Not really much reason to make it generic given that it's so small, but
this is the last non-method in xfs_alloc_btree.c and xfs_ialloc_btree.c,
so it makes the whole btree implementation more structured.
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32206a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
Make the btree delete code generic. Based on a patch from David Chinner
with lots of changes to follow the original btree implementations more
closely. While this loses some of the generic helper routines for
inserting/moving/removing records it also solves some of the one off bugs
in the original code and makes it easier to verify.
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32205a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
Make the btree insert code generic. Based on a patch from David Chinner
with lots of changes to follow the original btree implementations more
closely. While this loses some of the generic helper routines for
inserting/moving/removing records it also solves some of the one off bugs
in the original code and makes it easier to verify.
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32202a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
From: Dave Chinner <dgc@sgi.com>
The most complicated part here is the lastrec tracking for the alloc
btree. Most logic is in the update_lastrec method which has to do some
hopefully good enough dirty magic to maintain it.
[hch: split out from bigger patch and a rework of the lastrec
logic]
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32194a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
From: Dave Chinner <dgc@sgi.com>
[hch: split out from bigger patch and minor adaptions]
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32192a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
From: Dave Chinner <dgc@sgi.com>
[hch: split out from bigger patch and minor adaptions]
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32191a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
From: Dave Chinner <dgc@sgi.com>
Because this is the first major generic btree routine this patch includes
some infrastrucure, first a few routines to deal with a btree block that
can be either in short or long form, second xfs_btree_read_buf_block,
which is the new central routine to read a btree block given a cursor, and
third the new xfs_btree_ptr_addr routine to calculate the address for a
given btree pointer record.
[hch: split out from bigger patch and minor adaptions]
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32190a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
xfs_btree_init_cursor contains close to little shared code for the
different btrees and will get even more non-common code in the future.
Split it up into one routine per btree type.
Because xfs_btree_dup_cursor needs to call the init routine for a generic
btree cursor add a new btree operation vector that contains a dup_cursor
method that initializes a new cursor based on an existing one.
The btree operations vector is based on an idea and code from Dave Chinner
and will grow more entries later during this series.
SGI-PV: 985583
SGI-Modid: xfs-linux-melb:xfs-kern:32176a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Bill O'Donnell <billodo@sgi.com>
Signed-off-by: David Chinner <david@fromorbit.com>
When we allocation new inode chunks, we initialise the generation numbers
to zero. This works fine until we delete a chunk and then reallocate it,
resulting in the same inode numbers but with a reset generation count.
This can result in inode/generation pairs of different inodes occurring
relatively close together.
Given that the inode/gen pair makes up the "unique" portion of an NFS
filehandle on XFS, this can result in file handles cached on clients being
seen on the wire from the server but refer to a different file. This
causes .... issues for NFS clients.
Hence we need a unique generation number initialisation for each inode to
prevent reuse of a small portion of the generation number space. Use a
random number to initialise the generation number so we don't need to keep
any new state on disk whilst making the new number difficult to guess from
previous allocations.
SGI-PV: 979416
SGI-Modid: xfs-linux-melb:xfs-kern:31001a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
At ENOSPC, we can get a filesystem shutdown due to a cancelling a dirty
transaction in xfs_mkdir or xfs_create. This is due to the initial
allocation attempt not taking into account inode alignment and hence we
can prepare the AGF freelist for allocation when it's not actually
possible to do an allocation. This results in inode allocation returning
ENOSPC with a dirty transaction, and hence we shut down the filesystem.
Because the first allocation is an exact allocation attempt, we must tell
the allocator that the alignment does not affect the allocation attempt.
i.e. we will accept any extent alignment as long as the extent starts at
the block we want. Unfortunately, this means that if the longest free
extent is less than the length + alignment necessary for fallback
allocation attempts but is long enough to attempt a non-aligned
allocation, we will modify the free list.
If we then have the exact allocation fail, all other allocation attempts
will also fail due to the alignment constraint being taken into account.
Hence the initial attempt needs to set the "alignment slop" field so that
alignment, while not required, must be taken into account when determining
if there is enough space left in the AG to do the allocation.
That means if the exact allocation fails, we will not dirty the freelist
if there is not enough space available fo a subsequent allocation to
succeed. Hence we get an ENOSPC error back to userspace without shutting
down the filesystem.
SGI-PV: 978886
SGI-Modid: xfs-linux-melb:xfs-kern:30699a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Remove macro-to-small-function indirection from xfs_sb.h, and remove some
which are completely unused.
SGI-PV: 976035
SGI-Modid: xfs-linux-melb:xfs-kern:30528a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
the "ikeep" option is set rather than "noikeep".
This regression was introduced in 970451.
With no mount options specified, xfs_parseargs() does the following:
int ikeep = 0;
args->flags |= XFSMNT_BARRIER;
args->flags2 |= XFSMNT2_COMPAT_IOSIZE;
if (!options)
goto done;
It only sets the above two options by default and before, it also used to
set XFSMNT_IDELETE by default.
If options are specified, then
if (!(args->flags & XFSMNT_DMAPI) && !ikeep)
args->flags |= XFSMNT_IDELETE;
is executed later on which is skipped by the "goto done;" above.
The solution is to invert the logic.
SGI-PV: 977771
SGI-Modid: xfs-linux-melb:xfs-kern:30590a
Signed-off-by: Niv Sardi <xaiki@sgi.com>
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
remove beX_add functions and replace all uses with beX_add_cpu
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Dave Chinner <dgc@sgi.com>
Cc: Timothy Shimmin <tes@sgi.com>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Biggest bit is duplicating the dinode structure so we have one annotated for
native endianess and one for disk endianess. The other significant change
is that xfs_xlate_dinode_core is split into one helper per direction to
allow for proper annotations, everything else is trivial.
As a sidenode splitting out the incore dinode means we can move it into
xfs_inode.h in a later patch and severely improving on the include hell in
xfs.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29476a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
When we have a couple of hundred transactions on the fly at once, they all
typically modify the on disk superblock in some way.
create/unclink/mkdir/rmdir modify inode counts, allocation/freeing modify
free block counts.
When these counts are modified in a transaction, they must eventually lock
the superblock buffer and apply the mods. The buffer then remains locked
until the transaction is committed into the incore log buffer. The result
of this is that with enough transactions on the fly the incore superblock
buffer becomes a bottleneck.
The result of contention on the incore superblock buffer is that
transaction rates fall - the more pressure that is put on the superblock
buffer, the slower things go.
The key to removing the contention is to not require the superblock fields
in question to be locked. We do that by not marking the superblock dirty
in the transaction. IOWs, we modify the incore superblock but do not
modify the cached superblock buffer. In short, we do not log superblock
modifications to critical fields in the superblock on every transaction.
In fact we only do it just before we write the superblock to disk every
sync period or just before unmount.
This creates an interesting problem - if we don't log or write out the
fields in every transaction, then how do the values get recovered after a
crash? the answer is simple - we keep enough duplicate, logged information
in other structures that we can reconstruct the correct count after log
recovery has been performed.
It is the AGF and AGI structures that contain the duplicate information;
after recovery, we walk every AGI and AGF and sum their individual
counters to get the correct value, and we do a transaction into the log to
correct them. An optimisation of this is that if we have a clean unmount
record, we know the value in the superblock is correct, so we can avoid
the summation walk under normal conditions and so mount/recovery times do
not change under normal operation.
One wrinkle that was discovered during development was that the blocks
used in the freespace btrees are never accounted for in the AGF counters.
This was once a valid optimisation to make; when the filesystem is full,
the free space btrees are empty and consume no space. Hence when it
matters, the "accounting" is correct. But that means the when we do the
AGF summations, we would not have a correct count and xfs_check would
complain. Hence a new counter was added to track the number of blocks used
by the free space btrees. This is an *on-disk format change*.
As a result of this, lazy superblock counters are a mkfs option and at the
moment on linux there is no way to convert an old filesystem. This is
possible - xfs_db can be used to twiddle the right bits and then
xfs_repair will do the format conversion for you. Similarly, you can
convert backwards as well. At some point we'll add functionality to
xfs_admin to do the bit twiddling easily....
SGI-PV: 964999
SGI-Modid: xfs-linux-melb:xfs-kern:28652a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
gcc-4.1 and more recent aggressively inline static functions which
increases XFS stack usage by ~15% in critical paths. Prevent this from
occurring by adding noinline to the STATIC definition.
Also uninline some functions that are too large to be inlined and were
causing problems with CONFIG_FORCED_INLINING=y.
Finally, clean up all the different users of inline, __inline and
__inline__ and put them under one STATIC_INLINE macro. For debug kernels
the STATIC_INLINE macro uninlines those functions.
SGI-PV: 957159
SGI-Modid: xfs-linux-melb:xfs-kern:27585a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: David Chatterton <chatz@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
contiguous with the most recently allocated chunk. On a striped
filesystem, this will fill a stripe unit with inodes before allocating new
inodes in another stripe unit.
SGI-PV: 951416
SGI-Modid: xfs-linux-melb:xfs-kern:208488a
Signed-off-by: Glen Overby <overby@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!