Pull smp hotplug updates from Thomas Gleixner:
"This is the final round of converting the notifier mess to the state
machine. The removal of the notifiers and the related infrastructure
will happen around rc1, as there are conversions outstanding in other
trees.
The whole exercise removed about 2000 lines of code in total and in
course of the conversion several dozen bugs got fixed. The new
mechanism allows to test almost every hotplug step standalone, so
usage sites can exercise all transitions extensively.
There is more room for improvement, like integrating all the
pointlessly different architecture mechanisms of synchronizing,
setting cpus online etc into the core code"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
tracing/rb: Init the CPU mask on allocation
soc/fsl/qbman: Convert to hotplug state machine
soc/fsl/qbman: Convert to hotplug state machine
zram: Convert to hotplug state machine
KVM/PPC/Book3S HV: Convert to hotplug state machine
arm64/cpuinfo: Convert to hotplug state machine
arm64/cpuinfo: Make hotplug notifier symmetric
mm/compaction: Convert to hotplug state machine
iommu/vt-d: Convert to hotplug state machine
mm/zswap: Convert pool to hotplug state machine
mm/zswap: Convert dst-mem to hotplug state machine
mm/zsmalloc: Convert to hotplug state machine
mm/vmstat: Convert to hotplug state machine
mm/vmstat: Avoid on each online CPU loops
mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
tracing/rb: Convert to hotplug state machine
oprofile/nmi timer: Convert to hotplug state machine
net/iucv: Use explicit clean up labels in iucv_init()
x86/pci/amd-bus: Convert to hotplug state machine
x86/oprofile/nmi: Convert to hotplug state machine
...
Intel Xeons from Ivy Bridge onwards support a processor identification
number set in the factory. To the user this is a handy unique number to
identify a particular CPU. Intel can decode this to the fab/production
run to track errors. On systems that have it, include it in the machine
check record. I'm told that this would be helpful for users that run
large data centers with multi-socket servers to keep track of which CPUs
are seeing errors.
Boris:
* Add some clarifying comments and spacing.
* Mask out [63:2] in the disabled-but-not-locked case
* Call the MSR variable "val" for more readability.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20161123114855.njguoaygp3qnbkia@pd.tnic
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The CPU_ONLINE and CPU_DOWN_PREPARE look fully symmetrical and could be move
to the hotplug state machine.
On a failure during registration we have the tear down callback invoked
(mce_cpu_pre_down()) so there should be no timer around and so no need to need
keep notifier installed (this was the reason according to the comment why the
notifier was registered despite of errors).
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-7-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Initially I wanted to remove mcheck_cpu_init() from identify_cpu() and let it
become an independent early hotplug callback. The main problem here was that
the init on the boot CPU may happen too late
(device_initcall_sync(mcheck_init_device)) and nobody wanted to risk receiving
and MCE event at boot time leading to a shutdown (if the MCE feature is not yet
enabled).
Here is attempt two: the timming stays as-is but the ordering of the functions
is changed:
- mcheck_cpu_init() (which is run from identify_cpu()) will setup the timer
struct but won't fire the timer. This is moved to CPU_ONLINE since its
cleanup part is in CPU_DOWN_PREPARE. So if it is okay to stop the timer early
in the shutdown phase, it should be okay to start it late in the bring up phase.
- CPU_DOWN_PREPARE disables the MCE feature flags for !INTEL CPUs in
mce_disable_cpu(). If a failure occures it would be re-enabled on all vendor
CPUs (including Intel where it was not disabled during shutdown). To keep this
working I am moving it to CPU_ONLINE. smp_call_function_single() is dropped
beause the notifier runs nowdays on the target CPU.
- CPU_ONLINE is invoking mce_device_create() + mce_threshold_create_device()
but its cleanup part is in CPU_DEAD (mce_threshold_remove_device() and
mce_device_remove()). In order to keep this symmetrical I am moving the clean
up from CPU_DEAD to CPU_DOWN_PREPARE.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-6-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The threshold_cpu_callback callbacks looks like one of the notifier and
its arguments are almost the same. Split this out and have one ONLINE
and one DEAD callback. This will come handy later once the main code
gets changed to use the callback mechanism.
Also, handle threshold_cpu_callback_online() return value so we don't
continue if the function fails.
Boris Petkov removed the callback pointer and replaced it with proper
functions.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-5-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If we try a CPU down and fail in the middle then we roll back to the
online state. This means we would perform CPU_ONLINE / mce_device_create()
without invoking CPU_DEAD / mce_device_remove() for the cleanup of what was
allocated in CPU_ONLINE.
Be prepared for this and don't allocate the struct if we have it
already.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-4-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We did have logic in the MCE code which would TSC-timestamp an error
record only when it is exact - i.e., when it wasn't detected by polling.
This isn't the case anymore. So let's fix that:
We have a valid TSC timestamp in the error record only when it has been
a precise detection, i.e., either in the #MC handler or in one of the
interrupt handlers (thresholding, deferred, ...).
All other error records still have mce.time which contains the wall
time in order to be able to place the error record in time at least
approximately.
Also, this fixes another bug where machine_check_poll() would clear
mce.tsc unconditionally even if we requested precise MCP_TIMESTAMP
logging.
The proper fix would be to generate timestamp only when it has been
requested and not always. But that would require a more thorough code
audit of all mce_gather_info/mce_setup() users. Add a FIXME for now.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony <tony.luck@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: kernel test robot <xiaolong.ye@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: lkp@01.org
Link: http://lkml.kernel.org/r/20161110131053.kybsijfs5venpjnf@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When there are no error record consumers registered with the kernel, the
only thing that appears in dmesg is something like:
[ 300.000326] mce: [Hardware Error]: Machine check events logged
and the error records are gone. Which is seriously counterproductive.
So let's dump them to dmesg instead, in such a case.
Requested-by: Eric Morton <Eric.Morton@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20161101120911.13163-4-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Now that workqueue can handle work item queueing from very early
during boot, there is no need to gate schedule_work() with
keventd_up(). Remove it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: linux-edac@vger.kernel.org
The MCA_ADDR registers on Scalable MCA systems contain the ErrorAddr
in bits [55:0] and the least significant bit of the address in bits
[61:56]. We should extract the valid ErrorAddr bits from the MCA_ADDR
register rather than saving the raw value to struct mce.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1473275643-1721-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The MCA_SYND and MCA_IPID registers contain valuable information and
should be included in MCE output. The MCA_SYND register contains
syndrome and other error information, and the MCA_IPID register will
uniquely identify the MCA bank's type without having to rely on system
software.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472680624-34221-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The MCA_IPID register uniquely identifies a bank's type and instance
on Scalable MCA systems. We should save the value of this register
in struct mce along with the other relevant error information. This
ensures that we can decode errors without relying on system software to
correlate the bank to the type.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472680624-34221-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Syndrome information is no longer contained in MCA_STATUS for SMCA
systems but in a new register - MCA_SYND.
Add a synd field to struct mce to hold MCA_SYND register value. Add it
to the end of struct mce to maintain compatibility with old versions of
mcelog. Also, add it to the respective tracepoint.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1467633035-32080-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We now have a better way to determine if we are running on a cpu that
supports machine check recovery. Free up this feature bit.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Boris Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/d5db39e08d46cf1012d94d3902275d08ba931926.1472754712.git.tony.luck@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Each Xeon includes a number of capability registers in PCI space that
describe some features not enumerated by CPUID.
Use these to determine that we are running on a model that can recover from
machine checks. Hooks for Ivybridge ... Skylake provided.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Boris Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/abf331dc4a3e2a2d17444129bc51127437bcf4ba.1472754711.git.tony.luck@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull timer updates from Thomas Gleixner:
"This update provides the following changes:
- The rework of the timer wheel which addresses the shortcomings of
the current wheel (cascading, slow search for next expiring timer,
etc). That's the first major change of the wheel in almost 20
years since Finn implemted it.
- A large overhaul of the clocksource drivers init functions to
consolidate the Device Tree initialization
- Some more Y2038 updates
- A capability fix for timerfd
- Yet another clock chip driver
- The usual pile of updates, comment improvements all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (130 commits)
tick/nohz: Optimize nohz idle enter
clockevents: Make clockevents_subsys static
clocksource/drivers/time-armada-370-xp: Fix return value check
timers: Implement optimization for same expiry time in mod_timer()
timers: Split out index calculation
timers: Only wake softirq if necessary
timers: Forward the wheel clock whenever possible
timers/nohz: Remove pointless tick_nohz_kick_tick() function
timers: Optimize collect_expired_timers() for NOHZ
timers: Move __run_timers() function
timers: Remove set_timer_slack() leftovers
timers: Switch to a non-cascading wheel
timers: Reduce the CPU index space to 256k
timers: Give a few structs and members proper names
hlist: Add hlist_is_singular_node() helper
signals: Use hrtimer for sigtimedwait()
timers: Remove the deprecated mod_timer_pinned() API
timers, net/ipv4/inet: Initialize connection request timers as pinned
timers, drivers/tty/mips_ejtag: Initialize the poll timer as pinned
timers, drivers/tty/metag_da: Initialize the poll timer as pinned
...
Pinned timers must carry the pinned attribute in the timer structure
itself, so convert the code to the new API.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Chris Mason <clm@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: George Spelvin <linux@sciencehorizons.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160704094341.215783439@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Check the MCG_STATUS_LMCES bit on Intel to verify that current MCE is
local. It is always local on AMD.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
[ Massaged it a bit. Reflowed comments. Shut up -Wmaybe-uninitialized. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1462019637-16474-8-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A couple of issues here:
1) MCE_LOG_LEN is only 32 - so we may have more pending records than will
fit in the buffer on high core count CPUs.
2) During a panic we may have a lot of duplicate records because multiple
logical CPUs may have seen and logged the same error because some
banks are shared.
Switch to using the genpool to look for the pending records. Squeeze out
duplicated records.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1462019637-16474-7-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace all calls to MCx_IA32_{CTL,ADDR,MISC,STATUS} with the
appropriate msr_ops.
Use SMCA-specific msr_ops when on an SMCA-enabled processor.
Carved out from a patch by Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1462019637-16474-6-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Scalable MCA processors have a whole new range of MSR addresses to
obtain bank related info such as CTL, MISC, ADDR, STATUS. Therefore, we
need a way to abstract the MSR addresses per vendor.
Carved out from a patch by Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1462019637-16474-5-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We need to do this after __mcheck_cpu_init_vendor() as for
ScalableMCA processors, there are going to be new MSR write handlers
if the feature is detected using CPUID bit (which happens in
__mcheck_cpu_init_vendor()).
No functional change is introduced here.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1462019637-16474-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For Fam17h, we want to report errors that persist across reboots. Error
persistence is dependent on HW and no BIOS currently fiddles with values
here. So allow reporting of errors upon boot until something goes wrong.
Logging is disabled on older families because BIOS didn't clear the MCA
banks after a cold reset.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1459886686-13977-2-git-send-email-Yazen.Ghannam@amd.com
Link: http://lkml.kernel.org/r/1462019637-16474-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
mce_start() has an explicit smp_wmb() to serialize writes to global_nwo
and mce_callin. However, atomic_inc_return() implies barriers on both
sides of the call, as such simply rely on this full SMP barrier.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1458602396-840-1-git-send-email-dave@stgolabs.net
Link: http://lkml.kernel.org/r/1459929916-12852-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 asm updates from Ingo Molnar:
"This is another big update. Main changes are:
- lots of x86 system call (and other traps/exceptions) entry code
enhancements. In particular the complex parts of the 64-bit entry
code have been migrated to C code as well, and a number of dusty
corners have been refreshed. (Andy Lutomirski)
- vDSO special mapping robustification and general cleanups (Andy
Lutomirski)
- cpufeature refactoring, cleanups and speedups (Borislav Petkov)
- lots of other changes ..."
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
x86/cpufeature: Enable new AVX-512 features
x86/entry/traps: Show unhandled signal for i386 in do_trap()
x86/entry: Call enter_from_user_mode() with IRQs off
x86/entry/32: Change INT80 to be an interrupt gate
x86/entry: Improve system call entry comments
x86/entry: Remove TIF_SINGLESTEP entry work
x86/entry/32: Add and check a stack canary for the SYSENTER stack
x86/entry/32: Simplify and fix up the SYSENTER stack #DB/NMI fixup
x86/entry: Only allocate space for tss_struct::SYSENTER_stack if needed
x86/entry: Vastly simplify SYSENTER TF (single-step) handling
x86/entry/traps: Clear DR6 early in do_debug() and improve the comment
x86/entry/traps: Clear TIF_BLOCKSTEP on all debug exceptions
x86/entry/32: Restore FLAGS on SYSEXIT
x86/entry/32: Filter NT and speed up AC filtering in SYSENTER
x86/entry/compat: In SYSENTER, sink AC clearing below the existing FLAGS test
selftests/x86: In syscall_nt, test NT|TF as well
x86/asm-offsets: Remove PARAVIRT_enabled
x86/entry/32: Introduce and use X86_BUG_ESPFIX instead of paravirt_enabled
uprobes: __create_xol_area() must nullify xol_mapping.fault
x86/cpufeature: Create a new synthetic cpu capability for machine check recovery
...
The Intel Software Developer Manual describes bit 24 in the MCG_CAP
MSR:
MCG_SER_P (software error recovery support present) flag,
bit 24 — Indicates (when set) that the processor supports
software error recovery
But only some models with this capability bit set will actually
generate recoverable machine checks.
Check the model name and set a synthetic capability bit. Provide
a command line option to set this bit anyway in case the kernel
doesn't recognise the model name.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2e5bfb23c89800a036fb8a45fa97a74bb16bc362.1455732970.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Extend the severity checking code to add a new context IN_KERN_RECOV
which is used to indicate that the machine check was triggered by code
in the kernel tagged with _ASM_EXTABLE_FAULT() so that the ex_handler_fault()
handler will provide the fixup code with the trap number.
Major re-work to the tail code in do_machine_check() to make all this
readable/maintainable. One functional change is that tolerant=3 no longer
stops recovery actions. Revert to only skipping sending SIGBUS to the
current process.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/89d243d05a7943bb187d1074bb30d9c4f482d5f5.1455732970.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In mce_amd_feature_init() we take decisions based on mce_flags
being set or not. So the feature detection using CPUID should
naturally be ordered before we call mce_amd_feature_init().
Fix that here.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1453750913-4781-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RAS updates from Ingo Molnar:
"Various x86 MCE fixes and small enhancements"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Make usable address checks Intel-only
x86/mce: Add the missing memory error check on AMD
x86/RAS: Remove mce.usable_addr
x86/mce: Do not enter deferred errors into the generic pool twice
Intel's MCA implementation broadcasts MCEs to all CPUs on the
node. This poses a problem for offlined CPUs which cannot
participate in the rendezvous process:
Kernel panic - not syncing: Timeout: Not all CPUs entered broadcast exception handler
Kernel Offset: disabled
Rebooting in 100 seconds..
More specifically, Linux does a soft offline of a CPU when
writing a 0 to /sys/devices/system/cpu/cpuX/online, which
doesn't prevent the #MC exception from being broadcasted to that
CPU.
Ensure that offline CPUs don't participate in the MCE rendezvous
and clear the RIP valid status bit so that a second MCE won't
cause a shutdown.
Without the patch, mce_start() will increment mce_callin and
wait for all CPUs. Offlined CPUs should avoid participating in
the rendezvous process altogether.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
[ Massage commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1449742346-21470-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The MCi_MISC bitfield definitions mce_usable_address() checks
are Intel-only. Make them so.
While at it, move mce_usable_address() up, before all its
callers and get rid of the forward declaration.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448350880-5573-5-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We simply need to look at the extended error code when detecting
whether the error is of type memory.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448350880-5573-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is useless and we can use the function instead. Besides,
mcelog(8) hasn't managed to make use of it yet. So kill it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448350880-5573-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We used to have a special ring buffer for deferred errors that
was used to mark problem pages. We replaced that with a generic
pool. Then later converted mce_log() to also use the same pool.
As a result, we end up adding all deferred errors to the pool
twice.
Rearrange this code. Make sure to set the m.severity and
m.usable_addr fields for deferred errors. Then if flags and
mca_cfg.dont_log_ce mean we call mce_log() we are done, because
that will add this entry to the generic pool.
If we skipped mce_log(), then we still want to take action for
the deferred error, so add to the pool.
Change the name of the boolean "error_logged" to "error_seen",
we should set it whether of not we logged an error because the
return value from machine_check_poll() is used to decide whether
storms have subsided or not.
Reported-by: Gong Chen <gong.chen@linux.intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1448350880-5573-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Scalable MCA (SMCA) is a new feature in AMD Fam17h processors
which indicates presence of MCA extensions.
MCA extensions expands existing register space for the MCE banks
and also introduces a new MSR range to accommodate new banks.
Add the detection bit.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
[ Reformat mce_vendor_flags definitions and save indentation levels. Improve comments. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1446207099-24948-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is not safe to clear global MCi_CTL banks during CPU offline
or suspend/resume operations. These MSRs are either
thread-scoped (meaning private to a thread), or core-scoped
(private to threads in that core only), or with a socket scope:
visible and controllable from all threads in the socket.
When we offline a single CPU, clearing those MCi_CTL bits will
stop signaling for all the shared, i.e., socket-wide resources,
such as LLC, iMC, etc.
In addition, it might be possible to compromise the integrity of
an Intel Secure Guard eXtentions (SGX) system if the attacker
has control of the host system and is able to inject errors
which would be otherwise ignored when MCi_CTL bits are cleared.
Hence on SGX enabled systems, if MCi_CTL is cleared, SGX gets
disabled.
Tested-by: Serge Ayoun <serge.ayoun@intel.com>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
[ Cleanup text. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1441391390-16985-1-git-send-email-ashok.raj@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 asm changes from Ingo Molnar:
"The biggest changes in this cycle were:
- Revamp, simplify (and in some cases fix) Time Stamp Counter (TSC)
primitives. (Andy Lutomirski)
- Add new, comprehensible entry and exit handlers written in C.
(Andy Lutomirski)
- vm86 mode cleanups and fixes. (Brian Gerst)
- 32-bit compat code cleanups. (Brian Gerst)
The amount of simplification in low level assembly code is already
palpable:
arch/x86/entry/entry_32.S | 130 +----
arch/x86/entry/entry_64.S | 197 ++-----
but more simplifications are planned.
There's also the usual laudry mix of low level changes - see the
changelog for details"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (83 commits)
x86/asm: Drop repeated macro of X86_EFLAGS_AC definition
x86/asm/msr: Make wrmsrl() a function
x86/asm/delay: Introduce an MWAITX-based delay with a configurable timer
x86/asm: Add MONITORX/MWAITX instruction support
x86/traps: Weaken context tracking entry assertions
x86/asm/tsc: Add rdtscll() merge helper
selftests/x86: Add syscall_nt selftest
selftests/x86: Disable sigreturn_64
x86/vdso: Emit a GNU hash
x86/entry: Remove do_notify_resume(), syscall_trace_leave(), and their TIF masks
x86/entry/32: Migrate to C exit path
x86/entry/32: Remove 32-bit syscall audit optimizations
x86/vm86: Rename vm86->v86flags and v86mask
x86/vm86: Rename vm86->vm86_info to user_vm86
x86/vm86: Clean up vm86.h includes
x86/vm86: Move the vm86 IRQ definitions to vm86.h
x86/vm86: Use the normal pt_regs area for vm86
x86/vm86: Eliminate 'struct kernel_vm86_struct'
x86/vm86: Move fields from 'struct kernel_vm86_struct' to 'struct vm86'
x86/vm86: Move vm86 fields out of 'thread_struct'
...
Pull RAS updates from Ingo Molnar:
"MCE handling updates, but also some generic drivers/edac/ changes to
better organize the Kconfig space"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ras: Move AMD MCE injector to arch/x86/ras/
x86/mce: Add a wrapper around mce_log() for injection
x86/mce: Rename rcu_dereference_check_mce() to mce_log_get_idx_check()
RAS: Add a menuconfig option with descriptive text
x86/mce: Reenable CMCI banks when swiching back to interrupt mode
x86/mce: Clear Local MCE opt-in before kexec
x86/mce: Remove unused function declarations
x86/mce: Kill drain_mcelog_buffer()
x86/mce: Avoid potential deadlock due to printk() in MCE context
x86/mce: Remove the MCE ring for Action Optional errors
x86/mce: Don't use percpu workqueues
x86/mce: Provide a lockless memory pool to save error records
x86/mce: Reuse one of the u16 padding fields in 'struct mce'
Will be used by an injector module in a following patch.
Additionally, add a missing module export reported by 0-DAY
kernel test.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/1439396985-12812-13-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "rcu_" prefix misleads for it being a proper RCU interface
which is not. It basically checks whether we're preemptible or
holding the chrdev_read mutex.
Rename it accordingly.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/1439396985-12812-12-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
kexec could boot a kernel that could be legacy with no knowledge
of LMCE. Hence we should make sure we clear LMCE optin before
kexec reboot.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1439396985-12812-9-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This used to flush out MCEs logged during early boot and which
were in the MCA registers from a previous system run. No need
for that now, since we've moved to a genpool.
Suggested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439396985-12812-7-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Printing in MCE context is a no-no, currently, as printk() is
not NMI-safe. If some of the notifiers on the MCE chain call do
so, we may deadlock. In order to avoid that, delay printk() to
process context where it is safe.
Reported-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Chen, Gong <gong.chen@linux.intel.com>
[ Fold in subsequent patch from Boris for early boot logging. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
[ Kick irq_work in mce_log() directly. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439396985-12812-6-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use unified genpool to save Action Optional error events and put
Action Optional error handling in the same notification chain as
MCE error decoding.
Signed-off-by: Chen, Gong <gong.chen@linux.intel.com>
[ Fold in subsequent patch from Boris for early boot logging. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
[ Correct a lot. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439396985-12812-5-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
An MCE is a rare event. Therefore, there's no need to have
per-CPU instances of both normal and IRQ workqueues. Make them
both global.
Signed-off-by: Chen, Gong <gong.chen@linux.intel.com>
[ Fold in subsequent patch from Rui/Boris/Tony for early boot logging. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
[ Massage commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439396985-12812-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
printk() is not safe to use in MCE context. Add a lockless
memory allocator pool to save error records in MCE context.
Those records will be issued later, in a printk-safe context.
The idea is inspired by the APEI/GHES driver.
We're very conservative and allocate only two pages for it but
since we're going to use those pages throughout the system's
lifetime, we allocate them statically to avoid early boot time
allocation woes.
Signed-off-by: Chen, Gong <gong.chen@linux.intel.com>
[ Rewrite. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/1439396985-12812-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit renames rcu_lockdep_assert() to RCU_LOCKDEP_WARN() for
consistency with the WARN() series of macros. This also requires
inverting the sense of the conditional, which this commit also does.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
On 64-bit kernels, we don't need it any more: we handle context
tracking directly on entry from user mode and exit to user mode.
On 32-bit kernels, we don't support context tracking at all, so
these callbacks had no effect.
Note: this doesn't change do_page_fault(). Before we do that,
we need to make sure that there is no code that can page fault
from kernel mode with CONTEXT_USER. The 32-bit fast system call
stack argument code is the only offender I'm aware of right now.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Denys Vlasenko <vda.linux@googlemail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: paulmck@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/ae22f4dfebd799c916574089964592be218151f9.1435952415.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that there is no paravirt TSC, the "native" is
inappropriate. The function does RDTSC, so give it the obvious
name: rdtsc().
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/fd43e16281991f096c1e4d21574d9e1402c62d39.1434501121.git.luto@kernel.org
[ Ported it to v4.2-rc1. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that the ->read_tsc() paravirt hook is gone, rdtscll() is
just a wrapper around native_read_tsc(). Unwrap it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/d2449ae62c1b1fb90195bcfb19ef4a35883a04dc.1434501121.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 core updates from Ingo Molnar:
"There were so many changes in the x86/asm, x86/apic and x86/mm topics
in this cycle that the topical separation of -tip broke down somewhat -
so the result is a more traditional architecture pull request,
collected into the 'x86/core' topic.
The topics were still maintained separately as far as possible, so
bisectability and conceptual separation should still be pretty good -
but there were a handful of merge points to avoid excessive
dependencies (and conflicts) that would have been poorly tested in the
end.
The next cycle will hopefully be much more quiet (or at least will
have fewer dependencies).
The main changes in this cycle were:
* x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
Gleixner)
- This is the second and most intrusive part of changes to the x86
interrupt handling - full conversion to hierarchical interrupt
domains:
[IOAPIC domain] -----
|
[MSI domain] --------[Remapping domain] ----- [ Vector domain ]
| (optional) |
[HPET MSI domain] ----- |
|
[DMAR domain] -----------------------------
|
[Legacy domain] -----------------------------
This now reflects the actual hardware and allowed us to distangle
the domain specific code from the underlying parent domain, which
can be optional in the case of interrupt remapping. It's a clear
separation of functionality and removes quite some duct tape
constructs which plugged the remap code between ioapic/msi/hpet
and the vector management.
- Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
injection into guests (Feng Wu)
* x86/asm changes:
- Tons of cleanups and small speedups, micro-optimizations. This
is in preparation to move a good chunk of the low level entry
code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
Brian Gerst)
- Moved all system entry related code to a new home under
arch/x86/entry/ (Ingo Molnar)
- Removal of the fragile and ugly CFI dwarf debuginfo annotations.
Conversion to C will reintroduce many of them - but meanwhile
they are only getting in the way, and the upstream kernel does
not rely on them (Ingo Molnar)
- NOP handling refinements. (Borislav Petkov)
* x86/mm changes:
- Big PAT and MTRR rework: making the code more robust and
preparing to phase out exposing direct MTRR interfaces to drivers -
in favor of using PAT driven interfaces (Toshi Kani, Luis R
Rodriguez, Borislav Petkov)
- New ioremap_wt()/set_memory_wt() interfaces to support
Write-Through cached memory mappings. This is especially
important for good performance on NVDIMM hardware (Toshi Kani)
* x86/ras changes:
- Add support for deferred errors on AMD (Aravind Gopalakrishnan)
This is an important RAS feature which adds hardware support for
poisoned data. That means roughly that the hardware marks data
which it has detected as corrupted but wasn't able to correct, as
poisoned data and raises an APIC interrupt to signal that in the
form of a deferred error. It is the OS's responsibility then to
take proper recovery action and thus prolonge system lifetime as
far as possible.
- Add support for Intel "Local MCE"s: upcoming CPUs will support
CPU-local MCE interrupts, as opposed to the traditional system-
wide broadcasted MCE interrupts (Ashok Raj)
- Misc cleanups (Borislav Petkov)
* x86/platform changes:
- Intel Atom SoC updates
... and lots of other cleanups, fixlets and other changes - see the
shortlog and the Git log for details"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
x86/hpet: Use proper hpet device number for MSI allocation
x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
genirq: Prevent crash in irq_move_irq()
genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
iommu, x86: Properly handle posted interrupts for IOMMU hotplug
iommu, x86: Provide irq_remapping_cap() interface
iommu, x86: Setup Posted-Interrupts capability for Intel iommu
iommu, x86: Add cap_pi_support() to detect VT-d PI capability
iommu, x86: Avoid migrating VT-d posted interrupts
iommu, x86: Save the mode (posted or remapped) of an IRTE
iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
iommu: dmar: Provide helper to copy shared irte fields
iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
iommu: Add new member capability to struct irq_remap_ops
x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
...
Add the necessary changes to do_machine_check() to be able to
process MCEs signaled as local MCEs. Typically, only recoverable
errors (SRAR type) will be Signaled as LMCE. The architecture
does not restrict to only those errors, however.
When errors are signaled as LMCE, there is no need for the MCE
handler to perform rendezvous with other logical processors
unlike earlier processors that would broadcast machine check
errors.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1433436928-31903-17-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Initialize and prepare for handling LMCEs. Add a boot-time
option to disable LMCEs.
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
[ Simplify stuff, align statements for better readability, reflow comments; kill
unused lmce_clear(); save us an MSR write if LMCE is already enabled. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1433436928-31903-16-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RCU changes from Paul E. McKenney:
- Initialization/Kconfig updates: hide most Kconfig options from unsuspecting users.
There's now a single high level configuration option:
*
* RCU Subsystem
*
Make expert-level adjustments to RCU configuration (RCU_EXPERT) [N/y/?] (NEW)
Which if answered in the negative, leaves us with a single interactive
configuration option:
Offload RCU callback processing from boot-selected CPUs (RCU_NOCB_CPU) [N/y/?] (NEW)
All the rest of the RCU options are configured automatically.
- Remove all uses of RCU-protected array indexes: replace the
rcu_[access|dereference]_index_check() APIs with READ_ONCE() and rcu_lockdep_assert().
- RCU CPU-hotplug cleanups.
- Updates to Tiny RCU: a race fix and further code shrinkage.
- RCU torture-testing updates: fixes, speedups, cleanups and
documentation updates.
- Miscellaneous fixes.
- Documentation updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because mce is arch-specific x86 code, there is little or no
performance benefit of using rcu_dereference_index_check() over using
smp_load_acquire(). It also turns out that mce is the only place that
array-index-based RCU is used, and it would be convenient to drop
this portion of the RCU API.
This patch therefore changes rcu_dereference_index_check() uses to
smp_load_acquire(), but keeping the lockdep diagnostics, and also
changes rcu_access_index() uses to READ_ONCE().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: linux-edac@vger.kernel.org
Cc: Tony Luck <tony.luck@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Using "mce=1,10000000" on the kernel cmdline to change the
monarch timeout does not work. The cause is that get_option()
does parse a subsequent comma in the option string and signals
that with a return value. So we don't need to check for a second
comma ourselves.
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/1432120943-25028-1-git-send-email-xiexiuqi@huawei.com
Link: http://lkml.kernel.org/r/1432628901-18044-19-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Derek noticed that a critical MCE gets reported with the wrong
error type description:
[Hardware Error]: CPU 34: Machine Check Exception: 5 Bank 9: f200003f000100b0
[Hardware Error]: RIP !INEXACT! 10:<ffffffff812e14c1> {intel_idle+0xb1/0x170}
[Hardware Error]: TSC 49587b8e321cb
[Hardware Error]: PROCESSOR 0:306e4 TIME 1431561296 SOCKET 1 APIC 29
[Hardware Error]: Some CPUs didn't answer in synchronization
[Hardware Error]: Machine check: Invalid
^^^^^^^
The last line with 'Invalid' should have printed the high level
MCE error type description we get from mce_severity, i.e.
something like:
[Hardware Error]: Machine check: Action required: data load error in a user process
this happens due to the fact that mce_no_way_out() iterates over
all MCA banks and possibly overwrites the @msg argument which is
used in the panic printing later.
Change behavior to take the message of only and the (last)
critical MCE it detects.
Reported-by: Derek <denc716@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/1431936437-25286-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Deferred errors indicate error conditions that were not corrected, but
those errors have not been consumed yet. They require no action from
S/W (or action is optional). These errors provide info about a latent
uncorrectable MCE that can occur when a poisoned data is consumed by the
processor.
Newer AMD processors can generate deferred errors and can be configured
to generate APIC interrupts on such events.
SUCCOR stands for S/W UnCorrectable error COntainment and Recovery.
It indicates support for data poisoning in HW and deferred error
interrupts.
Add new bitfield to mce_vendor_flags for this. We use this to verify
presence of deferred error interrupts before we enable them in mce_amd.c
While at it, clarify comments in mce_vendor_flags to provide an
indication of usages of the bitfields.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1430913538-1415-4-git-send-email-Aravind.Gopalakrishnan@amd.com
[ beef up commit message, do CPUID(8000_0007) only once. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Pull x86 RAS changes from Ingo Molnar:
"The main changes in this cycle were:
- Simplify the CMCI storm logic on Intel CPUs after yet another
report about a race in the code (Borislav Petkov)
- Enable the MCE threshold irq on AMD CPUs by default (Aravind
Gopalakrishnan)
- Add AMD-specific MCE-severity grading function. Further error
recovery actions will be based on its output (Aravind Gopalakrishnan)
- Documentation updates (Borislav Petkov)
- ... assorted fixes and cleanups"
* 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce/severity: Fix warning about indented braces
x86/mce: Define mce_severity function pointer
x86/mce: Add an AMD severities-grading function
x86/mce: Reindent __mcheck_cpu_apply_quirks() properly
x86/mce: Use safe MSR accesses for AMD quirk
x86/MCE/AMD: Enable thresholding interrupts by default if supported
x86/MCE: Make mce_panic() fatal machine check msg in the same pattern
x86/MCE/intel: Cleanup CMCI storm logic
Documentation/acpi/einj: Correct and streamline text
x86/MCE/AMD: Drop bogus const modifier from AMD's bank4_names()
Rename mce_severity() to mce_severity_intel() and assign the
mce_severity function pointer to mce_severity_amd() during init on AMD.
This way, we can avoid a test to call mce_severity_amd every time we get
into mce_severity(). And it's cleaner to do it this way.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Suggested-by: Tony Luck <tony.luck@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1427125373-2918-3-git-send-email-Aravind.Gopalakrishnan@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Add a severities function that caters to AMD processors. This allows us
to do some vendor-specific work within the function if necessary.
Also, introduce a vendor flag bitfield for vendor-specific settings. The
severities code uses this to define error scope based on the prescence
of the flags field.
This is based off of work by Boris Petkov.
Testing details:
Fam10h, Model 9h (Greyhound)
Fam15h: Models 0h-0fh (Orochi), 30h-3fh (Kaveri) and 60h-6fh (Carrizo),
Fam16h Model 00h-0fh (Kabini)
Boris:
Intel SNB
AMD K8 (JH-E0)
Signed-off-by: Aravind Gopalakrishnan <aravind.gopalakrishnan@amd.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/1427125373-2918-2-git-send-email-Aravind.Gopalakrishnan@amd.com
[ Fixup build, clean up comments. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Certain MSRs are only relevant to a kernel in host mode, and kvm had
chosen not to implement these MSRs at all for guests. If a guest kernel
ever tried to access these MSRs, the result was a general protection
fault.
KVM will be separately patched to return 0 when these MSRs are read,
and this patch ensures that MSR accesses are tolerant of exceptions.
Signed-off-by: Jesse Larrew <jesse.larrew@amd.com>
[ Drop {} braces around loop ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Joel Schopp <joel.schopp@amd.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/1426262619-5016-1-git-send-email-jesse.larrew@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RAS updates from Borislav Petkov:
"- Enable AMD thresholding IRQ by default if supported. (Aravind Gopalakrishnan)
- Unify mce_panic() message pattern. (Derek Che)
- A bit more involved simplification of the CMCI logic after yet another
report about race condition with the adaptive logic. (Borislav Petkov)
- ACPI APEI EINJ fleshing out of the user documentation. (Borislav Petkov)
- Minor cleanup. (Jan Beulich.)"
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is another mce_panic call with "Fatal machine check on current CPU" in
the same mce.c file, why not keep them all in same pattern
mce_panic("Fatal machine check on current CPU", &m, msg);
Signed-off-by: Derek Che <drc@yahoo-inc.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Initially, this started with the yet another report about a race
condition in the CMCI storm adaptive period length thing. Yes, we have
to admit, it is fragile and error prone. So let's simplify it.
The simpler logic is: now, after we enter storm mode, we go straight to
polling with CMCI_STORM_INTERVAL, i.e. once a second. We remain in storm
mode as long as we see errors being logged while polling.
Theoretically, if we see an uninterrupted error stream, we will remain
in storm mode indefinitely and keep polling the MSRs.
However, when the storm is actually a burst of errors, once we have
logged them all, we back out of it after ~5 mins of polling and no more
errors logged.
If we encounter an error during those 5 minutes, we reset the polling
interval to 5 mins.
Making machine_check_poll() return a bool and denoting whether it has
seen an error or not lets us simplify a bunch of code and move the storm
handling private to mce_intel.c.
Some minor cleanups while at it.
Reported-by: Calvin Owens <calvinowens@fb.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/1417746575-23299-1-git-send-email-calvinowens@fb.com
Signed-off-by: Borislav Petkov <bp@suse.de>
not be able to decide that an event should not be logged
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJU47aGAAoJEKurIx+X31iBiX4P+wfq7uUKwQ4riD2jFppvhrcm
W2Qx/iIv9QN77ZIw5I45VqGbDKXmlThl41ISem9BlKd8jKaldY3lUlQMfrPC5V11
9bl/7LsZoQLlbuwYR6uiLdKqW9wd6d5Y1mczdSDM5wCtfMw/s+C/ETzuRVHsQZjF
1LTB0rb0NPouX+y3D8aDrvk9Os5ozZsz3N/y6e3TsI/wV8d3rqwH8C8x3RjB2Evx
3WRSwoSOq9kHEbeg1r7PMKYKWAoJs97Kwo4EgJELqn8fxYMWnSsoDZGr9P2PX8oT
TKgSFPnhgCLw+qlWy81MM8hutnHKnN6oXcJKzE0nHtD8JlJ/M/HdDAPIg8G9aLIn
ABxPg6OORs/4YJQYGFA8ixx3TfIMspMU2m9KGoCcerpGaHCHhrlylJyheUvhRkPP
u8pjGz+31d3bVVRzCLJt1eqo3H/y0wcURWaemk23lcUIsdDqisjZDzZrZxyZuWaH
eDTKmHsZB/I4wnOs4Ke+U7oo/u+NtBzPmBSJcshgKSONLPd7bSJtjckLoa3wSf5I
q5DkZgxrUYkO6tIoAAi/N2tc/2qkjTOug79BP9YKN3elmv3nxW4gieSaUb5p16bd
ORpZLt3SDKEPv+79a/1e7ZyR7ik9Evhzc+/72M1IZvmdr3uOjj+xkuE1uRU7vuvX
44Jmx6mEtPK1mVBfwkdG
=jAUs
-----END PGP SIGNATURE-----
Merge tag 'please-pull-fixmcelog' of git://git.kernel.org/pub/scm/linux/kernel/git/ras/ras
Pull mcelog regression fix from Tony Luck:
"Fix regression - functions on the mce notifier chain should not be
able to decide that an event should not be logged"
* tag 'please-pull-fixmcelog' of git://git.kernel.org/pub/scm/linux/kernel/git/ras/ras:
x86/mce: Fix regression. All error records should report via /dev/mcelog
Pull x86 perf updates from Ingo Molnar:
"This series tightens up RDPMC permissions: currently even highly
sandboxed x86 execution environments (such as seccomp) have permission
to execute RDPMC, which may leak various perf events / PMU state such
as timing information and other CPU execution details.
This 'all is allowed' RDPMC mode is still preserved as the
(non-default) /sys/devices/cpu/rdpmc=2 setting. The new default is
that RDPMC access is only allowed if a perf event is mmap-ed (which is
needed to correctly interpret RDPMC counter values in any case).
As a side effect of these changes CR4 handling is cleaned up in the
x86 code and a shadow copy of the CR4 value is added.
The extra CR4 manipulation adds ~ <50ns to the context switch cost
between rdpmc-capable and rdpmc-non-capable mms"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86: Add /sys/devices/cpu/rdpmc=2 to allow rdpmc for all tasks
perf/x86: Only allow rdpmc if a perf_event is mapped
perf: Pass the event to arch_perf_update_userpage()
perf: Add pmu callbacks to track event mapping and unmapping
x86: Add a comment clarifying LDT context switching
x86: Store a per-cpu shadow copy of CR4
x86: Clean up cr4 manipulation
I'm getting complaints from validation teams that have updated their
Linux kernels from ancient versions to current. They don't see the
error logs they expect. I tell the to unload any EDAC drivers[1], and
things start working again. The problem is that we short-circuit
the logging process if any function on the decoder chain claims to
have dealt with the problem:
ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
if (ret == NOTIFY_STOP)
return;
The logic we used when we added this code was that we did not want
to confuse users with double reports of the same error.
But it turns out users are not confused - they are upset that they
don't see a log where their tools used to find a log.
I could also get into a long description of how the consumer of this
log does more than just decode model specific details of the error.
It keeps counts, tracks thresholds, takes actions and runs scripts
that can alert administrators to problems.
[1] We've recently compounded the problem because the acpi_extlog
driver also registers for this notifier and also returns NOTIFY_STOP.
Signed-off-by: Tony Luck <tony.luck@intel.com>
CR4 manipulation was split, seemingly at random, between direct
(write_cr4) and using a helper (set/clear_in_cr4). Unfortunately,
the set_in_cr4 and clear_in_cr4 helpers also poke at the boot code,
which only a small subset of users actually wanted.
This patch replaces all cr4 access in functions that don't leave cr4
exactly the way they found it with new helpers cr4_set_bits,
cr4_clear_bits, and cr4_set_bits_and_update_boot.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vince Weaver <vince@deater.net>
Cc: "hillf.zj" <hillf.zj@alibaba-inc.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/495a10bdc9e67016b8fd3945700d46cfd5c12c2f.1414190806.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We now switch to the kernel stack when a machine check interrupts
during user mode. This means that we can perform recovery actions
in the tail of do_machine_check()
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
We currently pretend that IST context is like standard exception
context, but this is incorrect. IST entries from userspace are like
standard exceptions except that they use per-cpu stacks, so they are
atomic. IST entries from kernel space are like NMIs from RCU's
perspective -- they are not quiescent states even if they
interrupted the kernel during a quiescent state.
Add and use ist_enter and ist_exit to track IST context. Even
though x86_32 has no IST stacks, we track these interrupts the same
way.
This fixes two issues:
- Scheduling from an IST interrupt handler will now warn. It would
previously appear to work as long as we got lucky and nothing
overwrote the stack frame. (I don't know of any bugs in this
that would trigger the warning, but it's good to be on the safe
side.)
- RCU handling in IST context was dangerous. As far as I know,
only machine checks were likely to trigger this, but it's good to
be on the safe side.
Note that the machine check handlers appears to have been missing
any context tracking at all before this patch.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Uncorrected no action required (UCNA) - is a uncorrected recoverable
machine check error that is not signaled via a machine check exception
and, instead, is reported to system software as a corrected machine
check error. UCNA errors indicate that some data in the system is
corrupted, but the data has not been consumed and the processor state
is valid and you may continue execution on this processor. UCNA errors
require no action from system software to continue execution. Note that
UCNA errors are supported by the processor only when IA32_MCG_CAP[24]
(MCG_SER_P) is set.
-- Intel SDM Volume 3B
Deferred errors are errors that cannot be corrected by hardware, but
do not cause an immediate interruption in program flow, loss of data
integrity, or corruption of processor state. These errors indicate
that data has been corrupted but not consumed. Hardware writes information
to the status and address registers in the corresponding bank that
identifies the source of the error if deferred errors are enabled for
logging. Deferred errors are not reported via machine check exceptions;
they can be seen by polling the MCi_STATUS registers.
-- AMD64 APM Volume 2
Above two items, both UCNA and Deferred errors belong to detected
errors, but they can't be corrected by hardware, and this is very
similar to Software Recoverable Action Optional (SRAO) errors.
Therefore, we can take some actions that have been used for handling
SRAO errors to handle UCNA and Deferred errors.
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Chen Yucong <slaoub@gmail.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Until now, the mce_severity mechanism can only identify the severity
of UCNA error as MCE_KEEP_SEVERITY. Meanwhile, it is not able to filter
out DEFERRED error for AMD platform.
This patch extends the mce_severity mechanism for handling
UCNA/DEFERRED error. In order to do this, the patch introduces a new
severity level - MCE_UCNA/DEFERRED_SEVERITY.
In addition, mce_severity is specific to machine check exception,
and it will check MCIP/EIPV/RIPV bits. In order to use mce_severity
mechanism in non-exception context, the patch also introduces a new
argument (is_excp) for mce_severity. `is_excp' is used to explicitly
specify the calling context of mce_severity.
Reviewed-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Chen Yucong <slaoub@gmail.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
BorisO reports that misc_register() fails often on xen. The current code
unregisters the CPU hotplug notifier in that case. If then a CPU is
offlined and onlined back again, we end up with a second timer running
on that CPU, leading to soft lockups and system hangs.
So let's leave the hotcpu notifier always registered - even if
mce_device_create failed for some cores and never unreg it so that we
can deal with the timer handling accordingly.
Reported-and-Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: http://lkml.kernel.org/r/1403274493-1371-1-git-send-email-boris.ostrovsky@oracle.com
Signed-off-by: Borislav Petkov <bp@suse.de>
There is very little and maybe practically nothing we can do to recover
from a system where at least one core has reached a timeout during the
whole monarch cores gathering. So panic when that happens.
Link: http://lkml.kernel.org/r/20140523091041.GA21332@pd.tnic
Signed-off-by: Borislav Petkov <bp@suse.de>
The following commit:
27f6c573e0 ("x86, CMCI: Add proper detection of end of CMCI storms")
Added two preemption bugs:
- machine_check_poll() does a get_cpu_var() without a matching
put_cpu_var(), which causes preemption imbalance and crashes upon
bootup.
- it does percpu ops without disabling preemption. Preemption is not
disabled due to the mistaken use of a raw spinlock.
To fix these bugs fix the imbalance and change
cmci_discover_lock to a regular spinlock.
Reported-by: Owen Kibel <qmewlo@gmail.com>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chen, Gong <gong.chen@linux.intel.com>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Todorov <atodorov@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/n/tip-jtjptvgigpfkpvtQxpEk1at2@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
--
arch/x86/kernel/cpu/mcheck/mce.c | 4 +---
arch/x86/kernel/cpu/mcheck/mce_intel.c | 18 +++++++++---------
2 files changed, 10 insertions(+), 12 deletions(-)
Pull x86 fixes from Peter Anvin:
"This is a collection of minor fixes for x86, plus the IRET information
leak fix (forbid the use of 16-bit segments in 64-bit mode)"
NOTE! We may have to relax the "forbid the use of 16-bit segments in
64-bit mode" part, since there may be people who still run and depend on
16-bit Windows binaries under Wine.
But I'm taking this in the current unconditional form for now to see who
(if anybody) screams bloody murder. Maybe nobody cares. And maybe
we'll have to update it with some kind of runtime enablement (like our
vm.mmap_min_addr tunable that people who run dosemu/qemu/wine already
need to tweak).
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernels
efi: Pass correct file handle to efi_file_{read,close}
x86/efi: Correct EFI boot stub use of code32_start
x86/efi: Fix boot failure with EFI stub
x86/platform/hyperv: Handle VMBUS driver being a module
x86/apic: Reinstate error IRQ Pentium erratum 3AP workaround
x86, CMCI: Add proper detection of end of CMCI storms
When CMCI storm persists for a long time(at least beyond predefined
threshold. It's 30 seconds for now), we can watch CMCI storm is
detected immediately after it subsides.
...
Dec 10 22:04:29 kernel: CMCI storm detected: switching to poll mode
Dec 10 22:04:59 kernel: CMCI storm subsided: switching to interrupt mode
Dec 10 22:04:59 kernel: CMCI storm detected: switching to poll mode
Dec 10 22:05:29 kernel: CMCI storm subsided: switching to interrupt mode
...
The problem is that our logic that determines that the storm has
ended is incorrect. We announce the end, re-enable interrupts and
realize that the storm is still going on, so we switch back to
polling mode. Rinse, repeat.
When a storm happens we disable signaling of errors via CMCI and begin
polling machine check banks instead. If we find any logged errors,
then we need to set a per-cpu flag so that our per-cpu tests that
check whether the storm is ongoing will see that errors are still
being logged independently of whether mce_notify_irq() says that the
error has been fully processed.
cmci_clear() is not the right tool to disable a bank. It disables the
interrupt for the bank as desired, but it also clears the bit for
this bank in "mce_banks_owned" so we will skip the bank when polling
(so we fail to see that the storm continues because we stop looking).
New cmci_storm_disable_banks() just disables the interrupt while
allowing polling to continue.
Reported-by: William Dauchy <wdauchy@gmail.com>
Signed-off-by: Chen, Gong <gong.chen@linux.intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Subsystems that want to register CPU hotplug callbacks, as well as perform
initialization for the CPUs that are already online, often do it as shown
below:
get_online_cpus();
for_each_online_cpu(cpu)
init_cpu(cpu);
register_cpu_notifier(&foobar_cpu_notifier);
put_online_cpus();
This is wrong, since it is prone to ABBA deadlocks involving the
cpu_add_remove_lock and the cpu_hotplug.lock (when running concurrently
with CPU hotplug operations).
Instead, the correct and race-free way of performing the callback
registration is:
cpu_notifier_register_begin();
for_each_online_cpu(cpu)
init_cpu(cpu);
/* Note the use of the double underscored version of the API */
__register_cpu_notifier(&foobar_cpu_notifier);
cpu_notifier_register_done();
Fix the mce code in x86 by using this latter form of callback registration.
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
So mce_start_timer() has a 'cpu' argument which is supposed to mean to
start a timer on that cpu. However, the code currently starts a timer on
the *current* cpu the function runs on and causes the sanity-check in
mce_timer_fn to fire:
WARNING: CPU: 0 PID: 0 at arch/x86/kernel/cpu/mcheck/mce.c:1286 mce_timer_fn
because it is running on the wrong cpu.
This was triggered by Prarit Bhargava <prarit@redhat.com> by offlining
all the cpus in succession.
Then, we were fiddling with the CMCI storm settings when starting the
timer whereas there's no need for that - if there's storm happening
on this newly restarted cpu, we're going to be in normal CMCI mode
initially and then when the CMCI interrupt starts firing, we're going to
go to the polling mode with the timer real soon.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Prarit Bhargava <prarit@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Reviewed-by: Chen, Gong <gong.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/1387722156-5511-1-git-send-email-prarit@redhat.com
This patch adds a call to put_device() when the device_register() call
has failed. This is required so that the last reference to the device is
given up.
Signed-off-by: Levente Kurusa <levex@linux.com>
Link: http://lkml.kernel.org/r/5298F900.9000208@linux.com
Signed-off-by: Borislav Petkov <bp@suse.de>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/x86 uses of the __cpuinit macros from
all C files. x86 only had the one __CPUINIT used in assembly files,
and it wasn't paired off with a .previous or a __FINIT, so we can
delete it directly w/o any corresponding additional change there.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>