312cd4cb12
11 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Kiran Kumar Modukuri
|
f29507ce66 |
fscache: Fix reference overput in fscache_attach_object() error handling
When a cookie is allocated that causes fscache_object structs to be
allocated, those objects are initialised with the cookie pointer, but
aren't blessed with a ref on that cookie unless the attachment is
successfully completed in fscache_attach_object().
If attachment fails because the parent object was dying or there was a
collision, fscache_attach_object() returns without incrementing the cookie
counter - but upon failure of this function, the object is released which
then puts the cookie, whether or not a ref was taken on the cookie.
Fix this by taking a ref on the cookie when it is assigned in
fscache_object_init(), even when we're creating a root object.
Analysis from Kiran Kumar:
This bug has been seen in 4.4.0-124-generic #148-Ubuntu kernel
BugLink: https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1776277
fscache cookie ref count updated incorrectly during fscache object
allocation resulting in following Oops.
kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/internal.h:321!
kernel BUG at /build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639!
[Cause]
Two threads are trying to do operate on a cookie and two objects.
(1) One thread tries to unmount the filesystem and in process goes over a
huge list of objects marking them dead and deleting the objects.
cookie->usage is also decremented in following path:
nfs_fscache_release_super_cookie
-> __fscache_relinquish_cookie
->__fscache_cookie_put
->BUG_ON(atomic_read(&cookie->usage) <= 0);
(2) A second thread tries to lookup an object for reading data in following
path:
fscache_alloc_object
1) cachefiles_alloc_object
-> fscache_object_init
-> assign cookie, but usage not bumped.
2) fscache_attach_object -> fails in cant_attach_object because the
cookie's backing object or cookie's->parent object are going away
3) fscache_put_object
-> cachefiles_put_object
->fscache_object_destroy
->fscache_cookie_put
->BUG_ON(atomic_read(&cookie->usage) <= 0);
[NOTE from dhowells] It's unclear as to the circumstances in which (2) can
take place, given that thread (1) is in nfs_kill_super(), however a
conflicting NFS mount with slightly different parameters that creates a
different superblock would do it. A backtrace from Kiran seems to show
that this is a possibility:
kernel BUG at/build/linux-Y09MKI/linux-4.4.0/fs/fscache/cookie.c:639!
...
RIP: __fscache_cookie_put+0x3a/0x40 [fscache]
Call Trace:
__fscache_relinquish_cookie+0x87/0x120 [fscache]
nfs_fscache_release_super_cookie+0x2d/0xb0 [nfs]
nfs_kill_super+0x29/0x40 [nfs]
deactivate_locked_super+0x48/0x80
deactivate_super+0x5c/0x60
cleanup_mnt+0x3f/0x90
__cleanup_mnt+0x12/0x20
task_work_run+0x86/0xb0
exit_to_usermode_loop+0xc2/0xd0
syscall_return_slowpath+0x4e/0x60
int_ret_from_sys_call+0x25/0x9f
[Fix] Bump up the cookie usage in fscache_object_init, when it is first
being assigned a cookie atomically such that the cookie is added and bumped
up if its refcount is not zero. Remove the assignment in
fscache_attach_object().
[Testcase]
I have run ~100 hours of NFS stress tests and not seen this bug recur.
[Regression Potential]
- Limited to fscache/cachefiles.
Fixes:
|
||
David Howells
|
402cb8dda9 |
fscache: Attach the index key and aux data to the cookie
Attach copies of the index key and auxiliary data to the fscache cookie so that: (1) The callbacks to the netfs for this stuff can be eliminated. This can simplify things in the cache as the information is still available, even after the cache has relinquished the cookie. (2) Simplifies the locking requirements of accessing the information as we don't have to worry about the netfs object going away on us. (3) The cache can do lazy updating of the coherency information on disk. As long as the cache is flushed before reboot/poweroff, there's no need to update the coherency info on disk every time it changes. (4) Cookies can be hashed or put in a tree as the index key is easily available. This allows: (a) Checks for duplicate cookies can be made at the top fscache layer rather than down in the bowels of the cache backend. (b) Caching can be added to a netfs object that has a cookie if the cache is brought online after the netfs object is allocated. A certain amount of space is made in the cookie for inline copies of the data, but if it won't fit there, extra memory will be allocated for it. The downside of this is that live cache operation requires more memory. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Anna Schumaker <anna.schumaker@netapp.com> Tested-by: Steve Dickson <steved@redhat.com> |
||
Fabian Frederick
|
36dfd116ed |
fs/fscache: convert printk to pr_foo()
All printk converted to pr_foo() except internal.h: printk(KERN_DEBUG Coalesce formats. Add pr_fmt Signed-off-by: Fabian Frederick <fabf@skynet.be> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Howells
|
caaef6900b |
FS-Cache: Fix object state machine to have separate work and wait states
Fix object state machine to have separate work and wait states as that makes it easier to envision. There are now three kinds of state: (1) Work state. This is an execution state. No event processing is performed by a work state. The function attached to a work state returns a pointer indicating the next state to which the OSM should transition. Returning NO_TRANSIT repeats the current state, but goes back to the scheduler first. (2) Wait state. This is an event processing state. No execution is performed by a wait state. Wait states are just tables of "if event X occurs, clear it and transition to state Y". The dispatcher returns to the scheduler if none of the events in which the wait state has an interest are currently pending. (3) Out-of-band state. This is a special work state. Transitions to normal states can be overridden when an unexpected event occurs (eg. I/O error). Instead the dispatcher disables and clears the OOB event and transits to the specified work state. This then acts as an ordinary work state, though object->state points to the overridden destination. Returning NO_TRANSIT resumes the overridden transition. In addition, the states have names in their definitions, so there's no need for tables of state names. Further, the EV_REQUEUE event is no longer necessary as that is automatic for work states. Since the states are now separate structs rather than values in an enum, it's not possible to use comparisons other than (non-)equality between them, so use some object->flags to indicate what phase an object is in. The EV_RELEASE, EV_RETIRE and EV_WITHDRAW events have been squished into one (EV_KILL). An object flag now carries the information about retirement. Similarly, the RELEASING, RECYCLING and WITHDRAWING states have been merged into an KILL_OBJECT state and additional states have been added for handling waiting dependent objects (JUMPSTART_DEPS and KILL_DEPENDENTS). A state has also been added for synchronising with parent object initialisation (WAIT_FOR_PARENT) and another for initiating look up (PARENT_READY). Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com> |
||
David Howells
|
493f7bc114 |
FS-Cache: Wrap checks on object state
Wrap checks on object state (mostly outside of fs/fscache/object.c) with inline functions so that the mechanism can be replaced. Some of the state checks within object.c are left as-is as they will be replaced. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Milosz Tanski <milosz@adfin.com> Acked-by: Jeff Layton <jlayton@redhat.com> |
||
David Howells
|
75bc411388 |
FS-Cache: Limit the number of I/O error reports for a cache
Limit the number of I/O error reports for a cache to 1 to prevent massive amounts of noise. After the first I/O error the cache is taken off line automatically, so must be restarted to resume caching. Signed-off-by: David Howells <dhowells@redhat.com> |
||
David Howells
|
52bd75fdb1 |
FS-Cache: Add counters for entry/exit to/from cache operation functions
Count entries to and exits from cache operation table functions. Maintain these as a single counter that's added to or removed from as appropriate. Signed-off-by: David Howells <dhowells@redhat.com> |
||
David Howells
|
4fbf4291aa |
FS-Cache: Allow the current state of all objects to be dumped
Allow the current state of all fscache objects to be dumped by doing: cat /proc/fs/fscache/objects By default, all objects and all fields will be shown. This can be restricted by adding a suitable key to one of the caller's keyrings (such as the session keyring): keyctl add user fscache:objlist "<restrictions>" @s The <restrictions> are: K Show hexdump of object key (don't show if not given) A Show hexdump of object aux data (don't show if not given) And paired restrictions: C Show objects that have a cookie c Show objects that don't have a cookie B Show objects that are busy b Show objects that aren't busy W Show objects that have pending writes w Show objects that don't have pending writes R Show objects that have outstanding reads r Show objects that don't have outstanding reads S Show objects that have slow work queued s Show objects that don't have slow work queued If neither side of a restriction pair is given, then both are implied. For example: keyctl add user fscache:objlist KB @s shows objects that are busy, and lists their object keys, but does not dump their auxiliary data. It also implies "CcWwRrSs", but as 'B' is given, 'b' is not implied. Signed-off-by: David Howells <dhowells@redhat.com> |
||
David Howells
|
952efe7b78 |
FS-Cache: Add and document asynchronous operation handling
Add and document asynchronous operation handling for use by FS-Cache's data storage and retrieval routines. The following documentation is added to: Documentation/filesystems/caching/operations.txt ================================ ASYNCHRONOUS OPERATIONS HANDLING ================================ ======== OVERVIEW ======== FS-Cache has an asynchronous operations handling facility that it uses for its data storage and retrieval routines. Its operations are represented by fscache_operation structs, though these are usually embedded into some other structure. This facility is available to and expected to be be used by the cache backends, and FS-Cache will create operations and pass them off to the appropriate cache backend for completion. To make use of this facility, <linux/fscache-cache.h> should be #included. =============================== OPERATION RECORD INITIALISATION =============================== An operation is recorded in an fscache_operation struct: struct fscache_operation { union { struct work_struct fast_work; struct slow_work slow_work; }; unsigned long flags; fscache_operation_processor_t processor; ... }; Someone wanting to issue an operation should allocate something with this struct embedded in it. They should initialise it by calling: void fscache_operation_init(struct fscache_operation *op, fscache_operation_release_t release); with the operation to be initialised and the release function to use. The op->flags parameter should be set to indicate the CPU time provision and the exclusivity (see the Parameters section). The op->fast_work, op->slow_work and op->processor flags should be set as appropriate for the CPU time provision (see the Parameters section). FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the operation and waited for afterwards. ========== PARAMETERS ========== There are a number of parameters that can be set in the operation record's flag parameter. There are three options for the provision of CPU time in these operations: (1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread may decide it wants to handle an operation itself without deferring it to another thread. This is, for example, used in read operations for calling readpages() on the backing filesystem in CacheFiles. Although readpages() does an asynchronous data fetch, the determination of whether pages exist is done synchronously - and the netfs does not proceed until this has been determined. If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags before submitting the operation, and the operating thread must wait for it to be cleared before proceeding: wait_on_bit(&op->flags, FSCACHE_OP_WAITING, fscache_wait_bit, TASK_UNINTERRUPTIBLE); (2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it will be given to keventd to process. Such an operation is not permitted to sleep on I/O. This is, for example, used by CacheFiles to copy data from a backing fs page to a netfs page after the backing fs has read the page in. If this option is used, op->fast_work and op->processor must be initialised before submitting the operation: INIT_WORK(&op->fast_work, do_some_work); (3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it will be given to the slow work facility to process. Such an operation is permitted to sleep on I/O. This is, for example, used by FS-Cache to handle background writes of pages that have just been fetched from a remote server. If this option is used, op->slow_work and op->processor must be initialised before submitting the operation: fscache_operation_init_slow(op, processor) Furthermore, operations may be one of two types: (1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in conjunction with any other operation on the object being operated upon. An example of this is the attribute change operation, in which the file being written to may need truncation. (2) Shareable. Operations of this type may be running simultaneously. It's up to the operation implementation to prevent interference between other operations running at the same time. ========= PROCEDURE ========= Operations are used through the following procedure: (1) The submitting thread must allocate the operation and initialise it itself. Normally this would be part of a more specific structure with the generic op embedded within. (2) The submitting thread must then submit the operation for processing using one of the following two functions: int fscache_submit_op(struct fscache_object *object, struct fscache_operation *op); int fscache_submit_exclusive_op(struct fscache_object *object, struct fscache_operation *op); The first function should be used to submit non-exclusive ops and the second to submit exclusive ones. The caller must still set the FSCACHE_OP_EXCLUSIVE flag. If successful, both functions will assign the operation to the specified object and return 0. -ENOBUFS will be returned if the object specified is permanently unavailable. The operation manager will defer operations on an object that is still undergoing lookup or creation. The operation will also be deferred if an operation of conflicting exclusivity is in progress on the object. If the operation is asynchronous, the manager will retain a reference to it, so the caller should put their reference to it by passing it to: void fscache_put_operation(struct fscache_operation *op); (3) If the submitting thread wants to do the work itself, and has marked the operation with FSCACHE_OP_MYTHREAD, then it should monitor FSCACHE_OP_WAITING as described above and check the state of the object if necessary (the object might have died whilst the thread was waiting). When it has finished doing its processing, it should call fscache_put_operation() on it. (4) The operation holds an effective lock upon the object, preventing other exclusive ops conflicting until it is released. The operation can be enqueued for further immediate asynchronous processing by adjusting the CPU time provisioning option if necessary, eg: op->flags &= ~FSCACHE_OP_TYPE; op->flags |= ~FSCACHE_OP_FAST; and calling: void fscache_enqueue_operation(struct fscache_operation *op) This can be used to allow other things to have use of the worker thread pools. ===================== ASYNCHRONOUS CALLBACK ===================== When used in asynchronous mode, the worker thread pool will invoke the processor method with a pointer to the operation. This should then get at the container struct by using container_of(): static void fscache_write_op(struct fscache_operation *_op) { struct fscache_storage *op = container_of(_op, struct fscache_storage, op); ... } The caller holds a reference on the operation, and will invoke fscache_put_operation() when the processor function returns. The processor function is at liberty to call fscache_enqueue_operation() or to take extra references. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com> |
||
David Howells
|
4c515dd47a |
FS-Cache: Add cache management
Implement the entry points by which a cache backend may initialise, add, declare an error upon and withdraw a cache. Further, an object is created in sysfs under which each cache added will get an object created: /sys/fs/fscache/<cachetag>/ All of this is described in Documentation/filesystems/caching/backend-api.txt added by a previous patch. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com> |
||
David Howells
|
0e04d4cefc |
FS-Cache: Add cache tag handling
Implement two features of FS-Cache: (1) The ability to request and release cache tags - names by which a cache may be known to a netfs, and thus selected for use. (2) An internal function by which a cache is selected by consulting the netfs, if the netfs wishes to be consulted. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com> |