The Synopsys xHC has an internal TRB cache of size TRB_CACHE_SIZE for
each endpoint. The default value for TRB_CACHE_SIZE is 16 for SS and 8
for HS. The controller loads and updates the TRB cache from the transfer
ring in system memory whenever the driver issues a start transfer or
update transfer command.
For chained TRBs, the Synopsys xHC requires that the total amount of
bytes for all TRBs loaded in the TRB cache be greater than or equal to 1
MPS. Or the chain ends within the TRB cache (with a last TRB).
If this requirement is not met, the controller will not be able to send
or receive a packet and it will hang causing a driver timeout and error.
This can be a problem if a class driver queues SG requests with many
small-buffer entries. The XHCI driver will create a chained TRB for each
entry which may trigger this issue.
This patch adds logic to the XHCI driver to detect and prevent this from
happening.
For every (TRB_CACHE_SIZE - 2), we check the total buffer size of
the SG list and if the last window of (TRB_CACHE_SIZE - 2) SG list length
and we don't make up at least 1 MPS, we create a temporary buffer to
consolidate full SG list into the buffer.
We check at (TRB_CACHE_SIZE - 2) window because it is possible that there
would be a link and/or event data TRB that take up to 2 of the cache
entries.
We discovered this issue with devices on other platforms but have not
yet come across any device that triggers this on Linux. But it could be
a real problem now or in the future. All it takes is N number of small
chained TRBs. And other instances of the Synopsys IP may have smaller
values for the TRB_CACHE_SIZE which would exacerbate the problem.
Signed-off-by: Tejas Joglekar <joglekar@synopsys.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20201208092912.1773650-3-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit uses the private data passed by parent device
to set the quirk for Synopsys xHC. This patch fixes the
SNPS xHC hang issue when the data is scattered across
small buffers which does not make atleast MPS size for
given TRB cache size of SNPS xHC.
Signed-off-by: Tejas Joglekar <joglekar@synopsys.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20201208092912.1773650-2-mathias.nyman@linux.intel.com
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
On some platform of AMD, S3 fails with HCE and SRE errors. To fix this,
need to disable a bit which is enable in sparse controller.
Cc: stable@vger.kernel.org #v4.19+
Signed-off-by: Sanket Goswami <Sanket.Goswami@amd.com>
Signed-off-by: Sandeep Singh <sandeep.singh@amd.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20201028203124.375344-3-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Some DRD controllers (eg, dwc3 & cdns3) have PHY management at
their own driver to cover both device and host mode, so add one
priv quirk for such users to skip PHY management from HCD core.
Reviewed-by: Jun Li <jun.li@nxp.com>
Signed-off-by: Peter Chen <peter.chen@nxp.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20200918131752.16488-5-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Some atypical users of xhci-pci might need to manually reset their xHCI
controller before starting the HCD setup. Check if a reset controller
device is available to the PCI bus and trigger a reset.
Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Link: https://lore.kernel.org/r/20200629161845.6021-6-nsaenzjulienne@suse.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The generic xhci ring allocations code needs struct xhci_hcd pointer, and
it allocates memory for the rings from dma pools created for the xhci
device.
In order to decouple xhci and DbC we have to create our own ring allocation
and free routines for DbC
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20200723144530.9992-20-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
EP_STATE_MASK should be 0x7 instead of 0xf
xhci spec 6.2.3 shows that the EP state field in the endpoint context data
structure consist of bits [2:0].
The old value included a bit from the next field which fortunately is a
RsvdZ region. So hopefully this hasn't caused too much harm
Cc: stable@vger.kernel.org
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20200624135949.22611-2-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Some rensas controller like uPD720201 and uPD720202 need firmware to be
loaded. Add these devices in table and invoke renesas firmware loader
functions to check and load the firmware into device memory when
required.
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Link: https://lore.kernel.org/r/20200514122039.300417-4-vkoul@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If a class driver cancels its only URB then the endpoint ring buffer will
appear empty to the xhci driver. xHC hardware may still process cached
TRBs, and complete with a STALL, halting the endpoint.
This halted endpoint was not handled correctly by xhci driver as events on
empty rings were all assumed to be spurious events.
xhci driver refused to restart the ring with EP_HALTED flag set, so class
driver was never informed the endpoint halted even if it queued new URBs.
The host side of the endpoint needs to be reset, and dequeue pointer should
be moved in order to clear the cached TRBs and resetart the endpoint.
Small adjustments in finding the new dequeue pointer are needed to support
the case of stall on an empty ring and unknown current TD.
Cc: <stable@vger.kernel.org>
cc: Jeremy Compostella <jeremy.compostella@intel.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20200421140822.28233-2-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch corrects the SPDX License Identifier style in
header files related to USB host controller drivers.
For C header files Documentation/process/license-rules.rst
mandates C-like comments (opposed to C source files where
C++ style should be used).
Changes made by using a script provided by Joe Perches here:
https://lkml.org/lkml/2019/2/7/46.
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Nishad Kamdar <nishadkamdar@gmail.com>
Link: https://lore.kernel.org/r/20200404092135.GA4522@nishad
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Like U3 case, xHCI spec doesn't specify the upper bound of U0 transition
time. The 20ms is not enough for some devices.
Intead of polling PLS or PLC, we can facilitate the port change event to
know that the link transits to U0 is completed.
While at it, also separate U0 and U3 case to make the code cleaner.
[variable rename to u3exit, and skip completion for usb2 ports -Mathias ]
Signed-off-by: Kai-Heng Feng <kai.heng.feng@canonical.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20200312144517.1593-8-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Additional debugging to show xHC USBSTS register when stop endpoint
command watchdog triggers and host is assumed dead.
useful to know the current status before the controller is stopped by
the xhci driver and everything is released and freed.
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20200312144517.1593-4-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Link: https://lore.kernel.org/r/20200220132017.GA29262@embeddedor
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
xhci driver assumed that xHC controllers have at most one custom
supported speed table (PSI) for all usb 3.x ports.
Memory was allocated for one PSI table under the xhci hub structure.
Turns out this is not the case, some controllers have a separate
"supported protocol capability" entry with a PSI table for each port.
This means each usb3 roothub port can in theory support different custom
speeds.
To solve this, cache all supported protocol capabilities with their PSI
tables in an array, and add pointers to the xhci port structure so that
every port points to its capability entry in the array.
When creating the SuperSpeedPlus USB Device Capability BOS descriptor
for the xhci USB 3.1 roothub we for now will use only data from the
first USB 3.1 capable protocol capability entry in the array.
This could be improved later, this patch focuses resolving
the memory leak.
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Reported-by: Sajja Venkateswara Rao <VenkateswaraRao.Sajja@amd.com>
Fixes: 47189098f8 ("xhci: parse xhci protocol speed ID list for usb 3.1 usage")
Cc: stable <stable@vger.kernel.org> # v4.4+
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Link: https://lore.kernel.org/r/20200211150158.14475-1-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit fc57313d10.
Marek reports that it breaks things:
This patch landed in today's linux-next (20200211) and causes
NULL pointer dereference during second suspend/resume cycle on
Samsung Exynos5422-based (arm 32bit) Odroid XU3lite board:
A more complete fix will be added soon.
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Fixes: fc57313d10 ("xhci: Fix memory leak when caching protocol extended capability PSI tables")
Cc: Paul Menzel <pmenzel@molgen.mpg.de>
Cc: Sajja Venkateswara Rao <VenkateswaraRao.Sajja@amd.com>
Cc: stable <stable@vger.kernel.org> # v4.4+
Cc: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
xhci driver assumed that xHC controllers have at most one custom
supported speed table (PSI) for all usb 3.x ports.
Memory was allocated for one PSI table under the xhci hub structure.
Turns out this is not the case, some controllers have a separate
"supported protocol capability" entry with a PSI table for each port.
This means each usb3 roothub port can in theory support different custom
speeds.
To solve this, cache all supported protocol capabilities with their PSI
tables in an array, and add pointers to the xhci port structure so that
every port points to its capability entry in the array.
When creating the SuperSpeedPlus USB Device Capability BOS descriptor
for the xhci USB 3.1 roothub we for now will use only data from the
first USB 3.1 capable protocol capability entry in the array.
This could be improved later, this patch focuses resolving
the memory leak.
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Reported-by: Sajja Venkateswara Rao <VenkateswaraRao.Sajja@amd.com>
Fixes: 47189098f8 ("xhci: parse xhci protocol speed ID list for usb 3.1 usage")
Cc: stable <stable@vger.kernel.org> # v4.4+
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20200210134553.9144-3-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Xhci driver cannot call pci_set_power_state() on non-pci xhci host
controllers. For example, NVIDIA Tegra XHCI host controller which acts
as platform device with XHCI_SPURIOUS_WAKEUP quirk set in some platform
hits this issue during shutdown.
Cc: <stable@vger.kernel.org>
Fixes: 638298dc66 ("xhci: Fix spurious wakeups after S5 on Haswell")
Signed-off-by: Henry Lin <henryl@nvidia.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20191211142007.8847-4-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Trace when a register in the doorbell array is written,
both for host controller command doorbell and device doorbells,
including for which endpoint and stream
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/1573836603-10871-3-git-send-email-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Software can set a Transfer State Preserve (TSP) flag to maintain
data toggle and sequence number when issuing a reset endpoint
command.
xhci driver is using TSP for soft retry, we want to show TSP usage
in tracing as well
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/1567172356-12915-4-git-send-email-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A second regression was found in the immediate data transfer (IDT)
support which was added to 5.2 kernel
IDT is used to transfer small amounts of data (up to 8 bytes) in the
field normally used for data dma address, thus avoiding dma mapping.
If the data was not already dma mapped, then IDT support assumed data was
in urb->transfer_buffer, and did not take into accound that even
small amounts of data (8 bytes) can be in a scatterlist instead.
This caused a NULL pointer dereference when sg_dma_len() was used
with non-dma mapped data.
Solve this by not using IDT if scatter gather buffer list is used.
Fixes: 33e39350eb ("usb: xhci: add Immediate Data Transfer support")
Cc: <stable@vger.kernel.org> # v5.2
Reported-by: Maik Stohn <maik.stohn@seal-one.com>
Tested-by: Maik Stohn <maik.stohn@seal-one.com>
CC: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/1564044861-1445-1-git-send-email-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
A USB3 device needs to be reset and re-enumarated if the port it
connects to goes to a error state, with link state inactive.
There is no use in trying to recover failed transactions by resetting
endpoints at this stage. Tests show that in rare cases, after multiple
endpoint resets of a roothub port the whole host controller might stop
completely.
Several retries to recover from transaction error can happen as
it can take a long time before the hub thread discovers the USB3
port error and inactive link.
We can't reliably detect the port error from slot or endpoint context
due to a limitation in xhci, see xhci specs section 4.8.3:
"There are several cases where the EP State field in the Output
Endpoint Context may not reflect the current state of an endpoint"
and
"Software should maintain an accurate value for EP State, by tracking it
with an internal variable that is driven by Events and Doorbell accesses"
Same appears to be true for slot state.
set a flag to the corresponding slot if a USB3 roothub port link goes
inactive to prevent both queueing new URBs and resetting endpoints.
Reported-by: Rapolu Chiranjeevi <chiranjeevi.rapolu@intel.com>
Tested-by: Rapolu Chiranjeevi <chiranjeevi.rapolu@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
USB 2.0 specification chapter 11.17.5 says "as part of endpoint halt
processing for full-/low-speed endpoints connected via a TT, the host
software must use the Clear_TT_Buffer request to the TT to ensure
that the buffer is not in the busy state".
In our case, a full-speed speaker (ConferenceCam) is behind a high-
speed hub (ConferenceCam Connect), sometimes once we get STALL on a
request we may continue to get STALL with the folllowing requests,
like Set_Interface.
Here we invoke usb_hub_clear_tt_buffer() to send Clear_TT_Buffer
request to the hub of the device for the following Set_Interface
requests to the device to get ACK successfully.
Signed-off-by: Jim Lin <jilin@nvidia.com>
Acked-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
xhci immediate data transfer (IDT) support in 5.2-rc1 caused regression
on various Samsung Exynos boards with ASIX USB 2.0 ethernet dongle.
If the transfer buffer in the URB is already DMA mapped then IDT should
not be used. urb->transfer_dma will already contain a valid dma address,
and there is no guarantee the data in urb->transfer_buffer is valid.
The IDT support patch used urb->transfer_dma as a temporary storage,
copying data from urb->transfer_buffer into it.
Issue was solved by preventing IDT if transfer buffer is already dma
mapped, and by not using urb->transfer_dma as temporary storage.
Fixes: 33e39350eb ("usb: xhci: add Immediate Data Transfer support")
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
CC: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add tracing for the add and drop bits in the input control context
used in Address device, configure endpoint, evaluate context commands.
The add and drop bits tell xHC which enpoints are added and dropped.
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Immediate data transfers (IDT) allow the HCD to copy small chunks of
data (up to 8bytes) directly into its output transfer TRBs. This avoids
the somewhat expensive DMA mappings that are performed by default on
most URBs submissions.
In the case an URB was suitable for IDT. The data is directly copied
into the "Data Buffer Pointer" region of the TRB and the IDT flag is
set. Instead of triggering memory accesses the HC will use the data
directly.
The implementation could cover all kind of output endpoints. Yet
Isochronous endpoints are bypassed as I was unable to find one that
matched IDT's constraints. As we try to bypass the default DMA mappings
on URB buffers we'd need to find a Isochronous device with an
urb->transfer_buffer_length <= 8 bytes.
The implementation takes into account that the 8 byte buffers provided
by the URB will never cross a 64KB boundary.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 2f31a67f01 ("usb: xhci: Prevent bus suspend if a port connect
change or polling state is detected") was intended to prevent ports that
were still link training from being forced to U3 suspend state mid
enumeration.
This solved enumeration issues for devices with slow link training.
Turns out some devices are stuck in the link training/polling state,
and thus that patch will prevent suspend completely for these devices.
This is seen with USB3 card readers in some MacBooks.
Instead of preventing suspend, give some time to complete the link
training. On successful training the port will end up as connected
and enabled.
If port instead is stuck in link training the bus suspend will continue
suspending after 360ms (10 * 36ms) timeout (tPollingLFPSTimeout).
Original patch was sent to stable, this one should go there as well
Fixes: 2f31a67f01 ("usb: xhci: Prevent bus suspend if a port connect change or polling state is detected")
Cc: stable@vger.kernel.org
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As commented in the struct's definition there shouldn't be anything
underneath its 'priv[0]' member as it would break some macros.
The patch converts the broken_suspend into a bit-field and relocates it
next to to the rest of bit-fields.
Fixes: a7d57abcc8 ("xhci: workaround CSS timeout on AMD SNPS 3.0 xHC")
Reported-by: Oliver Neukum <oneukum@suse.com>
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Acked-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that each root hub has their own bus_state strucure the
hcd_undex() used to get the correct bus_state strucure is
no longer needed.
No functional changes
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Move the bus_state structure under struct usb_hub.
We need a bus_state strucure for each roothub to keep track of suspend
related info for each port.
Instead of keeping an array of two bus_state structures right under
struct xhci, it makes more sense move them to the xhci_hub structure.
No functional changes.
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It is introduced for the pre-0.96 xHC controllers, and the driver only
support HW LPM for 1.0 and later controllers.It's not actually used now
and is thought not to be used in the future any more, so just remove it.
Signed-off-by: Zeng Tao <prime.zeng@hisilicon.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Occasionally AMD SNPS 3.0 xHC does not respond to
CSS when set, also it does not flag anything on SRE and HCE
to point the internal xHC errors on USBSTS register. This stalls
the entire system wide suspend and there is no point in stalling
just because of xHC CSS is not responding.
To work around this problem, if the xHC does not flag
anything on SRE and HCE, we can skip the CSS
timeout and allow the system to continue the suspend. Once the
system resume happens we can internally reset the controller
using XHCI_RESET_ON_RESUME quirk
Signed-off-by: Shyam Sundar S K <Shyam-sundar.S-k@amd.com>
Signed-off-by: Sandeep Singh <Sandeep.Singh@amd.com>
cc: Nehal Shah <Nehal-bakulchandra.Shah@amd.com>
Cc: <stable@vger.kernel.org>
Tested-by: Kai-Heng Feng <kai.heng.feng@canonical.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Implement workaround for ThunderX2 Errata-129 (documented in
CN99XX Known Issues" available at Cavium support site).
As per ThunderX2errata-129, USB 2 device may come up as USB 1
if a connection to a USB 1 device is followed by another connection to
a USB 2 device, the link will come up as USB 1 for the USB 2 device.
Resolution: Reset the PHY after the USB 1 device is disconnected.
The PHY reset sequence is done using private registers in XHCI register
space. After the PHY is reset we check for the PLL lock status and retry
the operation if it fails. From our tests, retrying 4 times is sufficient.
Add a new quirk flag XHCI_RESET_PLL_ON_DISCONNECT to invoke the workaround
in handle_xhci_port_status().
Cc: stable@vger.kernel.org
Signed-off-by: George Cherian <george.cherian@cavium.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This definition is used by msecs_to_jiffies in milliseconds.
According to the comments, max rexit timeout should be 20ms.
Align with the comments to properly calculate the delay.
Verified on Sunrise Point-LP and Cannon Lake.
Cc: stable@vger.kernel.org
Signed-off-by: Aaron Ma <aaron.ma@canonical.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The xhci controller on Alpine and Titan Ridge keeps the whole thunderbolt
awake if the host controller is not allowed tp sleep.
This is the case even if no USB devices are connected to the host.
Because of this bigger impact, allow runtime pm as default for these xhci
controllers in the driver.
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Use soft retry to recover from a USB Transaction Errors that are caused by
temporary error conditions. The USB device is not aware that the xHC
has halted the endpoint, and will be waiting for another retry
A Soft Retry perform additional retries and recover from an error which has
caused the xHC to halt an endpoint.
Soft retry has some limitations:
Soft Retry attempts shall not be performed on Isoch endpoints
Soft Retry attempts shall not be performed if the device is behind a TT in
a HS Hub
Software shall limit the number of unsuccessful Soft Retry attempts to
prevent an infinite loop.
For more details on Soft retry see xhci specs 4.6.8.1
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch adds support for the new get_resuming_ports HCD method to
the xhci-hcd driver.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Don't rely on event interrupt (EINT) bit alone to detect pending port
change in resume. If no change event is detected the host may be suspended
again, oterwise roothubs are resumed.
There is a lag in xHC setting EINT. If we don't notice the pending change
in resume, and the controller is runtime suspeded again, it causes the
event handler to assume host is dead as it will fail to read xHC registers
once PCI puts the controller to D3 state.
[ 268.520969] xhci_hcd: xhci_resume: starting port polling.
[ 268.520985] xhci_hcd: xhci_hub_status_data: stopping port polling.
[ 268.521030] xhci_hcd: xhci_suspend: stopping port polling.
[ 268.521040] xhci_hcd: // Setting command ring address to 0x349bd001
[ 268.521139] xhci_hcd: Port Status Change Event for port 3
[ 268.521149] xhci_hcd: resume root hub
[ 268.521163] xhci_hcd: port resume event for port 3
[ 268.521168] xhci_hcd: xHC is not running.
[ 268.521174] xhci_hcd: handle_port_status: starting port polling.
[ 268.596322] xhci_hcd: xhci_hc_died: xHCI host controller not responding, assume dead
The EINT lag is described in a additional note in xhci specs 4.19.2:
"Due to internal xHC scheduling and system delays, there will be a lag
between a change bit being set and the Port Status Change Event that it
generated being written to the Event Ring. If SW reads the PORTSC and
sees a change bit set, there is no guarantee that the corresponding Port
Status Change Event has already been written into the Event Ring."
Cc: <stable@vger.kernel.org>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Some Renesas controllers get into a weird state if they are reset while
programmed with 64bit addresses (they will preserve the top half of the
address in internal, non visible registers).
You end up with half the address coming from the kernel, and the other
half coming from the firmware.
Also, changing the programming leads to extra accesses even if the
controller is supposed to be halted. The controller ends up with a fatal
fault, and is then ripe for being properly reset. On the flip side,
this is completely unsafe if the defvice isn't behind an IOMMU, so
we have to make sure that this is the case. Can you say "broken"?
This is an alternative method to the one introduced in 8466489ef5
("xhci: Reset Renesas uPD72020x USB controller for 32-bit DMA issue"),
which will subsequently be removed.
Tested-by: Domenico Andreoli <domenico.andreoli@linux.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Faiz Abbas <faiz_abbas@ti.com>
Tested-by: Domenico Andreoli <domenico.andreoli@linux.com>
Acked-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We now have 32 different quirks, and the field that holds them
is full. Let's bump it up to the next stage so that we can handle
some more... The type is now an unsigned long long, which is 64bit
on most architectures.
We take this opportunity to change the quirks from using (1 << x)
to BIT_ULL(x).
Tested-by: Domenico Andreoli <domenico.andreoli@linux.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Faiz Abbas <faiz_abbas@ti.com>
Tested-by: Domenico Andreoli <domenico.andreoli@linux.com>
Acked-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As we are now using the new port strtuctes the port_arrays
are no longer needed, remove them completely
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Don't use pointers to port array and port index as function parameters
in xhci_test_and_clear_bit(), just use a pointer to the right port
structure.
xhci_test_and_clear_bit() was the last port_array user in
xhci_get_port_status() and handle_port_status(), so remove the
port_array from them as well.
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Remove old iomem port array and index as parameters, just
send a ponter to a port strucure instread
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
quick way to get the xhci roothub and thus all the ports
belonging to a certain hcd
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Current way of having one array telling only the port speed,
and then two separate arrays with mmio addresses for usb2 and usb3 ports
requeres helper functions to transate hw to hcd, and hcd to hw port
numbers, and is hard to expand.
Instead create a structure describing a port, including the mmio address,
the port hardware index, hcd port index, and a pointer to the roothub
it belongs to.
Create one array containing all port structures in the same order the
hardware controller sees them. Then add an array of port pointers to
each xhci hub structure pointing to the ports that belonging to the
roothub.
This way we can easily convert hw indexed port events to usb core
hcd port numbers, and vice versa usb core hub hcd port numbers
to hw index and mmio address.
Other benefit is that we can easily find the parent hcd and xhci
structure of a port structure. This is useful in debugfs where
we can give one port structure pointer as parameter and get both
the correct mmio address and xhci lock needed to set some port
parameter.
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>