x86 has two macros which allow us to evaluate some CPUID-based
features at compile time:
REQUIRED_MASK_BIT_SET()
DISABLED_MASK_BIT_SET()
They're both defined by having the compiler check the bit
argument against some constant masks of features.
But, when adding new CPUID leaves, we need to check new words
for these macros. So make sure that those macros and the
REQUIRED_MASK* and DISABLED_MASK* get updated when necessary.
This looks kinda silly to have an open-coded value ("18" in
this case) open-coded in 5 places in the code. But, we really do
need 5 places updated when NCAPINTS gets bumped, so now we just
force the issue.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160629200108.92466F6F@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We had a new CPUID "NCAPINT" word added, but the REQUIRED_MASK and
DISABLED_MASK macros did not get updated. Update them.
None of the features was needed in these masks, so there was no
harm, but we should keep them updated anyway.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160629200107.8D3C9A31@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When I added support for the Memory Protection Keys processor
feature, I had to reindent the REQUIRED/DISABLED_MASK macros, and
also consult the later cpufeature words.
I'm not quite sure how I bungled it, but I consulted the wrong
word at the end. This only affected required or disabled cpu
features in cpufeature words 14, 15 and 16. So, only Protection
Keys itself was screwed over here.
The result was that if you disabled pkeys in your .config, you
might still see some code show up that should have been compiled
out. There should be no functional problems, though.
In verifying this patch I also realized that the DISABLE_PKU/OSPKE
macros were defined backwards and that the cpu_has() check in
setup_pku() was not doing the compile-time disabled checks.
So also fix the macro for DISABLE_PKU/OSPKE and add a compile-time
check for pkeys being enabled in setup_pku().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: dfb4a70f20 ("x86/cpufeature, x86/mm/pkeys: Add protection keys related CPUID definitions")
Link: http://lkml.kernel.org/r/20160513221328.C200930B@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are two CPUID bits for protection keys. One is for whether
the CPU contains the feature, and the other will appear set once
the OS enables protection keys. Specifically:
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable
Protection keys (and the RDPKRU/WRPKRU instructions)
This is because userspace can not see CR4 contents, but it can
see CPUID contents.
X86_FEATURE_PKU is referred to as "PKU" in the hardware documentation:
CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3]
X86_FEATURE_OSPKE is "OSPKU":
CPUID.(EAX=07H,ECX=0H):ECX.OSPKE [bit 4]
These are the first CPU features which need to look at the
ECX word in CPUID leaf 0x7, so this patch also includes
fetching that word in to the cpuinfo->x86_capability[] array.
Add it to the disabled-features mask when its config option is
off. Even though we are not using it here, we also extend the
REQUIRED_MASK_BIT_SET() macro to keep it mirroring the
DISABLED_MASK_BIT_SET() version.
This means that in almost all code, you should use:
cpu_has(c, X86_FEATURE_PKU)
and *not* the CONFIG option.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210201.7714C250@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This allows us to use cpu_feature_enabled(X86_FEATURE_MPX) as
both a runtime and compile-time check.
When CONFIG_X86_INTEL_MPX is disabled,
cpu_feature_enabled(X86_FEATURE_MPX) will evaluate at
compile-time to 0. If CONFIG_X86_INTEL_MPX=y, then the cpuid
flag will be checked at runtime.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Qiaowei Ren <qiaowei.ren@intel.com>
Cc: linux-mm@kvack.org
Cc: linux-mips@linux-mips.org
Cc: Dave Hansen <dave@sr71.net>
Link: http://lkml.kernel.org/r/20141114151823.B358EAD2@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The original motivation for these patches was for an Intel CPU
feature called MPX. The patch to add a disabled feature for it
will go in with the other parts of the support.
But, in the meantime, there are a few other features than MPX
that we can make assumptions about at compile-time based on
compile options. Add them to disabled-features.h and check them
with cpu_feature_enabled().
Note that this gets rid of the last things that needed an #ifdef
CONFIG_X86_64 in cpufeature.h. Yay!
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20140911211524.C0EC332A@viggo.jf.intel.com
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
I believe the REQUIRED_MASK aproach was taken so that it was
easier to consult in assembly (arch/x86/kernel/verify_cpu.S).
DISABLED_MASK does not have the same restriction, but I
implemented it the same way for consistency.
We have a REQUIRED_MASK... which does two things:
1. Keeps a list of cpuid bits to check in very early boot and
refuse to boot if those are not present.
2. Consulted during cpu_has() checks, which allows us to
optimize out things at compile-time. In other words, if we
*KNOW* we will not boot with the feature off, then we can
safely assume that it will be present forever.
But, we don't have a similar mechanism for CPU features which
may be present but that we know we will not use. We simply
use our existing mechanisms to repeatedly check the status of
the bit at runtime (well, the alternatives patching helps here
but it does not provide compile-time optimization).
Adding a feature to disabled-features.h allows the bit to be
checked via a new macro: cpu_feature_enabled(). Note that
for features in DISABLED_MASK, checks with this macro have
all of the benefits of an #ifdef. Before, we would have done
this in a header:
#ifdef CONFIG_X86_INTEL_MPX
#define cpu_has_mpx cpu_has(X86_FEATURE_MPX)
#else
#define cpu_has_mpx 0
#endif
and this in the code:
if (cpu_has_mpx)
do_some_mpx_thing();
Now, just add your feature to DISABLED_MASK and you can do this
everywhere, and get the same benefits you would have from
#ifdefs:
if (cpu_feature_enabled(X86_FEATURE_MPX))
do_some_mpx_thing();
We need a new function and *not* a modification to cpu_has()
because there are cases where we actually need to check the CPU
itself, despite what features the kernel supports. The best
example of this is a hypervisor which has no control over what
features its guests are using and where the guest does not depend
on the host for support.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20140911211513.9E35E931@viggo.jf.intel.com
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>