By the time we start using the has_vhe() helper, we have long
discovered whether we are running VHE or not. It thus makes
sense to use cpus_have_final_cap() instead of cpus_have_const_cap(),
which leads to a small text size reduction.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: David Brazdil <dbrazdil@google.com>
Link: https://lore.kernel.org/r/20200513103828.74580-1-maz@kernel.org
Now that this function isn't constrained by the 32bit PCS,
let's simplify it by taking a single 64bit offset instead
of two 32bit parameters.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Two new stats for exposing halt-polling cpu usage:
halt_poll_success_ns
halt_poll_fail_ns
Thus sum of these 2 stats is the total cpu time spent polling. "success"
means the VCPU polled until a virtual interrupt was delivered. "fail"
means the VCPU had to schedule out (either because the maximum poll time
was reached or it needed to yield the CPU).
To avoid touching every arch's kvm_vcpu_stat struct, only update and
export halt-polling cpu usage stats if we're on x86.
Exporting cpu usage as a u64 and in nanoseconds means we will overflow at
~500 years, which seems reasonably large.
Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Jon Cargille <jcargill@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200508182240.68440-1-jcargill@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
POSIX defines faccessat() as having a fourth "flags" argument, while the
linux syscall doesn't have it. Glibc tries to emulate AT_EACCESS and
AT_SYMLINK_NOFOLLOW, but AT_EACCESS emulation is broken.
Add a new faccessat(2) syscall with the added flags argument and implement
both flags.
The value of AT_EACCESS is defined in glibc headers to be the same as
AT_REMOVEDIR. Use this value for the kernel interface as well, together
with the explanatory comment.
Also add AT_EMPTY_PATH support, which is not documented by POSIX, but can
be useful and is trivial to implement.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
When setting PTE_MAYBE_GP we check system_supports_bti() but this is
true for systems where only CONFIG_BTI is set causing us to enable BTI
on some kernel text. Add an extra check for the kernel mode option,
using an ifdef due to line length.
Fixes: c8027285e3 ("arm64: Set GP bit in kernel page tables to enable BTI for the kernel")
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20200512113950.29996-1-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Recently arm64 linux kernel added support for Armv8.3-A Pointer
Authentication feature. If this feature is enabled in the kernel and the
hardware supports address authentication then the return addresses are
signed and stored in the stack to prevent ROP kind of attack. Kdump tool
will now dump the kernel with signed lr values in the stack.
Any user analysis tool for this kernel dump may need the kernel pac mask
information in vmcoreinfo to generate the correct return address for
stacktrace purpose as well as to resolve the symbol name.
This patch is similar to commit ec6e822d1a ("arm64: expose user PAC
bit positions via ptrace") which exposes pac mask information via ptrace
interfaces.
The config gaurd ARM64_PTR_AUTH is removed form asm/compiler.h so macros
like ptrauth_kernel_pac_mask can be used ungaurded. This config protection
is confusing as the pointer authentication feature may be missing at
runtime even though this config is present.
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/1589202116-18265-1-git-send-email-amit.kachhap@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
ELF files built for BTI should have a program property note section which
identifies them as such. The linker expects to find this note in all
object files it is linking into a BTI annotated output, the compiler will
ensure that this happens for C files but for assembler files we need to do
this in the source so provide a macro which can be used for this purpose.
To support likely future requirements for additional notes we split the
defininition of the flags to set for BTI code from the macro that creates
the note itself.
This is mainly for use in the vDSO which should be a normal ELF shared
library and should therefore include BTI annotations when built for BTI.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20200506195138.22086-9-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Now that the kernel is built with BTI annotations enable the feature by
setting the GP bit in the stage 1 translation tables. This is done
based on the features supported by the boot CPU so that we do not need
to rewrite the translation tables.
In order to avoid potential issues on big.LITTLE systems when there are
a mix of BTI and non-BTI capable CPUs in the system when we have enabled
kernel mode BTI we change BTI to be a _STRICT_BOOT_CPU_FEATURE when we
have kernel BTI. This will prevent any CPUs that don't support BTI
being started if the boot CPU supports BTI rather than simply not using
BTI as we do when supporting BTI only in userspace. The main concern is
the possibility of BTYPE being preserved by a CPU that does not
implement BTI when a thread is migrated to it resulting in an incorrect
state which could generate an exception when the thread migrates back to
a CPU that does support BTI. If we encounter practical systems which
mix BTI and non-BTI CPUs we will need to revisit this implementation.
Since we currently do not generate landing pads in the BPF JIT we only
map the base kernel text in this way.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20200506195138.22086-5-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
When the kernel is built for BTI override SYM_FUNC_START and related macros
to add a BTI landing pad to the start of all global functions, ensuring that
they are BTI safe. The ; at the end of the BTI_x macros is for the
benefit of the macro-generated functions in xen-hypercall.S.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20200506195138.22086-4-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
flush_icache_range() contains a bodge to avoid issuing IPIs when the kgdb
trap handler is running because issuing IPIs is unsafe (and not needed)
in this execution context. However the current test, based on
kgdb_connected is flawed: it both over-matches and under-matches.
The over match occurs because kgdb_connected is set when gdb attaches
to the stub and remains set during normal running. This is relatively
harmelss because in almost all cases irq_disabled() will be false.
The under match is more serious. When kdb is used instead of kgdb to access
the debugger then kgdb_connected is not set in all the places that the
debug core updates sw breakpoints (and hence flushes the icache). This
can lead to deadlock.
Fix by replacing the ad-hoc check with the proper kgdb macro. This also
allows us to drop the #ifdef wrapper.
Fixes: 3b8c9f1cdf ("arm64: IPI each CPU after invalidating the I-cache for kernel mappings")
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20200504170518.2959478-1-daniel.thompson@linaro.org
Signed-off-by: Will Deacon <will@kernel.org>
Merge in dependencies for in-kernel Branch Target Identification support.
* for-next/asm:
arm64: Disable old style assembly annotations
arm64: kernel: Convert to modern annotations for assembly functions
arm64: entry: Refactor and modernise annotation for ret_to_user
x86/asm: Provide a Kconfig symbol for disabling old assembly annotations
x86/32: Remove CONFIG_DOUBLEFAULT
* for-next/insn:
arm64: insn: Report PAC and BTI instructions as skippable
arm64: insn: Don't assume unrecognized HINTs are skippable
arm64: insn: Provide a better name for aarch64_insn_is_nop()
arm64: insn: Add constants for new HINT instruction decode
Merge in user support for Branch Target Identification, which narrowly
missed the cut for 5.7 after a late ABI concern.
* for-next/bti-user:
arm64: bti: Document behaviour for dynamically linked binaries
arm64: elf: Fix allnoconfig kernel build with !ARCH_USE_GNU_PROPERTY
arm64: BTI: Add Kconfig entry for userspace BTI
mm: smaps: Report arm64 guarded pages in smaps
arm64: mm: Display guarded pages in ptdump
KVM: arm64: BTI: Reset BTYPE when skipping emulated instructions
arm64: BTI: Reset BTYPE when skipping emulated instructions
arm64: traps: Shuffle code to eliminate forward declarations
arm64: unify native/compat instruction skipping
arm64: BTI: Decode BYTPE bits when printing PSTATE
arm64: elf: Enable BTI at exec based on ELF program properties
elf: Allow arch to tweak initial mmap prot flags
arm64: Basic Branch Target Identification support
ELF: Add ELF program property parsing support
ELF: UAPI and Kconfig additions for ELF program properties
Some system registers contain an index in the name (e.g. ID_MMFR<n>_EL1)
and, while this index often follows the register encoding, newer additions
to the architecture are necessarily tacked on the end. Sorting these
registers by encoding therefore becomes a bit of a mess.
Group the indexed system register definitions by name so that it's easier to
read and will hopefully reduce the chance of us accidentally introducing
duplicate definitions in the future.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
The current aarch64_insn_is_nop() has exactly one caller which uses it
solely to identify if the instruction is a HINT that can safely be stepped,
requiring us to list things that aren't NOPs and make things more confusing
than they need to be. Rename the function to reflect the actual usage and
make things more clear.
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20200504131326.18290-3-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Prior to commit 8eb7e28d4c ("arm64/mm: move runtime pgds to
rodata"), idmap_pgd_dir, tramp_pg_dir, reserved_ttbr0, swapper_pg_dir,
and init_pg_dir were contiguous at the end of the kernel image. The
maintenance at the end of __create_page_tables assumed these were
contiguous, and affected everything from the start of idmap_pg_dir
to the end of init_pg_dir.
That commit moved all but init_pg_dir into the .rodata section, with
other data placed between idmap_pg_dir and init_pg_dir, but did not
update the maintenance. Hence the maintenance is performed on much
more data than necessary (but as the bootloader previously made this
clean to the PoC there is no functional problem).
As we only alter idmap_pg_dir, and init_pg_dir, we only need to perform
maintenance for these. As the other dirs are in .rodata, the bootloader
will have initialised them as expected and cleaned them to the PoC. The
kernel will initialize them as necessary after enabling the MMU.
This patch reworks the maintenance to only cover the idmap_pg_dir and
init_pg_dir to avoid this unnecessary work.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20200427235700.112220-1-gshan@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
If AArch32 is not supported at EL1, the AArch32 feature register fields
no longer advertise support for some system features:
* ISAR4.SMC
* PFR1.{Virt_frac, Sec_frac, Virtualization, Security, ProgMod}
In which case, we don't need to emit "SANITY CHECK" failures for all of
them.
Add logic to relax the strictness of individual feature register fields
at runtime and use this for the fields above if 32-bit EL1 is not
supported.
Tested-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20200421142922.18950-7-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The macros {pgd, pud, pmd}_page() retrieves the page struct of the
corresponding page frame, which is reserved as page table. There
is already a macro (phys_to_page), defined in memory.h as below,
to convert the physical address to the page struct. Also, the header
file (memory.h) has been included by pgtable.h.
#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys)))
So it's reasonable to use the macro in pgtable.h.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20200427234655.111847-1-gshan@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
Currently __cpu_setup conditionally initializes the address
authentication keys and enables them in SCTLR_EL1, doing so differently
for the primary CPU and secondary CPUs, and skipping this work for CPUs
returning from an idle state. For the latter case, cpu_do_resume
restores the keys and SCTLR_EL1 value after the MMU has been enabled.
This flow is rather difficult to follow, so instead let's move the
primary and secondary CPU initialization into their respective boot
paths. By following the example of cpu_do_resume and doing so once the
MMU is enabled, we can always initialize the keys from the values in
thread_struct, and avoid the machinery necessary to pass the keys in
secondary_data or open-coding initialization for the boot CPU.
This means we perform an additional RMW of SCTLR_EL1, but we already do
this in the cpu_do_resume path, and for other features in cpufeature.c,
so this isn't a major concern in a bringup path. Note that even while
the enable bits are clear, the key registers are accessible.
As this now renders the argument to __cpu_setup redundant, let's also
remove that entirely. Future extensions can follow a similar approach to
initialize values that differ for primary/secondary CPUs.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200423101606.37601-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Pull arm64 fixes from Catalin Marinas:
- Ensure context synchronisation after a write to APIAKey.
- Fix bullet list formatting in Documentation/arm64/amu.rst to
eliminate doc warnings.
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
Documentation: arm64: fix amu.rst doc warnings
arm64: sync kernel APIAKey when installing
We have wrappers around EFI calls so that x86 can define special
versions for mixed mode, while all other architectures can use the
same simple definition that just issues the call directly.
In preparation for the arrival of yet another architecture that doesn't
need anything special here (RISC-V), let's move the default definition
into a shared header.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
As the bug report [1] pointed out, <linux/vermagic.h> must be included
after <linux/module.h>.
I believe we should not impose any include order restriction. We often
sort include directives alphabetically, but it is just coding style
convention. Technically, we can include header files in any order by
making every header self-contained.
Currently, arch-specific MODULE_ARCH_VERMAGIC is defined in
<asm/module.h>, which is not included from <linux/vermagic.h>.
Hence, the straight-forward fix-up would be as follows:
|--- a/include/linux/vermagic.h
|+++ b/include/linux/vermagic.h
|@@ -1,5 +1,6 @@
| /* SPDX-License-Identifier: GPL-2.0 */
| #include <generated/utsrelease.h>
|+#include <linux/module.h>
|
| /* Simply sanity version stamp for modules. */
| #ifdef CONFIG_SMP
This works enough, but for further cleanups, I split MODULE_ARCH_VERMAGIC
definitions into <asm/vermagic.h>.
With this, <linux/module.h> and <linux/vermagic.h> will be orthogonal,
and the location of MODULE_ARCH_VERMAGIC definitions will be consistent.
For arc and ia64, MODULE_PROC_FAMILY is only used for defining
MODULE_ARCH_VERMAGIC. I squashed it.
For hexagon, nds32, and xtensa, I removed <asm/modules.h> entirely
because they contained nothing but MODULE_ARCH_VERMAGIC definition.
Kbuild will automatically generate <asm/modules.h> at build-time,
wrapping <asm-generic/module.h>.
[1] https://lore.kernel.org/lkml/20200411155623.GA22175@zn.tnic
Reported-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
A direct write to a APxxKey_EL1 register requires a context
synchronization event to ensure that indirect reads made by subsequent
instructions (e.g. AUTIASP, PACIASP) observe the new value.
When we initialize the boot task's APIAKey in boot_init_stack_canary()
via ptrauth_keys_switch_kernel() we miss the necessary ISB, and so there
is a window where instructions are not guaranteed to use the new APIAKey
value. This has been observed to result in boot-time crashes where
PACIASP and AUTIASP within a function used a mixture of the old and new
key values.
Fix this by having ptrauth_keys_switch_kernel() synchronize the new key
value with an ISB. At the same time, __ptrauth_key_install() is renamed
to __ptrauth_key_install_nosync() so that it is obvious that this
performs no synchronization itself.
Fixes: 2832158233 ("arm64: initialize ptrauth keys for kernel booting task")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Will Deacon <will@kernel.org>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Will Deacon <will@kernel.org>
The READ_IMPLIES_EXEC work-around was designed for old toolchains that
lacked the ELF PT_GNU_STACK marking under the assumption that toolchains
that couldn't specify executable permission flags for the stack may not
know how to do it correctly for any memory region.
This logic is sensible for having ancient binaries coexist in a system
with possibly NX memory, but was implemented in a way that equated having
a PT_GNU_STACK marked executable as being as "broken" as lacking the
PT_GNU_STACK marking entirely. Things like unmarked assembly and stack
trampolines may cause PT_GNU_STACK to need an executable bit, but they
do not imply all mappings must be executable.
This confusion has led to situations where modern programs with explicitly
marked executable stack are forced into the READ_IMPLIES_EXEC state when
no such thing is needed. (And leads to unexpected failures when mmap()ing
regions of device driver memory that wish to disallow VM_EXEC[1].)
In looking for other reasons for the READ_IMPLIES_EXEC behavior, Jann
Horn noted that glibc thread stacks have always been marked RWX (until
2003 when they started tracking the PT_GNU_STACK flag instead[2]). And
musl doesn't support executable stacks at all[3]. As such, no breakage
for multithreaded applications is expected from this change.
This changes arm32 and arm64 compat together, to keep behavior the same.
[1] https://lkml.kernel.org/r/20190418055759.GA3155@mellanox.com
[2] https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=54ee14b3882
[3] https://lkml.kernel.org/r/20190423192534.GN23599@brightrain.aerifal.cx
Suggested-by: Hector Marco-Gisbert <hecmargi@upv.es>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lkml.kernel.org/r/20200327064820.12602-6-keescook@chromium.org
Passing volatile-qualified pointers to the arm64 implementations of the
load-acquire/store-release macros results in a re-load from the stack
and a bunch of associated stack-protector churn due to the temporary
result variable inheriting the volatile semantics thanks to the use of
'typeof()'.
Define these temporary variables using 'unqual_scalar_typeof' to drop
the volatile qualifier in the case that they are scalar types.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
In assembly, many instances of __emit_inst(x) expand to a directive. In
a few places __emit_inst(x) is used as an assembler macro argument. For
example, in arch/arm64/kvm/hyp/entry.S
ALTERNATIVE(nop, SET_PSTATE_PAN(1), ARM64_HAS_PAN, CONFIG_ARM64_PAN)
expands to the following by the C preprocessor:
alternative_insn nop, .inst (0xd500401f | ((0) << 16 | (4) << 5) | ((!!1) << 8)), 4, 1
Both comma and space are separators, with an exception that content
inside a pair of parentheses/quotes is not split, so the clang
integrated assembler splits the arguments to:
nop, .inst, (0xd500401f | ((0) << 16 | (4) << 5) | ((!!1) << 8)), 4, 1
GNU as preprocesses the input with do_scrub_chars(). Its arm64 backend
(along with many other non-x86 backends) sees:
alternative_insn nop,.inst(0xd500401f|((0)<<16|(4)<<5)|((!!1)<<8)),4,1
# .inst(...) is parsed as one argument
while its x86 backend sees:
alternative_insn nop,.inst (0xd500401f|((0)<<16|(4)<<5)|((!!1)<<8)),4,1
# The extra space before '(' makes the whole .inst (...) parsed as two arguments
The non-x86 backend's behavior is considered unintentional
(https://sourceware.org/bugzilla/show_bug.cgi?id=25750).
So drop the space separator inside `.inst (...)` to make the clang
integrated assembler work.
Suggested-by: Ilie Halip <ilie.halip@gmail.com>
Signed-off-by: Fangrui Song <maskray@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Link: https://github.com/ClangBuiltLinux/linux/issues/939
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull arm64 fixes from Catalin Marinas:
- Ensure that the compiler and linker versions are aligned so that ld
doesn't complain about not understanding a .note.gnu.property section
(emitted when pointer authentication is enabled).
- Force -mbranch-protection=none when the feature is not enabled, in
case a compiler may choose a different default value.
- Remove CONFIG_DEBUG_ALIGN_RODATA. It was never in defconfig and
rarely enabled.
- Fix checking 16-bit Thumb-2 instructions checking mask in the
emulation of the SETEND instruction (it could match the bottom half
of a 32-bit Thumb-2 instruction).
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: armv8_deprecated: Fix undef_hook mask for thumb setend
arm64: remove CONFIG_DEBUG_ALIGN_RODATA feature
arm64: Always force a branch protection mode when the compiler has one
arm64: Kconfig: ptrauth: Add binutils version check to fix mismatch
init/kconfig: Add LD_VERSION Kconfig
Pull /dev/random updates from Ted Ts'o:
- Improve getrandom and /dev/random's support for those arm64
architecture variants that have RNG instructions.
- Use batched output from CRNG instead of CPU's RNG instructions for
better performance.
- Miscellaneous bug fixes.
* tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random:
random: avoid warnings for !CONFIG_NUMA builds
random: fix data races at timer_rand_state
random: always use batched entropy for get_random_u{32,64}
random: Make RANDOM_TRUST_CPU depend on ARCH_RANDOM
arm64: add credited/trusted RNG support
random: add arch_get_random_*long_early()
random: split primary/secondary crng init paths
Pull kvm updates from Paolo Bonzini:
"ARM:
- GICv4.1 support
- 32bit host removal
PPC:
- secure (encrypted) using under the Protected Execution Framework
ultravisor
s390:
- allow disabling GISA (hardware interrupt injection) and protected
VMs/ultravisor support.
x86:
- New dirty bitmap flag that sets all bits in the bitmap when dirty
page logging is enabled; this is faster because it doesn't require
bulk modification of the page tables.
- Initial work on making nested SVM event injection more similar to
VMX, and less buggy.
- Various cleanups to MMU code (though the big ones and related
optimizations were delayed to 5.8). Instead of using cr3 in
function names which occasionally means eptp, KVM too has
standardized on "pgd".
- A large refactoring of CPUID features, which now use an array that
parallels the core x86_features.
- Some removal of pointer chasing from kvm_x86_ops, which will also
be switched to static calls as soon as they are available.
- New Tigerlake CPUID features.
- More bugfixes, optimizations and cleanups.
Generic:
- selftests: cleanups, new MMU notifier stress test, steal-time test
- CSV output for kvm_stat"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (277 commits)
x86/kvm: fix a missing-prototypes "vmread_error"
KVM: x86: Fix BUILD_BUG() in __cpuid_entry_get_reg() w/ CONFIG_UBSAN=y
KVM: VMX: Add a trampoline to fix VMREAD error handling
KVM: SVM: Annotate svm_x86_ops as __initdata
KVM: VMX: Annotate vmx_x86_ops as __initdata
KVM: x86: Drop __exit from kvm_x86_ops' hardware_unsetup()
KVM: x86: Copy kvm_x86_ops by value to eliminate layer of indirection
KVM: x86: Set kvm_x86_ops only after ->hardware_setup() completes
KVM: VMX: Configure runtime hooks using vmx_x86_ops
KVM: VMX: Move hardware_setup() definition below vmx_x86_ops
KVM: x86: Move init-only kvm_x86_ops to separate struct
KVM: Pass kvm_init()'s opaque param to additional arch funcs
s390/gmap: return proper error code on ksm unsharing
KVM: selftests: Fix cosmetic copy-paste error in vm_mem_region_move()
KVM: Fix out of range accesses to memslots
KVM: X86: Micro-optimize IPI fastpath delay
KVM: X86: Delay read msr data iff writes ICR MSR
KVM: PPC: Book3S HV: Add a capability for enabling secure guests
KVM: arm64: GICv4.1: Expose HW-based SGIs in debugfs
KVM: arm64: GICv4.1: Allow non-trapping WFI when using HW SGIs
...
Change a header to mandatory-y if both of the following are met:
[1] At least one architecture (except um) specifies it as generic-y in
arch/*/include/asm/Kbuild
[2] Every architecture (except um) either has its own implementation
(arch/*/include/asm/*.h) or specifies it as generic-y in
arch/*/include/asm/Kbuild
This commit was generated by the following shell script.
----------------------------------->8-----------------------------------
arches=$(cd arch; ls -1 | sed -e '/Kconfig/d' -e '/um/d')
tmpfile=$(mktemp)
grep "^mandatory-y +=" include/asm-generic/Kbuild > $tmpfile
find arch -path 'arch/*/include/asm/Kbuild' |
xargs sed -n 's/^generic-y += \(.*\)/\1/p' | sort -u |
while read header
do
mandatory=yes
for arch in $arches
do
if ! grep -q "generic-y += $header" arch/$arch/include/asm/Kbuild &&
! [ -f arch/$arch/include/asm/$header ]; then
mandatory=no
break
fi
done
if [ "$mandatory" = yes ]; then
echo "mandatory-y += $header" >> $tmpfile
for arch in $arches
do
sed -i "/generic-y += $header/d" arch/$arch/include/asm/Kbuild
done
fi
done
sed -i '/^mandatory-y +=/d' include/asm-generic/Kbuild
LANG=C sort $tmpfile >> include/asm-generic/Kbuild
----------------------------------->8-----------------------------------
One obvious benefit is the diff stat:
25 files changed, 52 insertions(+), 557 deletions(-)
It is tedious to list generic-y for each arch that needs it.
So, mandatory-y works like a fallback default (by just wrapping
asm-generic one) when arch does not have a specific header
implementation.
See the following commits:
def3f7cefea1b39bae16
It is tedious to convert headers one by one, so I processed by a shell
script.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Simek <michal.simek@xilinx.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Link: http://lkml.kernel.org/r/20200210175452.5030-1-masahiroy@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_DEBUG_ALIGN_RODATA is enabled, kernel segments mapped with
different permissions (r-x for .text, r-- for .rodata, rw- for .data,
etc) are rounded up to 2 MiB so they can be mapped more efficiently.
In particular, it permits the segments to be mapped using level 2
block entries when using 4k pages, which is expected to result in less
TLB pressure.
However, the mappings for the bulk of the kernel will use level 2
entries anyway, and the misaligned fringes are organized such that they
can take advantage of the contiguous bit, and use far fewer level 3
entries than would be needed otherwise.
This makes the value of this feature dubious at best, and since it is not
enabled in defconfig or in the distro configs, it does not appear to be
in wide use either. So let's just remove it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Laura Abbott <labbott@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull arm64 updates from Catalin Marinas:
"The bulk is in-kernel pointer authentication, activity monitors and
lots of asm symbol annotations. I also queued the sys_mremap() patch
commenting the asymmetry in the address untagging.
Summary:
- In-kernel Pointer Authentication support (previously only offered
to user space).
- ARM Activity Monitors (AMU) extension support allowing better CPU
utilisation numbers for the scheduler (frequency invariance).
- Memory hot-remove support for arm64.
- Lots of asm annotations (SYM_*) in preparation for the in-kernel
Branch Target Identification (BTI) support.
- arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the
PMU init callbacks, support for new DT compatibles.
- IPv6 header checksum optimisation.
- Fixes: SDEI (software delegated exception interface) double-lock on
hibernate with shared events.
- Minor clean-ups and refactoring: cpu_ops accessor,
cpu_do_switch_mm() converted to C, cpufeature finalisation helper.
- sys_mremap() comment explaining the asymmetric address untagging
behaviour"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (81 commits)
mm/mremap: Add comment explaining the untagging behaviour of mremap()
arm64: head: Convert install_el2_stub to SYM_INNER_LABEL
arm64: Introduce get_cpu_ops() helper function
arm64: Rename cpu_read_ops() to init_cpu_ops()
arm64: Declare ACPI parking protocol CPU operation if needed
arm64: move kimage_vaddr to .rodata
arm64: use mov_q instead of literal ldr
arm64: Kconfig: verify binutils support for ARM64_PTR_AUTH
lkdtm: arm64: test kernel pointer authentication
arm64: compile the kernel with ptrauth return address signing
kconfig: Add support for 'as-option'
arm64: suspend: restore the kernel ptrauth keys
arm64: __show_regs: strip PAC from lr in printk
arm64: unwind: strip PAC from kernel addresses
arm64: mask PAC bits of __builtin_return_address
arm64: initialize ptrauth keys for kernel booting task
arm64: initialize and switch ptrauth kernel keys
arm64: enable ptrauth earlier
arm64: cpufeature: handle conflicts based on capability
arm64: cpufeature: Move cpu capability helpers inside C file
...
Pull timekeeping and timer updates from Thomas Gleixner:
"Core:
- Consolidation of the vDSO build infrastructure to address the
difficulties of cross-builds for ARM64 compat vDSO libraries by
restricting the exposure of header content to the vDSO build.
This is achieved by splitting out header content into separate
headers. which contain only the minimaly required information which
is necessary to build the vDSO. These new headers are included from
the kernel headers and the vDSO specific files.
- Enhancements to the generic vDSO library allowing more fine grained
control over the compiled in code, further reducing architecture
specific storage and preparing for adopting the generic library by
PPC.
- Cleanup and consolidation of the exit related code in posix CPU
timers.
- Small cleanups and enhancements here and there
Drivers:
- The obligatory new drivers: Ingenic JZ47xx and X1000 TCU support
- Correct the clock rate of PIT64b global clock
- setup_irq() cleanup
- Preparation for PWM and suspend support for the TI DM timer
- Expand the fttmr010 driver to support ast2600 systems
- The usual small fixes, enhancements and cleanups all over the
place"
* tag 'timers-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
Revert "clocksource/drivers/timer-probe: Avoid creating dead devices"
vdso: Fix clocksource.h macro detection
um: Fix header inclusion
arm64: vdso32: Enable Clang Compilation
lib/vdso: Enable common headers
arm: vdso: Enable arm to use common headers
x86/vdso: Enable x86 to use common headers
mips: vdso: Enable mips to use common headers
arm64: vdso32: Include common headers in the vdso library
arm64: vdso: Include common headers in the vdso library
arm64: Introduce asm/vdso/processor.h
arm64: vdso32: Code clean up
linux/elfnote.h: Replace elf.h with UAPI equivalent
scripts: Fix the inclusion order in modpost
common: Introduce processor.h
linux/ktime.h: Extract common header for vDSO
linux/jiffies.h: Extract common header for vDSO
linux/time64.h: Extract common header for vDSO
linux/time32.h: Extract common header for vDSO
linux/time.h: Extract common header for vDSO
...
Pull NOHZ update from Thomas Gleixner:
"Remove TIF_NOHZ from three architectures
These architectures use a static key to decide whether context
tracking needs to be invoked and the TIF_NOHZ flag just causes a
pointless slowpath execution for nothing"
* tag 'timers-nohz-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arm64: Remove TIF_NOHZ
arm: Remove TIF_NOHZ
x86: Remove TIF_NOHZ
context-tracking: Introduce CONFIG_HAVE_TIF_NOHZ
x86/entry: Remove _TIF_NOHZ from _TIF_WORK_SYSCALL_ENTRY
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- Various NUMA scheduling updates: harmonize the load-balancer and
NUMA placement logic to not work against each other. The intended
result is better locality, better utilization and fewer migrations.
- Introduce Thermal Pressure tracking and optimizations, to improve
task placement on thermally overloaded systems.
- Implement frequency invariant scheduler accounting on (some) x86
CPUs. This is done by observing and sampling the 'recent' CPU
frequency average at ~tick boundaries. The CPU provides this data
via the APERF/MPERF MSRs. This hopefully makes our capacity
estimates more precise and keeps tasks on the same CPU better even
if it might seem overloaded at a lower momentary frequency. (As
usual, turbo mode is a complication that we resolve by observing
the maximum frequency and renormalizing to it.)
- Add asymmetric CPU capacity wakeup scan to improve capacity
utilization on asymmetric topologies. (big.LITTLE systems)
- PSI fixes and optimizations.
- RT scheduling capacity awareness fixes & improvements.
- Optimize the CONFIG_RT_GROUP_SCHED constraints code.
- Misc fixes, cleanups and optimizations - see the changelog for
details"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
threads: Update PID limit comment according to futex UAPI change
sched/fair: Fix condition of avg_load calculation
sched/rt: cpupri_find: Trigger a full search as fallback
kthread: Do not preempt current task if it is going to call schedule()
sched/fair: Improve spreading of utilization
sched: Avoid scale real weight down to zero
psi: Move PF_MEMSTALL out of task->flags
MAINTAINERS: Add maintenance information for psi
psi: Optimize switching tasks inside shared cgroups
psi: Fix cpu.pressure for cpu.max and competing cgroups
sched/core: Distribute tasks within affinity masks
sched/fair: Fix enqueue_task_fair warning
thermal/cpu-cooling, sched/core: Move the arch_set_thermal_pressure() API to generic scheduler code
sched/rt: Remove unnecessary push for unfit tasks
sched/rt: Allow pulling unfitting task
sched/rt: Optimize cpupri_find() on non-heterogenous systems
sched/rt: Re-instate old behavior in select_task_rq_rt()
sched/rt: cpupri_find: Implement fallback mechanism for !fit case
sched/fair: Fix reordering of enqueue/dequeue_task_fair()
sched/fair: Fix runnable_avg for throttled cfs
...
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- Continued user-access cleanups in the futex code.
- percpu-rwsem rewrite that uses its own waitqueue and atomic_t
instead of an embedded rwsem. This addresses a couple of
weaknesses, but the primary motivation was complications on the -rt
kernel.
- Introduce raw lock nesting detection on lockdep
(CONFIG_PROVE_RAW_LOCK_NESTING=y), document the raw_lock vs. normal
lock differences. This too originates from -rt.
- Reuse lockdep zapped chain_hlocks entries, to conserve RAM
footprint on distro-ish kernels running into the "BUG:
MAX_LOCKDEP_CHAIN_HLOCKS too low!" depletion of the lockdep
chain-entries pool.
- Misc cleanups, smaller fixes and enhancements - see the changelog
for details"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (55 commits)
fs/buffer: Make BH_Uptodate_Lock bit_spin_lock a regular spinlock_t
thermal/x86_pkg_temp: Make pkg_temp_lock a raw_spinlock_t
Documentation/locking/locktypes: Minor copy editor fixes
Documentation/locking/locktypes: Further clarifications and wordsmithing
m68knommu: Remove mm.h include from uaccess_no.h
x86: get rid of user_atomic_cmpxchg_inatomic()
generic arch_futex_atomic_op_inuser() doesn't need access_ok()
x86: don't reload after cmpxchg in unsafe_atomic_op2() loop
x86: convert arch_futex_atomic_op_inuser() to user_access_begin/user_access_end()
objtool: whitelist __sanitizer_cov_trace_switch()
[parisc, s390, sparc64] no need for access_ok() in futex handling
sh: no need of access_ok() in arch_futex_atomic_op_inuser()
futex: arch_futex_atomic_op_inuser() calling conventions change
completion: Use lockdep_assert_RT_in_threaded_ctx() in complete_all()
lockdep: Add posixtimer context tracing bits
lockdep: Annotate irq_work
lockdep: Add hrtimer context tracing bits
lockdep: Introduce wait-type checks
completion: Use simple wait queues
sched/swait: Prepare usage in completions
...
Pull EFI updates from Ingo Molnar:
"The EFI changes in this cycle are much larger than usual, for two
(positive) reasons:
- The GRUB project is showing signs of life again, resulting in the
introduction of the generic Linux/UEFI boot protocol, instead of
x86 specific hacks which are increasingly difficult to maintain.
There's hope that all future extensions will now go through that
boot protocol.
- Preparatory work for RISC-V EFI support.
The main changes are:
- Boot time GDT handling changes
- Simplify handling of EFI properties table on arm64
- Generic EFI stub cleanups, to improve command line handling, file
I/O, memory allocation, etc.
- Introduce a generic initrd loading method based on calling back
into the firmware, instead of relying on the x86 EFI handover
protocol or device tree.
- Introduce a mixed mode boot method that does not rely on the x86
EFI handover protocol either, and could potentially be adopted by
other architectures (if another one ever surfaces where one
execution mode is a superset of another)
- Clean up the contents of 'struct efi', and move out everything that
doesn't need to be stored there.
- Incorporate support for UEFI spec v2.8A changes that permit
firmware implementations to return EFI_UNSUPPORTED from UEFI
runtime services at OS runtime, and expose a mask of which ones are
supported or unsupported via a configuration table.
- Partial fix for the lack of by-VA cache maintenance in the
decompressor on 32-bit ARM.
- Changes to load device firmware from EFI boot service memory
regions
- Various documentation updates and minor code cleanups and fixes"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
efi/libstub/arm: Fix spurious message that an initrd was loaded
efi/libstub/arm64: Avoid image_base value from efi_loaded_image
partitions/efi: Fix partition name parsing in GUID partition entry
efi/x86: Fix cast of image argument
efi/libstub/x86: Use ULONG_MAX as upper bound for all allocations
efi: Fix a mistype in comments mentioning efivar_entry_iter_begin()
efi/libstub: Avoid linking libstub/lib-ksyms.o into vmlinux
efi/x86: Preserve %ebx correctly in efi_set_virtual_address_map()
efi/x86: Ignore the memory attributes table on i386
efi/x86: Don't relocate the kernel unless necessary
efi/x86: Remove extra headroom for setup block
efi/x86: Add kernel preferred address to PE header
efi/x86: Decompress at start of PE image load address
x86/boot/compressed/32: Save the output address instead of recalculating it
efi/libstub/x86: Deal with exit() boot service returning
x86/boot: Use unsigned comparison for addresses
efi/x86: Avoid using code32_start
efi/x86: Make efi32_pe_entry() more readable
efi/x86: Respect 32-bit ABI in efi32_pe_entry()
efi/x86: Annotate the LOADED_IMAGE_PROTOCOL_GUID with SYM_DATA
...