____________________________________________________________________________ | | Patched kernel: |_____________________________________________________________________________ | | Performance counter stats for 'make -j96 kernel/sched/' (3 runs): | | 50,420,496,914 instructions # 1.47 insn per cycle ( +- 0.00% ) | 34,234,322,038 cycles # 3.946 GHz ( +- 0.31% ) | 8,675.81 msec cpu-clock # 3.053 CPUs utilized ( +- 0.45% ) | | 2.8420 +- 0.0181 seconds time elapsed ( +- 0.64% ) |_____________________________________________________________________________ Summary: - CPU time used to build the scheduler dropped by -60.9%, a reduction from 22.1 clock-seconds to 8.7 clock-seconds. - Wall-clock time to build the scheduler dropped by -3.9%, a reduction from 2.95 seconds to 2.84 seconds. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
K Prateek Nayak
|
7f434dff76 |
sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains
While investigating the sparse warning reported by the LKP bot [1], observed that we have a redundant variable "top" in the function build_sched_domains that was introduced in the recent commit |
||
Dietmar Eggemann
|
821aecd09e |
sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity()
The `struct rq *rq` parameter isn't used. Remove it. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-7-dietmar.eggemann@arm.com |
||
Dietmar Eggemann
|
71d29747b0 |
sched/deadline,rt: Remove unused functions for !CONFIG_SMP
The need_pull_[rt|dl]_task() and pull_[rt|dl]_task() functions are not used on a !CONFIG_SMP system. Remove them. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-6-dietmar.eggemann@arm.com |
||
Dietmar Eggemann
|
f4478e7c85 |
sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently
Deploy __node_2_pdl(node), __node_2_dle(node) and rb_first_cached() consistently throughout the sched class source file which makes the code at least easier to read. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-5-dietmar.eggemann@arm.com |
||
Dietmar Eggemann
|
772b6539fd |
sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
Both functions are doing almost the same, that is checking if admission control is still respected. With exclusive cpusets, dl_task_can_attach() checks if the destination cpuset (i.e. its root domain) has enough CPU capacity to accommodate the task. dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in case the CPU is hot-plugged out. dl_task_can_attach() is used to check if a task can be admitted while dl_cpu_busy() is used to check if a CPU can be hotplugged out. Make dl_cpu_busy() able to deal with a task and use it instead of dl_task_can_attach() in task_can_attach(). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com |