2fcb12df7d
9 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
441692aafc |
Merge branch 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
Pull ARM updates from Russell King: - add support for ELF fdpic binaries on both MMU and noMMU platforms - linker script cleanups - support for compressed .data section for XIP images - discard memblock arrays when possible - various cleanups - atomic DMA pool updates - better diagnostics of missing/corrupt device tree - export information to allow userspace kexec tool to place images more inteligently, so that the device tree isn't overwritten by the booting kernel - make early_printk more efficient on semihosted systems - noMMU cleanups - SA1111 PCMCIA update in preparation for further cleanups * 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm: (38 commits) ARM: 8719/1: NOMMU: work around maybe-uninitialized warning ARM: 8717/2: debug printch/printascii: translate '\n' to "\r\n" not "\n\r" ARM: 8713/1: NOMMU: Support MPU in XIP configuration ARM: 8712/1: NOMMU: Use more MPU regions to cover memory ARM: 8711/1: V7M: Add support for MPU to M-class ARM: 8710/1: Kconfig: Kill CONFIG_VECTORS_BASE ARM: 8709/1: NOMMU: Disallow MPU for XIP ARM: 8708/1: NOMMU: Rework MPU to be mostly done in C ARM: 8707/1: NOMMU: Update MPU accessors to use cp15 helpers ARM: 8706/1: NOMMU: Move out MPU setup in separate module ARM: 8702/1: head-common.S: Clear lr before jumping to start_kernel() ARM: 8705/1: early_printk: use printascii() rather than printch() ARM: 8703/1: debug.S: move hexbuf to a writable section ARM: add additional table to compressed kernel ARM: decompressor: fix BSS size calculation pcmcia: sa1111: remove special sa1111 mmio accessors pcmcia: sa1111: use sa1111_get_irq() to obtain IRQ resources ARM: better diagnostics with missing/corrupt dtb ARM: 8699/1: dma-mapping: Remove init_dma_coherent_pool_size() ARM: 8698/1: dma-mapping: Mark atomic_pool as __ro_after_init .. |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Vladimir Murzin
|
216218308c |
ARM: 8713/1: NOMMU: Support MPU in XIP configuration
Currently, there is assumption in early MPU setup code that kernel image is located in RAM, which is obviously not true for XIP. To run code from ROM we need to make sure that it is covered by MPU. However, due to we allocate regions (semi-)dynamically we can run into issue of trimming region we are running from in case ROM spawns several MPU regions. To help deal with that we enforce minimum alignments for start end end of XIP address space as 1MB and 128Kb correspondingly. Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> |
||
Vladimir Murzin
|
5c9d9a1b3a |
ARM: 8712/1: NOMMU: Use more MPU regions to cover memory
PMSAv7 defines curious alignment requirements to the regions: - size must be power of 2, and - region start must be aligned to the region size Because of that we currently adjust lowmem bounds plus we assign only one MPU region to cover memory all these lead to significant amount of memory could be wasted. As an example, consider 64Mb of memory at 0x70000000 - it fits alignment requirements nicely; now, imagine that 2Mb of memory is reserved for coherent DMA allocation, so now Linux is expected to see 62Mb of memory... and here annoying thing happens - memory gets truncated to 32Mb (we've lost 30Mb!), i.e. MPU layout looks like: 0: base 0x70000000, size 0x2000000 This patch tries to allocate as much as possible MPU slots to minimise amount of truncated memory. Moreover, with this patch MPU subregions starting to get used. MPU subregions allow us reduce the number of MPU slots used. For example given above, MPU layout looks like: 0: base 0x70000000, size 0x2000000 1: base 0x72000000, size 0x1000000 2: base 0x73000000, size 0x1000000, disable subreg 7 (0x73e00000 - 0x73ffffff) Where without subregions we'd get: 0: base 0x70000000, size 0x2000000 1: base 0x72000000, size 0x1000000 2: base 0x73000000, size 0x800000 3: base 0x73800000, size 0x400000 4: base 0x73c00000, size 0x200000 To achieve better layout we fist try to cover specified memory as is (maybe with help of subregions) and if we failed, we truncate memory to fit alignment requirements (so it occupies one MPU slot) and perform one more attempt with the reminder, and so on till we either cover all memory or run out of MPU slots. Tested-by: Szemző András <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> |
||
Vladimir Murzin
|
a0995c0805 |
ARM: 8708/1: NOMMU: Rework MPU to be mostly done in C
Currently, there are several issues with how MPU is setup: 1. We won't boot if MPU is missing 2. We won't boot if use XIP 3. Further extension of MPU setup requires asm skills The 1st point can be relaxed, so we can continue with boot CPU even if MPU is missed and fail boot for secondaries only. To address the 2nd point we could create region covering CONFIG_XIP_PHYS_ADDR - _end and that might work for the first stage of MPU enable, but due to MPU's alignment requirement we could cover too much, IOW we need more flexibility in how we're partitioning memory regions... and it'd be hardly possible to archive because of the 3rd point. This patch is trying to address 1st and 3rd issues and paves the path for 2nd and further improvements. The most visible change introduced with this patch is that we start using mpu_rgn_info array (as it was supposed?), so change in MPU setup done by boot CPU is recorded there and feed to secondaries. It allows us to keep minimal region setup for boot CPU and do the rest in C. Since we start programming MPU regions in C evaluation of MPU constrains (number of regions supported and minimal region order) can be done once, which in turn open possibility to free-up "probe" region early. Tested-by: Szemző András <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> |
||
Vladimir Murzin
|
877ec119db |
ARM: 8706/1: NOMMU: Move out MPU setup in separate module
Having MPU handling code in dedicated module makes it easier to enhance/maintain it. Tested-by: Szemző András <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> |
||
Jonathan Austin
|
9dfc28b630 |
ARM: mpu: protect the vectors page with an MPU region
Without an MMU it is possible for userspace programs to start executing code in places that they have no business executing. The MPU allows some level of protection against this. This patch protects the vectors page from access by userspace processes. Userspace tasks that dereference a null pointer are already protected by an svc at 0x0 that kills them. However when tasks use an offset from a null pointer (eg a function in a null struct) they miss this carefully placed svc and enter the exception vectors in user mode, ending up in the kernel. This patch causes programs that do this to receive a SEGV instead of happily entering the kernel in user-mode, and hence avoid a 'Bad Mode' panic. As part of this change it is necessary to make sigreturn happen via the stack when there is not an sa_restorer function. This change is invisible to userspace, and irrelevant to code compiled using a uClibc toolchain, which always uses an sa_restorer function. Because we don't get to remap the vectors in !MMU kuser_helpers are not in a defined location, and hence aren't usable. This means we don't need to worry about keeping them accessible from PL0 Signed-off-by: Jonathan Austin <jonathan.austin@arm.com> Reviewed-by: Will Deacon <will.deacon@arm.com> CC: Nicolas Pitre <nico@linaro.org> CC: Catalin Marinas <catalin.marinas@arm.com> |
||
Jonathan Austin
|
67c9845bea |
ARM: mpu: add early bring-up code for the ARMv7 PMSA-compliant MPU
This patch adds initial support for using the MPU, which is necessary for SMP operation on PMSAv7 processors because it is the only way to ensure memory is shared. This is an initial patch and full SMP support is added later in this series. The setup of the MPU is performed in a way analagous to that for the MMU: Very early initialisation before the C environment is brought up, followed by a sanity check and more complete initialisation in C. This patch provides the simplest possible memory region configuration: MPU_PROBE_REGION: Reserved for probing MPU details, not enabled MPU_BG_REGION: A 'background' region that specifies all memory strongly ordered MPU_RAM_REGION: A single shared, cacheable, normal region for the valid RAM. In this early initialisation code we simply map the whole of the address space with the BG_REGION and (at least) the kernel with the RAM_REGION. The MPU has region alignment constraints that require us to round past the end of the kernel. As region 2 has a higher priority than region 1, it overrides the strongly- ordered behaviour for RAM only. Subsequent patches will add more complete initialisation from the C-world and support for bringing up secondary CPUs. Signed-off-by: Jonathan Austin <jonathan.austin@arm.com> Reviewed-by: Will Deacon <will.deacon@arm.com> CC: Hyok S. Choi <hyok.choi@samsung.com> |
||
Jonathan Austin
|
a2b45b0da8 |
ARM: mpu: add header for MPU register layouts and region data
This commit adds definitions relevant to the ARM v7 PMSA compliant MPU. The register layouts and region configuration data is made accessible to asm as well as C-code so that it can be used in early bring-up of the MPU. The mpu region information structs assume that the properties for the I/D side are the same, though the implementation could be trivially extended for future platforms where this is no-longer true. The MPU_*_REGION defines are used for the basic, static MPU region setup. Signed-off-by: Jonathan Austin <jonathan.austin@arm.com> Reviewed-by: Will Deacon <will.deacon@arm.com> |