Now that the fast-path handler has been moved, we also need to update the
Makefile to ensure that the same restrictions for caller-save registers
are observed.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This brings the sh64 version in line with the sh32 one with regards to
how errors are handled. Base work for further unification of the
implementations.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Now that we have a method for finding out if we're handling an ITLB fault
or not without passing it all the way down the chain, it's possible to
use the __update_tlb() interface in place of a special __do_tlb_refill().
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This moves the now generic _32 page fault handling code to a shared place
and adapts the _64 implementation to make use of it.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This was reworked some time ago to go through fixmaps instead, leaving
the range itself unused. As such, kill off the remaining references and
hand over the remaining space for fixmaps directly. This also makes it
possible to simplify the vmalloc fault case as we no longer have to care
about the special section.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
At the moment the top of the fixmap space is calculated from P4SEG, which
places it at the end of the store queue space when that API is enabled.
Make sure we use P3_ADDR_MAX here instead to find the proper address
limit. With this done, it's also possible to switch to the generic
vmalloc address range check now that VMALLOC_START/END encapsulate the
translatable areas that we care about.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This provides a simple interface modelled after sparc64/m32r to encode
the error code in the upper byte of thread_info for finer-grained
handling in the page fault path.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This follows the x86 changes for tidying up the page fault error paths.
We'll build on top of this for _32/_64 unification.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The RSK2+SH7269 board uses the SH7269 processor. It is often
referred to as just rsk7269. NOR Flash, SDRAM, serial, USB Host and
ethernet are working.
Signed-off-by: Phil Edworthy <phil.edworthy@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This is an sh2a device (max 266MHz) with FPU, video display
controller (VDC), 8 serial ports, 4 I2C channels, 3 CAN ports,
SD and on-chip USB.
Signed-off-by: Phil Edworthy <phil.edworthy@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Too many drivers fail at IOPORT vs IOMEM checking before blindly calling
in to the API, so we may as well just provide basic stubs to get more
build coverage. Other platforms already do this, too (tile, parisc, etc.)
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The RSK2+SH7264 board uses the sh7264 processor. It is often
referred to as just rsk7264. NOR Flash, SDRAM, serial, USB Host and
ethernet are working.
Signed-off-by: Phil Edworthy <phil.edworthy@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This is an sh2a device with FPU, video display controller (VDC),
8 serial ports, 3 I2C channels, 2 CAN ports, SD and on-chip USB.
Signed-off-by: Phil Edworthy <phil.edworthy@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
With the introduction of static keys, anything using tracepoints blows up
in the following manner:
include/trace/events/oom.h:8:13: error: initializer element is not constant
include/trace/events/oom.h:8:13: error: (near initialization for '__tracepoint_oom_score_adj_update')
include/trace/events/oom.h:8:13: error: initializer element is not constant
include/trace/events/oom.h:8:13: error: (near initialization for '__tracepoint_oom_score_adj_update.key')
This is a result of the STATIC_KEY_INIT_xxx defs wrapping ATOMIC_INIT()
which on sh includes an atomic_t typecast. Given that we don't really
need the typecast for anything anymore, the simplest solution is simply
to kill off the cast.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro.iwamatsu.yj@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
While the trap number and error code are passed around for debugging
purposes, this occurs wholly independently of the thread struct values.
These values were never part of the sigcontext ABI and are thus never
passed anywhere, so we can just kill them off across the board.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Move the sourcing of the board specific Kconfig files into the
"Board support" menu. Without this they appear underneath the
"Board support" menu, in the "System type" menu.
[lethal@linux-sh.org: handle the magicpanelr2 case, too]
Signed-off-by: Stuart Menefy <stuart.menefy@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
In some cases the opps error reporting doesn't give enough information
to diagnose the problem, only printing information if it is thought
to be valid. Replace the current code with more detailed output.
This code is based on the ARM reporting, with minor changes for the SH.
[lethal@linux-sh.org: fixed up for 64-bit PTEs and pte_offset_kernel()]
Signed-off-by: Stuart Menefy <stuart.menefy@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The problem is caused by the interaction of two features in the Linux
memory management code.
A processes address space is described by a struct mm_struct, and
every thread has a pointer to the mm it should run in. The exception
to this are kernel threads, which don't have an mm, and so borrow
the mm from the last thread which ran. The system is bootstrapped
by the initial kernel thread using init's mm (even though init hasn't
been created yet, its mm is the static init_mm).
The other feature is how the kernel handles the page table which
describes the portion of the address space which is only visible when
executing inside the kernel, and which is shared by all threads. On
the SH4 the only portion of the kernel's address space which described
using the page table is called P3, from 0xc0000000 to 0xdfffffff. This
portion of the address space is divided into three:
- mappings for dma_alloc_coherent()
- mappings for vmalloc() and ioremap()
- fixmap mappings, primarily used in copy_user_pages() to create
kernel mappings of user pages with the correct cache colour.
To optimise the TLB miss handler we don't want to add an additional
condition which checks whether the faulting address is in the user or
the kernel portion of the address space, and so all page tables have a
common portion which describes the kernel part of the address
space. As the SH4 uses a two level page table, only the kernel portion
of first level page table (the pgd entries) is duplicated. These all
point to the same second level entries (the pte's), and so no memory
is wasted.
The reference page table for the kernel is called the swapper_pg_dir,
and when a new page table is created for a new process the kernel
portion of the page table is copied from swapper_pg_dir. This works
fine when changes only occur in the second level of the kernel's page
table, or the first level entries are created before any new user
processes. However if a change occurs to the first level of the page
table, and there are existing processes which don't have this entry in
their page table, this new entry needs to be added. This is done on
demand, when the kernel accesses a P3 address which isn't mapped using
the current page table, the code in vmalloc_fault() copies the entry
from the reference page table (swapper_pg_dir) into the current
processes page table.
The bug which this patch addresses is that the code in vmalloc_fault()
was not copying addresses which fell in the dma_alloc_coherent()
portion of the address space, and it should have been copying any P3
address.
Why we hadn't seen this before, and what made this hard to reproduce,
is that normally the kernel will have called dma_alloc_coherent(), and
accessed the memory mapping created, before any user process
runs. Typically drivers such as USB or SATA will have created and used
mappings of this type during the kernel initialisation, when probing
for the attached devices, before init runs. Ethernet is slightly
different, as it normally only creates and accesses
dma_alloc_coherent() mappings when the network is brought up, but if
kernel level IP configuration is used this will also occur before any
user space process runs. So the first reproduction of this problem
which we saw was occurred when USB and SATA were removed from the
kernel, and then bring up Ethernet from user space using ifconfig.
I'd like to thank Joseph Bormolini who did the hard work reducing the
problem to this simple to reproduce criteria.
In your case the situation is slightly different, and turns out to
depends on the exact kernel configuration (which we had) and your
ramdisk contents (which we didn't - hence the need for some assumptions).
In this case the problem is a side effect of kernel level module
loading. Kernel subsystems sometimes trigger the load of kernel
modules directly, for example the crypto subsystem tries to load the
cryptomgr and MTD tries to load modules for Flash partitioning if
these are not built into the kernel. This is done by the kernel
creating a user process which runs insmod to try and load the
appropriate module.
In order for this to cause problems the system must be running with a
initrd or initramfs, which contains an insmod executable - if the
kernel can't find an insmod to run, no user process is created, and
the problem doesn't occur. If an insmod is found, a process is
created to run it, which will inherit the kernel portion of the
swapper_pg_dir first level page table. It doesn't matter whether the
inmod is successful or not, but when the the kernel scheduler context
switches back to the kernel initialisation thread, the insmod's mm is
'borrowed' by the kernel thread, as it doesn't have an address space
of its own. (Reference counting is used to ensure this mm is not
destroyed, even though the user process which caused its creation may no
longer exist.) If this address space doesn't have a first level page
table entry for the consistent mappings, and a driver tries to access
such a mapping, we are in the same situation as described above,
except this time in a kernel thread rather than a user thread
executing inside the kernel.
See bugzilla: 15425, 15836, 15862, 16106, 16793
Signed-off-by: Stuart Menefy <stuart.menefy@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This implements basic -fstack-protector support, based on the early ARM
version in c743f38013. The SMP case is
limited to the initial canary value, while the UP case handles per-task
granularity (limited to 32-bit sh until a new enough sh64 compiler
manifests itself).
Signed-off-by: Filippo Arcidiacono <filippo.arcidiacono@st.com>
Reviewed-by: Carmelo Amoroso <carmelo.amoroso@st.com>
Signed-off-by: Stuart Menefy <stuart.menefy@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This implements initial support for the SH7734.
This adds support SCIF, TMU and RTC.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro.iwamatsu.yj@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Some SCIF devices specify the same IRQ. We can use SCIx_IRQ_MUXED for this.
This is correction to the SH2/SH2A series.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro.iwamatsu.yj@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Some SCIF devices specify the same IRQ. We can use SCIx_IRQ_MUXED for this.
And change use to evt2irq(), without specifying the value of IRQ directly.
This is correction to the SH3 series.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro.iwamatsu.yj@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Some SCIF devices specify the same IRQ. We can use SCIx_IRQ_MUXED for this.
And change use to evt2irq(), without specifying the value of IRQ directly.
This is correction to the SH4 series.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro.iwamatsu.yj@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Some SCIF devices specify the same IRQ. We can use SCIx_IRQ_MUXED for this.
And change use to evt2irq(), without specifying the value of IRQ directly.
This is correction to the SH4A series.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro.iwamatsu.yj@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
In the future we'll be unifying some of the 32/64 page fault path, so
start to tidy up the _64 one by killing off some of the unused debug
cruft.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Commit d065bd810b
(mm: retry page fault when blocking on disk transfer) and
commit 37b23e0525
(x86,mm: make pagefault killable)
The above commits introduced changes into the x86 pagefault handler
for making the page fault handler retryable as well as killable.
These changes reduce the mmap_sem hold time, which is crucial
during OOM killer invocation.
Port these changes to the 32-bit SH platform.
Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Our SMP cache flush ops use CPU cross calls to deal with things
like I-cache accesses not being broadcast in hardware, so ensure that
the CACHE_FLUSH_IS_SAFE reflects this.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
kgdb_nmicallback expects valid register state, so just fetch the register
state with get_irq_regs() as on other platforms.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently we're using a pretty dumbed-down implementation that copies
over register state visible from the thread info, leaving the bulk of the
switch_to state uncopied.
Given that we're also depending on register bank toggling for switch_to
optimization we ought to also explicitly zero out the GP regs that reside
in an alternate bank in order to prevent handing back garbage.
There are a few extra registers that we have state for in switch_to, so
copy those over while we're at it.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This updates sh following the generic kgdb changes adding support
for individual register get/set for kgdb/kdb use.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
kgdb needs a kgdb_roundup_cpus() definition in the architecture backend,
so just copy over the MIPS version, which already does what we want.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iEYEABECAAYFAk99uBgACgkQGkmNcg7/o7hglwCgqi6CE7i5gyneNYBn2ocRps4O
y1UAoMSIscO6YWcHPuxOiNBbJYUy/jMI
=SEO8
-----END PGP SIGNATURE-----
Merge tag 'sh-for-linus' of git://github.com/pmundt/linux-sh
Pull SuperH fixes from Paul Mundt.
* tag 'sh-for-linus' of git://github.com/pmundt/linux-sh:
sh: fix clock-sh7757 for the latest sh_mobile_sdhi driver
serial: sh-sci: use serial_port_in/out vs sci_in/out.
sh: vsyscall: Fix up .eh_frame generation.
sh: dma: Fix up device attribute mismatch from sysdev fallout.
sh: dwarf unwinder depends on SHcompact.
sh: fix up fallout from system.h disintegration.
Pull DMA mapping branch from Marek Szyprowski:
"Short summary for the whole series:
A few limitations have been identified in the current dma-mapping
design and its implementations for various architectures. There exist
more than one function for allocating and freeing the buffers:
currently these 3 are used dma_{alloc, free}_coherent,
dma_{alloc,free}_writecombine, dma_{alloc,free}_noncoherent.
For most of the systems these calls are almost equivalent and can be
interchanged. For others, especially the truly non-coherent ones
(like ARM), the difference can be easily noticed in overall driver
performance. Sadly not all architectures provide implementations for
all of them, so the drivers might need to be adapted and cannot be
easily shared between different architectures. The provided patches
unify all these functions and hide the differences under the already
existing dma attributes concept. The thread with more references is
available here:
http://www.spinics.net/lists/linux-sh/msg09777.html
These patches are also a prerequisite for unifying DMA-mapping
implementation on ARM architecture with the common one provided by
dma_map_ops structure and extending it with IOMMU support. More
information is available in the following thread:
http://thread.gmane.org/gmane.linux.kernel.cross-arch/12819
More works on dma-mapping framework are planned, especially in the
area of buffer sharing and managing the shared mappings (together with
the recently introduced dma_buf interface: commit d15bd7ee44
"dma-buf: Introduce dma buffer sharing mechanism").
The patches in the current set introduce a new alloc/free methods
(with support for memory attributes) in dma_map_ops structure, which
will later replace dma_alloc_coherent and dma_alloc_writecombine
functions."
People finally started piping up with support for merging this, so I'm
merging it as the last of the pending stuff from the merge window.
Looks like pohmelfs is going to wait for 3.5 and more external support
for merging.
* 'for-linus' of git://git.linaro.org/people/mszyprowski/linux-dma-mapping:
common: DMA-mapping: add NON-CONSISTENT attribute
common: DMA-mapping: add WRITE_COMBINE attribute
common: dma-mapping: introduce mmap method
common: dma-mapping: remove old alloc_coherent and free_coherent methods
Hexagon: adapt for dma_map_ops changes
Unicore32: adapt for dma_map_ops changes
Microblaze: adapt for dma_map_ops changes
SH: adapt for dma_map_ops changes
Alpha: adapt for dma_map_ops changes
SPARC: adapt for dma_map_ops changes
PowerPC: adapt for dma_map_ops changes
MIPS: adapt for dma_map_ops changes
X86 & IA64: adapt for dma_map_ops changes
common: dma-mapping: introduce generic alloc() and free() methods
The commit 996bc8aebd (mmc: sh_mobile_sdhi:
do not manage PM clocks manually) modified the sh_mobile_sdhi driver to
remove the clk_enable/clk_disable. So, we need to change
the "CLKDEV_CON_ID" to "CLKDEV_DEV_ID".
If we don't change this, we will see the following error from the driver:
sh_mobile_sdhi sh_mobile_sdhi.0: timeout waiting for hardware interrupt (CMD52)
Signed-off-by: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Pull kbuild changes from Michal Marek:
- Unification of cmd_uimage among archs that use it
- make headers_check tries harder before reporting a missing
<linux/types.h> include
- kbuild portability fix for shells that do not support echo -e
- make clean descends into samples/
- setlocalversion grep fix
- modpost typo fix
- dtc warnings fix
* 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild:
setlocalversion: Use "grep -q" instead of piping output to "read dummy"
modpost: fix ALL_INIT_DATA_SECTIONS
Kbuild: centralize MKIMAGE and cmd_uimage definitions
headers_check: recursively search for linux/types.h inclusion
scripts/Kbuild.include: Fix portability problem of "echo -e"
scripts: dtc: fix compile warnings
kbuild: clean up samples directory
kbuild: disable -Wmissing-field-initializers for W=1
Pull ACPI & Power Management changes from Len Brown:
- ACPI 5.0 after-ripples, ACPICA/Linux divergence cleanup
- cpuidle evolving, more ARM use
- thermal sub-system evolving, ditto
- assorted other PM bits
Fix up conflicts in various cpuidle implementations due to ARM cpuidle
cleanups (ARM at91 self-refresh and cpu idle code rewritten into
"standby" in asm conflicting with the consolidation of cpuidle time
keeping), trivial SH include file context conflict and RCU tracing fixes
in generic code.
* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux: (77 commits)
ACPI throttling: fix endian bug in acpi_read_throttling_status()
Disable MCP limit exceeded messages from Intel IPS driver
ACPI video: Don't start video device until its associated input device has been allocated
ACPI video: Harden video bus adding.
ACPI: Add support for exposing BGRT data
ACPI: export acpi_kobj
ACPI: Fix logic for removing mappings in 'acpi_unmap'
CPER failed to handle generic error records with multiple sections
ACPI: Clean redundant codes in scan.c
ACPI: Fix unprotected smp_processor_id() in acpi_processor_cst_has_changed()
ACPI: consistently use should_use_kmap()
PNPACPI: Fix device ref leaking in acpi_pnp_match
ACPI: Fix use-after-free in acpi_map_lsapic
ACPI: processor_driver: add missing kfree
ACPI, APEI: Fix incorrect APEI register bit width check and usage
Update documentation for parameter *notrigger* in einj.txt
ACPI, APEI, EINJ, new parameter to control trigger action
ACPI, APEI, EINJ, limit the range of einj_param
ACPI, APEI, Fix ERST header length check
cpuidle: power_usage should be declared signed integer
...
Some improper formatting caused the .eh_frame generation to fail,
resulting in gcc/g++ testsuite failures with regards to unwinding through
the vDSO. Now that someone is actually working on this on the gcc side
it's time to fix up the kernel side, too.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>