Currently the call to pseries_notify_cpuidle_add_cpu(), that takes
action on the cpuidle front when a cpu is added/removed
is being made from smp_xics_setup_cpu().
This caused lockdep issues as
reported https://lkml.org/lkml/2012/5/17/2
On addition of each cpu,
resources were cleared and re-allocated each time, all in critical
section as part of start_secondary() call were interrupts are disabled.
To resolve this issue, the pseries_notify_cpuidle_add_cpu() call is
is being replaced by a hotplug notifier which
would prevent cpuidle resources from being
released and allocated each time cpu is onlined in the critical code path.
It was fixed in https://lkml.org/lkml/2012/5/18/174.
Also it is essential to call cpuidle_enable/disable_device
between cpuidle_pause_and_lock() and
cpuidle_resume_and_unlock() when used externally
to avoid race conditions. Add support for CPU_ONLINE_FROZEN
and CPU_DEAD_FROZEN as part of hotplug notify event for
pseries_idle and unregister hotplug notifier
while exiting out. The above mentioned issues
are fixed as part of this patch.
Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Looks like we still have issues with pSeries and Cell idle code
vs. the lazy irq state. In fact, the reset fixes that went upstream
are exposing the problem more by causing BUG_ON() to trigger (which
this patch turns into a WARN_ON instead).
We need to be careful when using a variant of low power state that
has the side effect of turning interrupts back on, to properly set
all the SW & lazy state to look as if everything is enabled before
we enter the low power state with MSR:EE off as we will return with
MSR:EE on. If not, we have a discrepancy of state which can cause
things to go very wrong later on.
This patch moves the logic into a helper and uses it from the
pseries and cell idle code. The power4/970 idle code already got
things right (in assembly even !) so I'm not touching it. The power7
"bare metal" idle code is subtly different and correct. Remains PA6T
and some hypervisor based Cell platforms which have questionable
code in there, but they are mostly dead platforms so I'll fix them
when I manage to get final answers from the respective maintainers
about how the low power state actually works on them.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: stable@vger.kernel.org [v3.4]
The following patch is to remove the pseries_notify_add_cpu() call
and replace it by a hot plug notifier.
This would prevent cpuidle resources being released and allocated each
time cpu comes online on pseries.
The earlier design was causing a lockdep problem
in start_secondary as reported on this thread
-https://lkml.org/lkml/2012/5/17/2
This applies on 3.4-rc7
Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Commit f948501b36 ("Make hard_irq_disable() actually hard-disable
interrupts") caused check_and_cede_processor to stop working.
->irq_happened will never be zero right after a hard_irq_disable
so the compiler removes the call to cede_processor completely.
The bug was introduced back in the lazy interrupt handling rework
of 3.4 but was hidden until recently because hard_irq_disable did
nothing.
This issue will eventually appear in 3.4 stable since the
hard_irq_disable fix is marked stable, so mark this one for stable
too.
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: stable@vger.kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Disintegrate asm/system.h for PowerPC.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
cc: linuxppc-dev@lists.ozlabs.org
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
This patch makes pseries_idle_driver not to be registered when
power_save=off kernel boot option is specified. The
cpuidle_disable variable used here is similar to
its usage on x86. If cpuidle_disable is set then
sysfs entries for cpuidle framework are not created
and the required drivers are not loaded.
Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Signed-off-by: Trinabh Gupta <g.trinabh@gmail.com>
Signed-off-by: Arun R Bharadwaj <arun.r.bharadwaj@gmail.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch implements a back-end cpuidle driver for pSeries
based on pseries_dedicated_idle_loop and pseries_shared_idle_loop
routines. The driver is built only if CONFIG_CPU_IDLE is set. This
cpuidle driver uses global registration of idle states and
not per-cpu.
Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Signed-off-by: Trinabh Gupta <g.trinabh@gmail.com>
Signed-off-by: Arun R Bharadwaj <arun.r.bharadwaj@gmail.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>