Add __mca_table to the DISCARD list for the gate.lds linker script to
avoid broken linker references when linking the final vmlinux file.
Also add comment to include/asm-ia64/asmmacros.h to avoid anyone else
hitting this problem in the future.
Credits to James Bottomley <James.Bottomley@SteelEye.com> for spotting
the DISCARD list in gate.lds.S
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Some condition checks on iosapic_check_gsi_range() can be omitted
because always `base <= end' is assured. This patch simplifies those
checks.
Signed-off-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
This patch corrects some wrong comments and a printk message.
It also fixes some minor things, and makes all lines fit in
80 columns.
Signed-off-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Fix a for-loop in sn_hwperf_geoid_to_cnode(). It needs to loop over
num_cnodes to ensure it can still process TIO nodes in addition to
compute nodes on systems with many nodes. Interim fix until better
support for many (>265) nodes is complete.
Signed-off-by: Dean Roe <roe@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Eliminate an unnecessary -- and flawed -- use of the expensive
num_online_cpus().
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
It was reported from a field customer that global spin lock ptcg_lock
is giving a lot of grief on munmap performance running on a large numa
machine. What appears to be a problem coming from flush_tlb_range(),
which currently unconditionally calls platform_global_tlb_purge().
For some of the numa machines in existence today, this function is
mapped into ia64_global_tlb_purge(), which holds ptcg_lock spin lock
while executing ptc.ga instruction.
Here is a patch that attempt to avoid global tlb purge whenever
possible. It will use local tlb purge as much as possible. Though the
conditions to use local tlb purge is pretty restrictive. One of the
side effect of having flush tlb range instruction on ia64 is that
kernel don't get a chance to clear out cpu_vm_mask. On ia64, this mask
is sticky and it will accumulate if process bounces around. Thus
diminishing the possible use of ptc.l. Thoughts?
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Acked-by: Jack Steiner <steiner@sgi.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Function lazy_mmu_prot_update is also used on huge pages when it is called
by set_huge_ptep_writable, but it isn't aware of huge pages.
Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com>
Acked-by: Ken Chen <kenneth.w.chen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
The find_*_bit() routines are defined to work on a pointer to unsigned long.
But partial_page.bitmap is unsigned int and it is passed to find_*_bit() in
arch/ia64/ia32/sys_ia32.c. So the compiler will print warnings.
This patch changes to unsigned long instead.
Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use config options instead of gcc builtin definition to tell the use of
instruction set extensions (CIX and FIX).
This is introduced to tell the kbuild system the use of opmized hweight*()
routines on alpha architecture.
Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Build fix for user mode linux.
Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Fix warning messages triggered by bitops code consolidation patches.
cxn_bitmap is the array of unsigned long. '&' is unnesesary for the argument
of *_bit() routins.
Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Provide proper kprobes fault handling, if a user-specified pre/post handlers
tries to access user address space, through copy_from_user(), get_user() etc.
The user-specified fault handler gets called only if the fault occurs while
executing user-specified handlers. In such a case user-specified handler is
allowed to fix it first, later if the user-specifed fault handler does not fix
it, we try to fix it by calling fix_exception().
The user-specified handler will not be called if the fault happens when single
stepping the original instruction, instead we reset the current probe and
allow the system page fault handler to fix it up.
I could not test this patch for sparc64.
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Provide proper kprobes fault handling, if a user-specified pre/post handlers
tries to access user address space, through copy_from_user(), get_user() etc.
The user-specified fault handler gets called only if the fault occurs while
executing user-specified handlers. In such a case user-specified handler is
allowed to fix it first, later if the user-specifed fault handler does not fix
it, we try to fix it by calling fix_exception().
The user-specified handler will not be called if the fault happens when single
stepping the original instruction, instead we reset the current probe and
allow the system page fault handler to fix it up.
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Acked-by: Anil S Keshavamurthy<anil.s.keshavamurthy@intel.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Provide proper kprobes fault handling, if a user-specified pre/post handlers
tries to access user address space, through copy_from_user(), get_user() etc.
The user-specified fault handler gets called only if the fault occurs while
executing user-specified handlers. In such a case user-specified handler is
allowed to fix it first, later if the user-specifed fault handler does not fix
it, we try to fix it by calling fix_exception().
The user-specified handler will not be called if the fault happens when single
stepping the original instruction, instead we reset the current probe and
allow the system page fault handler to fix it up.
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Provide proper kprobes fault handling, if a user-specified pre/post handlers
tries to access user address space, through copy_from_user(), get_user() etc.
The user-specified fault handler gets called only if the fault occurs while
executing user-specified handlers. In such a case user-specified handler is
allowed to fix it first, later if the user-specifed fault handler does not fix
it, we try to fix it by calling fix_exception().
The user-specified handler will not be called if the fault happens when single
stepping the original instruction, instead we reset the current probe and
allow the system page fault handler to fix it up.
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Provide proper kprobes fault handling, if a user-specified pre/post handlers
tries to access user address space, through copy_from_user(), get_user() etc.
The user-specified fault handler gets called only if the fault occurs while
executing user-specified handlers. In such a case user-specified handler is
allowed to fix it first, later if the user-specifed fault handler does not fix
it, we try to fix it by calling fix_exception().
The user-specified handler will not be called if the fault happens when single
stepping the original instruction, instead we reset the current probe and
allow the system page fault handler to fix it up.
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently kprobe handler traps only happen in kernel space, so function
kprobe_exceptions_notify should skip traps which happen in user space.
This patch modifies this, and it is based on 2.6.16-rc4.
Signed-off-by: bibo mao <bibo.mao@intel.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: "Keshavamurthy, Anil S" <anil.s.keshavamurthy@intel.com>
Cc: <hiramatu@sdl.hitachi.co.jp>
Signed-off-by: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
When kretprobe probes the schedule() function, if the probed process exits
then schedule() will never return, so some kretprobe instances will never
be recycled.
In this patch the parent process will recycle retprobe instances of the
probed function and there will be no memory leak of kretprobe instances.
Signed-off-by: bibo mao <bibo.mao@intel.com>
Cc: Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp>
Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In normal operation, kretprobe makes a target function return to trampoline
code. A kprobe (called trampoline_probe) has been inserted in the trampoline
code. When the kernel hits this kprobe, it calls kretprobe's handler and it
returns to the original return address.
Kretprobe-booster removes the trampoline_probe. It allows the trampoline code
to call kretprobe's handler directly instead of invoking kprobe. The
trampoline code returns to the original return address.
(changelog from Chuck Ebbert <76306.1226@compuserve.com> - thanks ;))
Signed-off-by: Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp>
Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chuck Ebbert <76306.1226@compuserve.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Current kprobe copies the original instruction at the probe point and replaces
it with a breakpoint instruction (int3). When the kernel hits the probe
point, kprobe handler is invoked. And the copied instruction is single-step
executed on the copied buffer (not on the original address) by kprobe. After
that, the kprobe checks registers and modify it (if need) as if the
instructions was executed on the original address.
My proposal is based on the fact there are many instructions which do NOT
require the register modification after the single-step execution. When the
copied instruction is a kind of them, kprobe just jumps back to the next
instruction after single-step execution. If so, why don't we execute those
instructions directly?
With kprobe-booster patch, kprobes will execute a copied instruction directly
and (if need) jump back to original code. This direct execution is executed
when the kprobe don't have both post_handler and break_handler, and the copied
instruction can be executed directly.
I sorted instructions which can be executed directly or not;
- Call instructions are NG(can not be executed directly).
We should correct the return address pushed into top of stack.
- Indirect instructions except for absolute indirect-jumps
are NG. Those instructions changes EIP randomly. We should
check EIP and correct it.
- Instructions that change EIP beyond the range of the
instruction buffer are NG.
- Instructions that change EIP to tail 5 bytes of the
instruction buffer (it is the size of a jump instruction).
We must write a jump instruction which backs to original
kernel code in the instruction buffer.
- Break point instruction is NG. We should not touch EIP and
pass to other handlers.
- Absolute direct/indirect jumps are OK.- Conditional Jumps are NG.
- Halt and software-interruptions are NG. Because it will stay on
the instruction buffer of kprobes.
- Prefixes are NG.
- Unknown/reserved opcode is NG.
- Other 1 byte instructions are OK. But those instructions need a
jump back code.
- 2 bytes instructions are mapped sparsely. So, in this release,
this patch don't boost those instructions.
>From Intel's IA-32 opcode map described in IA-32 Intel Architecture Software
Developer's Manual Vol.2 B, I determined that following opcodes are not
boostable.
- 0FH (2byte escape)
- 70H - 7FH (Jump on condition)
- 9AH (Call) and 9CH (Pushf)
- C0H-C1H (Grp 2: includes reserved opcode)
- C6H-C7H (Grp11: includes reserved opcode)
- CCH-CEH (Software-interrupt)
- D0H-D3H (Grp2: includes reserved opcode)
- D6H (Reserved)
- D8H-DFH (Coprocessor)
- E0H-E3H (loop/conditional jump)
- E8H (Call)
- F0H-F3H (Prefixes and reserved)
- F4H (Halt)
- F6H-F7H (Grp3: includes reserved opcode)
- FEH-FFH(Grp4,5: includes reserved opcode)
Kprobe-booster checks whether target instruction can be boosted (can be
executed directly) at arch_copy_kprobe() function. If the target instruction
can be boosted, it clears "boostable" flag. If not, it sets "boostable" flag
-1. This is disabled status. In resume_execution() function, If "boostable"
flag is cleared, kprobe-booster measures the size of the target instruction
and sets "boostable" flag 1.
In kprobe_handler(), kprobe checks the "boostable" flag. If the flag is 1, it
resets current kprobe and executes instruction buffer directly instead of
single stepping.
When unregistering a boosted kprobe, it calls synchronize_sched()
after "int3" is removed. So we can ensure followings after
the synchronize_sched() called.
- interrupt handlers are finished on all CPUs.
- instruction buffer is not executed on all CPUs.
And we can release the boosted kprobe safely.
And also, on preemptible kernel, the booster is not enabled where the kernel
preemption is enabled. So, there are no preempted threads on the instruction
buffer.
The description of kretprobe-booster:
====================================
In the normal operation, kretprobe make a target function return to trampoline
code. And a kprobe (called trampoline_probe) have been inserted at the
trampoline code. When the kernel hits this kprobe, it calls kretprobe's
handler and it returns to original return address.
Kretprobe-booster patch removes the trampoline_probe. It allows the
trampoline code to call kretprobe's handler directly instead of invoking
kprobe. And tranpoline code returns to original return address.
This new trampoline code stores and restores registers, so the kretprobe
handler is still able to access those registers.
Current kprobe has about 1.3 usec/probe(*) overhead, and kprobe-booster patch
reduces it to 0.6 usec/probe(*). Also current kretprobe has about 2.0
usec/probe(*) overhead. Kprobe-booster patch reduces it to 1.3 usec/probe(*),
and the combination of both kprobe-booster patch and kretprobe-booster patch
reduces it to 0.9 usec/probe(*).
I expect the combination of both patches can reduce half of a probing
overhead.
Performance numbers strongly depend on the processor model.
Andrew Morton wrote:
> These preempt tricks look rather nasty. Can you please describe what the
> problem is, precisely? And how this code avoids it? Perhaps we can find
> something cleaner.
The problem is how to remove the copied instructions of the
kprobe *safely* on the preemptable kernel (CONFIG_PREEMPT=y).
Kprobes basically executes the following actions;
(1)int3
(2)preempt_disable()
(3)kprobe_prehandler()
(4)copied instructioin(single step)
(5)kprobe_posthandler()
(6)preempt_enable()
(7)return to the original code
During the execution of copied instruction, preemption is
disabled (from step (2) to (6)).
When unregistering the probes, Kprobe waits for RCU
quiescent state by using synchronize_sched() after removing
int3 instruction.
Thus we can ensure the copied instruction is not executed.
On the other hand, kprobe-booster executes the following actions;
(1)int3
(2)preempt_disable()
(3)kprobe_prehandler()
(4)preempt_enable() <-- this one is added by my patch
(5)copied instruction(direct execution)
(6)jmp back to the original code
The problem is that we have no way to prevent preemption on
step (5) or (6). We cannot call preempt_disable() after step (6),
because there are no rooms to do that. Thus, some other
processes may be preempted at step(5) or (6) on preemptable kernel.
And I couldn't find the easy way to ensure that other processes'
stack do *not* have the address of them. (I thought some way
to do that, but those are very costly.)
So currently, I simply boost the kprobe only when the probe
point is already preemption disabled.
> Also, the patch adds a preempt_enable() but I don't see a corresponding
> preempt_disable(). Am I missing something?
It is corresponding to the preempt_disable() in the top of
kprobe_handler().
I copied the code of kprobe_handler() here:
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p;
int ret = 0;
kprobe_opcode_t *addr = NULL;
unsigned long *lp;
struct kprobe_ctlblk *kcb;
/*
* We don't want to be preempted for the entire
* duration of kprobe processing
*/
preempt_disable(); <-- HERE
kcb = get_kprobe_ctlblk();
Signed-off-by: Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp>
Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Clean up kprobe's resume_execute() for i386 arch.
Signed-off-by: Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp>
Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Coverity found an over-run @ line 364 of efi.c
This is due to the loop checking the size correctly, then adding a '\0'
after possibly hitting the end of the array.
Ensure the loop exits with one space left in the array.
Signed-off-by: Darren Jenkins <darrenrjenkins@gmail.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Create compat_sys_adjtimex and use it an all appropriate places.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We had a copy of the compatibility version of struct timex in each 64 bit
architecture. This patch just creates a global one and replaces all the
usages of the old ones.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kyle McMartin <kyle@parisc-linux.org>
Acked-by: Tony Luck <tony.luck@intel.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>