Pull x86 stackdump update from Ingo Molnar:
"A number of stackdump enhancements"
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/dumpstack: Add show_stack_regs() and use it
printk: Make the printk*once() variants return a value
x86/dumpstack: Honor supplied @regs arg
Pull x86 boot updates from Ingo Molnar:
"The main changes:
- add initial commits to randomize kernel memory section virtual
addresses, enabled via a new kernel option: RANDOMIZE_MEMORY
(Thomas Garnier, Kees Cook, Baoquan He, Yinghai Lu)
- enhance KASLR (RANDOMIZE_BASE) physical memory randomization (Kees
Cook)
- EBDA/BIOS region boot quirk cleanups (Andy Lutomirski, Ingo Molnar)
- misc cleanups/fixes"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Simplify EBDA-vs-BIOS reservation logic
x86/boot: Clarify what x86_legacy_features.reserve_bios_regions does
x86/boot: Reorganize and clean up the BIOS area reservation code
x86/mm: Do not reference phys addr beyond kernel
x86/mm: Add memory hotplug support for KASLR memory randomization
x86/mm: Enable KASLR for vmalloc memory regions
x86/mm: Enable KASLR for physical mapping memory regions
x86/mm: Implement ASLR for kernel memory regions
x86/mm: Separate variable for trampoline PGD
x86/mm: Add PUD VA support for physical mapping
x86/mm: Update physical mapping variable names
x86/mm: Refactor KASLR entropy functions
x86/KASLR: Fix boot crash with certain memory configurations
x86/boot/64: Add forgotten end of function marker
x86/KASLR: Allow randomization below the load address
x86/KASLR: Extend kernel image physical address randomization to addresses larger than 4G
x86/KASLR: Randomize virtual address separately
x86/KASLR: Clarify identity map interface
x86/boot: Refuse to build with data relocations
x86/KASLR, x86/power: Remove x86 hibernation restrictions
Pull x86 mm updates from Ingo Molnar:
"Various x86 low level modifications:
- preparatory work to support virtually mapped kernel stacks (Andy
Lutomirski)
- support for 64-bit __get_user() on 32-bit kernels (Benjamin
LaHaise)
- (involved) workaround for Knights Landing CPU erratum (Dave Hansen)
- MPX enhancements (Dave Hansen)
- mremap() extension to allow remapping of the special VDSO vma, for
purposes of user level context save/restore (Dmitry Safonov)
- hweight and entry code cleanups (Borislav Petkov)
- bitops code generation optimizations and cleanups with modern GCC
(H. Peter Anvin)
- syscall entry code optimizations (Paolo Bonzini)"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
x86/mm/cpa: Add missing comment in populate_pdg()
x86/mm/cpa: Fix populate_pgd(): Stop trying to deallocate failed PUDs
x86/syscalls: Add compat_sys_preadv64v2/compat_sys_pwritev64v2
x86/smp: Remove unnecessary initialization of thread_info::cpu
x86/smp: Remove stack_smp_processor_id()
x86/uaccess: Move thread_info::addr_limit to thread_struct
x86/dumpstack: Rename thread_struct::sig_on_uaccess_error to sig_on_uaccess_err
x86/uaccess: Move thread_info::uaccess_err and thread_info::sig_on_uaccess_err to thread_struct
x86/dumpstack: When OOPSing, rewind the stack before do_exit()
x86/mm/64: In vmalloc_fault(), use CR3 instead of current->active_mm
x86/dumpstack/64: Handle faults when printing the "Stack: " part of an OOPS
x86/dumpstack: Try harder to get a call trace on stack overflow
x86/mm: Remove kernel_unmap_pages_in_pgd() and efi_cleanup_page_tables()
x86/mm/cpa: In populate_pgd(), don't set the PGD entry until it's populated
x86/mm/hotplug: Don't remove PGD entries in remove_pagetable()
x86/mm: Use pte_none() to test for empty PTE
x86/mm: Disallow running with 32-bit PTEs to work around erratum
x86/mm: Ignore A/D bits in pte/pmd/pud_none()
x86/mm: Move swap offset/type up in PTE to work around erratum
x86/entry: Inline enter_from_user_mode()
...
Pull x86/apic updates from Ingo Molnar:
"Misc cleanups and a small fix"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Remove the unused struct apic::apic_id_mask field
x86/apic: Fix misspelled APIC
x86/ioapic: Simplify ioapic_setup_resources()
Pull scheduler updates from Ingo Molnar:
- introduce and use task_rcu_dereference()/try_get_task_struct() to fix
and generalize task_struct handling (Oleg Nesterov)
- do various per entity load tracking (PELT) fixes and optimizations
(Peter Zijlstra)
- cputime virt-steal time accounting enhancements/fixes (Wanpeng Li)
- introduce consolidated cputime output file cpuacct.usage_all and
related refactorings (Zhao Lei)
- ... plus misc fixes and enhancements
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Panic on scheduling while atomic bugs if kernel.panic_on_warn is set
sched/cpuacct: Introduce cpuacct.usage_all to show all CPU stats together
sched/cpuacct: Use loop to consolidate code in cpuacct_stats_show()
sched/cpuacct: Merge cpuacct_usage_index and cpuacct_stat_index enums
sched/fair: Rework throttle_count sync
sched/core: Fix sched_getaffinity() return value kerneldoc comment
sched/fair: Reorder cgroup creation code
sched/fair: Apply more PELT fixes
sched/fair: Fix PELT integrity for new tasks
sched/cgroup: Fix cpu_cgroup_fork() handling
sched/fair: Fix PELT integrity for new groups
sched/fair: Fix and optimize the fork() path
sched/cputime: Add steal time support to full dynticks CPU time accounting
sched/cputime: Fix prev steal time accouting during CPU hotplug
KVM: Fix steal clock warp during guest CPU hotplug
sched/debug: Always show 'nr_migrations'
sched/fair: Use task_rcu_dereference()
sched/api: Introduce task_rcu_dereference() and try_get_task_struct()
sched/idle: Optimize the generic idle loop
sched/fair: Fix the wrong throttled clock time for cfs_rq_clock_task()
Pull perf updates from Ingo Molnar:
"With over 300 commits it's been a busy cycle - with most of the work
concentrated on the tooling side (as it should).
The main kernel side enhancements were:
- Add per event callchain limit: Recently we introduced a sysctl to
tune the max-stack for all events for which callchains were
requested:
$ sysctl kernel.perf_event_max_stack
kernel.perf_event_max_stack = 127
Now this patch introduces a way to configure this per event, i.e.
this becomes possible:
$ perf record -e sched:*/max-stack=2/ -e block:*/max-stack=10/ -a
allowing finer tuning of how much buffer space callchains use.
This uses an u16 from the reserved space at the end, leaving
another u16 for future use.
There has been interest in even finer tuning, namely to control the
max stack for kernel and userspace callchains separately. Further
discussion is needed, we may for instance use the remaining u16 for
that and when it is present, assume that the sample_max_stack
introduced in this patch applies for the kernel, and the u16 left
is used for limiting the userspace callchain (Arnaldo Carvalho de
Melo)
- Optimize AUX event (hardware assisted side-band event) delivery
(Kan Liang)
- Rework Intel family name macro usage (this is partially x86 arch
work) (Dave Hansen)
- Refine and fix Intel LBR support (David Carrillo-Cisneros)
- Add support for Intel 'TopDown' events (Andi Kleen)
- Intel uncore PMU driver fixes and enhancements (Kan Liang)
- ... other misc changes.
Here's an incomplete list of the tooling enhancements (but there's
much more, see the shortlog and the git log for details):
- Support cross unwinding, i.e. collecting '--call-graph dwarf'
perf.data files in one machine and then doing analysis in another
machine of a different hardware architecture. This enables, for
instance, to do:
$ perf record -a --call-graph dwarf
on a x86-32 or aarch64 system and then do 'perf report' on it on a
x86_64 workstation (He Kuang)
- Allow reading from a backward ring buffer (one setup via
sys_perf_event_open() with perf_event_attr.write_backward = 1)
(Wang Nan)
- Finish merging initial SDT (Statically Defined Traces) support, see
cset comments for details about how it all works (Masami Hiramatsu)
- Support attaching eBPF programs to tracepoints (Wang Nan)
- Add demangling of symbols in programs written in the Rust language
(David Tolnay)
- Add support for tracepoints in the python binding, including an
example, that sets up and parses sched:sched_switch events,
tools/perf/python/tracepoint.py (Jiri Olsa)
- Introduce --stdio-color to set up the color output mode selection
in 'annotate' and 'report', allowing emit color escape sequences
when redirecting the output of these tools (Arnaldo Carvalho de
Melo)
- Add 'callindent' option to 'perf script -F', to indent the Intel PT
call stack, making this output more ftrace-like (Adrian Hunter,
Andi Kleen)
- Allow dumping the object files generated by llvm when processing
eBPF scriptlet events (Wang Nan)
- Add stackcollapse.py script to help generating flame graphs (Paolo
Bonzini)
- Add --ldlat option to 'perf mem' to specify load latency for loads
event (e.g. cpu/mem-loads/ ) (Jiri Olsa)
- Tooling support for Intel TopDown counters, recently added to the
kernel (Andi Kleen)"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (303 commits)
perf tests: Add is_printable_array test
perf tools: Make is_printable_array global
perf script python: Fix string vs byte array resolving
perf probe: Warn unmatched function filter correctly
perf cpu_map: Add more helpers
perf stat: Balance opening and reading events
tools: Copy linux/{hash,poison}.h and check for drift
perf tools: Remove include/linux/list.h from perf's MANIFEST
tools: Copy the bitops files accessed from the kernel and check for drift
Remove: kernel unistd*h files from perf's MANIFEST, not used
perf tools: Remove tools/perf/util/include/linux/const.h
perf tools: Remove tools/perf/util/include/asm/byteorder.h
perf tools: Add missing linux/compiler.h include to perf-sys.h
perf jit: Remove some no-op error handling
perf jit: Add missing curly braces
objtool: Initialize variable to silence old compiler
objtool: Add -I$(srctree)/tools/arch/$(ARCH)/include/uapi
perf record: Add --tail-synthesize option
perf session: Don't warn about out of order event if write_backward is used
perf tools: Enable overwrite settings
...
Pull RAS updates from Ingo Molnar:
"The biggest change in this cycle was an enhancement by Yazen Ghannam
to reduce the number of MCE error injection related IPIs.
The rest are smaller fixes"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Fix mce_rdmsrl() warning message
x86/RAS/AMD: Reduce the number of IPIs when prepping error injection
x86/mce/AMD: Increase size of the bank_map type
x86/mce: Do not use bank 1 for APEI generated error logs
Both the intent and the effect of reserve_bios_regions() is simple:
reserve the range from the apparent BIOS start (suitably filtered)
through 1MB and, if the EBDA start address is sensible, extend that
reservation downward to cover the EBDA as well.
The code is overcomplicated, though, and contains head-scratchers
like:
if (ebda_start < BIOS_START_MIN)
ebda_start = BIOS_START_MAX;
That snipped is trying to say "if ebda_start < BIOS_START_MIN,
ignore it".
Simplify it: reorder the code so that it makes sense. This should
have no functional effect under any circumstances.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Mario Limonciello <mario_limonciello@dell.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/ef89c0c761be20ead8bd9a3275743e6259b6092a.1469135598.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So the reserve_ebda_region() code has accumulated a number of
problems over the years that make it really difficult to read
and understand:
- The calculation of 'lowmem' and 'ebda_addr' is an unnecessarily
interleaved mess of first lowmem, then ebda_addr, then lowmem tweaks...
- 'lowmem' here means 'super low mem' - i.e. 16-bit addressable memory. In other
parts of the x86 code 'lowmem' means 32-bit addressable memory... This makes it
super confusing to read.
- It does not help at all that we have various memory range markers, half of which
are 'start of range', half of which are 'end of range' - but this crucial
property is not obvious in the naming at all ... gave me a headache trying to
understand all this.
- Also, the 'ebda_addr' name sucks: it highlights that it's an address (which is
obvious, all values here are addresses!), while it does not highlight that it's
the _start_ of the EBDA region ...
- 'BIOS_LOWMEM_KILOBYTES' says a lot of things, except that this is the only value
that is a pointer to a value, not a memory range address!
- The function name itself is a misnomer: it says 'reserve_ebda_region()' while
its main purpose is to reserve all the firmware ROM typically between 640K and
1MB, while the 'EBDA' part is only a small part of that ...
- Likewise, the paravirt quirk flag name 'ebda_search' is misleading as well: this
too should be about whether to reserve firmware areas in the paravirt case.
- In fact thinking about this as 'end of RAM' is confusing: what this function
*really* wants to reserve is firmware data and code areas! Once the thinking is
inverted from a mixed 'ram' and 'reserved firmware area' notion to a pure
'reserved area' notion everything becomes a lot clearer.
To improve all this rewrite the whole code (without changing the logic):
- Firstly invert the naming from 'lowmem end' to 'BIOS reserved area start'
and propagate this concept through all the variable names and constants.
BIOS_RAM_SIZE_KB_PTR // was: BIOS_LOWMEM_KILOBYTES
BIOS_START_MIN // was: INSANE_CUTOFF
ebda_start // was: ebda_addr
bios_start // was: lowmem
BIOS_START_MAX // was: LOWMEM_CAP
- Then clean up the name of the function itself by renaming it
to reserve_bios_regions() and renaming the ::ebda_search paravirt
flag to ::reserve_bios_regions.
- Fix up all the comments (fix typos), harmonize and simplify their
formulation and remove comments that become unnecessary due to
the much better naming all around.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's statically initialized to zero -- no need to dynamically
initialize it to zero as well.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6cf6314dce3051371a913ee19d1b88e29c68c560.1468527351.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It serves no purpose -- raw_smp_processor_id() works fine. This
change will be needed to move thread_info off the stack.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a2bf4f07fbc30fb32f9f7f3f8f94ad3580823847.1468527351.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
struct thread_info is a legacy mess. To prepare for its partial removal,
move thread_info::addr_limit out.
As an added benefit, this way is simpler.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/15bee834d09402b47ac86f2feccdf6529f9bc5b0.1468527351.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If we call do_exit() with a clean stack, we greatly reduce the risk of
recursive oopses due to stack overflow in do_exit, and we allow
do_exit to work even if we OOPS from an IST stack. The latter gives
us a much better chance of surviving long enough after we detect a
stack overflow to write out our logs.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/32f73ceb372ec61889598da5e5b145889b9f2e19.1468527351.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If we overflow the stack into a guard page, we'll recursively fault
when trying to dump the contents of the guard page. Use
probe_kernel_address() so we can recover if this happens.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e626d47a55d7b04dcb1b4d33faa95e8505b217c8.1468527351.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If we overflow the stack, print_context_stack() will abort. Detect
this case and rewind back into the valid part of the stack so that
we can trace it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/ee1690eb2715ccc5dc187fde94effa4ca0ccbbcd.1468527351.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit 2c95afc1e8.
Stephane reported the following regression:
> Since Andi added:
>
> commit 2c95afc1e8
> Author: Andi Kleen <ak@linux.intel.com>
> Date: Thu Jun 9 06:14:38 2016 -0700
>
> perf/x86/intel, watchdog: Switch NMI watchdog to ref cycles on x86
>
> $ perf stat -e ref-cycles ls
> <not counted> ....
>
> fails systematically because the ref-cycles is now used by the
> watchdog and given this is a system-wide pinned event, it monopolizes
> the fixed counter 2 which is the only counter able to measure this event.
Since the next merge window is near, fix the regression for now
by reverting the commit.
Reported-by: Stephane Eranian <eranian@google.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The EFI firmware on Macs contains a full-fledged network stack for
downloading OS X images from osrecovery.apple.com. Unfortunately
on Macs introduced 2011 and 2012, EFI brings up the Broadcom 4331
wireless card on every boot and leaves it enabled even after
ExitBootServices has been called. The card continues to assert its IRQ
line, causing spurious interrupts if the IRQ is shared. It also corrupts
memory by DMAing received packets, allowing for remote code execution
over the air. This only stops when a driver is loaded for the wireless
card, which may be never if the driver is not installed or blacklisted.
The issue seems to be constrained to the Broadcom 4331. Chris Milsted
has verified that the newer Broadcom 4360 built into the MacBookPro11,3
(2013/2014) does not exhibit this behaviour. The chances that Apple will
ever supply a firmware fix for the older machines appear to be zero.
The solution is to reset the card on boot by writing to a reset bit in
its mmio space. This must be done as an early quirk and not as a plain
vanilla PCI quirk to successfully combat memory corruption by DMAed
packets: Matthew Garrett found out in 2012 that the packets are written
to EfiBootServicesData memory (http://mjg59.dreamwidth.org/11235.html).
This type of memory is made available to the page allocator by
efi_free_boot_services(). Plain vanilla PCI quirks run much later, in
subsys initcall level. In-between a time window would be open for memory
corruption. Random crashes occurring in this time window and attributed
to DMAed packets have indeed been observed in the wild by Chris
Bainbridge.
When Matthew Garrett analyzed the memory corruption issue in 2012, he
sought to fix it with a grub quirk which transitions the card to D3hot:
http://git.savannah.gnu.org/cgit/grub.git/commit/?id=9d34bb85da56
This approach does not help users with other bootloaders and while it
may prevent DMAed packets, it does not cure the spurious interrupts
emanating from the card. Unfortunately the card's mmio space is
inaccessible in D3hot, so to reset it, we have to undo the effect of
Matthew's grub patch and transition the card back to D0.
Note that the quirk takes a few shortcuts to reduce the amount of code:
The size of BAR 0 and the location of the PM capability is identical
on all affected machines and therefore hardcoded. Only the address of
BAR 0 differs between models. Also, it is assumed that the BCMA core
currently mapped is the 802.11 core. The EFI driver seems to always take
care of this.
Michael Büsch, Bjorn Helgaas and Matt Fleming contributed feedback
towards finding the best solution to this problem.
The following should be a comprehensive list of affected models:
iMac13,1 2012 21.5" [Root Port 00:1c.3 = 8086:1e16]
iMac13,2 2012 27" [Root Port 00:1c.3 = 8086:1e16]
Macmini5,1 2011 i5 2.3 GHz [Root Port 00:1c.1 = 8086:1c12]
Macmini5,2 2011 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1c12]
Macmini5,3 2011 i7 2.0 GHz [Root Port 00:1c.1 = 8086:1c12]
Macmini6,1 2012 i5 2.5 GHz [Root Port 00:1c.1 = 8086:1e12]
Macmini6,2 2012 i7 2.3 GHz [Root Port 00:1c.1 = 8086:1e12]
MacBookPro8,1 2011 13" [Root Port 00:1c.1 = 8086:1c12]
MacBookPro8,2 2011 15" [Root Port 00:1c.1 = 8086:1c12]
MacBookPro8,3 2011 17" [Root Port 00:1c.1 = 8086:1c12]
MacBookPro9,1 2012 15" [Root Port 00:1c.1 = 8086:1e12]
MacBookPro9,2 2012 13" [Root Port 00:1c.1 = 8086:1e12]
MacBookPro10,1 2012 15" [Root Port 00:1c.1 = 8086:1e12]
MacBookPro10,2 2012 13" [Root Port 00:1c.1 = 8086:1e12]
For posterity, spurious interrupts caused by the Broadcom 4331 wireless
card resulted in splats like this (stacktrace omitted):
irq 17: nobody cared (try booting with the "irqpoll" option)
handlers:
[<ffffffff81374370>] pcie_isr
[<ffffffffc0704550>] sdhci_irq [sdhci] threaded [<ffffffffc07013c0>] sdhci_thread_irq [sdhci]
[<ffffffffc0a0b960>] azx_interrupt [snd_hda_codec]
Disabling IRQ #17
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=79301
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111781
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=728916
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=895951#c16
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1009819
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1098621
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1149632#c5
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1279130
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1332732
Tested-by: Konstantin Simanov <k.simanov@stlk.ru> # [MacBookPro8,1]
Tested-by: Lukas Wunner <lukas@wunner.de> # [MacBookPro9,1]
Tested-by: Bryan Paradis <bryan.paradis@gmail.com> # [MacBookPro9,2]
Tested-by: Andrew Worsley <amworsley@gmail.com> # [MacBookPro10,1]
Tested-by: Chris Bainbridge <chris.bainbridge@gmail.com> # [MacBookPro10,2]
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Acked-by: Rafał Miłecki <zajec5@gmail.com>
Acked-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chris Milsted <cmilsted@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Michael Buesch <m@bues.ch>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: b43-dev@lists.infradead.org
Cc: linux-pci@vger.kernel.org
Cc: linux-wireless@vger.kernel.org
Cc: stable@vger.kernel.org
Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Apply nvidia_bugs quirk only on root bus
Cc: stable@vger.kernel.org # 123456789abc: x86/quirks: Reintroduce scanning of secondary buses
Link: http://lkml.kernel.org/r/48d0972ac82a53d460e5fce77a07b2560db95203.1465690253.git.lukas@wunner.de
[ Did minor readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We used to scan secondary buses until the following commit that
was applied in 2009:
8659c406ad ("x86: only scan the root bus in early PCI quirks")
which commit constrained early quirks to the root bus only. Its
motivation was to prevent application of the nvidia_bugs quirk
on secondary buses.
We're about to add a quirk to reset the Broadcom 4331 wireless card on
2011/2012 Macs, which is located on a secondary bus behind a PCIe root
port. To facilitate that, reintroduce scanning of secondary buses.
The commit message of 8659c406ad notes that scanning only the root bus
"saves quite some unnecessary scanning work". The algorithm used prior
to 8659c406ad was particularly time consuming because it scanned
buses 0 to 31 brute force. To avoid lengthening boot time, employ a
recursive strategy which only scans buses that are actually reachable
from the root bus.
Yinghai Lu pointed out that the secondary bus number read from a
bridge's config space may be invalid, in particular a value of 0 would
cause an infinite loop. The PCI core goes beyond that and recurses to a
child bus only if its bus number is greater than the parent bus number
(see pci_scan_bridge()). Since the root bus is numbered 0, this implies
that secondary buses may not be 0. Do the same on early scanning.
If this algorithm is found to significantly impact boot time or cause
infinite loops on broken hardware, it would be possible to limit its
recursion depth: The Broadcom 4331 quirk applies at depth 1, all others
at depth 0, so the bus need not be scanned deeper than that for now. An
alternative approach would be to revert to scanning only the root bus,
and apply the Broadcom 4331 quirk to the root ports 8086:1c12, 8086:1e12
and 8086:1e16. Apple always positioned the card behind either of these
three ports. The quirk would then check presence of the card in slot 0
below the root port and do its deed.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-pci@vger.kernel.org
Link: http://lkml.kernel.org/r/f0daa70dac1a9b2483abdb31887173eb6ab77bdf.1465690253.git.lukas@wunner.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since the following commit:
8659c406ad ("x86: only scan the root bus in early PCI quirks")
... early quirks are only applied to devices on the root bus.
The motivation was to prevent application of the nvidia_bugs quirk on
secondary buses.
We're about to reintroduce scanning of secondary buses for a quirk to
reset the Broadcom 4331 wireless card on 2011/2012 Macs. To prevent
regressions, open code the requirement to apply nvidia_bugs only on the
root bus.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/4d5477c1d76b2f0387a780f2142bbcdd9fee869b.1465690253.git.lukas@wunner.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Three fixes:
- A boot crash fix with certain configs
- a MAINTAINERS entry update
- Documentation typo fixes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/Documentation: Fix various typos in Documentation/x86/ files
x86/amd_nb: Fix boot crash on non-AMD systems
MAINTAINERS: Update the Calgary IOMMU entry
Add the physical mapping in the list of randomized memory regions.
The physical memory mapping holds most allocations from boot and heap
allocators. Knowing the base address and physical memory size, an attacker
can deduce the PDE virtual address for the vDSO memory page. This attack
was demonstrated at CanSecWest 2016, in the following presentation:
"Getting Physical: Extreme Abuse of Intel Based Paged Systems":
https://github.com/n3k/CansecWest2016_Getting_Physical_Extreme_Abuse_of_Intel_Based_Paging_Systems/blob/master/Presentation/CanSec2016_Presentation.pdf
(See second part of the presentation).
The exploits used against Linux worked successfully against 4.6+ but
fail with KASLR memory enabled:
https://github.com/n3k/CansecWest2016_Getting_Physical_Extreme_Abuse_of_Intel_Based_Paging_Systems/tree/master/Demos/Linux/exploits
Similar research was done at Google leading to this patch proposal.
Variants exists to overwrite /proc or /sys objects ACLs leading to
elevation of privileges. These variants were tested against 4.6+.
The page offset used by the compressed kernel retains the static value
since it is not yet randomized during this boot stage.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-7-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Randomizes the virtual address space of kernel memory regions for
x86_64. This first patch adds the infrastructure and does not randomize
any region. The following patches will randomize the physical memory
mapping, vmalloc and vmemmap regions.
This security feature mitigates exploits relying on predictable kernel
addresses. These addresses can be used to disclose the kernel modules
base addresses or corrupt specific structures to elevate privileges
bypassing the current implementation of KASLR. This feature can be
enabled with the CONFIG_RANDOMIZE_MEMORY option.
The order of each memory region is not changed. The feature looks at the
available space for the regions based on different configuration options
and randomizes the base and space between each. The size of the physical
memory mapping is the available physical memory. No performance impact
was detected while testing the feature.
Entropy is generated using the KASLR early boot functions now shared in
the lib directory (originally written by Kees Cook). Randomization is
done on PGD & PUD page table levels to increase possible addresses. The
physical memory mapping code was adapted to support PUD level virtual
addresses. This implementation on the best configuration provides 30,000
possible virtual addresses in average for each memory region. An
additional low memory page is used to ensure each CPU can start with a
PGD aligned virtual address (for realmode).
x86/dump_pagetable was updated to correctly display each region.
Updated documentation on x86_64 memory layout accordingly.
Performance data, after all patches in the series:
Kernbench shows almost no difference (-+ less than 1%):
Before:
Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.63 (1.2695)
User Time 1034.89 (1.18115) System Time 87.056 (0.456416) Percent CPU 1092.9
(13.892) Context Switches 199805 (3455.33) Sleeps 97907.8 (900.636)
After:
Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.489 (1.10636)
User Time 1034.86 (1.36053) System Time 87.764 (0.49345) Percent CPU 1095
(12.7715) Context Switches 199036 (4298.1) Sleeps 97681.6 (1031.11)
Hackbench shows 0% difference on average (hackbench 90 repeated 10 times):
attemp,before,after 1,0.076,0.069 2,0.072,0.069 3,0.066,0.066 4,0.066,0.068
5,0.066,0.067 6,0.066,0.069 7,0.067,0.066 8,0.063,0.067 9,0.067,0.065
10,0.068,0.071 average,0.0677,0.0677
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-6-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a helper to dump supplied pt_regs and use it in the MSR exception
handling code to have precise stack traces pointing to the actual
function causing the MSR access exception and not the stack frame of the
exception handler itself.
The new output looks like this:
unchecked MSR access error: RDMSR from 0xdeadbeef at rIP: 0xffffffff8102ddb6 (early_init_intel+0x16/0x3a0)
00000000756e6547 ffffffff81c03f68 ffffffff81dd0940 ffffffff81c03f10
ffffffff81d42e65 0000000001000000 ffffffff81c03f58 ffffffff81d3e5a3
0000800000000000 ffffffff81800080 ffffffffffffffff 0000000000000000
Call Trace:
[<ffffffff81d42e65>] early_cpu_init+0xe7/0x136
[<ffffffff81d3e5a3>] setup_arch+0xa5/0x9df
[<ffffffff81d38bb9>] start_kernel+0x9f/0x43a
[<ffffffff81d38294>] x86_64_start_reservations+0x2f/0x31
[<ffffffff81d383fe>] x86_64_start_kernel+0x168/0x176
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1467671487-10344-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The comment suggests that show_stack(NULL, NULL) should backtrace the
current context, but the code doesn't match the comment. If regs are
given, start the "Stack:" hexdump at regs->sp.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1467671487-10344-2-git-send-email-bp@alien8.de
Link: http://lkml.kernel.org/r/efcd79bf4106d61f1cd258c2caa87f3a0618eeac.1466036668.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change bank_map type from 'char' to 'int' since we now have more than eight
banks in a system.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1467968983-4874-2-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix boot crash that triggers if this driver is built into a kernel and
run on non-AMD systems.
AMD northbridges users call amd_cache_northbridges() and it returns
a negative value to signal that we weren't able to cache/detect any
northbridges on the system.
At least, it should do so as all its callers expect it to do so. But it
does return a negative value only when kmalloc() fails.
Fix it to return -ENODEV if there are no NBs cached as otherwise, amd_nb
users like amd64_edac, for example, which relies on it to know whether
it should load or not, gets loaded on systems like Intel Xeons where it
shouldn't.
Reported-and-tested-by: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1466097230-5333-2-git-send-email-bp@alien8.de
Link: https://lkml.kernel.org/r/5761BEB0.9000807@cybernetics.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is a generic function __pvclock_read_cycles to be used to get both
flags and cycles. For function pvclock_read_flags, it's useless to get
cycles value. To make this function be more effective, get this variable
flags directly in function.
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Protocol for the "version" fields is: hypervisor raises it (making it
uneven) before it starts updating the fields and raises it again (making
it even) when it is done. Thus the guest can make sure the time values
it got are consistent by checking the version before and after reading
them.
Add CPU barries after getting version value just like what function
vread_pvclock does, because all of callees in this function is inline.
Fixes: 502dfeff23
Cc: stable@vger.kernel.org
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull x86 kprobe fix from Thomas Gleixner:
"A single fix clearing the TF bit when a fault is single stepped"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kprobes/x86: Clear TF bit in fault on single-stepping
Merge misc fixes from Andrew Morton:
"Two weeks worth of fixes here"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (41 commits)
init/main.c: fix initcall_blacklisted on ia64, ppc64 and parisc64
autofs: don't get stuck in a loop if vfs_write() returns an error
mm/page_owner: avoid null pointer dereference
tools/vm/slabinfo: fix spelling mistake: "Ocurrences" -> "Occurrences"
fs/nilfs2: fix potential underflow in call to crc32_le
oom, suspend: fix oom_reaper vs. oom_killer_disable race
ocfs2: disable BUG assertions in reading blocks
mm, compaction: abort free scanner if split fails
mm: prevent KASAN false positives in kmemleak
mm/hugetlb: clear compound_mapcount when freeing gigantic pages
mm/swap.c: flush lru pvecs on compound page arrival
memcg: css_alloc should return an ERR_PTR value on error
memcg: mem_cgroup_migrate() may be called with irq disabled
hugetlb: fix nr_pmds accounting with shared page tables
Revert "mm: disable fault around on emulated access bit architecture"
Revert "mm: make faultaround produce old ptes"
mailmap: add Boris Brezillon's email
mailmap: add Antoine Tenart's email
mm, sl[au]b: add __GFP_ATOMIC to the GFP reclaim mask
mm: mempool: kasan: don't poot mempool objects in quarantine
...
__GFP_REPEAT has a rather weak semantic but since it has been introduced
around 2.6.12 it has been ignored for low order allocations.
PGALLOC_GFP uses __GFP_REPEAT but none of the allocation which uses this
flag is for more than order-0. This means that this flag has never been
actually useful here because it has always been used only for
PAGE_ALLOC_COSTLY requests.
Link: http://lkml.kernel.org/r/1464599699-30131-3-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As the actual pointer value is the same for the thread stack allocation
and the thread_info, code that confused the two worked fine, but will
break when the thread info is moved away from the stack allocation. It
also looks very confusing.
For example, the kprobe code wanted to know the current top of stack.
To do that, it used this:
(unsigned long)current_thread_info() + THREAD_SIZE
which did indeed give the correct value. But it's not only a fairly
nonsensical expression, it's also rather complex, especially since we
actually have this:
static inline unsigned long current_top_of_stack(void)
which not only gives us the value we are interested in, but happens to
be how "current_thread_info()" is currently defined as:
(struct thread_info *)(current_top_of_stack() - THREAD_SIZE);
so using current_thread_info() to figure out the top of the stack really
is a very round-about thing to do.
The other cases are just simpler confusion about task_thread_info() vs
task_stack_page(), which currently return the same pointer - but if you
want the stack page, you really should be using the latter one.
And there was one entirely unused assignment of the current stack to a
thread_info pointer.
All cleaned up to make more sense today, and make it easier to move the
thread_info away from the stack in the future.
No semantic changes.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
None of the code actually wants a thread_info, it all wants a
task_struct, and it's just converting to a thread_info pointer much too
early.
No semantic change.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There were at least 3 features added to the __SI_FAULT area of the
siginfo struct that did not make it to the compat siginfo:
1. The si_addr_lsb used in SIGBUS's sent for machine checks
2. The upper/lower bounds for MPX SIGSEGV faults
3. The protection key for pkey faults
There was also some turmoil when I was attempting to add the pkey
field because it needs to be a fixed size on 32 and 64-bit and
not have any alignment constraints.
This patch adds some compile-time checks to the compat code to
make it harder to screw this up. Basically, the checks are
supposed to trip any time someone changes the siginfo structure.
That sounds bad, but it's what we want. If someone changes
siginfo, we want them to also be _forced_ to go look at the
compat code.
The details are in the comments.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20160608172534.C73DAFC3@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 32-bit siginfo is a different binary format than the 64-bit
one. So, when running 32-bit binaries on 64-bit kernels, we have
to convert the kernel's 64-bit version to a 32-bit version that
userspace can grok.
We've added a few features to siginfo over the past few years and
neglected to add them to arch/x86/kernel/signal_compat.c:
1. The si_addr_lsb used in SIGBUS's sent for machine checks
2. The upper/lower bounds for MPX SIGSEGV faults
3. The protection key for pkey faults
I caught this with some protection keys unit tests and realized
it affected a few more features.
This was tested only with my protection keys patch that looks
for a proper value in si_pkey. I didn't actually test the machine
check or MPX code.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20160608172533.F8F05637@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix kprobe_fault_handler() to clear the TF (trap flag) bit of
the flags register in the case of a fault fixup on single-stepping.
If we put a kprobe on the instruction which caused a
page fault (e.g. actual mov instructions in copy_user_*),
that fault happens on the single-stepping buffer. In this
case, kprobes resets running instance so that the CPU can
retry execution on the original ip address.
However, current code forgets to reset the TF bit. Since this
fault happens with TF bit set for enabling single-stepping,
when it retries, it causes a debug exception and kprobes
can not handle it because it already reset itself.
On the most of x86-64 platform, it can be easily reproduced
by using kprobe tracer. E.g.
# cd /sys/kernel/debug/tracing
# echo p copy_user_enhanced_fast_string+5 > kprobe_events
# echo 1 > events/kprobes/enable
And you'll see a kernel panic on do_debug(), since the debug
trap is not handled by kprobes.
To fix this problem, we just need to clear the TF bit when
resetting running kprobe.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: systemtap@sourceware.org
Cc: stable@vger.kernel.org # All the way back to ancient kernels
Link: http://lkml.kernel.org/r/20160611140648.25885.37482.stgit@devbox
[ Updated the comments. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The NMI watchdog uses either the fixed cycles or a generic cycles
counter. This causes a lot of conflicts with users of the PMU who want
to run a full group including the cycles fixed counter, for example
the --topdown support recently added to perf stat. The code needs to
fall back to not use groups, which can cause measurement inaccuracy
due to multiplexing errors.
This patch switches the NMI watchdog to use reference cycles
on Intel systems. This is actually more accurate than cycles,
because cycles can tick faster than the measured CPU Frequency
due to Turbo mode.
The ref cycles always tick at their frequency, or slower when
the system is idling. That means the NMI watchdog can never
expire too early, unlike with cycles.
The reference cycles tick roughly at the frequency of the TSC,
so the same period computation can be used.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: http://lkml.kernel.org/r/1465478079-19993-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sometimes, after CPU hotplug you can observe a spike in stolen time
(100%) followed by the CPU being marked as 100% idle when it's actually
busy with a CPU hog task. The trace looks like the following:
cpuhp/1-12 [001] d.h1 167.461657: account_process_tick: steal = 1291385514, prev_steal_time = 0
cpuhp/1-12 [001] d.h1 167.461659: account_process_tick: steal_jiffies = 1291
<idle>-0 [001] d.h1 167.462663: account_process_tick: steal = 18732255, prev_steal_time = 1291000000
<idle>-0 [001] d.h1 167.462664: account_process_tick: steal_jiffies = 18446744072437
The sudden decrease of "steal" causes steal_jiffies to underflow.
The root cause is kvm_steal_time being reset to 0 after hot-plugging
back in a CPU. Instead, the preexisting value can be used, which is
what the core scheduler code expects.
John Stultz also reported a similar issue after guest S3.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1465813966-3116-2-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
BIOS can report a memory error to Linux using ACPI/APEI mechanism. When
it does this, we create a fictitious machine check error record and
feed it into the standard mce_log() function. The error record needs a
machine check bank number, and for some reason we chose "1" for this.
But "1" is a valid bank number, and this causes confusion and heartburn
among h/w folks who are concerned that a memory error signature was
somehow logged in bank 1.
Change to use "-1" (field is a "u8" so will typically print as 255).
This should make it clearer that this error did not originate in a
machine check bank.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Aristeu Rozanski <arozansk@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/b7fffb2b326bc1dd150ffceb9919a803f9496e0e.1464805958.git.tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>