Pull kvm fixes from Paolo Bonzini:
"ARM:
- fix fault on page table writes during instruction fetch
s390:
- doc improvement
x86:
- The obvious patches are always the ones that turn out to be
completely broken. /me hangs his head in shame"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
Revert "KVM: Check the allocation of pv cpu mask"
KVM: arm64: Remove S1PTW check from kvm_vcpu_dabt_iswrite()
KVM: arm64: Assume write fault on S1PTW permission fault on instruction fetch
docs: kvm: add documentation for KVM_CAP_S390_DIAG318
KVM currently assumes that an instruction abort can never be a write.
This is in general true, except when the abort is triggered by
a S1PTW on instruction fetch that tries to update the S1 page tables
(to set AF, for example).
This can happen if the page tables have been paged out and brought
back in without seeing a direct write to them (they are thus marked
read only), and the fault handling code will make the PT executable(!)
instead of writable. The guest gets stuck forever.
In these conditions, the permission fault must be considered as
a write so that the Stage-1 update can take place. This is essentially
the I-side equivalent of the problem fixed by 60e21a0ef5 ("arm64: KVM:
Take S1 walks into account when determining S2 write faults").
Update kvm_is_write_fault() to return true on IABT+S1PTW, and introduce
kvm_vcpu_trap_is_exec_fault() that only return true when no faulting
on a S1 fault. Additionally, kvm_vcpu_dabt_iss1tw() is renamed to
kvm_vcpu_abt_iss1tw(), as the above makes it plain that it isn't
specific to data abort.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Will Deacon <will@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200915104218.1284701-2-maz@kernel.org
Fix following warnings caused by mismatch bewteen function parameters
and comments.
arch/arm64/kvm/mmu.c:128: warning: Function parameter or member 'mmu' not described in '__unmap_stage2_range'
arch/arm64/kvm/mmu.c:128: warning: Function parameter or member 'may_block' not described in '__unmap_stage2_range'
arch/arm64/kvm/mmu.c:128: warning: Excess function parameter 'kvm' description in '__unmap_stage2_range'
arch/arm64/kvm/mmu.c:499: warning: Function parameter or member 'writable' not described in 'kvm_phys_addr_ioremap'
arch/arm64/kvm/mmu.c:538: warning: Function parameter or member 'mmu' not described in 'stage2_wp_range'
arch/arm64/kvm/mmu.c:538: warning: Excess function parameter 'kvm' description in 'stage2_wp_range'
Signed-off-by: Xiaofei Tan <tanxiaofei@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/1600307269-50957-1-git-send-email-tanxiaofei@huawei.com
As a result of a KVM_SET_USER_MEMORY_REGION ioctl, KVM flushes the
dcache for the memslot being changed to ensure a consistent view of memory
between the host and the guest: the host runs with caches enabled, and
it is possible for the data written by the hypervisor to still be in the
caches, but the guest is running with stage 1 disabled, meaning data
accesses are to Device-nGnRnE memory, bypassing the caches entirely.
Flushing the dcache is not necessary when KVM enables FWB, because it
forces the guest to uses cacheable memory accesses.
The current behaviour does not change, as the dcache flush helpers execute
the cache operation only if FWB is not enabled, but walking the stage 2
table is avoided.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200915170442.131635-1-alexandru.elisei@arm.com
When userspace uses hugetlbfs for the VM memory, user_mem_abort() tries to
use the same block size to map the faulting IPA in stage 2. If stage 2
cannot the same block mapping because the block size doesn't fit in the
memslot or the memslot is not properly aligned, user_mem_abort() will fall
back to a page mapping, regardless of the block size. We can do better for
PUD backed hugetlbfs by checking if a PMD block mapping is supported before
deciding to use a page.
vma_pagesize is an unsigned long, use 1UL instead of 1ULL when assigning
its value.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200910133351.118191-1-alexandru.elisei@arm.com
The host need not concern itself with the pointer differences for the
hyp interfaces that are shared between VHE and nVHE so leave it to the
hyp to handle.
As the SMCCC function IDs are converted into function calls, it is a
suitable place to also convert any pointer arguments into hyp pointers.
This, additionally, eases the reuse of the handlers in different
contexts.
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200915104643.2543892-20-ascull@google.com
To complete the transition to SMCCC, the hyp initialization is given a
function ID. This looks neater than comparing the hyp stub function IDs
to the page table physical address.
Some care is taken to only clobber x0-3 before the host context is saved
as only those registers can be clobbered accoring to SMCCC. Fortunately,
only a few acrobatics are needed. The possible new tpidr_el2 is moved to
the argument in x2 so that it can be stashed in tpidr_el2 early to free
up a scratch register. The page table configuration then makes use of
x0-2.
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200915104643.2543892-19-ascull@google.com
Rather than passing arbitrary function pointers to run at hyp, define
and equivalent set of SMCCC functions.
Since the SMCCC functions are strongly tied to the original function
prototypes, it is not expected for the host to ever call an invalid ID
but a warning is raised if this does ever occur.
As __kvm_vcpu_run is used for every switch between the host and a guest,
it is explicitly singled out to be identified before the other function
IDs to improve the performance of the hot path.
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200915104643.2543892-18-ascull@google.com
Restore the host context when panicking from hyp to give the best chance
of the panic being clean.
The host requires that registers be preserved such as x18 for the shadow
callstack. If the panic is caused by an exception from EL1, the host
context is still valid so the panic can return straight back to the
host. If the panic comes from EL2 then it's most likely that the hyp
context is active and the host context needs to be restored.
There are windows before and after the host context is saved and
restored that restoration is attempted incorrectly and the panic won't
be clean.
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200915104643.2543892-14-ascull@google.com
Save and restore the host context when switching to and from hyp. This
gives hyp its own context that the host will not see as a step towards a
full trust boundary between the two.
SP_EL0 and pointer authentication keys are currently shared between the
host and hyp so don't need to be switched yet.
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200915104643.2543892-13-ascull@google.com
If the guest context is loaded when a panic is triggered, restore the
hyp context so e.g. the shadow call stack works when hyp_panic() is
called and SP_EL0 is valid when the host's panic() is called.
Use the hyp context's __hyp_running_vcpu field to track when hyp
transitions to and from the guest vcpu so the exception handlers know
whether the context needs to be restored.
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200915104643.2543892-11-ascull@google.com
The ESB at the start of the host vector may cause SErrors to be consumed
to DISR_EL1. However, this is not checked for the host so the SError
could go unhandled.
Remove the ESB so that SErrors are not consumed but are instead left
pending for the host to consume. __guest_enter already defers entry into
a guest if there are any SErrors pending.
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20200915104643.2543892-8-ascull@google.com
The host is treated differently from the guests when an exception is
taken so introduce a separate vector that is specialized for the host.
This also allows the nVHE specific code to move out of hyp-entry.S and
into nvhe/host.S.
The host is only expected to make HVC calls and anything else is
considered invalid and results in a panic.
Hyp initialization is now passed the vector that is used for the host
and it is swapped for the guest vector during the context switch.
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200915104643.2543892-7-ascull@google.com
Introduce a percpu variable to hold the address of the selected hyp
vector that will be used with guests. This avoids the selection process
each time a guest is being entered and can be used by nVHE when a
separate vector is introduced for the host.
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200915104643.2543892-6-ascull@google.com
The __activate_vm wrapper serves no useful function and has a misleading
name as it simply calls __load_guest_stage2 and does not touch
HCR_EL2.VM so remove it.
Also rename __deactivate_vm to __load_host_stage2 to match naming
pattern.
Signed-off-by: Andrew Scull <ascull@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200915104643.2543892-2-ascull@google.com
Pull kvm fixes from Paolo Bonzini:
"A bit on the bigger side, mostly due to me being on vacation, then
busy, then on parental leave, but there's nothing worrisome.
ARM:
- Multiple stolen time fixes, with a new capability to match x86
- Fix for hugetlbfs mappings when PUD and PMD are the same level
- Fix for hugetlbfs mappings when PTE mappings are enforced (dirty
logging, for example)
- Fix tracing output of 64bit values
x86:
- nSVM state restore fixes
- Async page fault fixes
- Lots of small fixes everywhere"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits)
KVM: emulator: more strict rsm checks.
KVM: nSVM: more strict SMM checks when returning to nested guest
SVM: nSVM: setup nested msr permission bitmap on nested state load
SVM: nSVM: correctly restore GIF on vmexit from nesting after migration
x86/kvm: don't forget to ACK async PF IRQ
x86/kvm: properly use DEFINE_IDTENTRY_SYSVEC() macro
KVM: VMX: Don't freeze guest when event delivery causes an APIC-access exit
KVM: SVM: avoid emulation with stale next_rip
KVM: x86: always allow writing '0' to MSR_KVM_ASYNC_PF_EN
KVM: SVM: Periodically schedule when unregistering regions on destroy
KVM: MIPS: Change the definition of kvm type
kvm x86/mmu: use KVM_REQ_MMU_SYNC to sync when needed
KVM: nVMX: Fix the update value of nested load IA32_PERF_GLOBAL_CTRL control
KVM: fix memory leak in kvm_io_bus_unregister_dev()
KVM: Check the allocation of pv cpu mask
KVM: nVMX: Update VMCS02 when L2 PAE PDPTE updates detected
KVM: arm64: Update page shift if stage 2 block mapping not supported
KVM: arm64: Fix address truncation in traces
KVM: arm64: Do not try to map PUDs when they are folded into PMD
arm64/x86: KVM: Introduce steal-time cap
...
KVM/arm64 fixes for Linux 5.9, take #1
- Multiple stolen time fixes, with a new capability to match x86
- Fix for hugetlbfs mappings when PUD and PMD are the same level
- Fix for hugetlbfs mappings when PTE mappings are enforced
(dirty logging, for example)
- Fix tracing output of 64bit values
The KVM page-table code is intricately tied into the kernel page-table
code and re-uses the pte/pmd/pud/p4d/pgd macros directly in an attempt
to reduce code duplication. Unfortunately, the reality is that there is
an awful lot of code required to make this work, and at the end of the
day you're limited to creating page-tables with the same configuration
as the host kernel. Furthermore, lifting the page-table code to run
directly at EL2 on a non-VHE system (as we plan to to do in future
patches) is practically impossible due to the number of dependencies it
has on the core kernel.
Introduce a framework for walking Armv8 page-tables configured
independently from the host kernel.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20200911132529.19844-3-will@kernel.org