ptrace_set_debugreg() does not consider new length while overwriting
the watchpoint. Fix that. ppc_set_hwdebug() aligns watchpoint address
to doubleword boundary but does not change the length. If address
range is crossing doubleword boundary and length is less then 8, we
will lose samples from second doubleword. So fix that as well.
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191017093204.7511-4-ravi.bangoria@linux.ibm.com
Watchpoint match range is always doubleword(8 bytes) aligned on
powerpc. If the given range is crossing doubleword boundary, we need
to increase the length such that next doubleword also get
covered. Ex,
address len = 6 bytes
|=========.
|------------v--|------v--------|
| | | | | | | | | | | | | | | | |
|---------------|---------------|
<---8 bytes--->
In such case, current code configures hw as:
start_addr = address & ~HW_BREAKPOINT_ALIGN
len = 8 bytes
And thus read/write in last 4 bytes of the given range is ignored.
Fix this by including next doubleword in the length.
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191017093204.7511-3-ravi.bangoria@linux.ibm.com
Merge the secureboot support, as well as the IMA changes needed to
support it.
From Nayna's cover letter:
In order to verify the OS kernel on PowerNV systems, secure boot
requires X.509 certificates trusted by the platform. These are
stored in secure variables controlled by OPAL, called OPAL secure
variables. In order to enable users to manage the keys, the secure
variables need to be exposed to userspace.
OPAL provides the runtime services for the kernel to be able to
access the secure variables. This patchset defines the kernel
interface for the OPAL APIs. These APIs are used by the hooks, which
load these variables to the keyring and expose them to the userspace
for reading/writing.
Overall, this patchset adds the following support:
* expose secure variables to the kernel via OPAL Runtime API interface
* expose secure variables to the userspace via kernel sysfs interface
* load kernel verification and revocation keys to .platform and
.blacklist keyring respectively.
The secure variables can be read/written using simple linux
utilities cat/hexdump.
For example:
Path to the secure variables is: /sys/firmware/secvar/vars
Each secure variable is listed as directory.
$ ls -l
total 0
drwxr-xr-x. 2 root root 0 Aug 20 21:20 db
drwxr-xr-x. 2 root root 0 Aug 20 21:20 KEK
drwxr-xr-x. 2 root root 0 Aug 20 21:20 PK
The attributes of each of the secure variables are (for example: PK):
$ ls -l
total 0
-r--r--r--. 1 root root 4096 Oct 1 15:10 data
-r--r--r--. 1 root root 65536 Oct 1 15:10 size
--w-------. 1 root root 4096 Oct 1 15:12 update
The "data" is used to read the existing variable value using
hexdump. The data is stored in ESL format. The "update" is used to
write a new value using cat. The update is to be submitted as AUTH
file.
The X.509 certificates trusted by the platform and required to secure
boot the OS kernel are wrapped in secure variables, which are
controlled by OPAL.
This patch adds firmware/kernel interface to read and write OPAL
secure variables based on the unique key.
This support can be enabled using CONFIG_OPAL_SECVAR.
Signed-off-by: Claudio Carvalho <cclaudio@linux.ibm.com>
Signed-off-by: Nayna Jain <nayna@linux.ibm.com>
Signed-off-by: Eric Richter <erichte@linux.ibm.com>
[mpe: Make secvar_ops __ro_after_init, only build opal-secvar.c if PPC_SECURE_BOOT=y]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1573441836-3632-2-git-send-email-nayna@linux.ibm.com
While secure boot permits only properly verified signed kernels to be
booted, trusted boot calculates the file hash of the kernel image and
stores the measurement prior to boot, that can be subsequently
compared against good known values via attestation services.
This patch reads the trusted boot state of a PowerNV system. The state
is used to conditionally enable additional measurement rules in the
IMA arch-specific policies.
Signed-off-by: Nayna Jain <nayna@linux.ibm.com>
Signed-off-by: Eric Richter <erichte@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/e9eeee6b-b9bf-1e41-2954-61dbd6fbfbcf@linux.ibm.com
This patch defines a function to detect the secure boot state of a
PowerNV system.
The PPC_SECURE_BOOT config represents the base enablement of secure
boot for powerpc.
Signed-off-by: Nayna Jain <nayna@linux.ibm.com>
Signed-off-by: Eric Richter <erichte@linux.ibm.com>
[mpe: Fold in change from Nayna to add "ibm,secureboot" to ids]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/46b003b9-3225-6bf7-9101-ed6580bb748c@linux.ibm.com
Similar to commit 22e9c88d48
("powerpc/64: reuse PPC32 static inline flush_dcache_range()")
this patch converts the following ASM symbols to C:
flush_icache_range()
__flush_dcache_icache()
__flush_dcache_icache_phys()
This was done as we discovered a long-standing bug where the length of the
range was truncated due to using a 32 bit shift instead of a 64 bit one.
By converting these functions to C, it becomes easier to maintain.
flush_dcache_icache_phys() retains a critical assembler section as we must
ensure there are no memory accesses while the data MMU is disabled
(authored by Christophe Leroy). Since this has no external callers, it has
also been made static, allowing the compiler to inline it within
flush_dcache_icache_page().
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
[mpe: Minor fixups, don't export __flush_dcache_icache()]
Link: https://lore.kernel.org/r/20191104023305.9581-5-alastair@au1.ibm.com
This patch adds helpers to retrieve icache sizes, and renames the existing
helpers to make it clear that they are for dcache.
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191104023305.9581-4-alastair@au1.ibm.com
"powerpc_security_features" is "unsigned long", i.e. 32-bit or 64-bit,
depending on the platform (PPC_FSL_BOOK3E or PPC_BOOK3S_64). Hence
casting its address to "u64 *", and calling debugfs_create_x64() is
wrong, and leaks 32-bit of nearby data to userspace on 32-bit platforms.
While all currently defined SEC_FTR_* security feature flags fit in
32-bit, they all have "ULL" suffixes to make them 64-bit constants.
Hence fix the leak by changing the type of "powerpc_security_features"
(and the parameter types of its accessors) to "u64". This also allows
to drop the cast.
Fixes: 398af57112 ("powerpc/security: Show powerpc_security_features in debugfs")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191021142309.28105-1-geert+renesas@glider.be
With commit 22a61c3c4f ("asm-generic/tlb: Track freeing of
page-table directories in struct mmu_gather") we now track whether we
freed page table in mmu_gather. Use that to decide whether to flush
Page Walk Cache.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191024075801.22434-2-aneesh.kumar@linux.ibm.com
The ultravisor will do an integrity check of the kernel image but we
relocated it so the check will fail. Restore the original image by
relocating it back to the kernel virtual base address.
This works because during build vmlinux is linked with an expected
virtual runtime address of KERNELBASE.
Fixes: 6a9c930bd7 ("powerpc/prom_init: Add the ESM call to prom_init")
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Tested-by: Michael Anderson <andmike@linux.ibm.com>
[mpe: Add IS_ENABLED() to fix the CONFIG_RELOCATABLE=n build]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190911163433.12822-1-bauerman@linux.ibm.com
Make sure starting addr is aligned to segment boundary so that when
incrementing the segment, the starting address of the new segment is
below the end address. Otherwise the last segment might get missed.
Fixes: a68c31fc01 ("powerpc/32s: Implement Kernel Userspace Access Protection")
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/067a1b09f15f421d40797c2d04c22d4049a1cee8.1571071875.git.christophe.leroy@c-s.fr
After merging the powerpc tree, today's linux-next build (powerpc64
allnoconfig) failed like this:
arch/powerpc/mm/book3s64/pgtable.c:216:3:
error: implicit declaration of function 'radix__flush_all_lpid_guest'
radix__flush_all_lpid_guest() is only declared for
CONFIG_PPC_RADIX_MMU which is not set for this build.
Fix it by adding an empty version for the RADIX_MMU=n case, which
should never be called.
Fixes: 99161de3a2 ("powerpc/64s/radix: tidy up TLB flushing code")
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
[mpe: Munge change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190930101342.36c1afa0@canb.auug.org.au
- Complete the reworks to interoperate with powerpc dynamic huge page sizes
- Fix a crash due to missed accounting for the powerpc 'struct
page'-memmap mapping granularity.
- Fix badblock initialization for volatile (DRAM emulated) pmem ranges.
- Stop triggering request_key() notifications to userspace when
NVDIMM-security is disabled / not present.
- Miscellaneous small fixups.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJdkAprAAoJEB7SkWpmfYgCjXoQAIwJE1VzNP1V+ARxfs1rTGVz
pbNJiBnj4gxDaCkcKoatiadRkytUxeUNEcPslEKsfoNinXYqkpjMQoWm2VpILOMU
nY+SvIudGRnuesq2/Y+CP8zrX6rV4eBDfHK05RN/Zp1IlW7pTDItUx8mJ7glmDwG
PW0vkvK7yZ+dRFnpQ7QFjhA0Q3oudO5YcTVBDK5YYtDGlv69xfXqc9LW8SszJ1kU
rhCIT1kdoL5of0TIgG5pTfmggPSQ9y1xPsKjllOHNa3m50eGOkkQLELOVzQb1frW
cjAsPLjRDSzvdHHSLyu0Is04Q5JU2CucxHl2SXGHiOt5tigH8dk5XFxWt0Pc8EXx
acYYiBqUXC3MomSYWeLK4BdO2cRTqcPPXgJYAqXblqr+/0ys+rFepjw+j8JkiLZa
5UCC30l1GXEpw9u6gdCMqvvHN2gHvDB0BV82Sx8wTewJpeL18wCUJoKVuFmpsHko
p1cCe7St1TzcK3eO+xfeW1rxNrcXUpKVYXVa/WOJW0vwErqAZ6YCdNuyJHocZzXn
vNyIQmVDOlubsgBAI2ExxeZO6xc8UIwLhLg7XEJ0mg3k6UXA8HZxH2B2THJk1BSF
RppodkYiMknh11sqgpGp+Hz5XSEg/jvmCdL/qRDGAwhsFhFaxDH37Kg4Qncj2/dg
uDvDHXNCjbGpzCo3tyNx
=Z6Fa
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-fixes-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
More libnvdimm updates from Dan Williams:
- Complete the reworks to interoperate with powerpc dynamic huge page
sizes
- Fix a crash due to missed accounting for the powerpc 'struct
page'-memmap mapping granularity
- Fix badblock initialization for volatile (DRAM emulated) pmem ranges
- Stop triggering request_key() notifications to userspace when
NVDIMM-security is disabled / not present
- Miscellaneous small fixups
* tag 'libnvdimm-fixes-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm/region: Enable MAP_SYNC for volatile regions
libnvdimm: prevent nvdimm from requesting key when security is disabled
libnvdimm/region: Initialize bad block for volatile namespaces
libnvdimm/nfit_test: Fix acpi_handle redefinition
libnvdimm/altmap: Track namespace boundaries in altmap
libnvdimm: Fix endian conversion issues
libnvdimm/dax: Pick the right alignment default when creating dax devices
powerpc/book3s64: Export has_transparent_hugepage() related functions.
An assortment of fixes that were either missed by me, or didn't arrive quite in
time for the first v5.4 pull.
Most notable is a fix for an issue with tlbie (broadcast TLB invalidation) on
Power9, when using the Radix MMU. The tlbie can race with an mtpid (move to PID
register, essentially MMU context switch) on another thread of the core, which
can cause stores to continue to go to a page after it's unmapped.
A fix in our KVM code to add a missing barrier, the lack of which has been
observed to cause missed IPIs and subsequently stuck CPUs in the host.
A change to the way we initialise PCR (Processor Compatibility Register) to make
it forward compatible with future CPUs.
On some older PowerVM systems our H_BLOCK_REMOVE support could oops, fix it to
detect such systems and fallback to the old invalidation method.
A fix for an oops seen on some machines when using KASAN on 32-bit.
A handful of other minor fixes, and two new selftests.
Thanks to:
Alistair Popple, Aneesh Kumar K.V, Christophe Leroy, Gustavo Romero, Joel
Stanley, Jordan Niethe, Laurent Dufour, Michael Roth, Oliver O'Halloran.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl2PRGITHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgClRD/9jKIT6GjVpRMc+Dg9zHB5/Pir7gePk
ztXKI+u15GrrXgjtWEZ1PaaXvtNIfs/IZHDQm5gyJjiBAKcGl2v+9ETaMzO5sjZ7
GSe1F8VX/MwzRnET8Jph8w/b0cy0Q8xndkEOjcJqJ7+TF+SSWqmJEdmBfkU23jWD
B3kW4W1x2xt/XGsX25l1HpUgpcJqzukCeYUSCdqUu2j+sXAEZmfgTRG8uD4HffzZ
3As76TrBiJsDnkyH0qi2G1BuLXrQbAMdjTeSGi+cb0gTIunCr190gI4+Tjdu2/z7
ywWR2ZUkueCNDcLsqXaqpZx50utPJ44//uY750sk72vixJJOVuOWM6+5HKVW83se
/v0zkOcI9+ywNHe0vLfP3Jm/OMMHYxkIwz6kVu2NSR6sE79B9AZpBFU+Nynq7kKl
+Hc6md/HATvR+NK6LtQKtEGydRhvxU5n3KBmjq3SQj+B/ZlU6IdgerfhUWrNvg0B
zzHeT35X6UBpswonhkQLgqJuaWpkClK9wsUy85MuA7aub1EP8S6/X7paKoiOtAHK
NjlXM2JYV5OKwhjGgdCiI94Bdune7yudKPdsXV3Gr8Iw7wf2bQk1p7VH+LcruyE9
YJdXwCgN0PaoFUQh3AR4CqzzFwqDya8FQqdkFN3kqhRLVGAMq/PsV8/Tn+myTgQP
rZnWnbfZh9BMjw==
=dF42
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"An assortment of fixes that were either missed by me, or didn't arrive
quite in time for the first v5.4 pull.
- Most notable is a fix for an issue with tlbie (broadcast TLB
invalidation) on Power9, when using the Radix MMU. The tlbie can
race with an mtpid (move to PID register, essentially MMU context
switch) on another thread of the core, which can cause stores to
continue to go to a page after it's unmapped.
- A fix in our KVM code to add a missing barrier, the lack of which
has been observed to cause missed IPIs and subsequently stuck CPUs
in the host.
- A change to the way we initialise PCR (Processor Compatibility
Register) to make it forward compatible with future CPUs.
- On some older PowerVM systems our H_BLOCK_REMOVE support could
oops, fix it to detect such systems and fallback to the old
invalidation method.
- A fix for an oops seen on some machines when using KASAN on 32-bit.
- A handful of other minor fixes, and two new selftests.
Thanks to: Alistair Popple, Aneesh Kumar K.V, Christophe Leroy,
Gustavo Romero, Joel Stanley, Jordan Niethe, Laurent Dufour, Michael
Roth, Oliver O'Halloran"
* tag 'powerpc-5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/eeh: Fix eeh eeh_debugfs_break_device() with SRIOV devices
powerpc/nvdimm: use H_SCM_QUERY hcall on H_OVERLAP error
powerpc/nvdimm: Use HCALL error as the return value
selftests/powerpc: Add test case for tlbie vs mtpidr ordering issue
powerpc/mm: Fixup tlbie vs mtpidr/mtlpidr ordering issue on POWER9
powerpc/book3s64/radix: Rename CPU_FTR_P9_TLBIE_BUG feature flag
powerpc/book3s64/mm: Don't do tlbie fixup for some hardware revisions
powerpc/pseries: Call H_BLOCK_REMOVE when supported
powerpc/pseries: Read TLB Block Invalidate Characteristics
KVM: PPC: Book3S HV: use smp_mb() when setting/clearing host_ipi flag
powerpc/mm: Fix an Oops in kasan_mmu_init()
powerpc/mm: Add a helper to select PAGE_KERNEL_RO or PAGE_READONLY
powerpc/64s: Set reserved PCR bits
powerpc: Fix definition of PCR bits to work with old binutils
powerpc/book3s64/radix: Remove WARN_ON in destroy_context()
powerpc/tm: Add tm-poison test
Merge updates from Andrew Morton:
- a few hot fixes
- ocfs2 updates
- almost all of -mm (slab-generic, slab, slub, kmemleak, kasan,
cleanups, debug, pagecache, memcg, gup, pagemap, memory-hotplug,
sparsemem, vmalloc, initialization, z3fold, compaction, mempolicy,
oom-kill, hugetlb, migration, thp, mmap, madvise, shmem, zswap,
zsmalloc)
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (132 commits)
mm/zsmalloc.c: fix a -Wunused-function warning
zswap: do not map same object twice
zswap: use movable memory if zpool support allocate movable memory
zpool: add malloc_support_movable to zpool_driver
shmem: fix obsolete comment in shmem_getpage_gfp()
mm/madvise: reduce code duplication in error handling paths
mm: mmap: increase sockets maximum memory size pgoff for 32bits
mm/mmap.c: refine find_vma_prev() with rb_last()
riscv: make mmap allocation top-down by default
mips: use generic mmap top-down layout and brk randomization
mips: replace arch specific way to determine 32bit task with generic version
mips: adjust brk randomization offset to fit generic version
mips: use STACK_TOP when computing mmap base address
mips: properly account for stack randomization and stack guard gap
arm: use generic mmap top-down layout and brk randomization
arm: use STACK_TOP when computing mmap base address
arm: properly account for stack randomization and stack guard gap
arm64, mm: make randomization selected by generic topdown mmap layout
arm64, mm: move generic mmap layout functions to mm
arm64: consider stack randomization for mmap base only when necessary
...
Both pgtable_cache_init() and pgd_cache_init() are used to initialize kmem
cache for page table allocations on several architectures that do not use
PAGE_SIZE tables for one or more levels of the page table hierarchy.
Most architectures do not implement these functions and use __weak default
NOP implementation of pgd_cache_init(). Since there is no such default
for pgtable_cache_init(), its empty stub is duplicated among most
architectures.
Rename the definitions of pgd_cache_init() to pgtable_cache_init() and
drop empty stubs of pgtable_cache_init().
Link: http://lkml.kernel.org/r/1566457046-22637-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Will Deacon <will@kernel.org> [arm64]
Acked-by: Thomas Gleixner <tglx@linutronix.de> [x86]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: remove quicklist page table caches".
A while ago Nicholas proposed to remove quicklist page table caches [1].
I've rebased his patch on the curren upstream and switched ia64 and sh to
use generic versions of PTE allocation.
[1] https://lore.kernel.org/linux-mm/20190711030339.20892-1-npiggin@gmail.com
This patch (of 3):
Remove page table allocator "quicklists". These have been around for a
long time, but have not got much traction in the last decade and are only
used on ia64 and sh architectures.
The numbers in the initial commit look interesting but probably don't
apply anymore. If anybody wants to resurrect this it's in the git
history, but it's unhelpful to have this code and divergent allocator
behaviour for minor archs.
Also it might be better to instead make more general improvements to page
allocator if this is still so slow.
Link: http://lkml.kernel.org/r/1565250728-21721-2-git-send-email-rppt@linux.ibm.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In later patch, we want to use hash_transparent_hugepage() in a kernel module.
Export two related functions.
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Link: https://lore.kernel.org/r/20190924042440.27946-1-aneesh.kumar@linux.ibm.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
On POWER9, under some circumstances, a broadcast TLB invalidation will
fail to invalidate the ERAT cache on some threads when there are
parallel mtpidr/mtlpidr happening on other threads of the same core.
This can cause stores to continue to go to a page after it's unmapped.
The workaround is to force an ERAT flush using PID=0 or LPID=0 tlbie
flush. This additional TLB flush will cause the ERAT cache
invalidation. Since we are using PID=0 or LPID=0, we don't get
filtered out by the TLB snoop filtering logic.
We need to still follow this up with another tlbie to take care of
store vs tlbie ordering issue explained in commit:
a5d4b5891c ("powerpc/mm: Fixup tlbie vs store ordering issue on
POWER9"). The presence of ERAT cache implies we can still get new
stores and they may miss store queue marking flush.
Cc: stable@vger.kernel.org
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190924035254.24612-3-aneesh.kumar@linux.ibm.com
Rename the #define to indicate this is related to store vs tlbie
ordering issue. In the next patch, we will be adding another feature
flag that is used to handles ERAT flush vs tlbie ordering issue.
Fixes: a5d4b5891c ("powerpc/mm: Fixup tlbie vs store ordering issue on POWER9")
Cc: stable@vger.kernel.org # v4.16+
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190924035254.24612-2-aneesh.kumar@linux.ibm.com
On a 2-socket Power9 system with 32 cores/128 threads (SMT4) and 1TB
of memory running the following guest configs:
guest A:
- 224GB of memory
- 56 VCPUs (sockets=1,cores=28,threads=2), where:
VCPUs 0-1 are pinned to CPUs 0-3,
VCPUs 2-3 are pinned to CPUs 4-7,
...
VCPUs 54-55 are pinned to CPUs 108-111
guest B:
- 4GB of memory
- 4 VCPUs (sockets=1,cores=4,threads=1)
with the following workloads (with KSM and THP enabled in all):
guest A:
stress --cpu 40 --io 20 --vm 20 --vm-bytes 512M
guest B:
stress --cpu 4 --io 4 --vm 4 --vm-bytes 512M
host:
stress --cpu 4 --io 4 --vm 2 --vm-bytes 256M
the below soft-lockup traces were observed after an hour or so and
persisted until the host was reset (this was found to be reliably
reproducible for this configuration, for kernels 4.15, 4.18, 5.0,
and 5.3-rc5):
[ 1253.183290] rcu: INFO: rcu_sched self-detected stall on CPU
[ 1253.183319] rcu: 124-....: (5250 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=1941
[ 1256.287426] watchdog: BUG: soft lockup - CPU#105 stuck for 23s! [CPU 52/KVM:19709]
[ 1264.075773] watchdog: BUG: soft lockup - CPU#24 stuck for 23s! [worker:19913]
[ 1264.079769] watchdog: BUG: soft lockup - CPU#31 stuck for 23s! [worker:20331]
[ 1264.095770] watchdog: BUG: soft lockup - CPU#45 stuck for 23s! [worker:20338]
[ 1264.131773] watchdog: BUG: soft lockup - CPU#64 stuck for 23s! [avocado:19525]
[ 1280.408480] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791]
[ 1316.198012] rcu: INFO: rcu_sched self-detected stall on CPU
[ 1316.198032] rcu: 124-....: (21003 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=8243
[ 1340.411024] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791]
[ 1379.212609] rcu: INFO: rcu_sched self-detected stall on CPU
[ 1379.212629] rcu: 124-....: (36756 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=14714
[ 1404.413615] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791]
[ 1442.227095] rcu: INFO: rcu_sched self-detected stall on CPU
[ 1442.227115] rcu: 124-....: (52509 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=21403
[ 1455.111787] INFO: task worker:19907 blocked for more than 120 seconds.
[ 1455.111822] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.111833] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.111884] INFO: task worker:19908 blocked for more than 120 seconds.
[ 1455.111905] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.111925] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.111966] INFO: task worker:20328 blocked for more than 120 seconds.
[ 1455.111986] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.111998] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.112048] INFO: task worker:20330 blocked for more than 120 seconds.
[ 1455.112068] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.112097] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.112138] INFO: task worker:20332 blocked for more than 120 seconds.
[ 1455.112159] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.112179] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.112210] INFO: task worker:20333 blocked for more than 120 seconds.
[ 1455.112231] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.112242] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.112282] INFO: task worker:20335 blocked for more than 120 seconds.
[ 1455.112303] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
[ 1455.112332] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1455.112372] INFO: task worker:20336 blocked for more than 120 seconds.
[ 1455.112392] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1
CPUs 45, 24, and 124 are stuck on spin locks, likely held by
CPUs 105 and 31.
CPUs 105 and 31 are stuck in smp_call_function_many(), waiting on
target CPU 42. For instance:
# CPU 105 registers (via xmon)
R00 = c00000000020b20c R16 = 00007d1bcd800000
R01 = c00000363eaa7970 R17 = 0000000000000001
R02 = c0000000019b3a00 R18 = 000000000000006b
R03 = 000000000000002a R19 = 00007d537d7aecf0
R04 = 000000000000002a R20 = 60000000000000e0
R05 = 000000000000002a R21 = 0801000000000080
R06 = c0002073fb0caa08 R22 = 0000000000000d60
R07 = c0000000019ddd78 R23 = 0000000000000001
R08 = 000000000000002a R24 = c00000000147a700
R09 = 0000000000000001 R25 = c0002073fb0ca908
R10 = c000008ffeb4e660 R26 = 0000000000000000
R11 = c0002073fb0ca900 R27 = c0000000019e2464
R12 = c000000000050790 R28 = c0000000000812b0
R13 = c000207fff623e00 R29 = c0002073fb0ca808
R14 = 00007d1bbee00000 R30 = c0002073fb0ca800
R15 = 00007d1bcd600000 R31 = 0000000000000800
pc = c00000000020b260 smp_call_function_many+0x3d0/0x460
cfar= c00000000020b270 smp_call_function_many+0x3e0/0x460
lr = c00000000020b20c smp_call_function_many+0x37c/0x460
msr = 900000010288b033 cr = 44024824
ctr = c000000000050790 xer = 0000000000000000 trap = 100
CPU 42 is running normally, doing VCPU work:
# CPU 42 stack trace (via xmon)
[link register ] c00800001be17188 kvmppc_book3s_radix_page_fault+0x90/0x2b0 [kvm_hv]
[c000008ed3343820] c000008ed3343850 (unreliable)
[c000008ed33438d0] c00800001be11b6c kvmppc_book3s_hv_page_fault+0x264/0xe30 [kvm_hv]
[c000008ed33439d0] c00800001be0d7b4 kvmppc_vcpu_run_hv+0x8dc/0xb50 [kvm_hv]
[c000008ed3343ae0] c00800001c10891c kvmppc_vcpu_run+0x34/0x48 [kvm]
[c000008ed3343b00] c00800001c10475c kvm_arch_vcpu_ioctl_run+0x244/0x420 [kvm]
[c000008ed3343b90] c00800001c0f5a78 kvm_vcpu_ioctl+0x470/0x7c8 [kvm]
[c000008ed3343d00] c000000000475450 do_vfs_ioctl+0xe0/0xc70
[c000008ed3343db0] c0000000004760e4 ksys_ioctl+0x104/0x120
[c000008ed3343e00] c000000000476128 sys_ioctl+0x28/0x80
[c000008ed3343e20] c00000000000b388 system_call+0x5c/0x70
--- Exception: c00 (System Call) at 00007d545cfd7694
SP (7d53ff7edf50) is in userspace
It was subsequently found that ipi_message[PPC_MSG_CALL_FUNCTION]
was set for CPU 42 by at least 1 of the CPUs waiting in
smp_call_function_many(), but somehow the corresponding
call_single_queue entries were never processed by CPU 42, causing the
callers to spin in csd_lock_wait() indefinitely.
Nick Piggin suggested something similar to the following sequence as
a possible explanation (interleaving of CALL_FUNCTION/RESCHEDULE
IPI messages seems to be most common, but any mix of CALL_FUNCTION and
!CALL_FUNCTION messages could trigger it):
CPU
X: smp_muxed_ipi_set_message():
X: smp_mb()
X: message[RESCHEDULE] = 1
X: doorbell_global_ipi(42):
X: kvmppc_set_host_ipi(42, 1)
X: ppc_msgsnd_sync()/smp_mb()
X: ppc_msgsnd() -> 42
42: doorbell_exception(): // from CPU X
42: ppc_msgsync()
105: smp_muxed_ipi_set_message():
105: smb_mb()
// STORE DEFERRED DUE TO RE-ORDERING
--105: message[CALL_FUNCTION] = 1
| 105: doorbell_global_ipi(42):
| 105: kvmppc_set_host_ipi(42, 1)
| 42: kvmppc_set_host_ipi(42, 0)
| 42: smp_ipi_demux_relaxed()
| 42: // returns to executing guest
| // RE-ORDERED STORE COMPLETES
->105: message[CALL_FUNCTION] = 1
105: ppc_msgsnd_sync()/smp_mb()
105: ppc_msgsnd() -> 42
42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored
105: // hangs waiting on 42 to process messages/call_single_queue
This can be prevented with an smp_mb() at the beginning of
kvmppc_set_host_ipi(), such that stores to message[<type>] (or other
state indicated by the host_ipi flag) are ordered vs. the store to
to host_ipi.
However, doing so might still allow for the following scenario (not
yet observed):
CPU
X: smp_muxed_ipi_set_message():
X: smp_mb()
X: message[RESCHEDULE] = 1
X: doorbell_global_ipi(42):
X: kvmppc_set_host_ipi(42, 1)
X: ppc_msgsnd_sync()/smp_mb()
X: ppc_msgsnd() -> 42
42: doorbell_exception(): // from CPU X
42: ppc_msgsync()
// STORE DEFERRED DUE TO RE-ORDERING
-- 42: kvmppc_set_host_ipi(42, 0)
| 42: smp_ipi_demux_relaxed()
| 105: smp_muxed_ipi_set_message():
| 105: smb_mb()
| 105: message[CALL_FUNCTION] = 1
| 105: doorbell_global_ipi(42):
| 105: kvmppc_set_host_ipi(42, 1)
| // RE-ORDERED STORE COMPLETES
-> 42: kvmppc_set_host_ipi(42, 0)
42: // returns to executing guest
105: ppc_msgsnd_sync()/smp_mb()
105: ppc_msgsnd() -> 42
42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored
105: // hangs waiting on 42 to process messages/call_single_queue
Fixing this scenario would require an smp_mb() *after* clearing
host_ipi flag in kvmppc_set_host_ipi() to order the store vs.
subsequent processing of IPI messages.
To handle both cases, this patch splits kvmppc_set_host_ipi() into
separate set/clear functions, where we execute smp_mb() prior to
setting host_ipi flag, and after clearing host_ipi flag. These
functions pair with each other to synchronize the sender and receiver
sides.
With that change in place the above workload ran for 20 hours without
triggering any lock-ups.
Fixes: 755563bc79 ("powerpc/powernv: Fixes for hypervisor doorbell handling") # v4.0
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190911223155.16045-1-mdroth@linux.vnet.ibm.com
Currently the reserved bits of the Processor Compatibility
Register (PCR) are cleared as per the Programming Note in Section
1.3.3 of version 3.0B of the Power ISA. This causes all new
architecture features to be made available when running on newer
processors with new architecture features added to the PCR as bits
must be set to disable a given feature.
For example to disable new features added as part of Version 2.07 of
the ISA the corresponding bit in the PCR needs to be set.
As new processor features generally require explicit kernel support
they should be disabled until such support is implemented. Therefore
kernels should set all unknown/reserved bits in the PCR such that any
new architecture features which the kernel does not currently know
about get disabled.
An update is planned to the ISA to clarify that the PCR is an
exception to the Programming Note on reserved bits in Section 1.3.3.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Tested-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190917004605.22471-2-alistair@popple.id.au
Commit 388cc6e133 ("KVM: PPC: Book3S HV: Support POWER6
compatibility mode on POWER7") introduced new macros defining the PCR
bits. When used from assembly files these definitions lead to build
errors using older versions of binutils that don't support the 'ul'
suffix. This fixes the build errors by updating the definitions to use
the __MASK() macro which selects the appropriate suffix.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190917004605.22471-1-alistair@popple.id.au
- Initial support for running on a system with an Ultravisor, which is software
that runs below the hypervisor and protects guests against some attacks by
the hypervisor.
- Support for building the kernel to run as a "Secure Virtual Machine", ie. as
a guest capable of running on a system with an Ultravisor.
- Some changes to our DMA code on bare metal, to allow devices with medium
sized DMA masks (> 32 && < 59 bits) to use more than 2GB of DMA space.
- Support for firmware assisted crash dumps on bare metal (powernv).
- Two series fixing bugs in and refactoring our PCI EEH code.
- A large series refactoring our exception entry code to use gas macros, both
to make it more readable and also enable some future optimisations.
As well as many cleanups and other minor features & fixups.
Thanks to:
Adam Zerella, Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan, Aneesh
Kumar K.V, Anju T Sudhakar, Anshuman Khandual, Balbir Singh, Benjamin
Herrenschmidt, Cédric Le Goater, Christophe JAILLET, Christophe Leroy,
Christopher M. Riedl, Christoph Hellwig, Claudio Carvalho, Daniel Axtens,
David Gibson, David Hildenbrand, Desnes A. Nunes do Rosario, Ganesh Goudar,
Gautham R. Shenoy, Greg Kurz, Guerney Hunt, Gustavo Romero, Halil Pasic, Hari
Bathini, Joakim Tjernlund, Jonathan Neuschafer, Jordan Niethe, Leonardo Bras,
Lianbo Jiang, Madhavan Srinivasan, Mahesh Salgaonkar, Mahesh Salgaonkar,
Masahiro Yamada, Maxiwell S. Garcia, Michael Anderson, Nathan Chancellor,
Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Qian Cai, Ram
Pai, Ravi Bangoria, Reza Arbab, Ryan Grimm, Sam Bobroff, Santosh Sivaraj,
Segher Boessenkool, Sukadev Bhattiprolu, Thiago Bauermann, Thiago Jung
Bauermann, Thomas Gleixner, Tom Lendacky, Vasant Hegde.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl2EtEcTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgPfsD/9uXyBXn3anI/H08+mk74k5gCsmMQpn
D442CD/ByogZcccp23yBTlhawtCE03hcHnCLygn0Xgd8a4YvHts/RGHUe3fPHqlG
bEyZ7jsLVz5ebNZQP7r4eGs2pSzCajwJy2N9HJ/C1ojf15rrfRxoVJtnyhE2wXpm
DL+6o2K+nUCB3gTQ1Inr3DnWzoGOOUfNTOea2u+J+yfHwGRqOBYpevwqiwy5eelK
aRjUJCqMTvrzra49MeFwjo0Nt3/Y8UNcwA+JlGdeR8bRuWhFrYmyBRiZEKPaujNO
5EAfghBBlB0KQCqvF/tRM/c0OftHqK59AMobP9T7u9oOaBXeF/FpZX/iXjzNDPsN
j9Oo2tKLTu/YVEXqBFuREGP+znANr1Wo4CFyOG8SbvYz0HFjR6XbtRJsS+0e8GWl
kqX5/ZhYz3lBnKSNe9jgWOrh/J0KCSFigBTEWJT3xsn4YE8x8kK2l9KPqAIldWEP
sKb2UjGS7v0NKq+NvShH88Q9AeQUEIjTcg/9aDDQDe6FaRQ7KiF8bUxSdwSPi+Fn
j0lnF6i+1ATWZKuCr85veVi7C5qoe/+MqalnmP7MxULyzgXLLxUgN0SzEYO6QofK
LQK/VaH2XVr5+M5YAb7K4/NX5gbM3s1bKrCiUy4EyHNvgG7gricYdbz6HgAjKpR7
oP0rHfgmVYvF1g==
=WlW+
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"This is a bit late, partly due to me travelling, and partly due to a
power outage knocking out some of my test systems *while* I was
travelling.
- Initial support for running on a system with an Ultravisor, which
is software that runs below the hypervisor and protects guests
against some attacks by the hypervisor.
- Support for building the kernel to run as a "Secure Virtual
Machine", ie. as a guest capable of running on a system with an
Ultravisor.
- Some changes to our DMA code on bare metal, to allow devices with
medium sized DMA masks (> 32 && < 59 bits) to use more than 2GB of
DMA space.
- Support for firmware assisted crash dumps on bare metal (powernv).
- Two series fixing bugs in and refactoring our PCI EEH code.
- A large series refactoring our exception entry code to use gas
macros, both to make it more readable and also enable some future
optimisations.
As well as many cleanups and other minor features & fixups.
Thanks to: Adam Zerella, Alexey Kardashevskiy, Alistair Popple, Andrew
Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Anshuman Khandual,
Balbir Singh, Benjamin Herrenschmidt, Cédric Le Goater, Christophe
JAILLET, Christophe Leroy, Christopher M. Riedl, Christoph Hellwig,
Claudio Carvalho, Daniel Axtens, David Gibson, David Hildenbrand,
Desnes A. Nunes do Rosario, Ganesh Goudar, Gautham R. Shenoy, Greg
Kurz, Guerney Hunt, Gustavo Romero, Halil Pasic, Hari Bathini, Joakim
Tjernlund, Jonathan Neuschafer, Jordan Niethe, Leonardo Bras, Lianbo
Jiang, Madhavan Srinivasan, Mahesh Salgaonkar, Mahesh Salgaonkar,
Masahiro Yamada, Maxiwell S. Garcia, Michael Anderson, Nathan
Chancellor, Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver
O'Halloran, Qian Cai, Ram Pai, Ravi Bangoria, Reza Arbab, Ryan Grimm,
Sam Bobroff, Santosh Sivaraj, Segher Boessenkool, Sukadev Bhattiprolu,
Thiago Bauermann, Thiago Jung Bauermann, Thomas Gleixner, Tom
Lendacky, Vasant Hegde"
* tag 'powerpc-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (264 commits)
powerpc/mm/mce: Keep irqs disabled during lockless page table walk
powerpc: Use ftrace_graph_ret_addr() when unwinding
powerpc/ftrace: Enable HAVE_FUNCTION_GRAPH_RET_ADDR_PTR
ftrace: Look up the address of return_to_handler() using helpers
powerpc: dump kernel log before carrying out fadump or kdump
docs: powerpc: Add missing documentation reference
powerpc/xmon: Fix output of XIVE IPI
powerpc/xmon: Improve output of XIVE interrupts
powerpc/mm/radix: remove useless kernel messages
powerpc/fadump: support holes in kernel boot memory area
powerpc/fadump: remove RMA_START and RMA_END macros
powerpc/fadump: update documentation about option to release opalcore
powerpc/fadump: consider f/w load area
powerpc/opalcore: provide an option to invalidate /sys/firmware/opal/core file
powerpc/opalcore: export /sys/firmware/opal/core for analysing opal crashes
powerpc/fadump: update documentation about CONFIG_PRESERVE_FA_DUMP
powerpc/fadump: add support to preserve crash data on FADUMP disabled kernel
powerpc/fadump: improve how crashed kernel's memory is reserved
powerpc/fadump: consider reserved ranges while releasing memory
powerpc/fadump: make crash memory ranges array allocation generic
...
Pull crypto updates from Herbert Xu:
"API:
- Add the ability to abort a skcipher walk.
Algorithms:
- Fix XTS to actually do the stealing.
- Add library helpers for AES and DES for single-block users.
- Add library helpers for SHA256.
- Add new DES key verification helper.
- Add surrounding bits for ESSIV generator.
- Add accelerations for aegis128.
- Add test vectors for lzo-rle.
Drivers:
- Add i.MX8MQ support to caam.
- Add gcm/ccm/cfb/ofb aes support in inside-secure.
- Add ofb/cfb aes support in media-tek.
- Add HiSilicon ZIP accelerator support.
Others:
- Fix potential race condition in padata.
- Use unbound workqueues in padata"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (311 commits)
crypto: caam - Cast to long first before pointer conversion
crypto: ccree - enable CTS support in AES-XTS
crypto: inside-secure - Probe transform record cache RAM sizes
crypto: inside-secure - Base RD fetchcount on actual RD FIFO size
crypto: inside-secure - Base CD fetchcount on actual CD FIFO size
crypto: inside-secure - Enable extended algorithms on newer HW
crypto: inside-secure: Corrected configuration of EIP96_TOKEN_CTRL
crypto: inside-secure - Add EIP97/EIP197 and endianness detection
padata: remove cpu_index from the parallel_queue
padata: unbind parallel jobs from specific CPUs
padata: use separate workqueues for parallel and serial work
padata, pcrypt: take CPU hotplug lock internally in padata_alloc_possible
crypto: pcrypt - remove padata cpumask notifier
padata: make padata_do_parallel find alternate callback CPU
workqueue: require CPU hotplug read exclusion for apply_workqueue_attrs
workqueue: unconfine alloc/apply/free_workqueue_attrs()
padata: allocate workqueue internally
arm64: dts: imx8mq: Add CAAM node
random: Use wait_event_freezable() in add_hwgenerator_randomness()
crypto: ux500 - Fix COMPILE_TEST warnings
...
* ARM: ITS translation cache; support for 512 vCPUs, various cleanups
and bugfixes
* PPC: various minor fixes and preparation
* x86: bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT), some IPI optimizations
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdf7fdAAoJEL/70l94x66DJzkIAKDcuWXJB4Qtoto6yUvPiHZm
LYkY/Dn1zulb/DhzrBoXFey/jZXwl9kxMYkVTefnrAl0fRwFGX+G1UYnQrtAL6Gr
ifdTYdy3kZhXCnnp99QAantWDswJHo1THwbmHrlmkxS4MdisEaTHwgjaHrDRZ4/d
FAEwW2isSonP3YJfTtsKFFjL9k2D4iMnwZ/R2B7UOaWvgnerZ1GLmOkilvnzGGEV
IQ89IIkWlkKd4SKgq8RkDKlfW5JrLrSdTK2Uf0DvAxV+J0EFkEaR+WlLsqumra0z
Eg3KwNScfQj0DyT0TzurcOxObcQPoMNSFYXLRbUu1+i0CGgm90XpF1IosiuihgU=
=w6I3
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"s390:
- ioctl hardening
- selftests
ARM:
- ITS translation cache
- support for 512 vCPUs
- various cleanups and bugfixes
PPC:
- various minor fixes and preparation
x86:
- bugfixes all over the place (posted interrupts, SVM, emulation
corner cases, blocked INIT)
- some IPI optimizations"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (75 commits)
KVM: X86: Use IPI shorthands in kvm guest when support
KVM: x86: Fix INIT signal handling in various CPU states
KVM: VMX: Introduce exit reason for receiving INIT signal on guest-mode
KVM: VMX: Stop the preemption timer during vCPU reset
KVM: LAPIC: Micro optimize IPI latency
kvm: Nested KVM MMUs need PAE root too
KVM: x86: set ctxt->have_exception in x86_decode_insn()
KVM: x86: always stop emulation on page fault
KVM: nVMX: trace nested VM-Enter failures detected by H/W
KVM: nVMX: add tracepoint for failed nested VM-Enter
x86: KVM: svm: Fix a check in nested_svm_vmrun()
KVM: x86: Return to userspace with internal error on unexpected exit reason
KVM: x86: Add kvm_emulate_{rd,wr}msr() to consolidate VXM/SVM code
KVM: x86: Refactor up kvm_{g,s}et_msr() to simplify callers
doc: kvm: Fix return description of KVM_SET_MSRS
KVM: X86: Tune PLE Window tracepoint
KVM: VMX: Change ple_window type to unsigned int
KVM: X86: Remove tailing newline for tracepoints
KVM: X86: Trace vcpu_id for vmexit
KVM: x86: Manually calculate reserved bits when loading PDPTRS
...
Pull RCU updates from Ingo Molnar:
"This cycle's RCU changes were:
- A few more RCU flavor consolidation cleanups.
- Updates to RCU's list-traversal macros improving lockdep usability.
- Forward-progress improvements for no-CBs CPUs: Avoid ignoring
incoming callbacks during grace-period waits.
- Forward-progress improvements for no-CBs CPUs: Use ->cblist
structure to take advantage of others' grace periods.
- Also added a small commit that avoids needlessly inflicting
scheduler-clock ticks on callback-offloaded CPUs.
- Forward-progress improvements for no-CBs CPUs: Reduce contention on
->nocb_lock guarding ->cblist.
- Forward-progress improvements for no-CBs CPUs: Add ->nocb_bypass
list to further reduce contention on ->nocb_lock guarding ->cblist.
- Miscellaneous fixes.
- Torture-test updates.
- minor LKMM updates"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (86 commits)
MAINTAINERS: Update from paulmck@linux.ibm.com to paulmck@kernel.org
rcu: Don't include <linux/ktime.h> in rcutiny.h
rcu: Allow rcu_do_batch() to dynamically adjust batch sizes
rcu/nocb: Don't wake no-CBs GP kthread if timer posted under overload
rcu/nocb: Reduce __call_rcu_nocb_wake() leaf rcu_node ->lock contention
rcu/nocb: Reduce nocb_cb_wait() leaf rcu_node ->lock contention
rcu/nocb: Advance CBs after merge in rcutree_migrate_callbacks()
rcu/nocb: Avoid synchronous wakeup in __call_rcu_nocb_wake()
rcu/nocb: Print no-CBs diagnostics when rcutorture writer unduly delayed
rcu/nocb: EXP Check use and usefulness of ->nocb_lock_contended
rcu/nocb: Add bypass callback queueing
rcu/nocb: Atomic ->len field in rcu_segcblist structure
rcu/nocb: Unconditionally advance and wake for excessive CBs
rcu/nocb: Reduce ->nocb_lock contention with separate ->nocb_gp_lock
rcu/nocb: Reduce contention at no-CBs invocation-done time
rcu/nocb: Reduce contention at no-CBs registry-time CB advancement
rcu/nocb: Round down for number of no-CBs grace-period kthreads
rcu/nocb: Avoid ->nocb_lock capture by corresponding CPU
rcu/nocb: Avoid needless wakeups of no-CBs grace-period kthread
rcu/nocb: Make __call_rcu_nocb_wake() safe for many callbacks
...
- 52-bit virtual addressing in the kernel
- New ABI to allow tagged user pointers to be dereferenced by syscalls
- Early RNG seeding by the bootloader
- Improve robustness of SMP boot
- Fix TLB invalidation in light of recent architectural clarifications
- Support for i.MX8 DDR PMU
- Remove direct LSE instruction patching in favour of static keys
- Function error injection using kprobes
- Support for the PPTT "thread" flag introduced by ACPI 6.3
- Move PSCI idle code into proper cpuidle driver
- Relaxation of implicit I/O memory barriers
- Build with RELR relocations when toolchain supports them
- Numerous cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl1yYREQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNAM3CAChqDFQkryXoHwdeEcaukMRVNxtxOi4pM4g
5xqkb7PoqRJssIblsuhaXjrSD97yWCgaqCmFe6rKoes++lP4bFcTe22KXPPyPBED
A+tK4nTuKKcZfVbEanUjI+ihXaHJmKZ/kwAxWsEBYZ4WCOe3voCiJVNO2fHxqg1M
8TskZ2BoayTbWMXih0eJg2MCy/xApBq4b3nZG4bKI7Z9UpXiKN1NYtDh98ZEBK4V
d/oNoHsJ2ZvIQsztoBJMsvr09DTCazCijWZiECadm6l41WEPFizngrACiSJLLtYo
0qu4qxgg9zgFlvBCRQmIYSggTuv35RgXSfcOwChmW5DUjHG+f9GK
=Ru4B
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Although there isn't tonnes of code in terms of line count, there are
a fair few headline features which I've noted both in the tag and also
in the merge commits when I pulled everything together.
The part I'm most pleased with is that we had 35 contributors this
time around, which feels like a big jump from the usual small group of
core arm64 arch developers. Hopefully they all enjoyed it so much that
they'll continue to contribute, but we'll see.
It's probably worth highlighting that we've pulled in a branch from
the risc-v folks which moves our CPU topology code out to where it can
be shared with others.
Summary:
- 52-bit virtual addressing in the kernel
- New ABI to allow tagged user pointers to be dereferenced by
syscalls
- Early RNG seeding by the bootloader
- Improve robustness of SMP boot
- Fix TLB invalidation in light of recent architectural
clarifications
- Support for i.MX8 DDR PMU
- Remove direct LSE instruction patching in favour of static keys
- Function error injection using kprobes
- Support for the PPTT "thread" flag introduced by ACPI 6.3
- Move PSCI idle code into proper cpuidle driver
- Relaxation of implicit I/O memory barriers
- Build with RELR relocations when toolchain supports them
- Numerous cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (114 commits)
arm64: remove __iounmap
arm64: atomics: Use K constraint when toolchain appears to support it
arm64: atomics: Undefine internal macros after use
arm64: lse: Make ARM64_LSE_ATOMICS depend on JUMP_LABEL
arm64: asm: Kill 'asm/atomic_arch.h'
arm64: lse: Remove unused 'alt_lse' assembly macro
arm64: atomics: Remove atomic_ll_sc compilation unit
arm64: avoid using hard-coded registers for LSE atomics
arm64: atomics: avoid out-of-line ll/sc atomics
arm64: Use correct ll/sc atomic constraints
jump_label: Don't warn on __exit jump entries
docs/perf: Add documentation for the i.MX8 DDR PMU
perf/imx_ddr: Add support for AXI ID filtering
arm64: kpti: ensure patched kernel text is fetched from PoU
arm64: fix fixmap copy for 16K pages and 48-bit VA
perf/smmuv3: Validate groups for global filtering
perf/smmuv3: Validate group size
arm64: Relax Documentation/arm64/tagged-pointers.rst
arm64: kvm: Replace hardcoded '1' with SYS_PAR_EL1_F
arm64: mm: Ignore spurious translation faults taken from the kernel
...
When looping on the list of interrupts, add the current value of the
PQ bits with a load on the ESB page. This has the side effect of
faulting the ESB page of all interrupts.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190910081850.26038-2-clg@kaod.org
With support to copy multiple kernel boot memory regions owing to copy
size limitation, also handle holes in the memory area to be preserved.
Support as many as 128 kernel boot memory regions. This allows having
an adequate FADump capture kernel size for different scenarios.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821385448.5656.6124791213910877759.stgit@hbathini.in.ibm.com
RMA_START is defined as '0' and there is even a BUILD_BUG_ON() to
make sure it is never anything else. Remove this macro and use '0'
instead as code change is needed anyway when it has to be something
else. Also, remove unused RMA_END macro.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821384096.5656.15026984053970204652.stgit@hbathini.in.ibm.com
OPAL loads kernel & initrd at 512MB offset (256MB size), also exported
as ibm,opal/dump/fw-load-area. So, if boot memory size of FADump is
less than 768MB, kernel memory to be exported as '/proc/vmcore' would
be overwritten by f/w while loading kernel & initrd. To avoid such a
scenario, enforce a minimum boot memory size of 768MB on OPAL platform
and skip using FADump if a newer F/W version loads kernel & initrd
above 768MB.
Also, irrespective of RMA size, set the minimum boot memory size
expected on pseries platform at 320MB. This is to avoid inflating the
minimum memory requirements on systems with 512M/1024M RMA size.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821381414.5656.1592867278535469652.stgit@hbathini.in.ibm.com
Add a new kernel config option, CONFIG_PRESERVE_FA_DUMP that ensures
that crash data, from previously crash'ed kernel, is preserved. This
helps in cases where FADump is not enabled but the subsequent memory
preserving kernel boot is likely to process this crash data. One
typical usecase for this config option is petitboot kernel.
As OPAL allows registering address with it in the first kernel and
retrieving it after MPIPL, use it to store the top of boot memory.
A kernel that intends to preserve crash data retrieves it and avoids
using memory beyond this address.
Move arch_reserved_kernel_pages() function as it is needed for both
FA_DUMP and PRESERVE_FA_DUMP configurations.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821375751.5656.11459483669542541602.stgit@hbathini.in.ibm.com
Make allocate_crash_memory_ranges() and free_crash_memory_ranges()
functions generic to reuse them for memory management of all types of
dynamic memory range arrays. This change helps in memory management
of reserved ranges array to be added later.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821369863.5656.4375667005352155892.stgit@hbathini.in.ibm.com
Firmware provides architected register state data at the time of crash.
Process this data and build CPU notes to append to ELF core. In case
this data is missing or in unsupported format, at least append crashing
CPU's register data, to have something to work with in the vmcore file.
Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com>
Signed-off-by: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821367702.5656.5546683836236508389.stgit@hbathini.in.ibm.com
During kexec boot, metadata address needs to be reset to avoid running
into errors interpreting stale metadata address, in case the kexec'ed
kernel crashes before metadata address could be setup again.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821346629.5656.10783321582005237813.stgit@hbathini.in.ibm.com
OPAL allows registering address with it in the first kernel and
retrieving it after MPIPL. Setup kernel metadata and register its
address with OPAL to use it for processing the crash dump.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821345011.5656.13567765019032928471.stgit@hbathini.in.ibm.com
MPIPL is Memory Preserving IPL supported from POWER9. This enables the
kernel to reset the system with memory 'preserved'. Also, it supports
copying memory from a source address to some destination address during
MPIPL boot. Add MPIPL interface definitions here to leverage these f/w
features in adding FADump support for PowerNV platform.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821340710.5656.10071829040515662624.stgit@hbathini.in.ibm.com
Move platform specific register/un-register code, the RTAS calls, to
register/un-register callback functions. This would also mean moving
code that initializes and prints the platform specific FADump data.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Reviewed-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821332856.5656.16380417702046411631.stgit@hbathini.in.ibm.com
Introduce callback functions for platform specific operations like
register, unregister, invalidate & such. Also, define place-holders
for the same on pSeries platform.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821330286.5656.15538934400074110770.stgit@hbathini.in.ibm.com
Currently, FADump is only supported on pSeries but that is going to
change soon with FADump support being added on PowerNV platform. So,
move rtas specific definitions to platform code to allow FADump
to have multiple platforms support.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821328494.5656.16219929140866195511.stgit@hbathini.in.ibm.com
Add helper functions to setup & free CPU notes buffer and to find if a
given memory area is contiguous. Also, use boolean as return type for
the function that finds if boot memory area is contiguous. While at
it, save the virtual address of CPU notes buffer instead of physical
address as virtual address is used often.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821318971.5656.9281936950510635858.stgit@hbathini.in.ibm.com
Though asm/fadump.h is meant to be used by other components dealing
with FADump, it also has macros/definitions internal to FADump code.
Move them to a new header file used within FADump code. This also
makes way for refactoring platform specific FADump code.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821313134.5656.6597770626574392140.stgit@hbathini.in.ibm.com