When converting YUYV444 content to YUV422 or NV12 formats through writeback
pipeline, the scaler needs to downscale the chroma plane. Ensure that chroma
is downscaled when the pipeline is writeback.
Signed-off-by: Archit Taneja <archit@ti.com>
Writeback uses the WB_PICTURE_SIZE register to define the size of the content
written to memory, this is the output of the scaler. It uses the WB_SIZE
register to define the size of the content coming from the overlay/manager to
which it is connected, this is the input to the scaler. This naming is different
as compared to overlays.
Add checks for writeback in dispc_ovl_set_input_size() and
dispc_ovl_set_output_size() to write to the correct registers.
Signed-off-by: Archit Taneja <archit@ti.com>
Since writeback has many overlay like properties, and most of it's registers are
similar to that of overlays, it's possible to reuse most of the overlay related
DISPC code for writeback when considering it as a plane. Writeback was added as
a plane in the omap_plane field as OMAP_DSS_WB.
Add the writeback register offsets in dispc.h, add minimal WB plane related info
needed in dss_features. Add a function which returns the number of writeback
pipelines an OMAP version has.
Signed-off-by: Archit Taneja <archit@ti.com>
In the function dispc_plane_set_scaling_uv(), create a parameter which tells if
we want to upscale or downscale the chroma plane.
Downscaling of chroma is required by writeback pipeline for converting the input
YUV444 color format to YUV422 or NV12.
Signed-off-by: Archit Taneja <archit@ti.com>
The scalers of overlays and writeback do not have any constraints on downscale
ratio when operating in memory to memory mode.
This is because in memory to memory mode, we aren't connected to a display which
needs data output at the rate of pixel clock. The scalers can perform as much
downscaling as needed, the rate at which the scaler outputs is adjusted
accordingly.
Relax constraints related to downscaling based on whether the input overlays are
connected to writeback in memory to memory mode. We pass a mem_to_mem boolean
parameter to dispc_ovl_setup() from APPLY. This is currently set to false, this
will later be configured to the correct value based on whether the overlay is
connected to writeback or not. Do the same later for writeback when writeback is
configured.
In the scaling calculation code, we calculate the minimum amount of core clock we
need to achieve the required downscaling. If we are in memory to memory mode, we
set this to a very small value(1 in this case), this value would always be
lesser than the actual DISPC core clock value, and hence the scaling checks
would succeed.
We take care that pixel clock isn't calculated for writeback and the overlays
connected to it when in memory to memory mode. A pixel clock in such cases
doesn't make sense.
Signed-off-by: Archit Taneja <archit@ti.com>
dispc_ovl_setup_common() is to be used by both overlays and writeback. We pass
channel out to figure out what manager the overlay is connected to, to determine
the pixel clock rate. This is used to decide the scaling limitations for that
overlay.
writeback doesn't have a channel out, it has a channel in field which tells
where writeback gets its input from. These are 2 different fields, and this
prevents us reusing the overlay configuration code for writeback.
To overcome this, we now pass omap_plane to overlay related functions rather
than passing channel out. We create helper functions which can derive pclk/lclk
from the omap_plane id.
Signed-off-by: Archit Taneja <archit@ti.com>
Add a new static function called dispc_ovl_setup_common(). This function is used by
dispc_ovl_setup() to configure the overlay registers. This split is done so that
dispc_wb_setup() can reuse overlay register configuration related code.
Signed-off-by: Archit Taneja <archit@ti.com>
Add position and replication as overlay caps, and pass overlay caps as an
argument to the corresponding functions. Adding position and replication to
overlay caps seems a bit unnecessary, but it allows us to use the
corresponding functions for writeback too.
These caps will be set for all overlays, but not for writeback. This is done
so writeback can reuse dispc_ovl_setup() to the maximum.
Signed-off-by: Archit Taneja <archit@ti.com>
Currently, the functions below take the omap_plane parameter and derive the
overlay caps within them. Pass the overlay caps as a parameter to the function
to allow these to be used by writeback too.
- dispc_ovl_set_zorder()
- dispc_ovl_set_pre_mult_alpha()
- dispc_ovl_setup_global_alpha()
- dispc_ovl_calc_scaling()
- dispc_ovl_setup()
These functions will be used for writeback later, and the caps will help in
deciding if they are to be used for writeback or not. This allows reuse of
overlay caps for writeback.
Using omap_overlay_caps for writeback seems a bit incorrect, but caps is
something already in use by users of OMAPDSS(omapfb/omap_vout), so we use
overlay caps for overlay like features of writeback too.
Signed-off-by: Archit Taneja <archit@ti.com>
The DISPC pipeline register names in the TRM for setting the buffer size and
the output size are a bit misleading, for example, there are different register
names for setting the buffer size for VID and GFX pipes. Things get more
confusing when considering writeback pipeline.
Rename the functions so that they tell whether they are configuring the input
to the scalar or the output. These will be extended later to support writeback
registers.
Signed-off-by: Archit Taneja <archit@ti.com>
The struct omap_overlay_info passed to dispc_ovl_setup() is used to configure
DISPC registers. It shouldn't modify the overlay_info structure. The pos_y field
was being changed in dispc_ovl_setup in the case of interlaced displays. Fix
this and const qualifier to the omap_overlay_info argument.
Signed-off-by: Archit Taneja <archit@ti.com>
Now that an omap_dss_output can be used to link between managers and devices, we
can remove the old way of setting manager and device links. This involves
removing the device and manager pointers from omap_overlay_manager and
omap_dss_device respectively, and removing the set_device/unset_device ops from
omap_overlay_manager.
Signed-off-by: Archit Taneja <archit@ti.com>
An overlay isn't allowed to be enabled/disabled if it isn't connected to an
omap_dss_device. This requirement isn't needed any more. An overlay can be
enabled/disabled as long as it has an output connected to it. The output may
not be connected to a device, but we can be assured that the connected
manager's output is in use by an output interface.
Signed-off-by: Archit Taneja <archit@ti.com>
A manager is not connected to a device directly any more. It first connects
to an output, and then to the display. Update overlay and manager get_device ops
to return the device via the connected output.
Signed-off-by: Archit Taneja <archit@ti.com>
The display sysfs attribute's store function needs to be changed with the
introduction of outputs.
The DSS driver ensures that there is one display per output, and that a
registered omap_dss_device will have an output connected to it. The display
sysfs store function unsets the current output connected to the manager, and
sets it with the output connected to the new display. If the new display doesn't
have an output for some reason, we just bail out. The function doesn't set/unset
output->device links. These remain the same as when the omap_dss_device was
registered.
Signed-off-by: Archit Taneja <archit@ti.com>
To retrieve the manager pointer via a device, we need to now access it via the
output to which the device is connected. Make this change in omapfb_ioctl()
where the WAITFORVSYNC ioctl tries to access the manager's device.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the HDMI output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the VENC output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the RFBI output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the SDI output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the DSI output, check whether the output entity connected to
display is not NULL.
In dsi_init_display(), the display won't be connected to the DSI output yet,
that happens later in dss_recheck_connections() in the panel driver's probe. Get
the dsidev platform device pointer using the DSI moudle number provided in the
omap_dss_device struct.
Signed-off-by: Archit Taneja <archit@ti.com>
dsi_pdev_map is a struct visible globally in the DSI driver to get the platform
device pointer of the DSI device corresponding to it's module ID. This was
required because there was no clean way to derive the platform device from
the DSI module instance number or from the connected panel.
With the new output entity, it is possible to retrieve the platform device
pointer if the omap_dss_output pointer is available. Modify the functions
dsi_get_dsidev_from_dssdev() dsi_get_dsidev_from_id() so that they use output
instead of dsi_pdev_map to retrieve the dsi platform device pointer.
Signed-off-by: Archit Taneja <archit@ti.com>
With addition of output entities, a device connects to an output, and an output
connects to overlay manager. Replace the dssdev->manager references with
dssdev->output->manager to access the manager correctly.
When enabling the DPI output, check whether the output entity connected to
display is not NULL.
Signed-off-by: Archit Taneja <archit@ti.com>
Links between DSS entities are made in dss_init_connections() when a panel
device is registered, and are removed in dss_uninit_connections() when the
device is unregistered. Modify these functions to incorporate the addition of
outputs.
The fields in omap_dss_device struct gives information on which output and
manager to connect to. The desired manager and output pointers are retrieved and
prepared to form the desired links. The output is linked to the device, and then
the manager to the output.
A helper function omapdss_get_output_from_device() is created to retrieve the
output from the display by checking it's type, and the module id in case of DSI.
Signed-off-by: Archit Taneja <archit@ti.com>
With the introduction of output entities, managers will now connect to outputs.
Use the helper op for overlays named get_device. This will abstract away the
information on how to get the device from an overlay.
Using the helper function will reduce the number of pointer dereferences a user
of OMAPDSS needs to do and reduce risk of a NULL dereference.
Signed-off-by: Archit Taneja <archit@ti.com>
With the introduction of output entities, managers will now connect to outputs.
Create helper ops for overlays and managers named get_device. This will abstract
away the information on how to get the device from an overlay or an overlay
manager. The get_device ops currently retrieve the output via a
ovl->manager->device reference. This will be later replaced by
ovl->manager->output->device references.
Signed-off-by: Archit Taneja <archit@ti.com>
Add set_output/unset_output ops for overlay managers, these form links between
managers and outputs. Create a function in dss features which tell all the
output instances that connect to a manager, use it when a manager tries to set
an output. Add a constraint of not unsetting an output when the manager is
enabled.
Keep the omap_dss_device pointer and set/unset_device ops in overlay_manager for
now to not break things. Keep the dss feature function get_supported_displays
as it's used in some places. These will be removed later.
Signed-off-by: Archit Taneja <archit@ti.com>
An output entity represented by the struct omap_dss_output connects to a
omap_dss_device entity. Add functions to set or unset an output's device. This
is similar to how managers and devices were connected previously. An output can
connect to a device without being connected to a manager. However, the output
needs to eventually connect to a manager so that the connected panel can be
enabled.
Keep the omap_overlay_manager pointer in omap_dss_device for now to prevent
breaking things. This will be removed later when outputs are supported
completely.
Signed-off-by: Archit Taneja <archit@ti.com>
Add output structs to output driver's private data. Register output instances by
having an init function in the probes of the platform device drivers for
different outputs. The *_init_output for each output registers the output and
fill up the output's plaform device, type and id fields. The *_uninit_output
functions unregister the output.
In the probe of each interface driver, the output entities are initialized
before the *_probe_pdata() functions intentionally. This is done to ensure that
the output entity is prepared before the panels connected to the output are
registered. We need the output entities to be ready because OMAPDSS will try
to make connections between overlays, managers, outputs and devices during the
panel's probe.
Signed-off-by: Archit Taneja <archit@ti.com>
The current OMAPDSS design contains 3 software entities: Overlays, Managers and
Devices. These map to pipelines, overlay managers and the panels respectively in
hardware. One or more overlays connect to a manager to represent a composition,
the manager connects to a device(generally a display) to display the content.
The part of DSS hardware which isn't represented by any of the above entities
are interfaces/outputs that connect to an overlay manager, i.e blocks like DSI,
HDMI, VENC and so on. Currently, an overlay manager directly connects to the
display, and the output to which it is actually connected is ignored. The panel
driver of the display is responsible of calling output specific functions to
configure the output.
Adding outputs as a new software entity gives us the following benefits:
- Have exact information on the possible connections between managers and
outputs: A manager can't connect to each and every output, there only limited
hardware links between a manager's video port and some of the outputs.
- Remove hacks related to connecting managers and devices: Currently, default
links between managers and devices are set in a not so clean way. Matching is
done via comparing the device type, and the display types supported by the
manager. This isn't sufficient to establish all the possible links between
managers, outputs and devices in hardware.
- Make panel drivers more generic: The DSS panel drivers currently call
interface/output specific functions to configure the hardware IP. When making
these calls, the driver isn't actually aware of the underlying output. The
output driver extracts information from the panel's omap_dss_device pointer
to figure out which interface it is connected to, and then configures the
corresponding output block. An example of this is when a DSI panel calls
dsi functions, the dsi driver figures out whether the panel is connected
to DSI1 or DSI2. This isn't correct, and having output as entities will
give the panel driver the exact information on which output to configure.
Having outputs also gives the opportunity to make panel drivers generic
across different platforms/SoCs, this is achieved as omap specific output
calls can be replaced by ops of a particular output type.
- Have more complex connections between managers, outputs and devices: OMAPDSS
currently doesn't support use cases like 2 outputs connect to a single
device. This can be achieved by extending properties of outputs to connect to
more managers or devices.
- Represent writeback as an output: The writeback pipeline fits well in OMAPDSS
as compared to overlays, managers or devices.
Add a new struct to represent outputs. An output struct holds pointers to the
manager and device structs to which it is connected. Add functions which can
register/unregister an output, or look for one. Create an enum which represent
each output instance.
Signed-off-by: Archit Taneja <archit@ti.com>
The functions dss_mgr_wait_for_go() and dss_mgr_wait_for_go_ovl() check if there
is an enabled display connected to the manager before trying to see the state of
the GO bit.
The checks related to the display can be replaced by checking the state of the
manager, i.e, whether the manager is enabled or not. This makes more sense than
checking with the connected display as the GO bit behaviour is more connected
with the manager state rather than the display state. A GO bit can only be set
if the manager is enabled. If a manager isn't enabled, we can safely assume that
the GO bit is not set.
Signed-off-by: Archit Taneja <archit@ti.com>
Many of the DSI functions receive the connected panel's omap_dss_device pointer
as an argument. The platform device pointer is then derived via omap_dss_device
pointers.
Most of these functions don't really require omap_dss_device pointer anymore
since we now keep copies of parameters in the driver data which were previously
available only via omap_dss_device. Replace the arguments with platform device
pointers for such functions.
Signed-off-by: Archit Taneja <archit@ti.com>
tlpx_half bit field in DSI_DSIPHY_CFG1 is [20,16], not [22,16] as
accessed in the code currently. Fix this.
The bug should not have caused any problems on OMAP3/4, as the bits
21,22 are unused. They are used on OMAP5, though.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
In OMAP4 and OMAP5 when TILER 2D burst mode is used, a maximum of one line can
be skipped as per the respective TRMs. The MBlockStride OCP signal, which is
sum of ROWINC and image width in memory, is only 17 bits wide. In 2D mode TILER
supports 8192, 16384, 32768 and 65536 values of MBlockStride. In case when 2 or
more lines are skipped the ROWINC value exceeds 65536 resulting in OCP errors.
So, maximum vertical predecimation achievable is 2.
Signed-off-by: Chandrabhanu Mahapatra <cmahapatra@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The TPS65217 chip contains a boost converter and current sinks which can be
used to drive LEDs for use as backlights. Expose this functionality via the
backlight API.
Tested on an AM335x based custom board with a single WLED string, using
different values for ISEL and FDIM (though it would be hard to tell the
difference except for the value in WLEDCTRL1). Both instantiation through the
device tree and by passing platform data have been tested. Testing has been
done with an Androidized 3.2 kernel from the rowboat project. Koen Kooi
reported the driver to be working on a Beaglebone board with LCD3 cape
Signed-off-by: Matthias Kaehlcke <matthias@kaehlcke.net>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This series adds basic OMAP5 DSS functionality, mainly related to DSS core, DPI
and DSI.
* omap5-dss:
OMAPDSS: DSI: make OMAP2_DSS_DSI depend on ARCH_OMAP5
OMAPDSS: DSI: Add code to disable PHY DCC
OMAPDSS: DSI: Add new linebuffer size for OMAP5
OMAPDSS: DSI: Add FEAT_DSI_PLL_REFSEL
OMAPDSS: DSI: Add FEAT_DSI_PLL_SELFREQDCO
OMAPDSS: Add support for DPI source selection
OMAPDSS: move dss feats to the end of dss.c
OMAPDSS: Add basic omap5 features to dss and dispc
OMAPDSS: DSI: improve DSI clock calcs for DISPC
This series contains patches that change how omapdss's panel devices
(omap_dss_device) are initialized and registered. There are two patches that
change behaviour, the rest are just cleanups:
The patch "omap_dss_register_device() doesn't take display index" affects the
number for the "displayX" sysfs files. This hopefully doesn't affect the
userspace, as the number has never been a clear indication of what the
particular display is.
The patch "register only one display device per output" affects how panel
devices are created. Currently we support multiple panels per output, i.e. you
could have DVI and an LCD displays using the same DPI output, as long as the
DVI and LCD are not used at the same time.
This patch changes the omapdss driver to only register one display device per
output. If there are multiple displays for the output, either the first one is
picked or, if def_display has been defined in kernel parameters and the
def_display is one of the displays for this output, the def_display is picked.
See the patch for more information.
OMAPDSS: alloc dssdevs dynamically
OMAPDSS: cleanup dss_recheck_connections further
OMAPDSS: cleanup dss_recheck_connections
OMAPDSS: handle errors in dss_init_device
OMAPDSS: explicitely initialize dssdev->channel for new displays
OMAPDSS: register only one display device per output
OMAPDSS: Add dss_get_default_display_name()
OMAPDSS: omap_dss_register_device() doesn't take display index
On our AM3505 based board, dpi.c complains that there is no VDDS_DSI
regulator and the framebuffer cannot be enabled. However, this check
does not seem to apply to AM3505/17 chips.
This patch adds new features list for AM35xxx, which is the same as for
OMAP3 except the VDDS_DSI is removed.
Signed-off-by: Raphael Assenat <raph@8d.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP5 DSI PHY has DCC (Duty Cycle Corrector) block, and by default DCC
is enabled and thus the PLL clock is divided by 2 to get the DSI DDR
clk. This divider has been 4 for all previous OMAPs, and changing it
needs some reorganization of the code. The DCC can be disabled, and in
that case the divider is back to the old 4.
This patch adds dss feature for the DCC, and adds code to always disable
the DCC.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
OMAP5's DSI has a larger line buffer than earlier OMAPs. This patch adds
support for this to the DSI driver.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add FEAT_DSI_PLL_REFSEL. OMAP5's DSI PLL needs configuration to select
the reference clock to be used. We always use SYSCLK.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add FEAT_DSI_PLL_SELFREQDCO. OMAP5's DSI PLL has a new configuration
option that needs to be programmed depending on the PLL's output clock
frequency.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We can select the video source for DPI output as follows:
OMAP2/3: always LCD1
OMAP4: LCD2 or DIGIT
OMAP5: LCD1/LCD2/LCD3/DIGIT
This patch adds support to select the source, and makes dpi.c call the
function to set the source.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: David Anders <x0132446@ti.com>
Move dss_features to the end of dss.c the same way they are in dispc.c,
so that we don't have to declare prototypes for static feat-related
functions.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Commit ee144e645a added
dsi_pll_calc_ddrfreq() which calculates PLL dividers based on given DSI
bus clock speed. The function works ok, but it can be improved for the
DISPC clock calc.
The current version calculates the clock going from the PLL to the DISPC
simply by setting the clock as close to DISPC maximum as possible, and
the pixel clock is calculated based on that.
This patch changes the function to calculate DISPC clock more
dynamically, iterating through different DISPC clocks and pixel clock
values, and thus we'll get more suitable pixel clocks.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
remove existing non-dt code.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQEcBAABAgAGBQJQXBatAAoJEAKiPfwuf9N/VZoIAI7PKNwakjM/KDiVzytwqZ+U
h9kkjYW4ra8MH+jpjFQqvSyIJ3U+t016xqW3ZbqRuZBDgH0I7Gax7QoAZ/ljPlpG
RAKl2l9WVPiBSwCESTpvR5lafBLklk6fL0Z267qIxDGld6YBiWHvTKIh1zDmeCWW
hgDeWtcb1M61VlPrj9nPnCze66h2dUk+QSxaCodv7co5kzb0Q4S7U64BCs0hGe01
kkdoUwnBjdeK0cUhDAJAP1vRyk04N16+H7yp4npmKhv/blKVc3MIRjg1iBV78ncd
Kke/G1B9TJRpNTXdySYnsDQpaCWNSAryKXKkdxP0gh6MW8CMKYc1mdKYcEP3Tk8=
=xG1+
-----END PGP SIGNATURE-----
Merge tag 'vt8500-for-next' of git://git.code.sf.net/p/linuxwmt/code into next/dt
From Tony Prisk:
Update arch-vt8500 and drivers to device tree and
remove existing non-dt code.
* tag 'vt8500-for-next' of git://git.code.sf.net/p/linuxwmt/code:
arm: vt8500: Update arch-vt8500 to devicetree support.
arm: vt8500: gpio: Devicetree support for arch-vt8500
arm: vt8500: doc: Add device tree bindings for arch-vt8500 devices
arm: vt8500: clk: Add Common Clock Framework support
video: vt8500: Add devicetree support for vt8500-fb and wm8505-fb
serial: vt8500: Add devicetree support for vt8500-serial
rtc: vt8500: Add devicetree support for vt8500-rtc
arm: vt8500: Add device tree files for VIA/Wondermedia SoC's
Resolved add/change conflict in drivers/clk/Makefile.
Signed-off-by: Olof Johansson <olof@lixom.net>
'dsim' is allocated and checked for NULL in the probe function.
Hence this check is redundant. This cleanup also fixes a potential NULL
pointer dereference error when dsim which is NULL references its member
in the error print message.
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Acked-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
This driver doesn't need to use these mach includes so remove
them. This is a necessary step to support a single zImage.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Convert a nonnegative error return code to a negative one, as returned
elsewhere in the function.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
(
if@p1 (\(ret < 0\|ret != 0\))
{ ... return ret; }
|
ret@p1 = 0
)
... when != ret = e1
when != &ret
*if(...)
{
... when != ret = e2
when forall
return ret;
}
// </smpl>
Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Convert a nonnegative error return code to a negative one, as returned
elsewhere in the function.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
(
if@p1 (\(ret < 0\|ret != 0\))
{ ... return ret; }
|
ret@p1 = 0
)
... when != ret = e1
when != &ret
*if(...)
{
... when != ret = e2
when forall
return ret;
}
// </smpl>
Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Convert a nonnegative error return code to a negative one, as returned
elsewhere in the function.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
(
if@p1 (\(ret < 0\|ret != 0\))
{ ... return ret; }
|
ret@p1 = 0
)
... when != ret = e1
when != &ret
*if(...)
{
... when != ret = e2
when forall
return ret;
}
// </smpl>
Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Convert a nonnegative error return code to a negative one, as returned
elsewhere in the function.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
(
if@p1 (\(ret < 0\|ret != 0\))
{ ... return ret; }
|
ret@p1 = 0
)
... when != ret = e1
when != &ret
*if(...)
{
... when != ret = e2
when forall
return ret;
}
// </smpl>
Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Convert a nonnegative error return code to a negative one, as returned
elsewhere in the function.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
(
if@p1 (\(ret < 0\|ret != 0\))
{ ... return ret; }
|
ret@p1 = 0
)
... when != ret = e1
when != &ret
*if(...)
{
... when != ret = e2
when forall
return ret;
}
// </smpl>
Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Convert a nonnegative error return code to a negative one, as returned
elsewhere in the function.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
(
if@p1 (\(ret < 0\|ret != 0\))
{ ... return ret; }
|
ret@p1 = 0
)
... when != ret = e1
when != &ret
*if(...)
{
... when != ret = e2
when forall
return ret;
}
// </smpl>
Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Convert a nonnegative error return code to a negative one, as returned
elsewhere in the function.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
(
if@p1 (\(ret < 0\|ret != 0\))
{ ... return ret; }
|
ret@p1 = 0
)
... when != ret = e1
when != &ret
*if(...)
{
... when != ret = e2
when forall
return ret;
}
// </smpl>
Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Convert a nonnegative error return code to a negative one, as returned
elsewhere in the function.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
(
if@p1 (\(ret < 0\|ret != 0\))
{ ... return ret; }
|
ret@p1 = 0
)
... when != ret = e1
when != &ret
*if(...)
{
... when != ret = e2
when forall
return ret;
}
// </smpl>
Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Convert a nonnegative error return code to a negative one, as returned
elsewhere in the function.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
(
if@p1 (\(ret < 0\|ret != 0\))
{ ... return ret; }
|
ret@p1 = 0
)
... when != ret = e1
when != &ret
*if(...)
{
... when != ret = e2
when forall
return ret;
}
// </smpl>
Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Convert a nonnegative error return code to a negative one, as returned
elsewhere in the function.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
(
if@p1 (\(ret < 0\|ret != 0\))
{ ... return ret; }
|
ret@p1 = 0
)
... when != ret = e1
when != &ret
*if(...)
{
... when != ret = e2
when forall
return ret;
}
// </smpl>
Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
The value of AUX channel differential amplitude current is changed
from 8 mA to 16 mA, in order to increase AUX channel voltage level.
In this case, AUX channel voltage level can be changed from 400 mV
to 800 mV, when resistance between AUX TX and RX is 100 ohm.
According to DP spec, although the normative voltage level is 390 mV,
the informative voltage level is 430 mV. So, 800 mV can be helpful
to improve voltage margin of AUX channel.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
This patch adds bit-masking for LINK_TRAINING_CTL register, when
pre-emphasis level is set. The bit 3 and bit 2 of LINK_TRAINING_CTL
register are used for pre-emphasis level setting, so other bits
should be masked.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
This patch fixes the checkpatch warnings listed below:
WARNING: usleep_range should not use min == max args; see Documentation/timers/timers-howto.txt
WARNING: quoted string split across lines
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Use devm_request_and_ioremap instead of request_mem_region + devm_ioremap.
This also fixes the following compile error introduced in commit b2ca7f4d
("drivers/video/jz4740_fb.c: use devm_ functions"):
drivers/video/jz4740_fb.c: In function 'jzfb_probe':
drivers/video/jz4740_fb.c:676:2: error: implicit declaration of function 'devm_ioremap'
drivers/video/jz4740_fb.c:676:13: warning: assignment makes pointer from integer without a cast
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
It doesn't seem these spinlocks were properly initialized.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Using list_move_tail() instead of list_del() + list_add_tail().
spatch with a semantic match is used to found this problem.
(http://coccinelle.lip6.fr/)
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
As detailed in the thread titled "viafb PLL/clock tweaking causes XO-1.5
instability," enabling or disabling the IGA1/IGA2 clocks causes occasional
stability problems during suspend/resume cycles on this platform.
This is rather odd, as the documentation suggests that clocks have two
states (on/off) and the default (stable) configuration is configured to
enable the clock only when it is needed. However, explicitly enabling *or*
disabling the clock triggers this system instability, suggesting that there
is a 3rd state at play here.
Leaving the clock enable/disable registers alone solves this problem.
This fixes spurious reboots during suspend/resume behaviour introduced by
commit b692a63a.
Signed-off-by: Daniel Drake <dsd@laptop.org>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Cc: stable@vger.kernel.org
To check channel equalization, the value of LANE_ALIGN_STATUS_UPDATED is
necessary in exynos_dp_channel_eq_ok(). Also, link_align includes this value.
However, link_status does not include this value, so it makes the problem
that channel equalization is failed during link training.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
It is expected that LCDC to continue to be disabled after
resume if it is blanked before suspend. This is also true
for DVFS. But it is observed that LCDC being enabled after
suspend/resume cycle or DVFS.
Correcting it by having check for FB_BLANK_UNBLANK before
enabling.
Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
This fixes below build error:
CC [M] drivers/video/mbx/mbxfb.o
drivers/video/mbx/mbxfb.c: In function 'mbxfb_probe':
drivers/video/mbx/mbxfb.c:942:2: error: implicit declaration of function 'devm_ioremap_nocache' [-Werror=implicit-function-declaration]
drivers/video/mbx/mbxfb.c:942:22: warning: assignment makes pointer from integer without a cast [enabled by default]
drivers/video/mbx/mbxfb.c:952:21: warning: assignment makes pointer from integer without a cast [enabled by default]
cc1: some warnings being treated as errors
Signed-off-by: Axel Lin <axel.lin@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
This patch removes the video driver for pnx4008. The architecture is being
removed via the arm-soc tree.
Signed-off-by: Roland Stigge <stigge@antcom.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Wait for active frame transfer to complete after disabling LCDC.
At the same this wait is not be required when there are sync and
underflow errors.
Patch applies for revision 2 of LCDC present am335x.
More information on disable and reset sequence can be found in
section 13.4.6 of AM335x TRM @www.ti.com/am335x.
Signed-off-by: Manjunathappa, Prakash <prakash.pm@ti.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
the driver's module init and exit functions are calling
platform_driver_register and platform_driver_unregister and doing nothing
else.
This same as that of the module_platform_driver,
remove this init and exit functions and use the module_platform_driver instead
Signed-off-by: Devendra Naga <develkernel412222@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
This patch solves problems with the error handling by
introducing labels for proper error paths and it also
frees resources that where missed.
Signed-off-by: Emil Goode <emilgoode@gmail.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
The code 124 (0x7C, |) is rendered as a broken line in two
fonts, instead of a continuous line. Some keyboards show a
"broken bar" on one of theirs keys, other show a (continuous)
"vertical line".
Signed-off-by: Bjarni Ingi Gislason <bjarniig@rhi.hi.is>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
__iomem annotation cleanup branch from Arnd.
* cleanup/__iomem: (21 commits)
net: seeq: use __iomem pointers for MMIO
video: da8xx-fb: use __iomem pointers for MMIO
scsi: eesox: use __iomem pointers for MMIO
serial: ks8695: use __iomem pointers for MMIO
input: rpcmouse: use __iomem pointers for MMIO
ARM: samsung: use __iomem pointers for MMIO
ARM: spear13xx: use __iomem pointers for MMIO
ARM: sa1100: use __iomem pointers for MMIO
ARM: prima2: use __iomem pointers for MMIO
ARM: nomadik: use __iomem pointers for MMIO
ARM: msm: use __iomem pointers for MMIO
ARM: lpc32xx: use __iomem pointers for MMIO
ARM: ks8695: use __iomem pointers for MMIO
ARM: ixp4xx: use __iomem pointers for MMIO
ARM: iop32x: use __iomem pointers for MMIO
ARM: iop13xx: use __iomem pointers for MMIO
ARM: integrator: use __iomem pointers for MMIO
ARM: imx: use __iomem pointers for MMIO
ARM: ebsa110: use __iomem pointers for MMIO
ARM: at91: use __iomem pointers for MMIO
...
Signed-off-by: Olof Johansson <olof@lixom.net>
Update vt8500-fb, wm8505-fb and wmt-ge-rops to support device
tree bindings.
Small change in wm8505-fb.c to support WM8650 framebuffer color
format.
Signed-off-by: Tony Prisk <linux@prisktech.co.nz>
This is only used by omap1.
And to fix things properly, this should not be included
from the drivers at all.
Acked-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: linux-fbdev@vger.kernel.org
Cc: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com>
Cc: linux-mtd@lists.infradead.org
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: linux-input@vger.kernel.org
Cc: Peter Ujfalusi <peter.ujfalusi@ti.com>
Cc: Liam Girdwood <lrg@ti.com>
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Cc: alsa-devel@alsa-project.org
Signed-off-by: Tony Lindgren <tony@atomide.com>
We are moving omap2+ to use the device tree based pinctrl-single.c
and will be removing the old mux framework. This will remove the
omap1 specific parts from plat-omap.
Acked-by: Felipe Balbi <balbi@ti.com>
Cc: Grant Likely <grant.likely@secretlab.ca>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Richard Purdie <rpurdie@rpsys.net>
Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: linux-usb@vger.kernel.org
Cc: linux-pcmcia@lists.infradead.org
Cc: spi-devel-general@lists.sourceforge.net
Signed-off-by: Tony Lindgren <tony@atomide.com>
Platform data for device drivers should be defined in
include/linux/platform_data/*.h, not in the architecture
and platform specific directories.
This moves such data out of the omap include directories
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Tony Lindgren <tony@atomide.com>
Cc: Kevin Hilman <khilman@ti.com>
Cc: "Benoît Cousson" <b-cousson@ti.com>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Ohad Ben-Cohen <ohad@wizery.com>
Cc: Grant Likely <grant.likely@secretlab.ca>
Cc: Omar Ramirez Luna <omar.ramirez@ti.com>
Cc: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Cc: Peter Ujfalusi <peter.ujfalusi@ti.com>
Cc: Jarkko Nikula <jarkko.nikula@bitmer.com>
Cc: Liam Girdwood <lrg@ti.com>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Jean Pihet <j-pihet@ti.com>
Cc: J Keerthy <j-keerthy@ti.com>
Cc: linux-omap@vger.kernel.org
ARM is moving to stricter checks on readl/write functions,
so we need to use the correct types everywhere.
Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Cc: linux-fbdev@vger.kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Remove the register offset definition. All these register offset
are transfered as IORESOURCE_REG resources.
Signed-off-by: Haojian Zhuang <haojian.zhuang@gmail.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
We currently create omap_dss_devices statically in board files, and use
those devices directly in the omapdss driver. This model prevents us
from having the platform data (which the dssdevs in board files
practically are) as read-only, and it's also different than what we will
use with device tree.
This patch changes the model to be in line with DT model: we allocate
the dssdevs dynamically, and initialize them according to the data in
the board file's dssdev (basically we memcopy the dssdev fields).
The allocation and registration is done in the following steps in the
output drivers:
- Use dss_alloc_and_init_device to allocate and initialize the device.
The function uses kalloc and device_initialize to accomplish this.
- Call dss_copy_device_pdata to copy the data from the board file's
dssdev
- Use dss_add_device to register the device.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cleanup dss_recheck_connections, move and rename it to a static
dss_init_connections function inside display.c. Improve the function to
return errors, and implement a matching dss_uninit_connections that can
be used to free the mgr->dssdev link.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
dss_recheck_connections is quite a mess. With the previous commit that
initializes the channel field for HDMI and VENC displays, we can greatly
simplify the dss_recheck_connections.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
HDMI and VENC outputs always use the DIGIT output from DISPC. The dssdev
struct contains "channel" field which is used to specify the DISPC
output for the display, but this was not used for HDMI and VENC.
This patch fills the channel field explicitely for HDMI and VENC
displays so that we can always rely on the channel field.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We have boards with multiple panel devices connected to the same
physical output, of which only one panel can be enabled at one time.
Examples of these are Overo, where you can use different daughter boards
that have different LCDs, and 3430SDP which has an LCD and a DVI output
and a physical switch to select the active display.
These are supported by omapdss so that we add all the possible display
devices at probe, but the displays are inactive until somebody enables
one. At this point the panel driver starts using the DSS, thus reserving
the physcal resource and excluding the other panels.
This is problematic:
- Panel drivers can't allocate their resources properly at probe(),
because the resources can be shared with other panels. Thus they can
be only reserved at enable time.
- Managing this in omapdss is confusing. It's not natural to have
child devices, which may not even exist (for example, a daughterboard
that is not connected).
Only some boards have multiple displays per output, and of those, only
very few have possibility of switching the display during runtime.
Because of the above points:
- We don't want to make omapdss and all the panel drivers more complex
just because some boards have complex setups.
- Only few boards support runtime switching, and afaik even then it's
not required. So we don't need to support runtime switching.
Thus we'll change to a model where we will have only one display device
per output and this cannot be (currently) changed at runtime. We'll
still have the possibility to select the display from multiple options
during boot with the default display option.
This patch accomplishes the above by changing how the output drivers
register the display device. Instead of registering all the devices
given from the board file, we'll only register one. If the default
display option is set, the output driver selects that display from its
displays. If the default display is not set, or the default display is
not one of the output's displays, the output driver selects the first
display.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Add function dss_get_default_display_name() which returns the name of
the default display, given from the board file or via module parameters.
The default display name can be used by output drivers to decide which
display is the wanted one.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We used to have all the displays of the board in one list, and we made a
"displayX" directory in the sysfs, where X was the index of the display
in the list.
This doesn't work anymore with device tree, as there's no single list to
get the number from, and it doesn't work very well even with non-DT as
we need to do some tricks to get the index nowadays.
This patch changes omap_dss_register_device() so that it doesn't take
disp_num as a parameter anymore, but uses a private increasing counter
for the display number.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The majority of the DMI checks in efifb are for cases where the bootloader
has provided invalid information. However, on some machines the overrides
may do more harm than good due to configuration differences between machines
with the same machine identifier. It turns out that it's possible for the
bootloader to get the correct information on GOP-based systems, but we
can't guarantee that the kernel's being booted with one that's been updated
to do so. Add support for a capabilities flag that can be set by the
bootloader, and skip the DMI checks in that case. Additionally, set this
flag in the UEFI stub code.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Acked-by: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Merge Gavin patches from the PCI tree as subsequent powerpc
patches are going to depend on them
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Platform data for device drivers should be defined in
include/linux/platform_data/*.h, not in the architecture
and platform specific directories.
This moves such data out of the w90x900 include directories
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Cc: Wan ZongShun <mcuos.com@gmail.com>
Cc: "Ben Dooks (embedded platforms)" <ben-linux@fluff.org>
Cc: "Wolfram Sang (embedded platforms)" <w.sang@pengutronix.de>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Grant Likely <grant.likely@secretlab.ca>
Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Platform data for device drivers should be defined in
include/linux/platform_data/*.h, not in the architecture
and platform specific directories.
This moves such data out of the vt8500 include directories
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Tony Prisk <linux@prisktech.co.nz>
Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Platform data for device drivers should be defined in
include/linux/platform_data/*.h, not in the architecture
and platform specific directories.
This moves such data out of the pxa include directories
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Acked-by: Igor Grinberg <grinberg@compulab.co.il>
Acked-by: Jeff Garzik <jgarzik@redhat.com>
Acked-by: Marek Vasut <marex@denx.de>
Acked-by: Robert Jarzmik <robert.jarzmik@free.fr>
Acked-by: Paul Parsons <lost.distance@yahoo.com>
Acked-by: Vinod Koul <vinod.koul@linux.intel.com>
Acked-By: Stefan Schmidt <stefan@openezx.org>
Cc: Eric Miao <eric.y.miao@gmail.com>
Cc: Haojian Zhuang <haojian.zhuang@gmail.com>
Cc: Daniel Ribeiro <drwyrm@gmail.com>
Cc: Harald Welte <laforge@openezx.org>
Cc: Philipp Zabel <philipp.zabel@gmail.com>
Cc: Tomas Cech <sleep_walker@suse.cz>
Cc: Sergey Lapin <slapin@ossfans.org>
Cc: Jonathan Cameron <jic23@cam.ac.uk>
Cc: Dan Williams <djbw@fb.com>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Chris Ball <cjb@laptop.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Samuel Ortiz <samuel@sortiz.org>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Cc: Liam Girdwood <lrg@ti.com>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: openezx-devel@lists.openezx.org