2833eda0e2
1116 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Joonsoo Kim
|
b518154e59 |
mm/vmscan: protect the workingset on anonymous LRU
In current implementation, newly created or swap-in anonymous page is started on active list. Growing active list results in rebalancing active/inactive list so old pages on active list are demoted to inactive list. Hence, the page on active list isn't protected at all. Following is an example of this situation. Assume that 50 hot pages on active list. Numbers denote the number of pages on active/inactive list (active | inactive). 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (used-once) pages 50(uo) | 50(h) 3. workload: another 50 newly created (used-once) pages 50(uo) | 50(uo), swap-out 50(h) This patch tries to fix this issue. Like as file LRU, newly created or swap-in anonymous pages will be inserted to the inactive list. They are promoted to active list if enough reference happens. This simple modification changes the above example as following. 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (used-once) pages 50(h) | 50(uo) 3. workload: another 50 newly created (used-once) pages 50(h) | 50(uo), swap-out 50(uo) As you can see, hot pages on active list would be protected. Note that, this implementation has a drawback that the page cannot be promoted and will be swapped-out if re-access interval is greater than the size of inactive list but less than the size of total(active+inactive). To solve this potential issue, following patch will apply workingset detection similar to the one that's already applied to file LRU. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/1595490560-15117-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
ccc5dc6734 |
mm/vmscan: make active/inactive ratio as 1:1 for anon lru
Patch series "workingset protection/detection on the anonymous LRU list", v7. * PROBLEM In current implementation, newly created or swap-in anonymous page is started on the active list. Growing the active list results in rebalancing active/inactive list so old pages on the active list are demoted to the inactive list. Hence, hot page on the active list isn't protected at all. Following is an example of this situation. Assume that 50 hot pages on active list and system can contain total 100 pages. Numbers denote the number of pages on active/inactive list (active | inactive). (h) stands for hot pages and (uo) stands for used-once pages. 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (used-once) pages 50(uo) | 50(h) 3. workload: another 50 newly created (used-once) pages 50(uo) | 50(uo), swap-out 50(h) As we can see, hot pages are swapped-out and it would cause swap-in later. * SOLUTION Since this is what we want to avoid, this patchset implements workingset protection. Like as the file LRU list, newly created or swap-in anonymous page is started on the inactive list. Also, like as the file LRU list, if enough reference happens, the page will be promoted. This simple modification changes the above example as following. 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (used-once) pages 50(h) | 50(uo) 3. workload: another 50 newly created (used-once) pages 50(h) | 50(uo), swap-out 50(uo) hot pages remains in the active list. :) * EXPERIMENT I tested this scenario on my test bed and confirmed that this problem happens on current implementation. I also checked that it is fixed by this patchset. * SUBJECT workingset detection * PROBLEM Later part of the patchset implements the workingset detection for the anonymous LRU list. There is a corner case that workingset protection could cause thrashing. If we can avoid thrashing by workingset detection, we can get the better performance. Following is an example of thrashing due to the workingset protection. 1. 50 hot pages on active list 50(h) | 0 2. workload: 50 newly created (will be hot) pages 50(h) | 50(wh) 3. workload: another 50 newly created (used-once) pages 50(h) | 50(uo), swap-out 50(wh) 4. workload: 50 (will be hot) pages 50(h) | 50(wh), swap-in 50(wh) 5. workload: another 50 newly created (used-once) pages 50(h) | 50(uo), swap-out 50(wh) 6. repeat 4, 5 Without workingset detection, this kind of workload cannot be promoted and thrashing happens forever. * SOLUTION Therefore, this patchset implements workingset detection. All the infrastructure for workingset detecion is already implemented, so there is not much work to do. First, extend workingset detection code to deal with the anonymous LRU list. Then, make swap cache handles the exceptional value for the shadow entry. Lastly, install/retrieve the shadow value into/from the swap cache and check the refault distance. * EXPERIMENT I made a test program to imitates above scenario and confirmed that problem exists. Then, I checked that this patchset fixes it. My test setup is a virtual machine with 8 cpus and 6100MB memory. But, the amount of the memory that the test program can use is about 280 MB. This is because the system uses large ram-backed swap and large ramdisk to capture the trace. Test scenario is like as below. 1. allocate cold memory (512MB) 2. allocate hot-1 memory (96MB) 3. activate hot-1 memory (96MB) 4. allocate another hot-2 memory (96MB) 5. access cold memory (128MB) 6. access hot-2 memory (96MB) 7. repeat 5, 6 Since hot-1 memory (96MB) is on the active list, the inactive list can contains roughly 190MB pages. hot-2 memory's re-access interval (96+128 MB) is more 190MB, so it cannot be promoted without workingset detection and swap-in/out happens repeatedly. With this patchset, workingset detection works and promotion happens. Therefore, swap-in/out occurs less. Here is the result. (average of 5 runs) type swap-in swap-out base 863240 989945 patch 681565 809273 As we can see, patched kernel do less swap-in/out. * OVERALL TEST (ebizzy using modified random function) ebizzy is the test program that main thread allocates lots of memory and child threads access them randomly during the given times. Swap-in will happen if allocated memory is larger than the system memory. The random function that represents the zipf distribution is used to make hot/cold memory. Hot/cold ratio is controlled by the parameter. If the parameter is high, hot memory is accessed much larger than cold one. If the parameter is low, the number of access on each memory would be similar. I uses various parameters in order to show the effect of patchset on various hot/cold ratio workload. My test setup is a virtual machine with 8 cpus, 1024 MB memory and 5120 MB ram swap. Result format is as following. param: 1-1024-0.1 - 1 (number of thread) - 1024 (allocated memory size, MB) - 0.1 (zipf distribution alpha, 0.1 works like as roughly uniform random, 1.3 works like as small portion of memory is hot and the others are cold) pswpin: smaller is better std: standard deviation improvement: negative is better * single thread param pswpin std improvement base 1-1024.0-0.1 14101983.40 79441.19 prot 1-1024.0-0.1 14065875.80 136413.01 ( -0.26 ) detect 1-1024.0-0.1 13910435.60 100804.82 ( -1.36 ) base 1-1024.0-0.7 7998368.80 43469.32 prot 1-1024.0-0.7 7622245.80 88318.74 ( -4.70 ) detect 1-1024.0-0.7 7618515.20 59742.07 ( -4.75 ) base 1-1024.0-1.3 1017400.80 38756.30 prot 1-1024.0-1.3 940464.60 29310.69 ( -7.56 ) detect 1-1024.0-1.3 945511.40 24579.52 ( -7.07 ) base 1-1280.0-0.1 22895541.40 50016.08 prot 1-1280.0-0.1 22860305.40 51952.37 ( -0.15 ) detect 1-1280.0-0.1 22705565.20 93380.35 ( -0.83 ) base 1-1280.0-0.7 13717645.60 46250.65 prot 1-1280.0-0.7 12935355.80 64754.43 ( -5.70 ) detect 1-1280.0-0.7 13040232.00 63304.00 ( -4.94 ) base 1-1280.0-1.3 1654251.40 4159.68 prot 1-1280.0-1.3 1522680.60 33673.50 ( -7.95 ) detect 1-1280.0-1.3 1599207.00 70327.89 ( -3.33 ) base 1-1536.0-0.1 31621775.40 31156.28 prot 1-1536.0-0.1 31540355.20 62241.36 ( -0.26 ) detect 1-1536.0-0.1 31420056.00 123831.27 ( -0.64 ) base 1-1536.0-0.7 19620760.60 60937.60 prot 1-1536.0-0.7 18337839.60 56102.58 ( -6.54 ) detect 1-1536.0-0.7 18599128.00 75289.48 ( -5.21 ) base 1-1536.0-1.3 2378142.40 20994.43 prot 1-1536.0-1.3 2166260.60 48455.46 ( -8.91 ) detect 1-1536.0-1.3 2183762.20 16883.24 ( -8.17 ) base 1-1792.0-0.1 40259714.80 90750.70 prot 1-1792.0-0.1 40053917.20 64509.47 ( -0.51 ) detect 1-1792.0-0.1 39949736.40 104989.64 ( -0.77 ) base 1-1792.0-0.7 25704884.40 69429.68 prot 1-1792.0-0.7 23937389.00 79945.60 ( -6.88 ) detect 1-1792.0-0.7 24271902.00 35044.30 ( -5.57 ) base 1-1792.0-1.3 3129497.00 32731.86 prot 1-1792.0-1.3 2796994.40 19017.26 ( -10.62 ) detect 1-1792.0-1.3 2886840.40 33938.82 ( -7.75 ) base 1-2048.0-0.1 48746924.40 50863.88 prot 1-2048.0-0.1 48631954.40 24537.30 ( -0.24 ) detect 1-2048.0-0.1 48509419.80 27085.34 ( -0.49 ) base 1-2048.0-0.7 32046424.40 78624.22 prot 1-2048.0-0.7 29764182.20 86002.26 ( -7.12 ) detect 1-2048.0-0.7 30250315.80 101282.14 ( -5.60 ) base 1-2048.0-1.3 3916723.60 24048.55 prot 1-2048.0-1.3 3490781.60 33292.61 ( -10.87 ) detect 1-2048.0-1.3 3585002.20 44942.04 ( -8.47 ) * multi thread param pswpin std improvement base 8-1024.0-0.1 16219822.60 329474.01 prot 8-1024.0-0.1 15959494.00 654597.45 ( -1.61 ) detect 8-1024.0-0.1 15773790.80 502275.25 ( -2.75 ) base 8-1024.0-0.7 9174107.80 537619.33 prot 8-1024.0-0.7 8571915.00 385230.08 ( -6.56 ) detect 8-1024.0-0.7 8489484.20 364683.00 ( -7.46 ) base 8-1024.0-1.3 1108495.60 83555.98 prot 8-1024.0-1.3 1038906.20 63465.20 ( -6.28 ) detect 8-1024.0-1.3 941817.80 32648.80 ( -15.04 ) base 8-1280.0-0.1 25776114.20 450480.45 prot 8-1280.0-0.1 25430847.00 465627.07 ( -1.34 ) detect 8-1280.0-0.1 25282555.00 465666.55 ( -1.91 ) base 8-1280.0-0.7 15218968.00 702007.69 prot 8-1280.0-0.7 13957947.80 492643.86 ( -8.29 ) detect 8-1280.0-0.7 14158331.20 238656.02 ( -6.97 ) base 8-1280.0-1.3 1792482.80 30512.90 prot 8-1280.0-1.3 1577686.40 34002.62 ( -11.98 ) detect 8-1280.0-1.3 1556133.00 22944.79 ( -13.19 ) base 8-1536.0-0.1 33923761.40 575455.85 prot 8-1536.0-0.1 32715766.20 300633.51 ( -3.56 ) detect 8-1536.0-0.1 33158477.40 117764.51 ( -2.26 ) base 8-1536.0-0.7 20628907.80 303851.34 prot 8-1536.0-0.7 19329511.20 341719.31 ( -6.30 ) detect 8-1536.0-0.7 20013934.00 385358.66 ( -2.98 ) base 8-1536.0-1.3 2588106.40 130769.20 prot 8-1536.0-1.3 2275222.40 89637.06 ( -12.09 ) detect 8-1536.0-1.3 2365008.40 124412.55 ( -8.62 ) base 8-1792.0-0.1 43328279.20 946469.12 prot 8-1792.0-0.1 41481980.80 525690.89 ( -4.26 ) detect 8-1792.0-0.1 41713944.60 406798.93 ( -3.73 ) base 8-1792.0-0.7 27155647.40 536253.57 prot 8-1792.0-0.7 24989406.80 502734.52 ( -7.98 ) detect 8-1792.0-0.7 25524806.40 263237.87 ( -6.01 ) base 8-1792.0-1.3 3260372.80 137907.92 prot 8-1792.0-1.3 2879187.80 63597.26 ( -11.69 ) detect 8-1792.0-1.3 2892962.20 33229.13 ( -11.27 ) base 8-2048.0-0.1 50583989.80 710121.48 prot 8-2048.0-0.1 49599984.40 228782.42 ( -1.95 ) detect 8-2048.0-0.1 50578596.00 660971.66 ( -0.01 ) base 8-2048.0-0.7 33765479.60 812659.55 prot 8-2048.0-0.7 30767021.20 462907.24 ( -8.88 ) detect 8-2048.0-0.7 32213068.80 211884.24 ( -4.60 ) base 8-2048.0-1.3 3941675.80 28436.45 prot 8-2048.0-1.3 3538742.40 76856.08 ( -10.22 ) detect 8-2048.0-1.3 3579397.80 58630.95 ( -9.19 ) As we can see, all the cases show improvement. Especially, test case with zipf distribution 1.3 show more improvements. It means that if there is a hot/cold tendency in anon pages, this patchset works better. This patch (of 6): Current implementation of LRU management for anonymous page has some problems. Most important one is that it doesn't protect the workingset, that is, pages on the active LRU list. Although, this problem will be fixed in the following patchset, the preparation is required and this patch does it. What following patch does is to implement workingset protection. After the following patchset, newly created or swap-in pages will start their lifetime on the inactive list. If inactive list is too small, there is not enough chance to be referenced and the page cannot become the workingset. In order to provide the newly anonymous or swap-in pages enough chance to be referenced again, this patch makes active/inactive LRU ratio as 1:1. This is just a temporary measure. Later patch in the series introduces workingset detection for anonymous LRU that will be used to better decide if pages should start on the active and inactive list. Afterwards this patch is effectively reverted. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Matthew Wilcox <willy@infradead.org> Link: http://lkml.kernel.org/r/1595490560-15117-1-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1595490560-15117-2-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shakeel Butt
|
912c05720f |
mm: vmscan: consistent update to pgrefill
The vmstat pgrefill is useful together with pgscan and pgsteal stats to measure the reclaim efficiency. However vmstat's pgrefill is not updated consistently at system level. It gets updated for both global and memcg reclaim however pgscan and pgsteal are updated for only global reclaim. So, update pgrefill only for global reclaim. If someone is interested in the stats representing both system level as well as memcg level reclaim, then consult the root memcg's memory.stat instead of /proc/vmstat. Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200711011459.1159929-1-shakeelb@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
dylan-meiners
|
238c30468f |
mm/vmscan.c: fix typo
Change "optizimation" to "optimization". Signed-off-by: dylan-meiners <spacct.spacct@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: David Hildenbrand <david@redhat.com> Link: http://lkml.kernel.org/r/20200609185144.10049-1-spacct.spacct@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Hildenbrand
|
0a18e60788 |
mm: remove vm_total_pages
The global variable "vm_total_pages" is a relic from older days. There is only a single user that reads the variable - build_all_zonelists() - and the first thing it does is update it. Use a local variable in build_all_zonelists() instead and remove the global variable. Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Huang Ying <ying.huang@intel.com> Cc: Minchan Kim <minchan@kernel.org> Link: http://lkml.kernel.org/r/20200619132410.23859-2-david@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
e22c6ed90a |
mm: memcontrol: don't count limit-setting reclaim as memory pressure
When an outside process lowers one of the memory limits of a cgroup (or uses the force_empty knob in cgroup1), direct reclaim is performed in the context of the write(), in order to directly enforce the new limit and have it being met by the time the write() returns. Currently, this reclaim activity is accounted as memory pressure in the cgroup that the writer(!) belongs to. This is unexpected. It specifically causes problems for senpai (https://github.com/facebookincubator/senpai), which is an agent that routinely adjusts the memory limits and performs associated reclaim work in tens or even hundreds of cgroups running on the host. The cgroup that senpai is running in itself will report elevated levels of memory pressure, even though it itself is under no memory shortage or any sort of distress. Move the psi annotation from the central cgroup reclaim function to callsites in the allocation context, and thereby no longer count any limit-setting reclaim as memory pressure. If the newly set limit causes the workload inside the cgroup into direct reclaim, that of course will continue to count as memory pressure. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Link: http://lkml.kernel.org/r/20200728135210.379885-2-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chris Down
|
45c7f7e1ef |
mm, memcg: decouple e{low,min} state mutations from protection checks
mem_cgroup_protected currently is both used to set effective low and min and return a mem_cgroup_protection based on the result. As a user, this can be a little unexpected: it appears to be a simple predicate function, if not for the big warning in the comment above about the order in which it must be executed. This change makes it so that we separate the state mutations from the actual protection checks, which makes it more obvious where we need to be careful mutating internal state, and where we are simply checking and don't need to worry about that. [mhocko@suse.com - don't check protection on root memcgs] Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Yafang Shao <laoar.shao@gmail.com> Link: http://lkml.kernel.org/r/ff3f915097fcee9f6d7041c084ef92d16aaeb56a.1594638158.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
22f7496f0b |
mm, memcg: avoid stale protection values when cgroup is above protection
Patch series "mm, memcg: memory.{low,min} reclaim fix & cleanup", v4. This series contains a fix for a edge case in my earlier protection calculation patches, and a patch to make the area overall a little more robust to hopefully help avoid this in future. This patch (of 2): A cgroup can have both memory protection and a memory limit to isolate it from its siblings in both directions - for example, to prevent it from being shrunk below 2G under high pressure from outside, but also from growing beyond 4G under low pressure. Commit |
||
Roman Gushchin
|
d42f3245c7 |
mm: memcg: convert vmstat slab counters to bytes
In order to prepare for per-object slab memory accounting, convert NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes. To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB). Internally global and per-node counters are stored in pages, however memcg and lruvec counters are stored in bytes. This scheme may look weird, but only for now. As soon as slab pages will be shared between multiple cgroups, global and node counters will reflect the total number of slab pages. However memcg and lruvec counters will be used for per-memcg slab memory tracking, which will take separate kernel objects in the account. Keeping global and node counters in pages helps to avoid additional overhead. The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it will fit into atomic_long_t we use for vmstats. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
31d8fcac00 |
mm: workingset: age nonresident information alongside anonymous pages
Patch series "fix for "mm: balance LRU lists based on relative
thrashing" patchset"
This patchset fixes some problems of the patchset, "mm: balance LRU
lists based on relative thrashing", which is now merged on the mainline.
Patch "mm: workingset: let cache workingset challenge anon fix" is the
result of discussion with Johannes. See following link.
http://lkml.kernel.org/r/20200520232525.798933-6-hannes@cmpxchg.org
And, the other two are minor things which are found when I try to rebase
my patchset.
This patch (of 3):
After ("mm: workingset: let cache workingset challenge anon fix"), we
compare refault distances to active_file + anon. But age of the
non-resident information is only driven by the file LRU. As a result,
we may overestimate the recency of any incoming refaults and activate
them too eagerly, causing unnecessary LRU churn in certain situations.
Make anon aging drive nonresident age as well to address that.
Link: http://lkml.kernel.org/r/1592288204-27734-1-git-send-email-iamjoonsoo.kim@lge.com
Link: http://lkml.kernel.org/r/1592288204-27734-2-git-send-email-iamjoonsoo.kim@lge.com
Fixes:
|
||
Ethon Paul
|
55b65a57c2 |
mm/vmsan: fix some typos in comment
There are some typos, fix them. s/regsitration/registration s/santity/sanity s/decremeting/decrementing Signed-off-by: Ethon Paul <ethp@qq.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Link: http://lkml.kernel.org/r/20200411071544.16222-1-ethp@qq.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
d483a5dd00 |
mm: vmscan: limit the range of LRU type balancing
When LRU cost only shows up on one list, we abruptly stop scanning that list altogether. That's an extreme reaction: by the time the other list starts thrashing and the pendulum swings back, we may have no recent age information on the first list anymore, and we could have significant latencies until the scanner has caught up. Soften this change in the feedback system by ensuring that no list receives less than a third of overall pressure, and only distribute the other 66% according to LRU cost. This ensures that we maintain a minimum rate of aging on the entire workingset while it's being pressured, while still allowing a generous rate of convergence when the relative sizes of the lists need to adjust. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-15-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
96f8bf4fb1 |
mm: vmscan: reclaim writepage is IO cost
The VM tries to balance reclaim pressure between anon and file so as to reduce the amount of IO incurred due to the memory shortage. It already counts refaults and swapins, but in addition it should also count writepage calls during reclaim. For swap, this is obvious: it's IO that wouldn't have occurred if the anonymous memory hadn't been under memory pressure. From a relative balancing point of view this makes sense as well: even if anon is cold and reclaimable, a cache that isn't thrashing may have equally cold pages that don't require IO to reclaim. For file writeback, it's trickier: some of the reclaim writepage IO would have likely occurred anyway due to dirty expiration. But not all of it - premature writeback reduces batching and generates additional writes. Since the flushers are already woken up by the time the VM starts writing cache pages one by one, let's assume that we'e likely causing writes that wouldn't have happened without memory pressure. In addition, the per-page cost of IO would have probably been much cheaper if written in larger batches from the flusher thread rather than the single-page-writes from kswapd. For our purposes - getting the trend right to accelerate convergence on a stable state that doesn't require paging at all - this is sufficiently accurate. If we later wanted to optimize for sustained thrashing, we can still refine the measurements. Count all writepage calls from kswapd as IO cost toward the LRU that the page belongs to. Why do this dynamically? Don't we know in advance that anon pages require IO to reclaim, and so could build in a static bias? First, scanning is not the same as reclaiming. If all the anon pages are referenced, we may not swap for a while just because we're scanning the anon list. During this time, however, it's important that we age anonymous memory and the page cache at the same rate so that their hot-cold gradients are comparable. Everything else being equal, we still want to reclaim the coldest memory overall. Second, we keep copies in swap unless the page changes. If there is swap-backed data that's mostly read (tmpfs file) and has been swapped out before, we can reclaim it without incurring additional IO. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-14-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
7cf111bc39 |
mm: vmscan: determine anon/file pressure balance at the reclaim root
We split the LRU lists into anon and file, and we rebalance the scan pressure between them when one of them begins thrashing: if the file cache experiences workingset refaults, we increase the pressure on anonymous pages; if the workload is stalled on swapins, we increase the pressure on the file cache instead. With cgroups and their nested LRU lists, we currently don't do this correctly. While recursive cgroup reclaim establishes a relative LRU order among the pages of all involved cgroups, LRU pressure balancing is done on an individual cgroup LRU level. As a result, when one cgroup is thrashing on the filesystem cache while a sibling may have cold anonymous pages, pressure doesn't get equalized between them. This patch moves LRU balancing decision to the root of reclaim - the same level where the LRU order is established. It does this by tracking LRU cost recursively, so that every level of the cgroup tree knows the aggregate LRU cost of all memory within its domain. When the page scanner calculates the scan balance for any given individual cgroup's LRU list, it uses the values from the ancestor cgroup that initiated the reclaim cycle. If one sibling is then thrashing on the cache, it will tip the pressure balance inside its ancestors, and the next hierarchical reclaim iteration will go more after the anon pages in the tree. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-13-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
314b57fb04 |
mm: balance LRU lists based on relative thrashing
Since the LRUs were split into anon and file lists, the VM has been
balancing between page cache and anonymous pages based on per-list ratios
of scanned vs. rotated pages. In most cases that tips page reclaim
towards the list that is easier to reclaim and has the fewest actively
used pages, but there are a few problems with it:
1. Refaults and LRU rotations are weighted the same way, even though
one costs IO and the other costs a bit of CPU.
2. The less we scan an LRU list based on already observed rotations,
the more we increase the sampling interval for new references, and
rotations become even more likely on that list. This can enter a
death spiral in which we stop looking at one list completely until
the other one is all but annihilated by page reclaim.
Since commit
|
||
Johannes Weiner
|
264e90cc07 |
mm: only count actual rotations as LRU reclaim cost
When shrinking the active file list we rotate referenced pages only when they're in an executable mapping. The others get deactivated. When it comes to balancing scan pressure, though, we count all referenced pages as rotated, even the deactivated ones. Yet they do not carry the same cost to the system: the deactivated page *might* refault later on, but the deactivation is tangible progress toward freeing pages; rotations on the other hand cost time and effort without getting any closer to freeing memory. Don't treat both events as equal. The following patch will hook up LRU balancing to cache and anon refaults, which are a much more concrete cost signal for reclaiming one list over the other. Thus, remove the maybe-IO cost bias from page references, and only note the CPU cost for actual rotations that prevent the pages from getting reclaimed. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-11-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1431d4d11a |
mm: base LRU balancing on an explicit cost model
Currently, scan pressure between the anon and file LRU lists is balanced based on a mixture of reclaim efficiency and a somewhat vague notion of "value" of having certain pages in memory over others. That concept of value is problematic, because it has caused us to count any event that remotely makes one LRU list more or less preferrable for reclaim, even when these events are not directly comparable and impose very different costs on the system. One example is referenced file pages that we still deactivate and referenced anonymous pages that we actually rotate back to the head of the list. There is also conceptual overlap with the LRU algorithm itself. By rotating recently used pages instead of reclaiming them, the algorithm already biases the applied scan pressure based on page value. Thus, when rebalancing scan pressure due to rotations, we should think of reclaim cost, and leave assessing the page value to the LRU algorithm. Lastly, considering both value-increasing as well as value-decreasing events can sometimes cause the same type of event to be counted twice, i.e. how rotating a page increases the LRU value, while reclaiming it succesfully decreases the value. In itself this will balance out fine, but it quietly skews the impact of events that are only recorded once. The abstract metric of "value", the murky relationship with the LRU algorithm, and accounting both negative and positive events make the current pressure balancing model hard to reason about and modify. This patch switches to a balancing model of accounting the concrete, actually observed cost of reclaiming one LRU over another. For now, that cost includes pages that are scanned but rotated back to the list head. Subsequent patches will add consideration for IO caused by refaulting of recently evicted pages. Replace struct zone_reclaim_stat with two cost counters in the lruvec, and make everything that affects cost go through a new lru_note_cost() function. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-9-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
a4fe1631f3 |
mm: vmscan: drop unnecessary div0 avoidance rounding in get_scan_count()
When we calculate the relative scan pressure between the anon and file LRU lists, we have to assume that reclaim_stat can contain zeroes. To avoid div0 crashes, we add 1 to all denominators like so: anon_prio = swappiness; file_prio = 200 - anon_prio; [...] /* * The amount of pressure on anon vs file pages is inversely * proportional to the fraction of recently scanned pages on * each list that were recently referenced and in active use. */ ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); ap /= reclaim_stat->recent_rotated[0] + 1; fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); fp /= reclaim_stat->recent_rotated[1] + 1; spin_unlock_irq(&pgdat->lru_lock); fraction[0] = ap; fraction[1] = fp; denominator = ap + fp + 1; While reclaim_stat can contain 0, it's not actually possible for ap + fp to be 0. One of anon_prio or file_prio could be zero, but they must still add up to 200. And the reclaim_stat fraction, due to the +1 in there, is always at least 1. So if one of the two numerators is 0, the other one can't be. ap + fp is always at least 1. Drop the + 1. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-8-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
c843966c55 |
mm: allow swappiness that prefers reclaiming anon over the file workingset
With the advent of fast random IO devices (SSDs, PMEM) and in-memory swap devices such as zswap, it's possible for swap to be much faster than filesystems, and for swapping to be preferable over thrashing filesystem caches. Allow setting swappiness - which defines the rough relative IO cost of cache misses between page cache and swap-backed pages - to reflect such situations by making the swap-preferred range configurable. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-4-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
497a6c1b09 |
mm: keep separate anon and file statistics on page reclaim activity
Having statistics on pages scanned and pages reclaimed for both anon and file pages makes it easier to evaluate changes to LRU balancing. While at it, clean up the stat-keeping mess for isolation, putback, reclaim stats etc. a bit: first the physical LRU operation (isolation and putback), followed by vmstats, reclaim_stats, and then vm events. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-3-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Qiwu Chen
|
df3a45f9d8 |
mm/vmscan: update the comment of should_continue_reclaim()
try_to_compact_zone() has been replaced by try_to_compact_pages(), which is necessary to be updated in the comment of should_continue_reclaim(). Signed-off-by: Qiwu Chen <chenqiwu@xiaomi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20200501034907.22991-1-chenqiwu@xiaomi.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Maninder Singh
|
730ec8c01a |
mm/vmscan.c: change prototype for shrink_page_list
commit
|
||
Jaewon Kim
|
1f318a9b0d |
mm/vmscan: count layzfree pages and fix nr_isolated_* mismatch
Fix an nr_isolate_* mismatch problem between cma and dirty lazyfree pages. If try_to_unmap_one is used for reclaim and it detects a dirty lazyfree page, then the lazyfree page is changed to a normal anon page having SwapBacked by commit |
||
Wei Yang
|
a892cb6b97 |
mm/vmscan.c: use update_lru_size() in update_lru_sizes()
We already defined the helper update_lru_size(). Let's use this to reduce code duplication. Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Baoquan He <bhe@redhat.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Link: http://lkml.kernel.org/r/20200331221550.1011-1-richard.weiyang@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
ff45fc3ca0 |
mm: simplify calling a compound page destructor
None of the three callers of get_compound_page_dtor() want to know the value; they just want to call the function. Replace it with destroy_compound_page() which calls the dtor for them. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20200517105051.9352-1-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
97a225e69a |
mm/page_alloc: integrate classzone_idx and high_zoneidx
classzone_idx is just different name for high_zoneidx now. So, integrate them and add some comment to struct alloc_context in order to reduce future confusion about the meaning of this variable. The accessor, ac_classzone_idx() is also removed since it isn't needed after integration. In addition to integration, this patch also renames high_zoneidx to highest_zoneidx since it represents more precise meaning. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Baoquan He <bhe@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Ye Xiaolong <xiaolong.ye@intel.com> Link: http://lkml.kernel.org/r/1587095923-7515-3-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
NeilBrown
|
a37b0715dd |
mm/writeback: replace PF_LESS_THROTTLE with PF_LOCAL_THROTTLE
PF_LESS_THROTTLE exists for loop-back nfsd (and a similar need in the loop block driver and callers of prctl(PR_SET_IO_FLUSHER)), where a daemon needs to write to one bdi (the final bdi) in order to free up writes queued to another bdi (the client bdi). The daemon sets PF_LESS_THROTTLE and gets a larger allowance of dirty pages, so that it can still dirty pages after other processses have been throttled. The purpose of this is to avoid deadlock that happen when the PF_LESS_THROTTLE process must write for any dirty pages to be freed, but it is being thottled and cannot write. This approach was designed when all threads were blocked equally, independently on which device they were writing to, or how fast it was. Since that time the writeback algorithm has changed substantially with different threads getting different allowances based on non-trivial heuristics. This means the simple "add 25%" heuristic is no longer reliable. The important issue is not that the daemon needs a *larger* dirty page allowance, but that it needs a *private* dirty page allowance, so that dirty pages for the "client" bdi that it is helping to clear (the bdi for an NFS filesystem or loop block device etc) do not affect the throttling of the daemon writing to the "final" bdi. This patch changes the heuristic so that the task is not throttled when the bdi it is writing to has a dirty page count below below (or equal to) the free-run threshold for that bdi. This ensures it will always be able to have some pages in flight, and so will not deadlock. In a steady-state, it is expected that PF_LOCAL_THROTTLE tasks might still be throttled by global threshold, but that is acceptable as it is only the deadlock state that is interesting for this flag. This approach of "only throttle when target bdi is busy" is consistent with the other use of PF_LESS_THROTTLE in current_may_throttle(), were it causes attention to be focussed only on the target bdi. So this patch - renames PF_LESS_THROTTLE to PF_LOCAL_THROTTLE, - removes the 25% bonus that that flag gives, and - If PF_LOCAL_THROTTLE is set, don't delay at all unless the global and the local free-run thresholds are exceeded. Note that previously realtime threads were treated the same as PF_LESS_THROTTLE threads. This patch does *not* change the behvaiour for real-time threads, so it is now different from the behaviour of nfsd and loop tasks. I don't know what is wanted for realtime. [akpm@linux-foundation.org: coding style fixes] Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Chuck Lever <chuck.lever@oracle.com> [nfsd] Cc: Christoph Hellwig <hch@lst.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Link: http://lkml.kernel.org/r/87ftbf7gs3.fsf@notabene.neil.brown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Qiwu Chen
|
17e34526f0 |
mm/vmscan: remove unnecessary argument description of isolate_lru_pages()
Since commit
|
||
Huang Ying
|
9de4f22a60 |
mm: code cleanup for MADV_FREE
Some comments for MADV_FREE is revised and added to help people understand the MADV_FREE code, especially the page flag, PG_swapbacked. This makes page_is_file_cache() isn't consistent with its comments. So the function is renamed to page_is_file_lru() to make them consistent again. All these are put in one patch as one logical change. Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: David Rientjes <rientjes@google.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@kernel.org> Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200317100342.2730705-1-ying.huang@intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mateusz Nosek
|
c4ecddfff1 |
mm/vmscan.c: do_try_to_free_pages(): clean code by removing unnecessary assignment
sc->memcg_low_skipped resets skipped_deactivate to 0 but this is not needed as this code path is never reachable with skipped_deactivate != 0 due to previous sc->skipped_deactivate branch. [mhocko@kernel.org: rewrite changelog] Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200319165938.23354-1-mateusznosek0@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
4b79306267 |
mm/vmscan.c: make may_enter_fs bool in shrink_page_list()
This gives some size improvement: $size mm/vmscan.o (before) text data bss dec hex filename 53670 24123 12 77805 12fed mm/vmscan.o $size mm/vmscan.o (after) text data bss dec hex filename 53648 24123 12 77783 12fd7 mm/vmscan.o Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/Message-ID: Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mateusz Nosek
|
e072bff60a |
mm/vmscan.c: clean code by removing unnecessary assignment
Previously 0 was assigned to variable 'lruvec_size', but the variable was
never read later. So the assignment can be removed.
Fixes:
|
||
Qian Cai
|
5644e1fbbf |
mm/vmscan.c: fix data races using kswapd_classzone_idx
pgdat->kswapd_classzone_idx could be accessed concurrently in wakeup_kswapd(). Plain writes and reads without any lock protection result in data races. Fix them by adding a pair of READ|WRITE_ONCE() as well as saving a branch (compilers might well optimize the original code in an unintentional way anyway). While at it, also take care of pgdat->kswapd_order and non-kswapd threads in allow_direct_reclaim(). The data races were reported by KCSAN, BUG: KCSAN: data-race in wakeup_kswapd / wakeup_kswapd write to 0xffff9f427ffff2dc of 4 bytes by task 7454 on cpu 13: wakeup_kswapd+0xf1/0x400 wakeup_kswapd at mm/vmscan.c:3967 wake_all_kswapds+0x59/0xc0 wake_all_kswapds at mm/page_alloc.c:4241 __alloc_pages_slowpath+0xdcc/0x1290 __alloc_pages_slowpath at mm/page_alloc.c:4512 __alloc_pages_nodemask+0x3bb/0x450 alloc_pages_vma+0x8a/0x2c0 do_anonymous_page+0x16e/0x6f0 __handle_mm_fault+0xcd5/0xd40 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 1 lock held by mtest01/7454: #0: ffff9f425afe8808 (&mm->mmap_sem#2){++++}, at: do_page_fault+0x143/0x6f9 do_user_addr_fault at arch/x86/mm/fault.c:1405 (inlined by) do_page_fault at arch/x86/mm/fault.c:1539 irq event stamp: 6944085 count_memcg_event_mm+0x1a6/0x270 count_memcg_event_mm+0x119/0x270 __do_softirq+0x34c/0x57c irq_exit+0xa2/0xc0 read to 0xffff9f427ffff2dc of 4 bytes by task 7472 on cpu 38: wakeup_kswapd+0xc8/0x400 wake_all_kswapds+0x59/0xc0 __alloc_pages_slowpath+0xdcc/0x1290 __alloc_pages_nodemask+0x3bb/0x450 alloc_pages_vma+0x8a/0x2c0 do_anonymous_page+0x16e/0x6f0 __handle_mm_fault+0xcd5/0xd40 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 1 lock held by mtest01/7472: #0: ffff9f425a9ac148 (&mm->mmap_sem#2){++++}, at: do_page_fault+0x143/0x6f9 irq event stamp: 6793561 count_memcg_event_mm+0x1a6/0x270 count_memcg_event_mm+0x119/0x270 __do_softirq+0x34c/0x57c irq_exit+0xa2/0xc0 BUG: KCSAN: data-race in kswapd / wakeup_kswapd write to 0xffff90973ffff2dc of 4 bytes by task 820 on cpu 6: kswapd+0x27c/0x8d0 kthread+0x1e0/0x200 ret_from_fork+0x27/0x50 read to 0xffff90973ffff2dc of 4 bytes by task 6299 on cpu 0: wakeup_kswapd+0xf3/0x450 wake_all_kswapds+0x59/0xc0 __alloc_pages_slowpath+0xdcc/0x1290 __alloc_pages_nodemask+0x3bb/0x450 alloc_pages_vma+0x8a/0x2c0 do_anonymous_page+0x170/0x700 __handle_mm_fault+0xc9f/0xd00 handle_mm_fault+0xfc/0x2f0 do_page_fault+0x263/0x6f9 page_fault+0x34/0x40 Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Marco Elver <elver@google.com> Cc: Matthew Wilcox <willy@infradead.org> Link: http://lkml.kernel.org/r/1582749472-5171-1-git-send-email-cai@lca.pw Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wei Yang
|
6b700b5b3c |
mm/vmscan.c: remove cpu online notification for now
kswapd kernel thread starts either with a CPU affinity set to the full cpu mask of its target node or without any affinity at all if the node is CPUless. There is a cpu hotplug callback (kswapd_cpu_online) that implements an elaborate way to update this mask when a cpu is onlined. It is not really clear whether there is any actual benefit from this scheme. Completely CPU-less NUMA nodes rarely gain a new CPU during runtime. Drop the code for that reason. If there is a real usecase then we can resurrect and simplify the code. [mhocko@suse.com rewrite changelog] Suggested-by: Michal Hocko <mhocko@suse.org> Signed-off-by: Wei Yang <richardw.yang@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Link: http://lkml.kernel.org/r/20200218224422.3407-1-richardw.yang@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
f661d007f4 |
mm: vmscan: replace open codings to NUMA_NO_NODE
The commit
|
||
Yang Shi
|
1eb6234e52 |
mm: swap: make page_evictable() inline
When backporting commit |
||
Gavin Shan
|
76073c646f |
mm/vmscan.c: don't round up scan size for online memory cgroup
Commit |
||
Alex Shi
|
648b5cf368 |
mm/vmscan: remove unused RECLAIM_OFF/RECLAIM_ZONE
Commit
|
||
Alex Shi
|
fffbacc1ec |
mm/vmscan: remove prefetch_prev_lru_page
This macro was never used in git history. So better to remove. Link: http://lkml.kernel.org/r/1579006500-127143-1-git-send-email-alex.shi@linux.alibaba.com Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Liu Song
|
6c9e0907fc |
mm/vmscan.c: remove unused return value of shrink_node
The return value of shrink_node is not used, so remove unnecessary operations. Link: http://lkml.kernel.org/r/20191128143524.3223-1-fishland@aliyun.com Signed-off-by: Liu Song <liu.song11@zte.com.cn> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
42a9a53bb3 |
mm: vmscan: protect shrinker idr replace with CONFIG_MEMCG
Since commit |
||
Xianting Tian
|
178821b897 |
mm/vmscan.c: fix typo in comment
Fix the typo "resheduled" -> "rescheduled" in comment Link: http://lkml.kernel.org/r/1573486327-9591-1-git-send-email-xianting_tian@126.com Signed-off-by: Xianting Tian <xianting_tian@126.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
b91ac37434 |
mm: vmscan: enforce inactive:active ratio at the reclaim root
We split the LRU lists into inactive and an active parts to maximize workingset protection while allowing just enough inactive cache space to faciltate readahead and writeback for one-off file accesses (e.g. a linear scan through a file, or logging); or just enough inactive anon to maintain recent reference information when reclaim needs to swap. With cgroups and their nested LRU lists, we currently don't do this correctly. While recursive cgroup reclaim establishes a relative LRU order among the pages of all involved cgroups, inactive:active size decisions are done on a per-cgroup level. As a result, we'll reclaim a cgroup's workingset when it doesn't have cold pages, even when one of its siblings has plenty of it that should be reclaimed first. For example: workload A has 50M worth of hot cache but doesn't do any one-off file accesses; meanwhile, parallel workload B scans files and rarely accesses the same page twice. If these workloads were to run in an uncgrouped system, A would be protected from the high rate of cache faults from B. But if they were put in parallel cgroups for memory accounting purposes, B's fast cache fault rate would push out the hot cache pages of A. This is unexpected and undesirable - the "scan resistance" of the page cache is broken. This patch moves inactive:active size balancing decisions to the root of reclaim - the same level where the LRU order is established. It does this by looking at the recursive size of the inactive and the active file sets of the cgroup subtree at the beginning of the reclaim cycle, and then making a decision - scan or skip active pages - that applies throughout the entire run and to every cgroup involved. With that in place, in the test above, the VM will recognize that there are plenty of inactive pages in the combined cache set of workloads A and B and prefer the one-off cache in B over the hot pages in A. The scan resistance of the cache is restored. [cai@lca.pw: fix some -Wenum-conversion warnings] Link: http://lkml.kernel.org/r/1573848697-29262-1-git-send-email-cai@lca.pw Link: http://lkml.kernel.org/r/20191107205334.158354-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Rik van Riel <riel@surriel.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
b910718a94 |
mm: vmscan: detect file thrashing at the reclaim root
We use refault information to determine whether the cache workingset is stable or transitioning, and dynamically adjust the inactive:active file LRU ratio so as to maximize protection from one-off cache during stable periods, and minimize IO during transitions. With cgroups and their nested LRU lists, we currently don't do this correctly. While recursive cgroup reclaim establishes a relative LRU order among the pages of all involved cgroups, refaults only affect the local LRU order in the cgroup in which they are occuring. As a result, cache transitions can take longer in a cgrouped system as the active pages of sibling cgroups aren't challenged when they should be. [ Right now, this is somewhat theoretical, because the siblings, under continued regular reclaim pressure, should eventually run out of inactive pages - and since inactive:active *size* balancing is also done on a cgroup-local level, we will challenge the active pages eventually in most cases. But the next patch will move that relative size enforcement to the reclaim root as well, and then this patch here will be necessary to propagate refault pressure to siblings. ] This patch moves refault detection to the root of reclaim. Instead of remembering the cgroup owner of an evicted page, remember the cgroup that caused the reclaim to happen. When refaults later occur, they'll correctly influence the cross-cgroup LRU order that reclaim follows. I.e. if global reclaim kicked out pages in some subgroup A/B/C, the refault of those pages will challenge the global LRU order, and not just the local order down inside C. [hannes@cmpxchg.org: use page_memcg() instead of another lookup] Link: http://lkml.kernel.org/r/20191115160722.GA309754@cmpxchg.org Link: http://lkml.kernel.org/r/20191107205334.158354-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
53138cea7f |
mm: vmscan: move file exhaustion detection to the node level
Patch series "mm: fix page aging across multiple cgroups". When applications are put into unconfigured cgroups for memory accounting purposes, the cgrouping itself should not change the behavior of the page reclaim code. We expect the VM to reclaim the coldest pages in the system. But right now the VM can reclaim hot pages in one cgroup while there is eligible cold cache in others. This is because one part of the reclaim algorithm isn't truly cgroup hierarchy aware: the inactive/active list balancing. That is the part that is supposed to protect hot cache data from one-off streaming IO. The recursive cgroup reclaim scheme will scan and rotate the physical LRU lists of each eligible cgroup at the same rate in a round-robin fashion, thereby establishing a relative order among the pages of all those cgroups. However, the inactive/active balancing decisions are made locally within each cgroup, so when a cgroup is running low on cold pages, its hot pages will get reclaimed - even when sibling cgroups have plenty of cold cache eligible in the same reclaim run. For example: [root@ham ~]# head -n1 /proc/meminfo MemTotal: 1016336 kB [root@ham ~]# ./reclaimtest2.sh Establishing 50M active files in cgroup A... Hot pages cached: 12800/12800 workingset-a Linearly scanning through 18G of file data in cgroup B: real 0m4.269s user 0m0.051s sys 0m4.182s Hot pages cached: 134/12800 workingset-a The streaming IO in B, which doesn't benefit from caching at all, pushes out most of the workingset in A. Solution This series fixes the problem by elevating inactive/active balancing decisions to the toplevel of the reclaim run. This is either a cgroup that hit its limit, or straight-up global reclaim if there is physical memory pressure. From there, it takes a recursive view of the cgroup subtree to decide whether page deactivation is necessary. In the test above, the VM will then recognize that cgroup B has plenty of eligible cold cache, and that the hot pages in A can be spared: [root@ham ~]# ./reclaimtest2.sh Establishing 50M active files in cgroup A... Hot pages cached: 12800/12800 workingset-a Linearly scanning through 18G of file data in cgroup B: real 0m4.244s user 0m0.064s sys 0m4.177s Hot pages cached: 12800/12800 workingset-a Implementation Whether active pages can be deactivated or not is influenced by two factors: the inactive list dropping below a minimum size relative to the active list, and the occurence of refaults. This patch series first moves refault detection to the reclaim root, then enforces the minimum inactive size based on a recursive view of the cgroup tree's LRUs. History Note that this actually never worked correctly in Linux cgroups. In the past it worked for global reclaim and leaf limit reclaim only (we used to have two physical LRU linkages per page), but it never worked for intermediate limit reclaim over multiple leaf cgroups. We're noticing this now because 1) we're putting everything into cgroups for accounting, not just the things we want to control and 2) we're moving away from leaf limits that invoke reclaim on individual cgroups, toward large tree reclaim, triggered by high-level limits, or physical memory pressure that is influenced by local protections such as memory.low and memory.min instead. This patch (of 3): When file pages are lower than the watermark on a node, we try to force scan anonymous pages to counter-act the balancing algorithms preference for new file pages when they are likely thrashing. This is a node-level decision, but it's currently made each time we look at an lruvec. This is unnecessarily expensive and also a layering violation that makes the code harder to understand. Clean this up by making the check once per node and setting a flag in the scan_control. Link: http://lkml.kernel.org/r/20191107205334.158354-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1b05117df7 |
mm: vmscan: harmonize writeback congestion tracking for nodes & memcgs
The current writeback congestion tracking has separate flags for kswapd reclaim (node level) and cgroup limit reclaim (memcg-node level). This is unnecessarily complicated: the lruvec is an existing abstraction layer for that node-memcg intersection. Introduce lruvec->flags and LRUVEC_CONGESTED. Then track that at the reclaim root level, which is either the NUMA node for global reclaim, or the cgroup-node intersection for cgroup reclaim. Link: http://lkml.kernel.org/r/20191022144803.302233-9-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
0f6a5cff43 |
mm: vmscan: split shrink_node() into node part and memcgs part
This function is getting long and unwieldy, split out the memcg bits. The updated shrink_node() handles the generic (node) reclaim aspects: - global vmpressure notifications - writeback and congestion throttling - reclaim/compaction management - kswapd giving up on unreclaimable nodes It then calls a new shrink_node_memcgs() which handles cgroup specifics: - the cgroup tree traversal - memory.low considerations - per-cgroup slab shrinking callbacks - per-cgroup vmpressure notifications [hannes@cmpxchg.org: rename "root" to "target_memcg", per Roman] Link: http://lkml.kernel.org/r/20191025143640.GA386981@cmpxchg.org Link: http://lkml.kernel.org/r/20191022144803.302233-8-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
afaf07a65d |
mm: vmscan: turn shrink_node_memcg() into shrink_lruvec()
An lruvec holds LRU pages owned by a certain NUMA node and cgroup. Instead of awkwardly passing around a combination of a pgdat and a memcg pointer, pass down the lruvec as soon as we can look it up. Nested callers that need to access node or cgroup properties can look them them up if necessary, but there are only a few cases. Link: http://lkml.kernel.org/r/20191022144803.302233-7-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
d2af339706 |
mm: vmscan: replace shrink_node() loop with a retry jump
Most of the function body is inside a loop, which imposes an additional indentation and scoping level that makes the code a bit hard to follow and modify. The looping only happens in case of reclaim-compaction, which isn't the common case. So rather than adding yet another function level to the reclaim path and have every reclaim invocation go through a level that only exists for one specific cornercase, use a retry goto. Link: http://lkml.kernel.org/r/20191022144803.302233-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
b5ead35e7e |
mm: vmscan: naming fixes: global_reclaim() and sane_reclaim()
Seven years after introducing the global_reclaim() function, I still have to double take when reading a callsite. I don't know how others do it, this is a terrible name. Invert the meaning and rename it to cgroup_reclaim(). [ After all, "global reclaim" is just regular reclaim invoked from the page allocator. It's reclaim on behalf of a cgroup limit that is a special case of reclaim, and should be explicit - not the reverse. ] sane_reclaim() isn't very descriptive either: it tests whether we can use the regular writeback throttling - available during regular page reclaim or cgroup2 limit reclaim - or need to use the broken wait_on_page_writeback() method. Use "writeback_throttling_sane()". Link: http://lkml.kernel.org/r/20191022144803.302233-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
a108629149 |
mm: vmscan: move inactive_list_is_low() swap check to the caller
inactive_list_is_low() should be about one thing: checking the ratio between inactive and active list. Kitchensink checks like the one for swap space makes the function hard to use and modify its callsites. Luckly, most callers already have an understanding of the swap situation, so it's easy to clean up. get_scan_count() has its own, memcg-aware swap check, and doesn't even get to the inactive_list_is_low() check on the anon list when there is no swap space available. shrink_list() is called on the results of get_scan_count(), so that check is redundant too. age_active_anon() has its own totalswap_pages check right before it checks the list proportions. The shrink_node_memcg() site is the only one that doesn't do its own swap check. Add it there. Then delete the swap check from inactive_list_is_low(). Link: http://lkml.kernel.org/r/20191022144803.302233-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
867e5e1de1 |
mm: clean up and clarify lruvec lookup procedure
There is a per-memcg lruvec and a NUMA node lruvec. Which one is being used is somewhat confusing right now, and it's easy to make mistakes - especially when it comes to global reclaim. How it works: when memory cgroups are enabled, we always use the root_mem_cgroup's per-node lruvecs. When memory cgroups are not compiled in or disabled at runtime, we use pgdat->lruvec. Document that in a comment. Due to the way the reclaim code is generalized, all lookups use the mem_cgroup_lruvec() helper function, and nobody should have to find the right lruvec manually right now. But to avoid future mistakes, rename the pgdat->lruvec member to pgdat->__lruvec and delete the convenience wrapper that suggests it's a commonly accessed member. While in this area, swap the mem_cgroup_lruvec() argument order. The name suggests a memcg operation, yet it takes a pgdat first and a memcg second. I have to double take every time I call this. Fix that. Link: http://lkml.kernel.org/r/20191022144803.302233-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
de3b01506e |
mm: vmscan: simplify lruvec_lru_size()
Patch series "mm: vmscan: cgroup-related cleanups". Here are 8 patches that clean up the reclaim code's interaction with cgroups a bit. They're not supposed to change any behavior, just make the implementation easier to understand and work with. This patch (of 8): This function currently takes the node or lruvec size and subtracts the zones that are excluded by the classzone index of the allocation. It uses four different types of counters to do this. Just add up the eligible zones. [cai@lca.pw: fix an undefined behavior for zone id] Link: http://lkml.kernel.org/r/20191108204407.1435-1-cai@lca.pw [akpm@linux-foundation.org: deal with the MAX_NR_ZONES special case. per Qian Cai] Link: http://lkml.kernel.org/r/64E60F6F-7582-427B-8DD5-EF97B1656F5A@lca.pw Link: http://lkml.kernel.org/r/20191022144803.302233-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
cb16556d91 |
mm/vmscan.c: remove unused scan_control parameter from pageout()
Since lumpy reclaim was removed in v3.5 scan_control is not used by may_write_to_{queue|inode} and pageout() anymore, remove the unused parameter. Link: http://lkml.kernel.org/r/1570124498-19300-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
f87bccde6a |
mm/vmscan: remove unused lru_pages argument
Since
|
||
Shakeel Butt
|
fa40d1ee9f |
mm: vmscan: memcontrol: remove mem_cgroup_select_victim_node()
Since commit |
||
William Kucharski
|
906d278d75 |
mm/vmscan.c: support removing arbitrary sized pages from mapping
__remove_mapping() assumes that pages can only be either base pages or
HPAGE_PMD_SIZE. Ask the page what size it is.
Link: http://lkml.kernel.org/r/20191017164223.2762148-4-songliubraving@fb.com
Fixes:
|
||
Honglei Wang
|
b11edebbc9 |
mm: memcg: get number of pages on the LRU list in memcgroup base on lru_zone_size
Commit |
||
Chris Down
|
1bc63fb127 |
mm, memcg: make scan aggression always exclude protection
This patch is an incremental improvement on the existing memory.{low,min} relative reclaim work to base its scan pressure calculations on how much protection is available compared to the current usage, rather than how much the current usage is over some protection threshold. This change doesn't change the experience for the user in the normal case too much. One benefit is that it replaces the (somewhat arbitrary) 100% cutoff with an indefinite slope, which makes it easier to ballpark a memory.low value. As well as this, the old methodology doesn't quite apply generically to machines with varying amounts of physical memory. Let's say we have a top level cgroup, workload.slice, and another top level cgroup, system-management.slice. We want to roughly give 12G to system-management.slice, so on a 32GB machine we set memory.low to 20GB in workload.slice, and on a 64GB machine we set memory.low to 52GB. However, because these are relative amounts to the total machine size, while the amount of memory we want to generally be willing to yield to system.slice is absolute (12G), we end up putting more pressure on system.slice just because we have a larger machine and a larger workload to fill it, which seems fairly unintuitive. With this new behaviour, we don't end up with this unintended side effect. Previously the way that memory.low protection works is that if you are 50% over a certain baseline, you get 50% of your normal scan pressure. This is certainly better than the previous cliff-edge behaviour, but it can be improved even further by always considering memory under the currently enforced protection threshold to be out of bounds. This means that we can set relatively low memory.low thresholds for variable or bursty workloads while still getting a reasonable level of protection, whereas with the previous version we may still trivially hit the 100% clamp. The previous 100% clamp is also somewhat arbitrary, whereas this one is more concretely based on the currently enforced protection threshold, which is likely easier to reason about. There is also a subtle issue with the way that proportional reclaim worked previously -- it promotes having no memory.low, since it makes pressure higher during low reclaim. This happens because we base our scan pressure modulation on how far memory.current is between memory.min and memory.low, but if memory.low is unset, we only use the overage method. In most cromulent configurations, this then means that we end up with *more* pressure than with no memory.low at all when we're in low reclaim, which is not really very usable or expected. With this patch, memory.low and memory.min affect reclaim pressure in a more understandable and composable way. For example, from a user standpoint, "protected" memory now remains untouchable from a reclaim aggression standpoint, and users can also have more confidence that bursty workloads will still receive some amount of guaranteed protection. Link: http://lkml.kernel.org/r/20190322160307.GA3316@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chris Down
|
9de7ca46ad |
mm, memcg: make memory.emin the baseline for utilisation determination
Roman points out that when when we do the low reclaim pass, we scale the reclaim pressure relative to position between 0 and the maximum protection threshold. However, if the maximum protection is based on memory.elow, and memory.emin is above zero, this means we still may get binary behaviour on second-pass low reclaim. This is because we scale starting at 0, not starting at memory.emin, and since we don't scan at all below emin, we end up with cliff behaviour. This should be a fairly uncommon case since usually we don't go into the second pass, but it makes sense to scale our low reclaim pressure starting at emin. You can test this by catting two large sparse files, one in a cgroup with emin set to some moderate size compared to physical RAM, and another cgroup without any emin. In both cgroups, set an elow larger than 50% of physical RAM. The one with emin will have less page scanning, as reclaim pressure is lower. Rebase on top of and apply the same idea as what was applied to handle cgroup_memory=disable properly for the original proportional patch http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name ("mm, memcg: Handle cgroup_disable=memory when getting memcg protection"). Link: http://lkml.kernel.org/r/20190201051810.GA18895@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Suggested-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Chris Down
|
9783aa9917 |
mm, memcg: proportional memory.{low,min} reclaim
cgroup v2 introduces two memory protection thresholds: memory.low (best-effort) and memory.min (hard protection). While they generally do what they say on the tin, there is a limitation in their implementation that makes them difficult to use effectively: that cliff behaviour often manifests when they become eligible for reclaim. This patch implements more intuitive and usable behaviour, where we gradually mount more reclaim pressure as cgroups further and further exceed their protection thresholds. This cliff edge behaviour happens because we only choose whether or not to reclaim based on whether the memcg is within its protection limits (see the use of mem_cgroup_protected in shrink_node), but we don't vary our reclaim behaviour based on this information. Imagine the following timeline, with the numbers the lruvec size in this zone: 1. memory.low=1000000, memory.current=999999. 0 pages may be scanned. 2. memory.low=1000000, memory.current=1000000. 0 pages may be scanned. 3. memory.low=1000000, memory.current=1000001. 1000001* pages may be scanned. (?!) * Of course, we won't usually scan all available pages in the zone even without this patch because of scan control priority, over-reclaim protection, etc. However, as shown by the tests at the end, these techniques don't sufficiently throttle such an extreme change in input, so cliff-like behaviour isn't really averted by their existence alone. Here's an example of how this plays out in practice. At Facebook, we are trying to protect various workloads from "system" software, like configuration management tools, metric collectors, etc (see this[0] case study). In order to find a suitable memory.low value, we start by determining the expected memory range within which the workload will be comfortable operating. This isn't an exact science -- memory usage deemed "comfortable" will vary over time due to user behaviour, differences in composition of work, etc, etc. As such we need to ballpark memory.low, but doing this is currently problematic: 1. If we end up setting it too low for the workload, it won't have *any* effect (see discussion above). The group will receive the full weight of reclaim and won't have any priority while competing with the less important system software, as if we had no memory.low configured at all. 2. Because of this behaviour, we end up erring on the side of setting it too high, such that the comfort range is reliably covered. However, protected memory is completely unavailable to the rest of the system, so we might cause undue memory and IO pressure there when we *know* we have some elasticity in the workload. 3. Even if we get the value totally right, smack in the middle of the comfort zone, we get extreme jumps between no pressure and full pressure that cause unpredictable pressure spikes in the workload due to the current binary reclaim behaviour. With this patch, we can set it to our ballpark estimation without too much worry. Any undesirable behaviour, such as too much or too little reclaim pressure on the workload or system will be proportional to how far our estimation is off. This means we can set memory.low much more conservatively and thus waste less resources *without* the risk of the workload falling off a cliff if we overshoot. As a more abstract technical description, this unintuitive behaviour results in having to give high-priority workloads a large protection buffer on top of their expected usage to function reliably, as otherwise we have abrupt periods of dramatically increased memory pressure which hamper performance. Having to set these thresholds so high wastes resources and generally works against the principle of work conservation. In addition, having proportional memory reclaim behaviour has other benefits. Most notably, before this patch it's basically mandatory to set memory.low to a higher than desirable value because otherwise as soon as you exceed memory.low, all protection is lost, and all pages are eligible to scan again. By contrast, having a gradual ramp in reclaim pressure means that you now still get some protection when thresholds are exceeded, which means that one can now be more comfortable setting memory.low to lower values without worrying that all protection will be lost. This is important because workingset size is really hard to know exactly, especially with variable workloads, so at least getting *some* protection if your workingset size grows larger than you expect increases user confidence in setting memory.low without a huge buffer on top being needed. Thanks a lot to Johannes Weiner and Tejun Heo for their advice and assistance in thinking about how to make this work better. In testing these changes, I intended to verify that: 1. Changes in page scanning become gradual and proportional instead of binary. To test this, I experimented stepping further and further down memory.low protection on a workload that floats around 19G workingset when under memory.low protection, watching page scan rates for the workload cgroup: +------------+-----------------+--------------------+--------------+ | memory.low | test (pgscan/s) | control (pgscan/s) | % of control | +------------+-----------------+--------------------+--------------+ | 21G | 0 | 0 | N/A | | 17G | 867 | 3799 | 23% | | 12G | 1203 | 3543 | 34% | | 8G | 2534 | 3979 | 64% | | 4G | 3980 | 4147 | 96% | | 0 | 3799 | 3980 | 95% | +------------+-----------------+--------------------+--------------+ As you can see, the test kernel (with a kernel containing this patch) ramps up page scanning significantly more gradually than the control kernel (without this patch). 2. More gradual ramp up in reclaim aggression doesn't result in premature OOMs. To test this, I wrote a script that slowly increments the number of pages held by stress(1)'s --vm-keep mode until a production system entered severe overall memory contention. This script runs in a highly protected slice taking up the majority of available system memory. Watching vmstat revealed that page scanning continued essentially nominally between test and control, without causing forward reclaim progress to become arrested. [0]: https://facebookmicrosites.github.io/cgroup2/docs/overview.html#case-study-the-fbtax2-project [akpm@linux-foundation.org: reflow block comments to fit in 80 cols] [chris@chrisdown.name: handle cgroup_disable=memory when getting memcg protection] Link: http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name Link: http://lkml.kernel.org/r/20190124014455.GA6396@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
1a4e58cce8 |
mm: introduce MADV_PAGEOUT
When a process expects no accesses to a certain memory range for a long time, it could hint kernel that the pages can be reclaimed instantly but data should be preserved for future use. This could reduce workingset eviction so it ends up increasing performance. This patch introduces the new MADV_PAGEOUT hint to madvise(2) syscall. MADV_PAGEOUT can be used by a process to mark a memory range as not expected to be used for a long time so that kernel reclaims *any LRU* pages instantly. The hint can help kernel in deciding which pages to evict proactively. A note: It doesn't apply SWAP_CLUSTER_MAX LRU page isolation limit intentionally because it's automatically bounded by PMD size. If PMD size(e.g., 256) makes some trouble, we could fix it later by limit it to SWAP_CLUSTER_MAX[1]. - man-page material MADV_PAGEOUT (since Linux x.x) Do not expect access in the near future so pages in the specified regions could be reclaimed instantly regardless of memory pressure. Thus, access in the range after successful operation could cause major page fault but never lose the up-to-date contents unlike MADV_DONTNEED. Pages belonging to a shared mapping are only processed if a write access is allowed for the calling process. MADV_PAGEOUT cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP pages. [1] https://lore.kernel.org/lkml/20190710194719.GS29695@dhcp22.suse.cz/ [minchan@kernel.org: clear PG_active on MADV_PAGEOUT] Link: http://lkml.kernel.org/r/20190802200643.GA181880@google.com [akpm@linux-foundation.org: resolve conflicts with hmm.git] Link: http://lkml.kernel.org/r/20190726023435.214162-5-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: kbuild test robot <lkp@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
8940b34a4e |
mm: change PAGEREF_RECLAIM_CLEAN with PAGE_REFRECLAIM
The local variable references in shrink_page_list is PAGEREF_RECLAIM_CLEAN as default. It is for preventing to reclaim dirty pages when CMA try to migrate pages. Strictly speaking, we don't need it because CMA didn't allow to write out by .may_writepage = 0 in reclaim_clean_pages_from_list. Moreover, it has a problem to prevent anonymous pages's swap out even though force_reclaim = true in shrink_page_list on upcoming patch. So this patch makes references's default value to PAGEREF_RECLAIM and rename force_reclaim with ignore_references to make it more clear. This is a preparatory work for next patch. Link: http://lkml.kernel.org/r/20190726023435.214162-3-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Chris Zankel <chris@zankel.net> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: kbuild test robot <lkp@intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
0a432dcbeb |
mm: shrinker: make shrinker not depend on memcg kmem
Currently shrinker is just allocated and can work when memcg kmem is enabled. But, THP deferred split shrinker is not slab shrinker, it doesn't make too much sense to have such shrinker depend on memcg kmem. It should be able to reclaim THP even though memcg kmem is disabled. Introduce a new shrinker flag, SHRINKER_NONSLAB, for non-slab shrinker. When memcg kmem is disabled, just such shrinkers can be called in shrinking memcg slab. [yang.shi@linux.alibaba.com: add comment] Link: http://lkml.kernel.org/r/1566496227-84952-4-git-send-email-yang.shi@linux.alibaba.com Link: http://lkml.kernel.org/r/1565144277-36240-4-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
7ae88534cd |
mm: move mem_cgroup_uncharge out of __page_cache_release()
A later patch makes THP deferred split shrinker memcg aware, but it needs page->mem_cgroup information in THP destructor, which is called after mem_cgroup_uncharge() now. So move mem_cgroup_uncharge() from __page_cache_release() to compound page destructor, which is called by both THP and other compound pages except HugeTLB. And call it in __put_single_page() for single order page. Link: http://lkml.kernel.org/r/1565144277-36240-3-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Qian Cai <cai@lca.pw> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
5ee04716c4 |
mm, reclaim: cleanup should_continue_reclaim()
After commit "mm, reclaim: make should_continue_reclaim perform dryrun detection", closer look at the function shows, that nr_reclaimed == 0 means the function will always return false. And since non-zero nr_reclaimed implies non_zero nr_scanned, testing nr_scanned serves no purpose, and so does the testing for __GFP_RETRY_MAYFAIL. This patch thus cleans up the function to test only !nr_reclaimed upfront, and remove the __GFP_RETRY_MAYFAIL test and nr_scanned parameter completely. Comment is also updated, explaining that approximating "full LRU list has been scanned" with nr_scanned == 0 didn't really work. Link: http://lkml.kernel.org/r/20190806014744.15446-3-mike.kravetz@oracle.com Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hillf Danton
|
1c6c15971e |
mm, reclaim: make should_continue_reclaim perform dryrun detection
Patch series "address hugetlb page allocation stalls", v2. Allocation of hugetlb pages via sysctl or procfs can stall for minutes or hours. A simple example on a two node system with 8GB of memory is as follows: echo 4096 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages echo 4096 > /proc/sys/vm/nr_hugepages Obviously, both allocation attempts will fall short of their 8GB goal. However, one or both of these commands may stall and not be interruptible. The issues were initially discussed in mail thread [1] and RFC code at [2]. This series addresses the issues causing the stalls. There are two distinct fixes, a cleanup, and an optimization. The reclaim patch by Hillf and compaction patch by Vlasitmil address corner cases in their respective areas. hugetlb page allocation could stall due to either of these issues. Vlasitmil added a cleanup patch after Hillf's modifications. The hugetlb patch by Mike is an optimization suggested during the debug and development process. [1] http://lkml.kernel.org/r/d38a095e-dc39-7e82-bb76-2c9247929f07@oracle.com [2] http://lkml.kernel.org/r/20190724175014.9935-1-mike.kravetz@oracle.com This patch (of 4): Address the issue of should_continue_reclaim returning true too often for __GFP_RETRY_MAYFAIL attempts when !nr_reclaimed and nr_scanned. This was observed during hugetlb page allocation causing stalls for minutes or hours. We can stop reclaiming pages if compaction reports it can make a progress. There might be side-effects for other high-order allocations that would potentially benefit from reclaiming more before compaction so that they would be faster and less likely to stall. However, the consequences of premature/over-reclaim are considered worse. We can also bail out of reclaiming pages if we know that there are not enough inactive lru pages left to satisfy the costly allocation. We can give up reclaiming pages too if we see dryrun occur, with the certainty of plenty of inactive pages. IOW with dryrun detected, we are sure we have reclaimed as many pages as we could. Link: http://lkml.kernel.org/r/20190806014744.15446-2-mike.kravetz@oracle.com Signed-off-by: Hillf Danton <hdanton@sina.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1ba6fc9af3 |
mm: vmscan: do not share cgroup iteration between reclaimers
One of our services observed a high rate of cgroup OOM kills in the presence of large amounts of clean cache. Debugging showed that the culprit is the shared cgroup iteration in page reclaim. Under high allocation concurrency, multiple threads enter reclaim at the same time. Fearing overreclaim when we first switched from the single global LRU to cgrouped LRU lists, we introduced a shared iteration state for reclaim invocations - whether 1 or 20 reclaimers are active concurrently, we only walk the cgroup tree once: the 1st reclaimer reclaims the first cgroup, the second the second one etc. With more reclaimers than cgroups, we start another walk from the top. This sounded reasonable at the time, but the problem is that reclaim concurrency doesn't scale with allocation concurrency. As reclaim concurrency increases, the amount of memory individual reclaimers get to scan gets smaller and smaller. Individual reclaimers may only see one cgroup per cycle, and that may not have much reclaimable memory. We see individual reclaimers declare OOM when there is plenty of reclaimable memory available in cgroups they didn't visit. This patch does away with the shared iterator, and every reclaimer is allowed to scan the full cgroup tree and see all of reclaimable memory, just like it would on a non-cgrouped system. This way, when OOM is declared, we know that the reclaimer actually had a chance. To still maintain fairness in reclaim pressure, disallow cgroup reclaim from bailing out of the tree walk early. Kswapd and regular direct reclaim already don't bail, so it's not clear why limit reclaim would have to, especially since it only walks subtrees to begin with. This change completely eliminates the OOM kills on our service, while showing no signs of overreclaim - no increased scan rates, %sys time, or abrupt free memory spikes. I tested across 100 machines that have 64G of RAM and host about 300 cgroups each. [ It's possible overreclaim never was a *practical* issue to begin with - it was simply a concern we had on the mailing lists at the time, with no real data to back it up. But we have also added more bail-out conditions deeper inside reclaim (e.g. the proportional exit in shrink_node_memcg) since. Regardless, now we have data that suggests full walks are more reliable and scale just fine. ] Link: http://lkml.kernel.org/r/20190812192316.13615-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox (Oracle)
|
d8c6546b1a |
mm: introduce compound_nr()
Replace 1 << compound_order(page) with compound_nr(page). Minor improvements in readability. Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
d2e5fb927e |
mm, memcg: do not set reclaim_state on soft limit reclaim
Adric Blake has noticed[1] the following warning: WARNING: CPU: 7 PID: 175 at mm/vmscan.c:245 set_task_reclaim_state+0x1e/0x40 [...] Call Trace: mem_cgroup_shrink_node+0x9b/0x1d0 mem_cgroup_soft_limit_reclaim+0x10c/0x3a0 balance_pgdat+0x276/0x540 kswapd+0x200/0x3f0 ? wait_woken+0x80/0x80 kthread+0xfd/0x130 ? balance_pgdat+0x540/0x540 ? kthread_park+0x80/0x80 ret_from_fork+0x35/0x40 ---[ end trace 727343df67b2398a ]--- which tells us that soft limit reclaim is about to overwrite the reclaim_state configured up in the call chain (kswapd in this case but the direct reclaim is equally possible). This means that reclaim stats would get misleading once the soft reclaim returns and another reclaim is done. Fix the warning by dropping set_task_reclaim_state from the soft reclaim which is always called with reclaim_state set up. [1] http://lkml.kernel.org/r/CAE1jjeePxYPvw1mw2B3v803xHVR_BNnz0hQUY_JDMN8ny29M6w@mail.gmail.com Link: http://lkml.kernel.org/r/20190828071808.20410-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Adric Blake <promarbler14@gmail.com> Acked-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Hillf Danton <hdanton@sina.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
28360f3987 |
mm, vmscan: do not special-case slab reclaim when watermarks are boosted
Dave Chinner reported a problem pointing a finger at commit |
||
Yang Shi
|
fa1e512fac |
mm: vmscan: check if mem cgroup is disabled or not before calling memcg slab shrinker
Shakeel Butt reported premature oom on kernel with "cgroup_disable=memory" since mem_cgroup_is_root() returns false even though memcg is actually NULL. The drop_caches is also broken. It is because commit |
||
Andrew Morton
|
1732d2b011 |
mm/vmscan.c: add checks for incorrect handling of current->reclaim_state
Six sites are presently altering current->reclaim_state. There is a risk that one function stomps on a caller's value. Use a helper function to catch such errors. Cc: Yafang Shao <laoar.shao@gmail.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
0308f7cf19 |
mm/vmscan.c: calculate reclaimed slab caches in all reclaim paths
There are six different reclaim paths by now: - kswapd reclaim path - node reclaim path - hibernate preallocate memory reclaim path - direct reclaim path - memcg reclaim path - memcg softlimit reclaim path The slab caches reclaimed in these paths are only calculated in the above three paths. There're some drawbacks if we don't calculate the reclaimed slab caches. - The sc->nr_reclaimed isn't correct if there're some slab caches relcaimed in this path. - The slab caches may be reclaimed thoroughly if there're lots of reclaimable slab caches and few page caches. Let's take an easy example for this case. If one memcg is full of slab caches and the limit of it is 512M, in other words there're approximately 512M slab caches in this memcg. Then the limit of the memcg is reached and the memcg reclaim begins, and then in this memcg reclaim path it will continuesly reclaim the slab caches until the sc->priority drops to 0. After this reclaim stops, you will find there're few slab caches left, which is less than 20M in my test case. While after this patch applied the number is greater than 300M and the sc->priority only drops to 3. Link: http://lkml.kernel.org/r/1561112086-6169-3-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
e5ca8071fe |
mm/vmscan.c: add a new member reclaim_state in struct shrink_control
Patch series "mm/vmscan: calculate reclaimed slab in all reclaim paths". This patchset is to fix the issues in doing shrink slab. There're six different reclaim paths by now, - kswapd reclaim path - node reclaim path - hibernate preallocate memory reclaim path - direct reclaim path - memcg reclaim path - memcg softlimit reclaim path The slab caches reclaimed in these paths are only calculated in the above three paths. The issues are detailed explained in patch #2. We should calculate the reclaimed slab caches in every reclaim path. In order to do it, the struct reclaim_state is placed into the struct shrink_control. In node reclaim path, there'is another issue about shrinking slab, which is adressed in "mm/vmscan: shrink slab in node reclaim" (https://lore.kernel.org/linux-mm/1559874946-22960-1-git-send-email-laoar.shao@gmail.com/). This patch (of 2): The struct reclaim_state is used to record how many slab caches are reclaimed in one reclaim path. The struct shrink_control is used to control one reclaim path. So we'd better put reclaim_state into shrink_control. [laoar.shao@gmail.com: remove reclaim_state assignment from __perform_reclaim()] Link: http://lkml.kernel.org/r/1561381582-13697-1-git-send-email-laoar.shao@gmail.com Link: http://lkml.kernel.org/r/1561112086-6169-2-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
98879b3b9e |
mm: vmscan: correct some vmscan counters for THP swapout
Commit
|
||
Yang Shi
|
af5d440365 |
mm: vmscan: remove double slab pressure by inc'ing sc->nr_scanned
Commit
|
||
Kuo-Hsin Yang
|
2c012a4ad1 |
mm: vmscan: scan anonymous pages on file refaults
When file refaults are detected and there are many inactive file pages, the system never reclaim anonymous pages, the file pages are dropped aggressively when there are still a lot of cold anonymous pages and system thrashes. This issue impacts the performance of applications with large executable, e.g. chrome. With this patch, when file refault is detected, inactive_list_is_low() always returns true for file pages in get_scan_count() to enable scanning anonymous pages. The problem can be reproduced by the following test program. ---8<--- void fallocate_file(const char *filename, off_t size) { struct stat st; int fd; if (!stat(filename, &st) && st.st_size >= size) return; fd = open(filename, O_WRONLY | O_CREAT, 0600); if (fd < 0) { perror("create file"); exit(1); } if (posix_fallocate(fd, 0, size)) { perror("fallocate"); exit(1); } close(fd); } long *alloc_anon(long size) { long *start = malloc(size); memset(start, 1, size); return start; } long access_file(const char *filename, long size, long rounds) { int fd, i; volatile char *start1, *end1, *start2; const int page_size = getpagesize(); long sum = 0; fd = open(filename, O_RDONLY); if (fd == -1) { perror("open"); exit(1); } /* * Some applications, e.g. chrome, use a lot of executable file * pages, map some of the pages with PROT_EXEC flag to simulate * the behavior. */ start1 = mmap(NULL, size / 2, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0); if (start1 == MAP_FAILED) { perror("mmap"); exit(1); } end1 = start1 + size / 2; start2 = mmap(NULL, size / 2, PROT_READ, MAP_SHARED, fd, size / 2); if (start2 == MAP_FAILED) { perror("mmap"); exit(1); } for (i = 0; i < rounds; ++i) { struct timeval before, after; volatile char *ptr1 = start1, *ptr2 = start2; gettimeofday(&before, NULL); for (; ptr1 < end1; ptr1 += page_size, ptr2 += page_size) sum += *ptr1 + *ptr2; gettimeofday(&after, NULL); printf("File access time, round %d: %f (sec) ", i, (after.tv_sec - before.tv_sec) + (after.tv_usec - before.tv_usec) / 1000000.0); } return sum; } int main(int argc, char *argv[]) { const long MB = 1024 * 1024; long anon_mb, file_mb, file_rounds; const char filename[] = "large"; long *ret1; long ret2; if (argc != 4) { printf("usage: thrash ANON_MB FILE_MB FILE_ROUNDS "); exit(0); } anon_mb = atoi(argv[1]); file_mb = atoi(argv[2]); file_rounds = atoi(argv[3]); fallocate_file(filename, file_mb * MB); printf("Allocate %ld MB anonymous pages ", anon_mb); ret1 = alloc_anon(anon_mb * MB); printf("Access %ld MB file pages ", file_mb); ret2 = access_file(filename, file_mb * MB, file_rounds); printf("Print result to prevent optimization: %ld ", *ret1 + ret2); return 0; } ---8<--- Running the test program on 2GB RAM VM with kernel 5.2.0-rc5, the program fills ram with 2048 MB memory, access a 200 MB file for 10 times. Without this patch, the file cache is dropped aggresively and every access to the file is from disk. $ ./thrash 2048 200 10 Allocate 2048 MB anonymous pages Access 200 MB file pages File access time, round 0: 2.489316 (sec) File access time, round 1: 2.581277 (sec) File access time, round 2: 2.487624 (sec) File access time, round 3: 2.449100 (sec) File access time, round 4: 2.420423 (sec) File access time, round 5: 2.343411 (sec) File access time, round 6: 2.454833 (sec) File access time, round 7: 2.483398 (sec) File access time, round 8: 2.572701 (sec) File access time, round 9: 2.493014 (sec) With this patch, these file pages can be cached. $ ./thrash 2048 200 10 Allocate 2048 MB anonymous pages Access 200 MB file pages File access time, round 0: 2.475189 (sec) File access time, round 1: 2.440777 (sec) File access time, round 2: 2.411671 (sec) File access time, round 3: 1.955267 (sec) File access time, round 4: 0.029924 (sec) File access time, round 5: 0.000808 (sec) File access time, round 6: 0.000771 (sec) File access time, round 7: 0.000746 (sec) File access time, round 8: 0.000738 (sec) File access time, round 9: 0.000747 (sec) Checked the swap out stats during the test [1], 19006 pages swapped out with this patch, 3418 pages swapped out without this patch. There are more swap out, but I think it's within reasonable range when file backed data set doesn't fit into the memory. $ ./thrash 2000 100 2100 5 1 # ANON_MB FILE_EXEC FILE_NOEXEC ROUNDS PROCESSES Allocate 2000 MB anonymous pages active_anon: 1613644, inactive_anon: 348656, active_file: 892, inactive_file: 1384 (kB) pswpout: 7972443, pgpgin: 478615246 Access 100 MB executable file pages Access 2100 MB regular file pages File access time, round 0: 12.165, (sec) active_anon: 1433788, inactive_anon: 478116, active_file: 17896, inactive_file: 24328 (kB) File access time, round 1: 11.493, (sec) active_anon: 1430576, inactive_anon: 477144, active_file: 25440, inactive_file: 26172 (kB) File access time, round 2: 11.455, (sec) active_anon: 1427436, inactive_anon: 476060, active_file: 21112, inactive_file: 28808 (kB) File access time, round 3: 11.454, (sec) active_anon: 1420444, inactive_anon: 473632, active_file: 23216, inactive_file: 35036 (kB) File access time, round 4: 11.479, (sec) active_anon: 1413964, inactive_anon: 471460, active_file: 31728, inactive_file: 32224 (kB) pswpout: 7991449 (+ 19006), pgpgin: 489924366 (+ 11309120) With 4 processes accessing non-overlapping parts of a large file, 30316 pages swapped out with this patch, 5152 pages swapped out without this patch. The swapout number is small comparing to pgpgin. [1]: https://github.com/vovo/testing/blob/master/mem_thrash.c Link: http://lkml.kernel.org/r/20190701081038.GA83398@google.com Fixes: |
||
Shakeel Butt
|
dffcac2cb8 |
mm/vmscan.c: prevent useless kswapd loops
In production we have noticed hard lockups on large machines running
large jobs due to kswaps hoarding lru lock within isolate_lru_pages when
sc->reclaim_idx is 0 which is a small zone. The lru was couple hundred
GiBs and the condition (page_zonenum(page) > sc->reclaim_idx) in
isolate_lru_pages() was basically skipping GiBs of pages while holding
the LRU spinlock with interrupt disabled.
On further inspection, it seems like there are two issues:
(1) If kswapd on the return from balance_pgdat() could not sleep (i.e.
node is still unbalanced), the classzone_idx is unintentionally set
to 0 and the whole reclaim cycle of kswapd will try to reclaim only
the lowest and smallest zone while traversing the whole memory.
(2) Fundamentally isolate_lru_pages() is really bad when the
allocation has woken kswapd for a smaller zone on a very large machine
running very large jobs. It can hoard the LRU spinlock while skipping
over 100s of GiBs of pages.
This patch only fixes (1). (2) needs a more fundamental solution. To
fix (1), in the kswapd context, if pgdat->kswapd_classzone_idx is
invalid use the classzone_idx of the previous kswapd loop otherwise use
the one the waker has requested.
Link: http://lkml.kernel.org/r/20190701201847.251028-1-shakeelb@google.com
Fixes:
|
||
Minchan Kim
|
a58f2cef26 |
mm/vmscan.c: fix trying to reclaim unevictable LRU page
There was the below bug report from Wu Fangsuo. On the CMA allocation path, isolate_migratepages_range() could isolate unevictable LRU pages and reclaim_clean_page_from_list() can try to reclaim them if they are clean file-backed pages. page:ffffffbf02f33b40 count:86 mapcount:84 mapping:ffffffc08fa7a810 index:0x24 flags: 0x19040c(referenced|uptodate|arch_1|mappedtodisk|unevictable|mlocked) raw: 000000000019040c ffffffc08fa7a810 0000000000000024 0000005600000053 raw: ffffffc009b05b20 ffffffc009b05b20 0000000000000000 ffffffc09bf3ee80 page dumped because: VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page)) page->mem_cgroup:ffffffc09bf3ee80 ------------[ cut here ]------------ kernel BUG at /home/build/farmland/adroid9.0/kernel/linux/mm/vmscan.c:1350! Internal error: Oops - BUG: 0 [#1] PREEMPT SMP Modules linked in: CPU: 0 PID: 7125 Comm: syz-executor Tainted: G S 4.14.81 #3 Hardware name: ASR AQUILAC EVB (DT) task: ffffffc00a54cd00 task.stack: ffffffc009b00000 PC is at shrink_page_list+0x1998/0x3240 LR is at shrink_page_list+0x1998/0x3240 pc : [<ffffff90083a2158>] lr : [<ffffff90083a2158>] pstate: 60400045 sp : ffffffc009b05940 .. shrink_page_list+0x1998/0x3240 reclaim_clean_pages_from_list+0x3c0/0x4f0 alloc_contig_range+0x3bc/0x650 cma_alloc+0x214/0x668 ion_cma_allocate+0x98/0x1d8 ion_alloc+0x200/0x7e0 ion_ioctl+0x18c/0x378 do_vfs_ioctl+0x17c/0x1780 SyS_ioctl+0xac/0xc0 Wu found it's due to commit |
||
Kirill Tkhai
|
b17f18aff2 |
mm/vmscan.c: fix recent_rotated history
Johannes pointed out that after commit |
||
Johannes Weiner
|
205b20cc5a |
mm: memcontrol: make cgroup stats and events query API explicitly local
Patch series "mm: memcontrol: memory.stat cost & correctness". The cgroup memory.stat file holds recursive statistics for the entire subtree. The current implementation does this tree walk on-demand whenever the file is read. This is giving us problems in production. 1. The cost of aggregating the statistics on-demand is high. A lot of system service cgroups are mostly idle and their stats don't change between reads, yet we always have to check them. There are also always some lazily-dying cgroups sitting around that are pinned by a handful of remaining page cache; the same applies to them. In an application that periodically monitors memory.stat in our fleet, we have seen the aggregation consume up to 5% CPU time. 2. When cgroups die and disappear from the cgroup tree, so do their accumulated vm events. The result is that the event counters at higher-level cgroups can go backwards and confuse some of our automation, let alone people looking at the graphs over time. To address both issues, this patch series changes the stat implementation to spill counts upwards when the counters change. The upward spilling is batched using the existing per-cpu cache. In a sparse file stress test with 5 level cgroup nesting, the additional cost of the flushing was negligible (a little under 1% of CPU at 100% CPU utilization, compared to the 5% of reading memory.stat during regular operation). This patch (of 4): memcg_page_state(), lruvec_page_state(), memcg_sum_events() are currently returning the state of the local memcg or lruvec, not the recursive state. In practice there is a demand for both versions, although the callers that want the recursive counts currently sum them up by hand. Per default, cgroups are considered recursive entities and generally we expect more users of the recursive counters, with the local counts being special cases. To reflect that in the name, add a _local suffix to the current implementations. The following patch will re-incarnate these functions with recursive semantics, but with an O(1) implementation. [hannes@cmpxchg.org: fix bisection hole] Link: http://lkml.kernel.org/r/20190417160347.GC23013@cmpxchg.org Link: http://lkml.kernel.org/r/20190412151507.2769-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
2fa2690ca6 |
mm/vmscan.c: don't disable irq again when count pgrefill for memcg
We can use __count_memcg_events() directly because this callsite is alreay protected by spin_lock_irq(). Link: http://lkml.kernel.org/r/1556093494-30798-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
f46b79120e |
mm/vmscan.c: simplify shrink_inactive_list()
This merges together duplicated patterns of code. Also, replace count_memcg_events() with its irq-careless namesake, because they are already called in interrupts disabled context. Link: http://lkml.kernel.org/r/2ece1df4-2989-bc9b-6172-61e9fdde5bfd@virtuozzo.com Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Baoquan He <bhe@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
3481c37ffa |
mm/vmscan: drop may_writepage and classzone_idx from direct reclaim begin template
There are three tracepoints using this template, which are mm_vmscan_direct_reclaim_begin, mm_vmscan_memcg_reclaim_begin, mm_vmscan_memcg_softlimit_reclaim_begin. Regarding mm_vmscan_direct_reclaim_begin, sc.may_writepage is !laptop_mode, that's a static setting, and reclaim_idx is derived from gfp_mask which is already show in this tracepoint. Regarding mm_vmscan_memcg_reclaim_begin, may_writepage is !laptop_mode too, and reclaim_idx is (MAX_NR_ZONES-1), which are both static value. mm_vmscan_memcg_softlimit_reclaim_begin is the same with mm_vmscan_memcg_reclaim_begin. So we can drop them all. Link: http://lkml.kernel.org/r/1553736322-32235-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1a61ab8038 |
mm: memcontrol: replace zone summing with lruvec_page_state()
Instead of adding up the zone counters, use lruvec_page_state() to get the node state directly. This is a bit cheaper and more stream-lined. Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yafang Shao
|
132bb8cfc9 |
mm/vmscan: add tracepoints for node reclaim
The page alloc fast path it may perform node reclaim, which may cause a latency spike. We should add tracepoint for this event, and also measure the latency it causes. So bellow two tracepoints are introduced, mm_vmscan_node_reclaim_begin mm_vmscan_node_reclaim_end Link: http://lkml.kernel.org/r/1551421452-5385-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: <shaoyafang@didiglobal.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
a222f34158 |
mm: generalize putback scan functions
This combines two similar functions move_active_pages_to_lru() and putback_inactive_pages() into single move_pages_to_lru(). This remove duplicate code and makes object file size smaller. Before: text data bss dec hex filename 57082 4732 128 61942 f1f6 mm/vmscan.o After: text data bss dec hex filename 55112 4600 128 59840 e9c0 mm/vmscan.o Note, that now we are checking for !page_evictable() coming from shrink_active_list(), which shouldn't change any behavior since that path works with evictable pages only. Link: http://lkml.kernel.org/r/155290129627.31489.8321971028677203248.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
f372d89e5d |
mm: remove pages_to_free argument of move_active_pages_to_lru()
We may use input argument list as output argument too. This makes the function more similar to putback_inactive_pages(). Link: http://lkml.kernel.org/r/155290129079.31489.16180612694090502942.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
9851ac1359 |
mm: move nr_deactivate accounting to shrink_active_list()
We know which LRU is not active. [chris@chrisdown.name: fix build on !CONFIG_MEMCG] Link: http://lkml.kernel.org/r/20190322150513.GA22021@chrisdown.name Link: http://lkml.kernel.org/r/155290128498.31489.18250485448913338607.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: Chris Down <chris@chrisdown.name> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
886cf1901d |
mm: move recent_rotated pages calculation to shrink_inactive_list()
Patch series "mm: Generalize putback functions"] putback_inactive_pages() and move_active_pages_to_lru() are almost similar, so this patchset merges them ina single function. This patch (of 4): The patch moves the calculation from putback_inactive_pages() to shrink_inactive_list(). This makes putback_inactive_pages() looking more similar to move_active_pages_to_lru(). To do that, we account activated pages in reclaim_stat::nr_activate. Since a page may change its LRU type from anon to file cache inside shrink_page_list() (see ClearPageSwapBacked()), we have to account pages for the both types. So, nr_activate becomes an array. Previously we used nr_activate to account PGACTIVATE events, but now we account them into pgactivate variable (since they are about number of pages in general, not about sum of hpage_nr_pages). Link: http://lkml.kernel.org/r/155290127956.31489.3393586616054413298.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
0968621917 |
Printk changes for 5.2
-----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAlzP8nQACgkQUqAMR0iA lPK79A/+NkRouqA9ihAZhUbgW0DHzOAFvUJSBgX11HQAZbGjngakuoyYFvwUx0T0 m80SUTCysxQrWl+xLdccPZ9ZrhP2KFQrEBEdeYHZ6ymcYcl83+3bOIBS7VwdZAbO EzB8u/58uU/sI6ABL4lF7ZF/+R+U4CXveEUoVUF04bxdPOxZkRX4PT8u3DzCc+RK r4yhwQUXGcKrHa2GrRL3GXKsDxcnRdFef/nzq4RFSZsi0bpskzEj34WrvctV6j+k FH/R3kEcZrtKIMPOCoDMMWq07yNqK/QKj0MJlGoAlwfK4INgcrSXLOx+pAmr6BNq uMKpkxCFhnkZVKgA/GbKEGzFf+ZGz9+2trSFka9LD2Ig6DIstwXqpAgiUK8JFQYj lq1mTaJZD3DfF2vnGHGeAfBFG3XETv+mIT/ow6BcZi3NyNSVIaqa5GAR+lMc6xkR waNkcMDkzLFuP1r0p7ZizXOksk9dFkMP3M6KqJomRtApwbSNmtt+O2jvyLPvB3+w wRyN9WT7IJZYo4v0rrD5Bl6BjV15ZeCPRSFZRYofX+vhcqJQsFX1M9DeoNqokh55 Cri8f6MxGzBVjE1G70y2/cAFFvKEKJud0NUIMEuIbcy+xNrEAWPF8JhiwpKKnU10 c0u674iqHJ2HeVsYWZF0zqzqQ6E1Idhg/PrXfuVuhAaL5jIOnYY= =WZfC -----END PGP SIGNATURE----- Merge tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk Pull printk updates from Petr Mladek: - Allow state reset of printk_once() calls. - Prevent crashes when dereferencing invalid pointers in vsprintf(). Only the first byte is checked for simplicity. - Make vsprintf warnings consistent and inlined. - Treewide conversion of obsolete %pf, %pF to %ps, %pF printf modifiers. - Some clean up of vsprintf and test_printf code. * tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk: lib/vsprintf: Make function pointer_string static vsprintf: Limit the length of inlined error messages vsprintf: Avoid confusion between invalid address and value vsprintf: Prevent crash when dereferencing invalid pointers vsprintf: Consolidate handling of unknown pointer specifiers vsprintf: Factor out %pO handler as kobject_string() vsprintf: Factor out %pV handler as va_format() vsprintf: Factor out %p[iI] handler as ip_addr_string() vsprintf: Do not check address of well-known strings vsprintf: Consistent %pK handling for kptr_restrict == 0 vsprintf: Shuffle restricted_pointer() printk: Tie printk_once / printk_deferred_once into .data.once for reset treewide: Switch printk users from %pf and %pF to %ps and %pS, respectively lib/test_printf: Switch to bitmap_zalloc() |
||
Johannes Weiner
|
3b991208b8 |
mm: fix inactive list balancing between NUMA nodes and cgroups
During !CONFIG_CGROUP reclaim, we expand the inactive list size if it's
thrashing on the node that is about to be reclaimed. But when cgroups
are enabled, we suddenly ignore the node scope and use the cgroup scope
only. The result is that pressure bleeds between NUMA nodes depending
on whether cgroups are merely compiled into Linux. This behavioral
difference is unexpected and undesirable.
When the refault adaptivity of the inactive list was first introduced,
there were no statistics at the lruvec level - the intersection of node
and memcg - so it was better than nothing.
But now that we have that infrastructure, use lruvec_page_state() to
make the list balancing decision always NUMA aware.
[hannes@cmpxchg.org: fix bisection hole]
Link: http://lkml.kernel.org/r/20190417155241.GB23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412144438.2645-1-hannes@cmpxchg.org
Fixes:
|
||
Sakari Ailus
|
d75f773c86 |
treewide: Switch printk users from %pf and %pF to %ps and %pS, respectively
%pF and %pf are functionally equivalent to %pS and %ps conversion specifiers. The former are deprecated, therefore switch the current users to use the preferred variant. The changes have been produced by the following command: git grep -l '%p[fF]' | grep -v '^\(tools\|Documentation\)/' | \ while read i; do perl -i -pe 's/%pf/%ps/g; s/%pF/%pS/g;' $i; done And verifying the result. Link: http://lkml.kernel.org/r/20190325193229.23390-1-sakari.ailus@linux.intel.com Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: linux-arm-kernel@lists.infradead.org Cc: sparclinux@vger.kernel.org Cc: linux-um@lists.infradead.org Cc: xen-devel@lists.xenproject.org Cc: linux-acpi@vger.kernel.org Cc: linux-pm@vger.kernel.org Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Cc: linux-mmc@vger.kernel.org Cc: linux-nvdimm@lists.01.org Cc: linux-pci@vger.kernel.org Cc: linux-scsi@vger.kernel.org Cc: linux-btrfs@vger.kernel.org Cc: linux-f2fs-devel@lists.sourceforge.net Cc: linux-mm@kvack.org Cc: ceph-devel@vger.kernel.org Cc: netdev@vger.kernel.org Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com> Acked-by: David Sterba <dsterba@suse.com> (for btrfs) Acked-by: Mike Rapoport <rppt@linux.ibm.com> (for mm/memblock.c) Acked-by: Bjorn Helgaas <bhelgaas@google.com> (for drivers/pci) Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Petr Mladek <pmladek@suse.com> |
||
Andrey Ryabinin
|
f4b7e272b5 |
mm: remove zone_lru_lock() function, access ->lru_lock directly
We have common pattern to access lru_lock from a page pointer: zone_lru_lock(page_zone(page)) Which is silly, because it unfolds to this: &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock while we can simply do &NODE_DATA(page_to_nid(page))->lru_lock Remove zone_lru_lock() function, since it's only complicate things. Use 'page_pgdat(page)->lru_lock' pattern instead. [aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()] Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
a7ca12f9d9 |
mm/workingset: remove unused @mapping argument in workingset_eviction()
workingset_eviction() doesn't use and never did use the @mapping argument. Remove it. Link: http://lkml.kernel.org/r/20190228083329.31892-1-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@surriel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Alexey Dobriyan
|
b9726c26dc |
numa: make "nr_node_ids" unsigned int
Number of NUMA nodes can't be negative. This saves a few bytes on x86_64: add/remove: 0/0 grow/shrink: 4/21 up/down: 27/-265 (-238) Function old new delta hv_synic_alloc.cold 88 110 +22 prealloc_shrinker 260 262 +2 bootstrap 249 251 +2 sched_init_numa 1566 1567 +1 show_slab_objects 778 777 -1 s_show 1201 1200 -1 kmem_cache_init 346 345 -1 __alloc_workqueue_key 1146 1145 -1 mem_cgroup_css_alloc 1614 1612 -2 __do_sys_swapon 4702 4699 -3 __list_lru_init 655 651 -4 nic_probe 2379 2374 -5 store_user_store 118 111 -7 red_zone_store 106 99 -7 poison_store 106 99 -7 wq_numa_init 348 338 -10 __kmem_cache_empty 75 65 -10 task_numa_free 186 173 -13 merge_across_nodes_store 351 336 -15 irq_create_affinity_masks 1261 1246 -15 do_numa_crng_init 343 321 -22 task_numa_fault 4760 4737 -23 swapfile_init 179 156 -23 hv_synic_alloc 536 492 -44 apply_wqattrs_prepare 746 695 -51 Link: http://lkml.kernel.org/r/20190201223029.GA15820@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
060f005f07 |
mm/vmscan.c: do not allocate duplicate stack variables in shrink_page_list()
On path shrink_inactive_list() ---> shrink_page_list() we allocate stack variables for the statistics twice. This is completely useless, and this just consumes stack much more, then we really need. The patch kills duplicate stack variables from shrink_page_list(), and this reduce stack usage and object file size significantly: Stack usage: Before: vmscan.c:1122:22:shrink_page_list 648 static After: vmscan.c:1122:22:shrink_page_list 616 static Size of vmscan.o: text data bss dec hex filename Before: 56866 4720 128 61714 f112 mm/vmscan.o After: 56770 4720 128 61618 f0b2 mm/vmscan.o Link: http://lkml.kernel.org/r/154894900030.5211.12104993874109647641.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yang Shi
|
2bb0f34fe3 |
mm: vmscan: do not iterate all mem cgroups for global direct reclaim
In current implementation, both kswapd and direct reclaim has to iterate all mem cgroups. It is not a problem before offline mem cgroups could be iterated. But, currently with iterating offline mem cgroups, it could be very time consuming. In our workloads, we saw over 400K mem cgroups accumulated in some cases, only a few hundred are online memcgs. Although kswapd could help out to reduce the number of memcgs, direct reclaim still get hit with iterating a number of offline memcgs in some cases. We experienced the responsiveness problems due to this occassionally. A simple test with pref shows it may take around 220ms to iterate 8K memcgs in direct reclaim: dd 13873 [011] 578.542919: vmscan:mm_vmscan_direct_reclaim_begin dd 13873 [011] 578.758689: vmscan:mm_vmscan_direct_reclaim_end So for 400K, it may take around 11 seconds to iterate all memcgs. Here just break the iteration once it reclaims enough pages as what memcg direct reclaim does. This may hurt the fairness among memcgs. But the cached iterator cookie could help to achieve the fairness more or less. Link: http://lkml.kernel.org/r/1548799877-10949-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
a9e7c39fa9 |
mm/vmscan.c: remove 7th argument of isolate_lru_pages()
We may simply check for sc->may_unmap in isolate_lru_pages() instead of doing that in both of its callers. Link: http://lkml.kernel.org/r/154748280735.29962.15867846875217618569.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Wei Yang
|
8bb4e7a2ee |
mm: fix some typos in mm directory
No functional change. Link: http://lkml.kernel.org/r/20190118235123.27843-1-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dave Chinner
|
a9a238e83f |
Revert "mm: slowly shrink slabs with a relatively small number of objects"
This reverts commit |
||
Hugh Dickins
|
9a1ea439b1 |
mm: put_and_wait_on_page_locked() while page is migrated
Waiting on a page migration entry has used wait_on_page_locked() all along since 2006: but you cannot safely wait_on_page_locked() without holding a reference to the page, and that extra reference is enough to make migrate_page_move_mapping() fail with -EAGAIN, when a racing task faults on the entry before migrate_page_move_mapping() gets there. And that failure is retried nine times, amplifying the pain when trying to migrate a popular page. With a single persistent faulter, migration sometimes succeeds; with two or three concurrent faulters, success becomes much less likely (and the more the page was mapped, the worse the overhead of unmapping and remapping it on each try). This is especially a problem for memory offlining, where the outer level retries forever (or until terminated from userspace), because a heavy refault workload can trigger an endless loop of migration failures. wait_on_page_locked() is the wrong tool for the job. David Herrmann (but was he the first?) noticed this issue in 2014: https://marc.info/?l=linux-mm&m=140110465608116&w=2 Tim Chen started a thread in August 2017 which appears relevant: https://marc.info/?l=linux-mm&m=150275941014915&w=2 where Kan Liang went on to implicate __migration_entry_wait(): https://marc.info/?l=linux-mm&m=150300268411980&w=2 and the thread ended up with the v4.14 commits: |
||
Mel Gorman
|
1c30844d2d |
mm: reclaim small amounts of memory when an external fragmentation event occurs
An external fragmentation event was previously described as When the page allocator fragments memory, it records the event using the mm_page_alloc_extfrag event. If the fallback_order is smaller than a pageblock order (order-9 on 64-bit x86) then it's considered an event that will cause external fragmentation issues in the future. The kernel reduces the probability of such events by increasing the watermark sizes by calling set_recommended_min_free_kbytes early in the lifetime of the system. This works reasonably well in general but if there are enough sparsely populated pageblocks then the problem can still occur as enough memory is free overall and kswapd stays asleep. This patch introduces a watermark_boost_factor sysctl that allows a zone watermark to be temporarily boosted when an external fragmentation causing events occurs. The boosting will stall allocations that would decrease free memory below the boosted low watermark and kswapd is woken if the calling context allows to reclaim an amount of memory relative to the size of the high watermark and the watermark_boost_factor until the boost is cleared. When kswapd finishes, it wakes kcompactd at the pageblock order to clean some of the pageblocks that may have been affected by the fragmentation event. kswapd avoids any writeback, slab shrinkage and swap from reclaim context during this operation to avoid excessive system disruption in the name of fragmentation avoidance. Care is taken so that kswapd will do normal reclaim work if the system is really low on memory. This was evaluated using the same workloads as "mm, page_alloc: Spread allocations across zones before introducing fragmentation". 1-socket Skylake machine config-global-dhp__workload_thpfioscale XFS (no special madvise) 4 fio threads, 1 THP allocating thread -------------------------------------- 4.20-rc3 extfrag events < order 9: 804694 4.20-rc3+patch: 408912 (49% reduction) 4.20-rc3+patch1-4: 18421 (98% reduction) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Amean fault-base-1 653.58 ( 0.00%) 652.71 ( 0.13%) Amean fault-huge-1 0.00 ( 0.00%) 178.93 * -99.00%* 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-1 0.00 ( 0.00%) 5.12 ( 100.00%) Note that external fragmentation causing events are massively reduced by this path whether in comparison to the previous kernel or the vanilla kernel. The fault latency for huge pages appears to be increased but that is only because THP allocations were successful with the patch applied. 1-socket Skylake machine global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE) ----------------------------------------------------------------- 4.20-rc3 extfrag events < order 9: 291392 4.20-rc3+patch: 191187 (34% reduction) 4.20-rc3+patch1-4: 13464 (95% reduction) thpfioscale Fault Latencies 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Min fault-base-1 912.00 ( 0.00%) 905.00 ( 0.77%) Min fault-huge-1 127.00 ( 0.00%) 135.00 ( -6.30%) Amean fault-base-1 1467.55 ( 0.00%) 1481.67 ( -0.96%) Amean fault-huge-1 1127.11 ( 0.00%) 1063.88 * 5.61%* 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-1 77.64 ( 0.00%) 83.46 ( 7.49%) As before, massive reduction in external fragmentation events, some jitter on latencies and an increase in THP allocation success rates. 2-socket Haswell machine config-global-dhp__workload_thpfioscale XFS (no special madvise) 4 fio threads, 5 THP allocating threads ---------------------------------------------------------------- 4.20-rc3 extfrag events < order 9: 215698 4.20-rc3+patch: 200210 (7% reduction) 4.20-rc3+patch1-4: 14263 (93% reduction) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Amean fault-base-5 1346.45 ( 0.00%) 1306.87 ( 2.94%) Amean fault-huge-5 3418.60 ( 0.00%) 1348.94 ( 60.54%) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-5 0.78 ( 0.00%) 7.91 ( 910.64%) There is a 93% reduction in fragmentation causing events, there is a big reduction in the huge page fault latency and allocation success rate is higher. 2-socket Haswell machine global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE) ----------------------------------------------------------------- 4.20-rc3 extfrag events < order 9: 166352 4.20-rc3+patch: 147463 (11% reduction) 4.20-rc3+patch1-4: 11095 (93% reduction) thpfioscale Fault Latencies 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Amean fault-base-5 6217.43 ( 0.00%) 7419.67 * -19.34%* Amean fault-huge-5 3163.33 ( 0.00%) 3263.80 ( -3.18%) 4.20.0-rc3 4.20.0-rc3 lowzone-v5r8 boost-v5r8 Percentage huge-5 95.14 ( 0.00%) 87.98 ( -7.53%) There is a large reduction in fragmentation events with some jitter around the latencies and success rates. As before, the high THP allocation success rate does mean the system is under a lot of pressure. However, as the fragmentation events are reduced, it would be expected that the long-term allocation success rate would be higher. Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jani Nikula
|
2ac5e38ea4 |
Merge drm/drm-next into drm-intel-next-queued
Pull in v4.20-rc3 via drm-next. Signed-off-by: Jani Nikula <jani.nikula@intel.com> |
||
Kuo-Hsin Yang
|
64e3d12f76 |
mm, drm/i915: mark pinned shmemfs pages as unevictable
The i915 driver uses shmemfs to allocate backing storage for gem objects. These shmemfs pages can be pinned (increased ref count) by shmem_read_mapping_page_gfp(). When a lot of pages are pinned, vmscan wastes a lot of time scanning these pinned pages. In some extreme case, all pages in the inactive anon lru are pinned, and only the inactive anon lru is scanned due to inactive_ratio, the system cannot swap and invokes the oom-killer. Mark these pinned pages as unevictable to speed up vmscan. Export pagevec API check_move_unevictable_pages(). This patch was inspired by Chris Wilson's change [1]. [1]: https://patchwork.kernel.org/patch/9768741/ Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Kuo-Hsin Yang <vovoy@chromium.org> Acked-by: Michal Hocko <mhocko@suse.com> # mm part Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Andrew Morton <akpm@linux-foundation.org> Link: https://patchwork.freedesktop.org/patch/msgid/20181106132324.17390-1-chris@chris-wilson.co.uk Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> |
||
Linus Torvalds
|
dad4f140ed |
Merge branch 'xarray' of git://git.infradead.org/users/willy/linux-dax
Pull XArray conversion from Matthew Wilcox: "The XArray provides an improved interface to the radix tree data structure, providing locking as part of the API, specifying GFP flags at allocation time, eliminating preloading, less re-walking the tree, more efficient iterations and not exposing RCU-protected pointers to its users. This patch set 1. Introduces the XArray implementation 2. Converts the pagecache to use it 3. Converts memremap to use it The page cache is the most complex and important user of the radix tree, so converting it was most important. Converting the memremap code removes the only other user of the multiorder code, which allows us to remove the radix tree code that supported it. I have 40+ followup patches to convert many other users of the radix tree over to the XArray, but I'd like to get this part in first. The other conversions haven't been in linux-next and aren't suitable for applying yet, but you can see them in the xarray-conv branch if you're interested" * 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits) radix tree: Remove multiorder support radix tree test: Convert multiorder tests to XArray radix tree tests: Convert item_delete_rcu to XArray radix tree tests: Convert item_kill_tree to XArray radix tree tests: Move item_insert_order radix tree test suite: Remove multiorder benchmarking radix tree test suite: Remove __item_insert memremap: Convert to XArray xarray: Add range store functionality xarray: Move multiorder_check to in-kernel tests xarray: Move multiorder_shrink to kernel tests xarray: Move multiorder account test in-kernel radix tree test suite: Convert iteration test to XArray radix tree test suite: Convert tag_tagged_items to XArray radix tree: Remove radix_tree_clear_tags radix tree: Remove radix_tree_maybe_preload_order radix tree: Remove split/join code radix tree: Remove radix_tree_update_node_t page cache: Finish XArray conversion dax: Convert page fault handlers to XArray ... |
||
Johannes Weiner
|
4b85afbdac |
mm: zero-seek shrinkers
The page cache and most shrinkable slab caches hold data that has been read from disk, but there are some caches that only cache CPU work, such as the dentry and inode caches of procfs and sysfs, as well as the subset of radix tree nodes that track non-resident page cache. Currently, all these are shrunk at the same rate: using DEFAULT_SEEKS for the shrinker's seeks setting tells the reclaim algorithm that for every two page cache pages scanned it should scan one slab object. This is a bogus setting. A virtual inode that required no IO to create is not twice as valuable as a page cache page; shadow cache entries with eviction distances beyond the size of memory aren't either. In most cases, the behavior in practice is still fine. Such virtual caches don't tend to grow and assert themselves aggressively, and usually get picked up before they cause problems. But there are scenarios where that's not true. Our database workloads suffer from two of those. For one, their file workingset is several times bigger than available memory, which has the kernel aggressively create shadow page cache entries for the non-resident parts of it. The workingset code does tell the VM that most of these are expendable, but the VM ends up balancing them 2:1 to cache pages as per the seeks setting. This is a huge waste of memory. These workloads also deal with tens of thousands of open files and use /proc for introspection, which ends up growing the proc_inode_cache to absurdly large sizes - again at the cost of valuable cache space, which isn't a reasonable trade-off, given that proc inodes can be re-created without involving the disk. This patch implements a "zero-seek" setting for shrinkers that results in a target ratio of 0:1 between their objects and IO-backed caches. This allows such virtual caches to grow when memory is available (they do cache/avoid CPU work after all), but effectively disables them as soon as IO-backed objects are under pressure. It then switches the shrinkers for procfs and sysfs metadata, as well as excess page cache shadow nodes, to the new zero-seek setting. Link: http://lkml.kernel.org/r/20181009184732.762-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Domas Mituzas <dmituzas@fb.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
eb414681d5 |
psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard to tell exactly the impact this has on workload productivity, or how close the system is to lockups and OOM kills. In particular, when machines work multiple jobs concurrently, the impact of overcommit in terms of latency and throughput on the individual job can be enormous. In order to maximize hardware utilization without sacrificing individual job health or risk complete machine lockups, this patch implements a way to quantify resource pressure in the system. A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that expose the percentage of time the system is stalled on CPU, memory, or IO, respectively. Stall states are aggregate versions of the per-task delay accounting delays: cpu: some tasks are runnable but not executing on a CPU memory: tasks are reclaiming, or waiting for swapin or thrashing cache io: tasks are waiting for io completions These percentages of walltime can be thought of as pressure percentages, and they give a general sense of system health and productivity loss incurred by resource overcommit. They can also indicate when the system is approaching lockup scenarios and OOMs. To do this, psi keeps track of the task states associated with each CPU and samples the time they spend in stall states. Every 2 seconds, the samples are averaged across CPUs - weighted by the CPUs' non-idle time to eliminate artifacts from unused CPUs - and translated into percentages of walltime. A running average of those percentages is maintained over 10s, 1m, and 5m periods (similar to the loadaverage). [hannes@cmpxchg.org: doc fixlet, per Randy] Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org [hannes@cmpxchg.org: code optimization] Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org [hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter] Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org [hannes@cmpxchg.org: fix build] Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1899ad18c6 |
mm: workingset: tell cache transitions from workingset thrashing
Refaults happen during transitions between workingsets as well as in-place thrashing. Knowing the difference between the two has a range of applications, including measuring the impact of memory shortage on the system performance, as well as the ability to smarter balance pressure between the filesystem cache and the swap-backed workingset. During workingset transitions, inactive cache refaults and pushes out established active cache. When that active cache isn't stale, however, and also ends up refaulting, that's bonafide thrashing. Introduce a new page flag that tells on eviction whether the page has been active or not in its lifetime. This bit is then stored in the shadow entry, to classify refaults as transitioning or thrashing. How many page->flags does this leave us with on 32-bit? 20 bits are always page flags 21 if you have an MMU 23 with the zone bits for DMA, Normal, HighMem, Movable 29 with the sparsemem section bits 30 if PAE is enabled 31 with this patch. So on 32-bit PAE, that leaves 1 bit for distinguishing two NUMA nodes. If that's not enough, the system can switch to discontigmem and re-gain the 6 or 7 sparsemem section bits. Link: http://lkml.kernel.org/r/20180828172258.3185-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
68600f623d |
mm: don't miss the last page because of round-off error
I've noticed, that dying memory cgroups are often pinned in memory by a single pagecache page. Even under moderate memory pressure they sometimes stayed in such state for a long time. That looked strange. My investigation showed that the problem is caused by applying the LRU pressure balancing math: scan = div64_u64(scan * fraction[lru], denominator), where denominator = fraction[anon] + fraction[file] + 1. Because fraction[lru] is always less than denominator, if the initial scan size is 1, the result is always 0. This means the last page is not scanned and has no chances to be reclaimed. Fix this by rounding up the result of the division. In practice this change significantly improves the speed of dying cgroups reclaim. [guro@fb.com: prevent double calculation of DIV64_U64_ROUND_UP() arguments] Link: http://lkml.kernel.org/r/20180829213311.GA13501@castle Link: http://lkml.kernel.org/r/20180827162621.30187-3-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Matthew Wilcox
|
67891ffff2 |
mm: Convert is_page_cache_freeable to XArray
This is just a variable rename and comment change. Signed-off-by: Matthew Wilcox <willy@infradead.org> |
||
Matthew Wilcox
|
4e17ec250f |
mm: Convert delete_from_swap_cache to XArray
Both callers of __delete_from_swap_cache have the swp_entry_t already, so pass that in to make constructing the XA_STATE easier. Signed-off-by: Matthew Wilcox <willy@infradead.org> |
||
Kirill Tkhai
|
b8e57efa2c |
mm/vmscan.c: fix int overflow in callers of do_shrink_slab()
do_shrink_slab() returns unsigned long value, and the placing into int variable cuts high bytes off. Then we compare ret and 0xfffffffe (since SHRINK_EMPTY is converted to ret type). Thus a large number of objects returned by do_shrink_slab() may be interpreted as SHRINK_EMPTY, if low bytes of their value are equal to 0xfffffffe. Fix that by declaration ret as unsigned long in these functions. Link: http://lkml.kernel.org/r/153813407177.17544.14888305435570723973.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reported-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: Cyrill Gorcunov <gorcunov@openvz.org> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Roman Gushchin
|
172b06c32b |
mm: slowly shrink slabs with a relatively small number of objects
|
||
Jiang Biao
|
1c4c3b99c0 |
mm: fix page_freeze_refs and page_unfreeze_refs in comments
page_freeze_refs/page_unfreeze_refs have already been relplaced by page_ref_freeze/page_ref_unfreeze , but they are not modified in the comments. Link: http://lkml.kernel.org/r/1532590226-106038-1-git-send-email-jiang.biao2@zte.com.cn Signed-off-by: Jiang Biao <jiang.biao2@zte.com.cn> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
8df4a44cc4 |
mm: check shrinker is memcg-aware in register_shrinker_prepared()
There is a sad BUG introduced in patch adding SHRINKER_REGISTERING.
shrinker_idr business is only for memcg-aware shrinkers. Only such type
of shrinkers have id and they must be finaly installed via idr_replace()
in this function. For !memcg-aware shrinkers we never initialize
shrinker->id field.
But there are all types of shrinkers passed to idr_replace(), and every
!memcg-aware shrinker with random ID (most probably, its id is 0)
replaces memcg-aware shrinker pointed by the ID in IDR.
This patch fixes the problem.
Link: http://lkml.kernel.org/r/8ff8a793-8211-713a-4ed9-d6e52390c2fc@virtuozzo.com
Fixes:
|
||
Kirill Tkhai
|
7e010df53c |
mm: use special value SHRINKER_REGISTERING instead of list_empty() check
The patch introduces a special value SHRINKER_REGISTERING to use instead of list_empty() to differ a registering shrinker from unregistered shrinker. Why we need that at all? Shrinker registration is split in two parts. The first one is prealloc_shrinker(), which allocates shrinker memory and reserves ID in shrinker_idr. This function can fail. The second is register_shrinker_prepared(), and it finalizes the registration. This function actually makes shrinker available to be used from shrink_slab(), and it can't fail. One shrinker may be based on more then one LRU lists. So, we never clear the bit in memcg shrinker maps, when (one of) corresponding LRU list becomes empty, since other LRU lists may be not empty. See superblock shrinker for example: it is based on two LRU lists: s_inode_lru and s_dentry_lru. We do not want to clear shrinker bit, when there are no inodes in s_inode_lru, as s_dentry_lru may contain dentries. Instead of that, we use special algorithm to detect shrinkers having no elements at all its LRU lists, and this is made in shrink_slab_memcg(). See the comment in this function for the details. Also, in shrink_slab_memcg() we clear shrinker bit in the map, when we meet unregistered shrinker (bit is set, while there is no a shrinker in IDR). Otherwise, we would have done that at the moment of shrinker unregistration for all memcgs (and this looks worse, since iteration over all memcg may take much time). Also this would have imposed restrictions on shrinker unregistration order for its users: they would have had to guarantee, there are no new elements after unregister_shrinker() (otherwise, a new added element would have set a bit). So, if we meet a set bit in map and no shrinker in IDR when we're iterating over the map in shrink_slab_memcg(), this means the corresponding shrinker is unregistered, and we must clear the bit. Another case is shrinker registration. We want two things there: 1) do_shrink_slab() can be called only for completely registered shrinkers; 2) shrinker internal lists may be populated in any order with register_shrinker_prepared() (let's talk on the example with sb). Both of: a)list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru); [cpu0] memcg_set_shrinker_bit(); [cpu0] ... register_shrinker_prepared(); [cpu1] and b)register_shrinker_prepared(); [cpu0] ... list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru); [cpu1] memcg_set_shrinker_bit(); [cpu1] are legitimate. We don't want to impose restriction here and to force people to use only (b) variant. We don't want to force people to care, there is no elements in LRU lists before the shrinker is completely registered. Internal users of LRU lists and shrinker code are two different subsystems, and they have to be closed in themselves each other. In (a) case we have the bit set before shrinker is completely registered. We don't want do_shrink_slab() is called at this moment, so we have to detect such the registering shrinkers. Before this patch list_empty() (shrinker is not linked to the list) check was used for that. So, in (a) there could be a bit set, but we don't call do_shrink_slab() unless shrinker is linked to the list. It's just an indicator, I just overloaded linking to the list. This was not the best solution, since it's better not to touch the shrinker memory from shrink_slab_memcg() before it's completely registered (this also will be useful in the future to make shrink_slab() completely lockless). So, this patch introduces better way to detect registering shrinker, which allows not to dereference shrinker memory. It's just a ~0UL value, which we insert into the IDR during ID allocation. After shrinker is ready to be used, we insert actual shrinker pointer in the IDR, and it becomes available to shrink_slab_memcg(). We can't use NULL instead of this new value for this purpose as: shrink_slab_memcg() already uses NULL to detect unregistered shrinkers, and we don't want the function sees NULL and clears the bit, otherwise (a) won't work. This is the only thing the patch makes: the better way to detect registering shrinker. Nothing else this patch makes. Also this gives a better assembler, but it's minor side of the patch: Before: callq <idr_find> mov %rax,%r15 test %rax,%rax je <shrink_slab_memcg+0x1d5> mov 0x20(%rax),%rax lea 0x20(%r15),%rdx cmp %rax,%rdx je <shrink_slab_memcg+0xbd> mov 0x8(%rsp),%edx mov %r15,%rsi lea 0x10(%rsp),%rdi callq <do_shrink_slab> After: callq <idr_find> mov %rax,%r15 lea -0x1(%rax),%rax cmp $0xfffffffffffffffd,%rax ja <shrink_slab_memcg+0x1cd> mov 0x8(%rsp),%edx mov %r15,%rsi lea 0x10(%rsp),%rdi callq ffffffff810cefd0 <do_shrink_slab> [ktkhai@virtuozzo.com: add #ifdef CONFIG_MEMCG_KMEM around idr_replace()] Link: http://lkml.kernel.org/r/758b8fec-7573-47eb-b26a-7b2847ae7b8c@virtuozzo.com Link: http://lkml.kernel.org/r/153355467546.11522.4518015068123480218.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Matthew Wilcox <willy@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Josef Bacik <jbacik@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
ac7fb3ad27 |
mm/vmscan.c: move check for SHRINKER_NUMA_AWARE to do_shrink_slab()
In case of shrink_slab_memcg() we do not zero nid, when shrinker is not numa-aware. This is not a real problem, since currently all memcg-aware shrinkers are numa-aware too (we have two: super_block shrinker and workingset shrinker), but something may change in the future. Link: http://lkml.kernel.org/r/153320759911.18959.8842396230157677671.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Matthew Wilcox <willy@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Josef Bacik <jbacik@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
f90280d6b7 |
mm/vmscan.c: clear shrinker bit if there are no objects related to memcg
To avoid further unneed calls of do_shrink_slab() for shrinkers, which already do not have any charged objects in a memcg, their bits have to be cleared. This patch introduces a lockless mechanism to do that without races without parallel list lru add. After do_shrink_slab() returns SHRINK_EMPTY the first time, we clear the bit and call it once again. Then we restore the bit, if the new return value is different. Note, that single smp_mb__after_atomic() in shrink_slab_memcg() covers two situations: 1)list_lru_add() shrink_slab_memcg list_add_tail() for_each_set_bit() <--- read bit do_shrink_slab() <--- missed list update (no barrier) <MB> <MB> set_bit() do_shrink_slab() <--- seen list update This situation, when the first do_shrink_slab() sees set bit, but it doesn't see list update (i.e., race with the first element queueing), is rare. So we don't add <MB> before the first call of do_shrink_slab() instead of this to do not slow down generic case. Also, it's need the second call as seen in below in (2). 2)list_lru_add() shrink_slab_memcg() list_add_tail() ... set_bit() ... ... for_each_set_bit() do_shrink_slab() do_shrink_slab() clear_bit() ... ... ... list_lru_add() ... list_add_tail() clear_bit() <MB> <MB> set_bit() do_shrink_slab() The barriers guarantee that the second do_shrink_slab() in the right side task sees list update if really cleared the bit. This case is drawn in the code comment. [Results/performance of the patchset] After the whole patchset applied the below test shows signify increase of performance: $echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy $mkdir /sys/fs/cgroup/memory/ct $echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes $for i in `seq 0 4000`; do mkdir /sys/fs/cgroup/memory/ct/$i; echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs; mkdir -p s/$i; mount -t tmpfs $i s/$i; touch s/$i/file; done Then, 5 sequential calls of drop caches: $time echo 3 > /proc/sys/vm/drop_caches 1)Before: 0.00user 13.78system 0:13.78elapsed 99%CPU 0.00user 5.59system 0:05.60elapsed 99%CPU 0.00user 5.48system 0:05.48elapsed 99%CPU 0.00user 8.35system 0:08.35elapsed 99%CPU 0.00user 8.34system 0:08.35elapsed 99%CPU 2)After 0.00user 1.10system 0:01.10elapsed 99%CPU 0.00user 0.00system 0:00.01elapsed 64%CPU 0.00user 0.01system 0:00.01elapsed 82%CPU 0.00user 0.00system 0:00.01elapsed 64%CPU 0.00user 0.01system 0:00.01elapsed 82%CPU The results show the performance increases at least in 548 times. Shakeel Butt tested this patchset with fork-bomb on his configuration: > I created 255 memcgs, 255 ext4 mounts and made each memcg create a > file containing few KiBs on corresponding mount. Then in a separate > memcg of 200 MiB limit ran a fork-bomb. > > I ran the "perf record -ag -- sleep 60" and below are the results: > > Without the patch series: > Samples: 4M of event 'cycles', Event count (approx.): 3279403076005 > + 36.40% fb.sh [kernel.kallsyms] [k] shrink_slab > + 18.97% fb.sh [kernel.kallsyms] [k] list_lru_count_one > + 6.75% fb.sh [kernel.kallsyms] [k] super_cache_count > + 0.49% fb.sh [kernel.kallsyms] [k] down_read_trylock > + 0.44% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter > + 0.27% fb.sh [kernel.kallsyms] [k] up_read > + 0.21% fb.sh [kernel.kallsyms] [k] osq_lock > + 0.13% fb.sh [kernel.kallsyms] [k] shmem_unused_huge_count > + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node_memcg > + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node > > With the patch series: > Samples: 4M of event 'cycles', Event count (approx.): 2756866824946 > + 47.49% fb.sh [kernel.kallsyms] [k] down_read_trylock > + 30.72% fb.sh [kernel.kallsyms] [k] up_read > + 9.51% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter > + 1.69% fb.sh [kernel.kallsyms] [k] shrink_node_memcg > + 1.35% fb.sh [kernel.kallsyms] [k] mem_cgroup_protected > + 1.05% fb.sh [kernel.kallsyms] [k] queued_spin_lock_slowpath > + 0.85% fb.sh [kernel.kallsyms] [k] _raw_spin_lock > + 0.78% fb.sh [kernel.kallsyms] [k] lruvec_lru_size > + 0.57% fb.sh [kernel.kallsyms] [k] shrink_node > + 0.54% fb.sh [kernel.kallsyms] [k] queue_work_on > + 0.46% fb.sh [kernel.kallsyms] [k] shrink_slab_memcg [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112561772.4097.11011071937553113003.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063070859.1818.11870882950920963480.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
9b996468cf |
mm: add SHRINK_EMPTY shrinker methods return value
We need to distinguish the situations when shrinker has very small amount of objects (see vfs_pressure_ratio() called from super_cache_count()), and when it has no objects at all. Currently, in the both of these cases, shrinker::count_objects() returns 0. The patch introduces new SHRINK_EMPTY return value, which will be used for "no objects at all" case. It's is a refactoring mostly, as SHRINK_EMPTY is replaced by 0 by all callers of do_shrink_slab() in this patch, and all the magic will happen in further. Link: http://lkml.kernel.org/r/153063069574.1818.11037751256699341813.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vladimir Davydov
|
aeed1d325d |
mm/vmscan.c: generalize shrink_slab() calls in shrink_node()
The patch makes shrink_slab() be called for root_mem_cgroup in the same way as it's called for the rest of cgroups. This simplifies the logic and improves the readability. [ktkhai@virtuozzo.com: wrote changelog] Link: http://lkml.kernel.org/r/153063068338.1818.11496084754797453962.stgit@localhost.localdomain Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
b0dedc49a2 |
mm/vmscan.c: iterate only over charged shrinkers during memcg shrink_slab()
Using the preparations made in previous patches, in case of memcg shrink, we may avoid shrinkers, which are not set in memcg's shrinkers bitmap. To do that, we separate iterations over memcg-aware and !memcg-aware shrinkers, and memcg-aware shrinkers are chosen via for_each_set_bit() from the bitmap. In case of big nodes, having many isolated environments, this gives significant performance growth. See next patches for the details. Note that the patch does not respect to empty memcg shrinkers, since we never clear the bitmap bits after we set it once. Their shrinkers will be called again, with no shrinked objects as result. This functionality is provided by next patches. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112558507.4097.12713813335683345488.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063066653.1818.976035462801487910.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
0a4465d340 |
mm, memcg: assign memcg-aware shrinkers bitmap to memcg
Imagine a big node with many cpus, memory cgroups and containers. Let we have 200 containers, every container has 10 mounts, and 10 cgroups. All container tasks don't touch foreign containers mounts. If there is intensive pages write, and global reclaim happens, a writing task has to iterate over all memcgs to shrink slab, before it's able to go to shrink_page_list(). Iteration over all the memcg slabs is very expensive: the task has to visit 200 * 10 = 2000 shrinkers for every memcg, and since there are 2000 memcgs, the total calls are 2000 * 2000 = 4000000. So, the shrinker makes 4 million do_shrink_slab() calls just to try to isolate SWAP_CLUSTER_MAX pages in one of the actively writing memcg via shrink_page_list(). I've observed a node spending almost 100% in kernel, making useless iteration over already shrinked slab. This patch adds bitmap of memcg-aware shrinkers to memcg. The size of the bitmap depends on bitmap_nr_ids, and during memcg life it's maintained to be enough to fit bitmap_nr_ids shrinkers. Every bit in the map is related to corresponding shrinker id. Next patches will maintain set bit only for really charged memcg. This will allow shrink_slab() to increase its performance in significant way. See the last patch for the numbers. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112549031.4097.3576147070498769979.stgit@localhost.localdomain [ktkhai@virtuozzo.com: add comment to mem_cgroup_css_online()] Link: http://lkml.kernel.org/r/521f9e5f-c436-b388-fe83-4dc870bfb489@virtuozzo.com Link: http://lkml.kernel.org/r/153063056619.1818.12550500883688681076.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill Tkhai
|
b4c2b231c3 |
mm: assign id to every memcg-aware shrinker
Introduce shrinker::id number, which is used to enumerate memcg-aware shrinkers. The number start from 0, and the code tries to maintain it as small as possible. This will be used to represent a memcg-aware shrinkers in memcg shrinkers map. Since all memcg-aware shrinkers are based on list_lru, which is per-memcg in case of !CONFIG_MEMCG_KMEM only, the new functionality will be under this config option. [ktkhai@virtuozzo.com: v9] Link: http://lkml.kernel.org/r/153112546435.4097.10607140323811756557.stgit@localhost.localdomain Link: http://lkml.kernel.org/r/153063054586.1818.6041047871606697364.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Tested-by: Shakeel Butt <shakeelb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <jbacik@fb.com> Cc: Li RongQing <lirongqing@baidu.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Roman Gushchin <guro@fb.com> Cc: Sahitya Tummala <stummala@codeaurora.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Thelen
|
bb451fdf3d |
mm/vmscan.c: condense scan_control
Use smaller scan_control fields for order, priority, and reclaim_idx.
Convert fields from int => s8. All easily fit within a byte:
- allocation order range: 0..MAX_ORDER(64?)
- priority range: 0..12(DEF_PRIORITY)
- reclaim_idx range: 0..6(__MAX_NR_ZONES)
Since
|
||
Roman Gushchin
|
bf8d5d52ff |
memcg: introduce memory.min
Memory controller implements the memory.low best-effort memory protection mechanism, which works perfectly in many cases and allows protecting working sets of important workloads from sudden reclaim. But its semantics has a significant limitation: it works only as long as there is a supply of reclaimable memory. This makes it pretty useless against any sort of slow memory leaks or memory usage increases. This is especially true for swapless systems. If swap is enabled, memory soft protection effectively postpones problems, allowing a leaking application to fill all swap area, which makes no sense. The only effective way to guarantee the memory protection in this case is to invoke the OOM killer. It's possible to handle this case in userspace by reacting on MEMCG_LOW events; but there is still a place for a fail-safe in-kernel mechanism to provide stronger guarantees. This patch introduces the memory.min interface for cgroup v2 memory controller. It works very similarly to memory.low (sharing the same hierarchical behavior), except that it's not disabled if there is no more reclaimable memory in the system. If cgroup is not populated, its memory.min is ignored, because otherwise even the OOM killer wouldn't be able to reclaim the protected memory, and the system can stall. [guro@fb.com: s/low/min/ in docs] Link: http://lkml.kernel.org/r/20180510130758.GA9129@castle.DHCP.thefacebook.com Link: http://lkml.kernel.org/r/20180509180734.GA4856@castle.DHCP.thefacebook.com Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Omar Sandoval
|
93781325da |
lockdep: fix fs_reclaim annotation
While revisiting my Btrfs swapfile series [1], I introduced a situation
in which reclaim would lock i_rwsem, and even though the swapon() path
clearly made GFP_KERNEL allocations while holding i_rwsem, I got no
complaints from lockdep. It turns out that the rework of the fs_reclaim
annotation was broken: if the current task has PF_MEMALLOC set, we don't
acquire the dummy fs_reclaim lock, but when reclaiming we always check
this _after_ we've just set the PF_MEMALLOC flag. In most cases, we can
fix this by moving the fs_reclaim_{acquire,release}() outside of the
memalloc_noreclaim_{save,restore}(), althought kswapd is slightly
different. After applying this, I got the expected lockdep splats.
1: https://lwn.net/Articles/625412/
Link: http://lkml.kernel.org/r/9f8aa70652a98e98d7c4de0fc96a4addcee13efe.1523778026.git.osandov@fb.com
Fixes:
|
||
Hugh Dickins
|
145e1a71e0 |
mm: fix the NULL mapping case in __isolate_lru_page()
George Boole would have noticed a slight error in 4.16 commit |
||
Tetsuo Handa
|
8e04944f0e |
mm,vmscan: Allow preallocating memory for register_shrinker().
syzbot is catching so many bugs triggered by commit
|
||
Matthew Wilcox
|
b93b016313 |
page cache: use xa_lock
Remove the address_space ->tree_lock and use the xa_lock newly added to the radix_tree_root. Rename the address_space ->page_tree to ->i_pages, since we don't really care that it's a tree. [willy@infradead.org: fix nds32, fs/dax.c] Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Acked-by: Jeff Layton <jlayton@redhat.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
e27be240df |
mm: memcg: make sure memory.events is uptodate when waking pollers
Commit |
||
Steven Rostedt
|
d51d1e6450 |
mm, vmscan, tracing: use pointer to reclaim_stat struct in trace event
The trace event trace_mm_vmscan_lru_shrink_inactive() currently has 12 parameters! Seven of them are from the reclaim_stat structure. This structure is currently local to mm/vmscan.c. By moving it to the global vmstat.h header, we can also reference it from the vmscan tracepoints. In moving it, it brings down the overhead of passing so many arguments to the trace event. In the future, we may limit the number of arguments that a trace event may pass (ideally just 6, but more realistically it may be 8). Before this patch, the code to call the trace event is this: 0f 83 aa fe ff ff jae ffffffff811e6261 <shrink_inactive_list+0x1e1> 48 8b 45 a0 mov -0x60(%rbp),%rax 45 8b 64 24 20 mov 0x20(%r12),%r12d 44 8b 6d d4 mov -0x2c(%rbp),%r13d 8b 4d d0 mov -0x30(%rbp),%ecx 44 8b 75 cc mov -0x34(%rbp),%r14d 44 8b 7d c8 mov -0x38(%rbp),%r15d 48 89 45 90 mov %rax,-0x70(%rbp) 8b 83 b8 fe ff ff mov -0x148(%rbx),%eax 8b 55 c0 mov -0x40(%rbp),%edx 8b 7d c4 mov -0x3c(%rbp),%edi 8b 75 b8 mov -0x48(%rbp),%esi 89 45 80 mov %eax,-0x80(%rbp) 65 ff 05 e4 f7 e2 7e incl %gs:0x7ee2f7e4(%rip) # 15bd0 <__preempt_count> 48 8b 05 75 5b 13 01 mov 0x1135b75(%rip),%rax # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28> 48 85 c0 test %rax,%rax 74 72 je ffffffff811e646a <shrink_inactive_list+0x3ea> 48 89 c3 mov %rax,%rbx 4c 8b 10 mov (%rax),%r10 89 f8 mov %edi,%eax 48 89 85 68 ff ff ff mov %rax,-0x98(%rbp) 89 f0 mov %esi,%eax 48 89 85 60 ff ff ff mov %rax,-0xa0(%rbp) 89 c8 mov %ecx,%eax 48 89 85 78 ff ff ff mov %rax,-0x88(%rbp) 89 d0 mov %edx,%eax 48 89 85 70 ff ff ff mov %rax,-0x90(%rbp) 8b 45 8c mov -0x74(%rbp),%eax 48 8b 7b 08 mov 0x8(%rbx),%rdi 48 83 c3 18 add $0x18,%rbx 50 push %rax 41 54 push %r12 41 55 push %r13 ff b5 78 ff ff ff pushq -0x88(%rbp) 41 56 push %r14 41 57 push %r15 ff b5 70 ff ff ff pushq -0x90(%rbp) 4c 8b 8d 68 ff ff ff mov -0x98(%rbp),%r9 4c 8b 85 60 ff ff ff mov -0xa0(%rbp),%r8 48 8b 4d 98 mov -0x68(%rbp),%rcx 48 8b 55 90 mov -0x70(%rbp),%rdx 8b 75 80 mov -0x80(%rbp),%esi 41 ff d2 callq *%r10 After the patch: 0f 83 a8 fe ff ff jae ffffffff811e626d <shrink_inactive_list+0x1cd> 8b 9b b8 fe ff ff mov -0x148(%rbx),%ebx 45 8b 64 24 20 mov 0x20(%r12),%r12d 4c 8b 6d a0 mov -0x60(%rbp),%r13 65 ff 05 f5 f7 e2 7e incl %gs:0x7ee2f7f5(%rip) # 15bd0 <__preempt_count> 4c 8b 35 86 5b 13 01 mov 0x1135b86(%rip),%r14 # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28> 4d 85 f6 test %r14,%r14 74 2a je ffffffff811e6411 <shrink_inactive_list+0x371> 49 8b 06 mov (%r14),%rax 8b 4d 8c mov -0x74(%rbp),%ecx 49 8b 7e 08 mov 0x8(%r14),%rdi 49 83 c6 18 add $0x18,%r14 4c 89 ea mov %r13,%rdx 45 89 e1 mov %r12d,%r9d 4c 8d 45 b8 lea -0x48(%rbp),%r8 89 de mov %ebx,%esi 51 push %rcx 48 8b 4d 98 mov -0x68(%rbp),%rcx ff d0 callq *%rax Link: http://lkml.kernel.org/r/2559d7cb-ec60-1200-2362-04fa34fd02bb@fb.com Link: http://lkml.kernel.org/r/20180322121003.4177af15@gandalf.local.home Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Reported-by: Alexei Starovoitov <ast@fb.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexei Starovoitov <ast@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
e3c1ac586c |
mm/vmscan: don't mess with pgdat->flags in memcg reclaim
memcg reclaim may alter pgdat->flags based on the state of LRU lists in cgroup and its children. PGDAT_WRITEBACK may force kswapd to sleep congested_wait(), PGDAT_DIRTY may force kswapd to writeback filesystem pages. But the worst here is PGDAT_CONGESTED, since it may force all direct reclaims to stall in wait_iff_congested(). Note that only kswapd have powers to clear any of these bits. This might just never happen if cgroup limits configured that way. So all direct reclaims will stall as long as we have some congested bdi in the system. Leave all pgdat->flags manipulations to kswapd. kswapd scans the whole pgdat, only kswapd can clear pgdat->flags once node is balanced, thus it's reasonable to leave all decisions about node state to kswapd. Why only kswapd? Why not allow to global direct reclaim change these flags? It is because currently only kswapd can clear these flags. I'm less worried about the case when PGDAT_CONGESTED falsely not set, and more worried about the case when it falsely set. If direct reclaimer sets PGDAT_CONGESTED, do we have guarantee that after the congestion problem is sorted out, kswapd will be woken up and clear the flag? It seems like there is no such guarantee. E.g. direct reclaimers may eventually balance pgdat and kswapd simply won't wake up (see wakeup_kswapd()). Moving pgdat->flags manipulation to kswapd, means that cgroup2 recalim now loses its congestion throttling mechanism. Add per-cgroup congestion state and throttle cgroup2 reclaimers if memcg is in congestion state. Currently there is no need in per-cgroup PGDAT_WRITEBACK and PGDAT_DIRTY bits since they alter only kswapd behavior. The problem could be easily demonstrated by creating heavy congestion in one cgroup: echo "+memory" > /sys/fs/cgroup/cgroup.subtree_control mkdir -p /sys/fs/cgroup/congester echo 512M > /sys/fs/cgroup/congester/memory.max echo $$ > /sys/fs/cgroup/congester/cgroup.procs /* generate a lot of diry data on slow HDD */ while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done & .... while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done & and some job in another cgroup: mkdir /sys/fs/cgroup/victim echo 128M > /sys/fs/cgroup/victim/memory.max # time cat /dev/sda > /dev/null real 10m15.054s user 0m0.487s sys 1m8.505s According to the tracepoint in wait_iff_congested(), the 'cat' spent 50% of the time sleeping there. With the patch, cat don't waste time anymore: # time cat /dev/sda > /dev/null real 5m32.911s user 0m0.411s sys 0m56.664s [aryabinin@virtuozzo.com: congestion state should be per-node] Link: http://lkml.kernel.org/r/20180406135215.10057-1-aryabinin@virtuozzo.com [ayabinin@virtuozzo.com: make congestion state per-cgroup-per-node instead of just per-cgroup[ Link: http://lkml.kernel.org/r/20180406180254.8970-2-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/20180323152029.11084-5-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
d108c7721f |
mm/vmscan: don't change pgdat state on base of a single LRU list state
We have separate LRU list for each memory cgroup. Memory reclaim iterates over cgroups and calls shrink_inactive_list() every inactive LRU list. Based on the state of a single LRU shrink_inactive_list() may flag the whole node as dirty,congested or under writeback. This is obviously wrong and hurtful. It's especially hurtful when we have possibly small congested cgroup in system. Than *all* direct reclaims waste time by sleeping in wait_iff_congested(). And the more memcgs in the system we have the longer memory allocation stall is, because wait_iff_congested() called on each lru-list scan. Sum reclaim stats across all visited LRUs on node and flag node as dirty, congested or under writeback based on that sum. Also call congestion_wait(), wait_iff_congested() once per pgdat scan, instead of once per lru-list scan. This only fixes the problem for global reclaim case. Per-cgroup reclaim may alter global pgdat flags too, which is wrong. But that is separate issue and will be addressed in the next patch. This change will not have any effect on a systems with all workload concentrated in a single cgroup. [aryabinin@virtuozzo.com: check nr_writeback against all nr_taken, not just file] Link: http://lkml.kernel.org/r/20180406180254.8970-1-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/20180323152029.11084-4-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
c4fd4fa580 |
mm/vmscan: remove redundant current_may_throttle() check
Only kswapd can have non-zero nr_immediate, and current_may_throttle() is always true for kswapd (PF_LESS_THROTTLE bit is never set) thus it's enough to check stat.nr_immediate only. Link: http://lkml.kernel.org/r/20180315164553.17856-4-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
894befec4d |
mm/vmscan: update stale comments
Update some comments that became stale since transiton from per-zone to per-node reclaim. Link: http://lkml.kernel.org/r/20180315164553.17856-2-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
5ecd9d403a |
mm, page_alloc: wakeup kcompactd even if kswapd cannot free more memory
Kswapd will not wakeup if per-zone watermarks are not failing or if too many previous attempts at background reclaim have failed. This can be true if there is a lot of free memory available. For high- order allocations, kswapd is responsible for waking up kcompactd for background compaction. If the zone is not below its watermarks or reclaim has recently failed (lots of free memory, nothing left to reclaim), kcompactd does not get woken up. When __GFP_DIRECT_RECLAIM is not allowed, allow kcompactd to still be woken up even if kswapd will not reclaim. This allows high-order allocations, such as thp, to still trigger background compaction even when the zone has an abundance of free memory. Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803111659420.209721@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tetsuo Handa
|
e830c63a62 |
mm,vmscan: don't pretend forward progress upon shrinker_rwsem contention
Since we no longer use return value of shrink_slab() for normal reclaim, the comment is no longer true. If some do_shrink_slab() call takes unexpectedly long (root cause of stall is currently unknown) when register_shrinker()/unregister_shrinker() is pending, trying to drop caches via /proc/sys/vm/drop_caches could become infinite cond_resched() loop if many mem_cgroup are defined. For safety, let's not pretend forward progress. Link: http://lkml.kernel.org/r/201802202229.GGF26507.LVFtMSOOHFJOQF@I-love.SAKURA.ne.jp Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Chinner <dchinner@redhat.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
e92bb4dd96 |
mm: fix races between address_space dereference and free in page_evicatable
When page_mapping() is called and the mapping is dereferenced in page_evicatable() through shrink_active_list(), it is possible for the inode to be truncated and the embedded address space to be freed at the same time. This may lead to the following race. CPU1 CPU2 truncate(inode) shrink_active_list() ... page_evictable(page) truncate_inode_page(mapping, page); delete_from_page_cache(page) spin_lock_irqsave(&mapping->tree_lock, flags); __delete_from_page_cache(page, NULL) page_cache_tree_delete(..) ... mapping = page_mapping(page); page->mapping = NULL; ... spin_unlock_irqrestore(&mapping->tree_lock, flags); page_cache_free_page(mapping, page) put_page(page) if (put_page_testzero(page)) -> false - inode now has no pages and can be freed including embedded address_space mapping_unevictable(mapping) test_bit(AS_UNEVICTABLE, &mapping->flags); - we've dereferenced mapping which is potentially already free. Similar race exists between swap cache freeing and page_evicatable() too. The address_space in inode and swap cache will be freed after a RCU grace period. So the races are fixed via enclosing the page_mapping() and address_space usage in rcu_read_lock/unlock(). Some comments are added in code to make it clear what is protected by the RCU read lock. Link: http://lkml.kernel.org/r/20180212081227.1940-1-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
1c610d5f93 |
mm/vmscan: wake up flushers for legacy cgroups too
Commit |
||
Shakeel Butt
|
9c4e6b1a70 |
mm, mlock, vmscan: no more skipping pagevecs
When a thread mlocks an address space backed either by file pages which are currently not present in memory or swapped out anon pages (not in swapcache), a new page is allocated and added to the local pagevec (lru_add_pvec), I/O is triggered and the thread then sleeps on the page. On I/O completion, the thread can wake on a different CPU, the mlock syscall will then sets the PageMlocked() bit of the page but will not be able to put that page in unevictable LRU as the page is on the pagevec of a different CPU. Even on drain, that page will go to evictable LRU because the PageMlocked() bit is not checked on pagevec drain. The page will eventually go to right LRU on reclaim but the LRU stats will remain skewed for a long time. This patch puts all the pages, even unevictable, to the pagevecs and on the drain, the pages will be added on their LRUs correctly by checking their evictability. This resolves the mlocked pages on pagevec of other CPUs issue because when those pagevecs will be drained, the mlocked file pages will go to unevictable LRU. Also this makes the race with munlock easier to resolve because the pagevec drains happen in LRU lock. However there is still one place which makes a page evictable and does PageLRU check on that page without LRU lock and needs special attention. TestClearPageMlocked() and isolate_lru_page() in clear_page_mlock(). #0: __pagevec_lru_add_fn #1: clear_page_mlock SetPageLRU() if (!TestClearPageMlocked()) return smp_mb() // <--required // inside does PageLRU if (!PageMlocked()) if (isolate_lru_page()) move to evictable LRU putback_lru_page() else move to unevictable LRU In '#1', TestClearPageMlocked() provides full memory barrier semantics and thus the PageLRU check (inside isolate_lru_page) can not be reordered before it. In '#0', without explicit memory barrier, the PageMlocked() check can be reordered before SetPageLRU(). If that happens, '#0' can put a page in unevictable LRU and '#1' might have just cleared the Mlocked bit of that page but fails to isolate as PageLRU fails as '#0' still hasn't set PageLRU bit of that page. That page will be stranded on the unevictable LRU. There is one (good) side effect though. Without this patch, the pages allocated for System V shared memory segment are added to evictable LRUs even after shmctl(SHM_LOCK) on that segment. This patch will correctly put such pages to unevictable LRU. Link: http://lkml.kernel.org/r/20171121211241.18877-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Shaohua Li <shli@fb.com> Cc: Jan Kara <jack@suse.cz> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mike Rapoport
|
a5d09bed7f |
mm: docs: add blank lines to silence sphinx "Unexpected indentation" errors
Link: http://lkml.kernel.org/r/1516700871-22279-4-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
69d763fc6d |
mm: pin address_space before dereferencing it while isolating an LRU page
Minchan Kim asked the following question -- what locks protects
address_space destroying when race happens between inode trauncation and
__isolate_lru_page? Jan Kara clarified by describing the race as follows
CPU1 CPU2
truncate(inode) __isolate_lru_page()
...
truncate_inode_page(mapping, page);
delete_from_page_cache(page)
spin_lock_irqsave(&mapping->tree_lock, flags);
__delete_from_page_cache(page, NULL)
page_cache_tree_delete(..)
... mapping = page_mapping(page);
page->mapping = NULL;
...
spin_unlock_irqrestore(&mapping->tree_lock, flags);
page_cache_free_page(mapping, page)
put_page(page)
if (put_page_testzero(page)) -> false
- inode now has no pages and can be freed including embedded address_space
if (mapping && !mapping->a_ops->migratepage)
- we've dereferenced mapping which is potentially already free.
The race is theoretically possible but unlikely. Before the
delete_from_page_cache, truncate_cleanup_page is called so the page is
likely to be !PageDirty or PageWriteback which gets skipped by the only
caller that checks the mappping in __isolate_lru_page. Even if the race
occurs, a substantial amount of work has to happen during a tiny window
with no preemption but it could potentially be done using a virtual
machine to artifically slow one CPU or halt it during the critical
window.
This patch should eliminate the race with truncation by try-locking the
page before derefencing mapping and aborting if the lock was not
acquired. There was a suggestion from Huang Ying to use RCU as a
side-effect to prevent mapping being freed. However, I do not like the
solution as it's an unconventional means of preserving a mapping and
it's not a context where rcu_read_lock is obviously protecting rcu data.
Link: http://lkml.kernel.org/r/20180104102512.2qos3h5vqzeisrek@techsingularity.net
Fixes:
|
||
Jan Kara
|
a4ef876841 |
mm: remove unused pgdat_reclaimable_pages()
Remove unused function pgdat_reclaimable_pages() and node_page_state_snapshot() which becomes unused as well. Link: http://lkml.kernel.org/r/20171122094416.26019-1-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
e496612c51 |
mm: do not stall register_shrinker()
Shakeel Butt reported he has observed in production systems that the job loader gets stuck for 10s of seconds while doing a mount operation. It turns out that it was stuck in register_shrinker() because some unrelated job was under memory pressure and was spending time in shrink_slab(). Machines have a lot of shrinkers registered and jobs under memory pressure have to traverse all of those memcg-aware shrinkers and affect unrelated jobs which want to register their own shrinkers. To solve the issue, this patch simply bails out slab shrinking if it is found that someone wants to register a shrinker in parallel. A downside is it could cause unfair shrinking between shrinkers. However, it should be rare and we can add compilcated logic if we find it's not enough. [akpm@linux-foundation.org: tweak code comment] Link: http://lkml.kernel.org/r/20171115005602.GB23810@bbox Link: http://lkml.kernel.org/r/1511481899-20335-1-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Shakeel Butt <shakeelb@google.com> Reported-by: Shakeel Butt <shakeelb@google.com> Tested-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Josef Bacik
|
9092c71bb7 |
mm: use sc->priority for slab shrink targets
Previously we were using the ratio of the number of lru pages scanned to the number of eligible lru pages to determine the number of slab objects to scan. The problem with this is that these two things have nothing to do with each other, so in slab heavy work loads where there is little to no page cache we can end up with the pages scanned being a very low number. This means that we reclaim next to no slab pages and waste a lot of time reclaiming small amounts of space. Consider the following scenario, where we have the following values and the rest of the memory usage is in slab Active: 58840 kB Inactive: 46860 kB Every time we do a get_scan_count() we do this scan = size >> sc->priority where sc->priority starts at DEF_PRIORITY, which is 12. The first loop through reclaim would result in a scan target of 2 pages to 11715 total inactive pages, and 3 pages to 14710 total active pages. This is a really really small target for a system that is entirely slab pages. And this is super optimistic, this assumes we even get to scan these pages. We don't increment sc->nr_scanned unless we 1) isolate the page, which assumes it's not in use, and 2) can lock the page. Under pressure these numbers could probably go down, I'm sure there's some random pages from daemons that aren't actually in use, so the targets get even smaller. Instead use sc->priority in the same way we use it to determine scan amounts for the lru's. This generally equates to pages. Consider the following slab_pages = (nr_objects * object_size) / PAGE_SIZE What we would like to do is scan = slab_pages >> sc->priority but we don't know the number of slab pages each shrinker controls, only the objects. However say that theoretically we knew how many pages a shrinker controlled, we'd still have to convert this to objects, which would look like the following scan = shrinker_pages >> sc->priority scan_objects = (PAGE_SIZE / object_size) * scan or written another way scan_objects = (shrinker_pages >> sc->priority) * (PAGE_SIZE / object_size) which can thus be written scan_objects = ((shrinker_pages * PAGE_SIZE) / object_size) >> sc->priority which is just scan_objects = nr_objects >> sc->priority We don't need to know exactly how many pages each shrinker represents, it's objects are all the information we need. Making this change allows us to place an appropriate amount of pressure on the shrinker pools for their relative size. Link: http://lkml.kernel.org/r/1510780549-6812-1-git-send-email-josef@toxicpanda.com Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Dave Chinner <david@fromorbit.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Tetsuo Handa
|
bb422a738f |
mm,vmscan: Make unregister_shrinker() no-op if register_shrinker() failed.
Syzbot caught an oops at unregister_shrinker() because combination of
commit
|
||
Mel Gorman
|
2d4894b5d2 |
mm: remove cold parameter from free_hot_cold_page*
Most callers users of free_hot_cold_page claim the pages being released are cache hot. The exception is the page reclaim paths where it is likely that enough pages will be freed in the near future that the per-cpu lists are going to be recycled and the cache hotness information is lost. As no one really cares about the hotness of pages being released to the allocator, just ditch the parameter. The APIs are renamed to indicate that it's no longer about hot/cold pages. It should also be less confusing as there are subtle differences between them. __free_pages drops a reference and frees a page when the refcount reaches zero. free_hot_cold_page handled pages whose refcount was already zero which is non-obvious from the name. free_unref_page should be more obvious. No performance impact is expected as the overhead is marginal. The parameter is removed simply because it is a bit stupid to have a useless parameter copied everywhere. [mgorman@techsingularity.net: add pages to head, not tail] Link: http://lkml.kernel.org/r/20171019154321.qtpzaeftoyyw4iey@techsingularity.net Link: http://lkml.kernel.org/r/20171018075952.10627-8-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrey Ryabinin
|
3a50d14d0d |
mm: remove unused pgdat->inactive_ratio
Since commit
|
||
Linus Torvalds
|
e2c5923c34 |
Merge branch 'for-4.15/block' of git://git.kernel.dk/linux-block
Pull core block layer updates from Jens Axboe: "This is the main pull request for block storage for 4.15-rc1. Nothing out of the ordinary in here, and no API changes or anything like that. Just various new features for drivers, core changes, etc. In particular, this pull request contains: - A patch series from Bart, closing the whole on blk/scsi-mq queue quescing. - A series from Christoph, building towards hidden gendisks (for multipath) and ability to move bio chains around. - NVMe - Support for native multipath for NVMe (Christoph). - Userspace notifications for AENs (Keith). - Command side-effects support (Keith). - SGL support (Chaitanya Kulkarni) - FC fixes and improvements (James Smart) - Lots of fixes and tweaks (Various) - bcache - New maintainer (Michael Lyle) - Writeback control improvements (Michael) - Various fixes (Coly, Elena, Eric, Liang, et al) - lightnvm updates, mostly centered around the pblk interface (Javier, Hans, and Rakesh). - Removal of unused bio/bvec kmap atomic interfaces (me, Christoph) - Writeback series that fix the much discussed hundreds of millions of sync-all units. This goes all the way, as discussed previously (me). - Fix for missing wakeup on writeback timer adjustments (Yafang Shao). - Fix laptop mode on blk-mq (me). - {mq,name} tupple lookup for IO schedulers, allowing us to have alias names. This means you can use 'deadline' on both !mq and on mq (where it's called mq-deadline). (me). - blktrace race fix, oopsing on sg load (me). - blk-mq optimizations (me). - Obscure waitqueue race fix for kyber (Omar). - NBD fixes (Josef). - Disable writeback throttling by default on bfq, like we do on cfq (Luca Miccio). - Series from Ming that enable us to treat flush requests on blk-mq like any other request. This is a really nice cleanup. - Series from Ming that improves merging on blk-mq with schedulers, getting us closer to flipping the switch on scsi-mq again. - BFQ updates (Paolo). - blk-mq atomic flags memory ordering fixes (Peter Z). - Loop cgroup support (Shaohua). - Lots of minor fixes from lots of different folks, both for core and driver code" * 'for-4.15/block' of git://git.kernel.dk/linux-block: (294 commits) nvme: fix visibility of "uuid" ns attribute blk-mq: fixup some comment typos and lengths ide: ide-atapi: fix compile error with defining macro DEBUG blk-mq: improve tag waiting setup for non-shared tags brd: remove unused brd_mutex blk-mq: only run the hardware queue if IO is pending block: avoid null pointer dereference on null disk fs: guard_bio_eod() needs to consider partitions xtensa/simdisk: fix compile error nvme: expose subsys attribute to sysfs nvme: create 'slaves' and 'holders' entries for hidden controllers block: create 'slaves' and 'holders' entries for hidden gendisks nvme: also expose the namespace identification sysfs files for mpath nodes nvme: implement multipath access to nvme subsystems nvme: track shared namespaces nvme: introduce a nvme_ns_ids structure nvme: track subsystems block, nvme: Introduce blk_mq_req_flags_t block, scsi: Make SCSI quiesce and resume work reliably block: Add the QUEUE_FLAG_PREEMPT_ONLY request queue flag ... |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Jens Axboe
|
9ba4b2dfaf |
fs: kill 'nr_pages' argument from wakeup_flusher_threads()
Everybody is passing in 0 now, let's get rid of the argument. Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Huang Ying
|
fe490cc0fe |
mm, THP, swap: add THP swapping out fallback counting
When swapping out THP (Transparent Huge Page), instead of swapping out the THP as a whole, sometimes we have to fallback to split the THP into normal pages before swapping, because no free swap clusters are available, or cgroup limit is exceeded, etc. To count the number of the fallback, a new VM event THP_SWPOUT_FALLBACK is added, and counted when we fallback to split the THP. Link: http://lkml.kernel.org/r/20170724051840.2309-13-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c] Cc: Vishal L Verma <vishal.l.verma@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
bd4c82c22c |
mm, THP, swap: delay splitting THP after swapped out
In this patch, splitting transparent huge page (THP) during swapping out is delayed from after adding the THP into the swap cache to after swapping out finishes. After the patch, more operations for the anonymous THP reclaiming, such as writing the THP to the swap device, removing the THP from the swap cache could be batched. So that the performance of anonymous THP swapping out could be improved. This is the second step for the THP swap support. The plan is to delay splitting the THP step by step and avoid splitting the THP finally. With the patchset, the swap out throughput improves 42% (from about 5.81GB/s to about 8.25GB/s) in the vm-scalability swap-w-seq test case with 16 processes. At the same time, the IPI (reflect TLB flushing) reduced about 78.9%. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. Link: http://lkml.kernel.org/r/20170724051840.2309-12-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Shaohua Li <shli@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c] Cc: Vishal L Verma <vishal.l.verma@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
db73ee0d46 |
mm, vmscan: do not loop on too_many_isolated for ever
Tetsuo Handa has reported[1][2][3] that direct reclaimers might get stuck in too_many_isolated loop basically for ever because the last few pages on the LRU lists are isolated by the kswapd which is stuck on fs locks when doing the pageout or slab reclaim. This in turn means that there is nobody to actually trigger the oom killer and the system is basically unusable. too_many_isolated has been introduced by commit |
||
Chris Wilson
|
d460acb5bd |
mm: track actual nr_scanned during shrink_slab()
Some shrinkers may only be able to free a bunch of objects at a time, and so free more than the requested nr_to_scan in one pass. Whilst other shrinkers may find themselves even unable to scan as many objects as they counted, and so underreport. Account for the extra freed/scanned objects against the total number of objects we intend to scan, otherwise we may end up penalising the slab far more than intended. Similarly, we want to add the underperforming scan to the deferred pass so that we try harder and harder in future passes. Link: http://lkml.kernel.org/r/20170822135325.9191-1-chris@chris-wilson.co.uk Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Shaohua Li <shli@fb.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Peter Zijlstra
|
d92a8cfcb3 |
locking/lockdep: Rework FS_RECLAIM annotation
A while ago someone, and I cannot find the email just now, asked if we could not implement the RECLAIM_FS inversion stuff with a 'fake' lock like we use for other things like workqueues etc. I think this should be possible which allows reducing the 'irq' states and will reduce the amount of __bfs() lookups we do. Removing the 1 IRQ state results in 4 less __bfs() walks per dependency, improving lockdep performance. And by moving this annotation out of the lockdep code it becomes easier for the mm people to extend. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nikolay Borisov <nborisov@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: boqun.feng@gmail.com Cc: iamjoonsoo.kim@lge.com Cc: kernel-team@lge.com Cc: kirill@shutemov.name Cc: npiggin@gmail.com Cc: walken@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Michal Hocko
|
dcda9b0471 |
mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to the page allocator. This has been true but only for allocations requests larger than PAGE_ALLOC_COSTLY_ORDER. It has been always ignored for smaller sizes. This is a bit unfortunate because there is no way to express the same semantic for those requests and they are considered too important to fail so they might end up looping in the page allocator for ever, similarly to GFP_NOFAIL requests. Now that the whole tree has been cleaned up and accidental or misled usage of __GFP_REPEAT flag has been removed for !costly requests we can give the original flag a better name and more importantly a more useful semantic. Let's rename it to __GFP_RETRY_MAYFAIL which tells the user that the allocator would try really hard but there is no promise of a success. This will work independent of the order and overrides the default allocator behavior. Page allocator users have several levels of guarantee vs. cost options (take GFP_KERNEL as an example) - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_ attempt to free memory at all. The most light weight mode which even doesn't kick the background reclaim. Should be used carefully because it might deplete the memory and the next user might hit the more aggressive reclaim - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic allocation without any attempt to free memory from the current context but can wake kswapd to reclaim memory if the zone is below the low watermark. Can be used from either atomic contexts or when the request is a performance optimization and there is another fallback for a slow path. - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) - non sleeping allocation with an expensive fallback so it can access some portion of memory reserves. Usually used from interrupt/bh context with an expensive slow path fallback. - GFP_KERNEL - both background and direct reclaim are allowed and the _default_ page allocator behavior is used. That means that !costly allocation requests are basically nofail but there is no guarantee of that behavior so failures have to be checked properly by callers (e.g. OOM killer victim is allowed to fail currently). - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior and all allocation requests fail early rather than cause disruptive reclaim (one round of reclaim in this implementation). The OOM killer is not invoked. - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator behavior and all allocation requests try really hard. The request will fail if the reclaim cannot make any progress. The OOM killer won't be triggered. - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior and all allocation requests will loop endlessly until they succeed. This might be really dangerous especially for larger orders. Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL because they already had their semantic. No new users are added. __alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if there is no progress and we have already passed the OOM point. This means that all the reclaim opportunities have been exhausted except the most disruptive one (the OOM killer) and a user defined fallback behavior is more sensible than keep retrying in the page allocator. [akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c] [mhocko@suse.com: semantic fix] Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz [mhocko@kernel.org: address other thing spotted by Vlastimil] Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alex Belits <alex.belits@cavium.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: David Daney <david.daney@cavium.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: NeilBrown <neilb@suse.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
David Rientjes
|
0622622677 |
mm, vmscan: avoid thrashing anon lru when free + file is low
The purpose of the code that commit
|
||
Johannes Weiner
|
385386cff4 |
mm: vmstat: move slab statistics from zone to node counters
Patch series "mm: per-lruvec slab stats" Josef is working on a new approach to balancing slab caches and the page cache. For this to work, he needs slab cache statistics on the lruvec level. These patches implement that by adding infrastructure that allows updating and reading generic VM stat items per lruvec, then switches some existing VM accounting sites, including the slab accounting ones, to this new cgroup-aware API. I'll follow up with more patches on this, because there is actually substantial simplification that can be done to the memory controller when we replace private memcg accounting with making the existing VM accounting sites cgroup-aware. But this is enough for Josef to base his slab reclaim work on, so here goes. This patch (of 5): To re-implement slab cache vs. page cache balancing, we'll need the slab counters at the lruvec level, which, ever since lru reclaim was moved from the zone to the node, is the intersection of the node, not the zone, and the memcg. We could retain the per-zone counters for when the page allocator dumps its memory information on failures, and have counters on both levels - which on all but NUMA node 0 is usually redundant. But let's keep it simple for now and just move them. If anybody complains we can restore the per-zone counters. [hannes@cmpxchg.org: fix oops] Link: http://lkml.kernel.org/r/20170605183511.GA8915@cmpxchg.org Link: http://lkml.kernel.org/r/20170530181724.27197-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
2262185c5b |
mm: per-cgroup memory reclaim stats
Track the following reclaim counters for every memory cgroup: PGREFILL, PGSCAN, PGSTEAL, PGACTIVATE, PGDEACTIVATE, PGLAZYFREE and PGLAZYFREED. These values are exposed using the memory.stats interface of cgroup v2. The meaning of each value is the same as for global counters, available using /proc/vmstat. Also, for consistency, rename mem_cgroup_count_vm_event() to count_memcg_event_mm(). Link: http://lkml.kernel.org/r/1494530183-30808-1-git-send-email-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
747552b1e7 |
mm, THP, swap: enable THP swap optimization only if has compound map
If there is no compound map for a THP (Transparent Huge Page), it is possible that the map count of some sub-pages of the THP is 0. So it is better to split the THP before swapping out. In this way, the sub-pages not mapped will be freed, and we can avoid the unnecessary swap out operations for these sub-pages. Link: http://lkml.kernel.org/r/20170515112522.32457-6-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Huang Ying
|
b8f593cd08 |
mm, THP, swap: check whether THP can be split firstly
To swap out THP (Transparent Huage Page), before splitting the THP, the swap cluster will be allocated and the THP will be added into the swap cache. But it is possible that the THP cannot be split, so that we must delete the THP from the swap cache and free the swap cluster. To avoid that, in this patch, whether the THP can be split is checked firstly. The check can only be done racy, but it is good enough for most cases. With the patch, the swap out throughput improves 3.6% (from about 4.16GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case with 8 processes. The test is done on a Xeon E5 v3 system. The swap device used is a RAM simulated PMEM (persistent memory) device. To test the sequential swapping out, the test case creates 8 processes, which sequentially allocate and write to the anonymous pages until the RAM and part of the swap device is used up. Link: http://lkml.kernel.org/r/20170515112522.32457-5-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for can_split_huge_page()] Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
0f0746589e |
mm, THP, swap: move anonymous THP split logic to vmscan
The add_to_swap aims to allocate swap_space(ie, swap slot and swapcache) so if it fails due to lack of space in case of THP or something(hdd swap but tries THP swapout) *caller* rather than add_to_swap itself should split the THP page and retry it with base page which is more natural. Link: http://lkml.kernel.org/r/20170515112522.32457-4-ying.huang@intel.com Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
75f6d6d29a |
mm, THP, swap: unify swap slot free functions to put_swap_page
Now, get_swap_page takes struct page and allocates swap space according to page size(ie, normal or THP) so it would be more cleaner to introduce put_swap_page which is a counter function of get_swap_page. Then, it calls right swap slot free function depending on page's size. [ying.huang@intel.com: minor cleanup and fix] Link: http://lkml.kernel.org/r/20170515112522.32457-3-ying.huang@intel.com Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nick Desaulniers
|
f2f43e566a |
mm/vmscan.c: fix unsequenced modification and access warning
Clang and its -Wunsequenced emits a warning mm/vmscan.c:2961:25: error: unsequenced modification and access to 'gfp_mask' [-Wunsequenced] .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)), ^ While it is not clear to me whether the initialization code violates the specification (6.7.8 par 19 (ISO/IEC 9899) looks like it disagrees) the code is quite confusing and worth cleaning up anyway. Fix this by reusing sc.gfp_mask rather than the updated input gfp_mask parameter. Link: http://lkml.kernel.org/r/20170510154030.10720-1-nick.desaulniers@gmail.com Signed-off-by: Nick Desaulniers <nick.desaulniers@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Thomas Gleixner
|
c6202adf3a |
mm/vmscan: Adjust system_state checks
To enable smp_processor_id() and might_sleep() debug checks earlier, it's required to add system states between SYSTEM_BOOTING and SYSTEM_RUNNING. Adjust the system_state check in kswapd_run() to handle the extra states. Tested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20170516184736.119158930@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Minchan Kim
|
791b48b642 |
mm: vmscan: scan until it finds eligible pages
Although there are a ton of free swap and anonymous LRU page in elgible
zones, OOM happened.
balloon invoked oom-killer: gfp_mask=0x17080c0(GFP_KERNEL_ACCOUNT|__GFP_ZERO|__GFP_NOTRACK), nodemask=(null), order=0, oom_score_adj=0
CPU: 7 PID: 1138 Comm: balloon Not tainted 4.11.0-rc6-mm1-zram-00289-ge228d67e9677-dirty #17
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
Call Trace:
oom_kill_process+0x21d/0x3f0
out_of_memory+0xd8/0x390
__alloc_pages_slowpath+0xbc1/0xc50
__alloc_pages_nodemask+0x1a5/0x1c0
pte_alloc_one+0x20/0x50
__pte_alloc+0x1e/0x110
__handle_mm_fault+0x919/0x960
handle_mm_fault+0x77/0x120
__do_page_fault+0x27a/0x550
trace_do_page_fault+0x43/0x150
do_async_page_fault+0x2c/0x90
async_page_fault+0x28/0x30
Mem-Info:
active_anon:424716 inactive_anon:65314 isolated_anon:0
active_file:52 inactive_file:46 isolated_file:0
unevictable:0 dirty:27 writeback:0 unstable:0
slab_reclaimable:3967 slab_unreclaimable:4125
mapped:133 shmem:43 pagetables:1674 bounce:0
free:4637 free_pcp:225 free_cma:0
Node 0 active_anon:1698864kB inactive_anon:261256kB active_file:208kB inactive_file:184kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:532kB dirty:108kB writeback:0kB shmem:172kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
DMA free:7316kB min:32kB low:44kB high:56kB active_anon:8064kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:464kB slab_unreclaimable:40kB kernel_stack:0kB pagetables:24kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
lowmem_reserve[]: 0 992 992 1952
DMA32 free:9088kB min:2048kB low:3064kB high:4080kB active_anon:952176kB inactive_anon:0kB active_file:36kB inactive_file:0kB unevictable:0kB writepending:88kB present:1032192kB managed:1019388kB mlocked:0kB slab_reclaimable:13532kB slab_unreclaimable:16460kB kernel_stack:3552kB pagetables:6672kB bounce:0kB free_pcp:56kB local_pcp:24kB free_cma:0kB
lowmem_reserve[]: 0 0 0 959
Movable free:3644kB min:1980kB low:2960kB high:3940kB active_anon:738560kB inactive_anon:261340kB active_file:188kB inactive_file:640kB unevictable:0kB writepending:20kB present:1048444kB managed:1010816kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:832kB local_pcp:60kB free_cma:0kB
lowmem_reserve[]: 0 0 0 0
DMA: 1*4kB (E) 0*8kB 18*16kB (E) 10*32kB (E) 10*64kB (E) 9*128kB (ME) 8*256kB (E) 2*512kB (E) 2*1024kB (E) 0*2048kB 0*4096kB = 7524kB
DMA32: 417*4kB (UMEH) 181*8kB (UMEH) 68*16kB (UMEH) 48*32kB (UMEH) 14*64kB (MH) 3*128kB (M) 1*256kB (H) 1*512kB (M) 2*1024kB (M) 0*2048kB 0*4096kB = 9836kB
Movable: 1*4kB (M) 1*8kB (M) 1*16kB (M) 1*32kB (M) 0*64kB 1*128kB (M) 2*256kB (M) 4*512kB (M) 1*1024kB (M) 0*2048kB 0*4096kB = 3772kB
378 total pagecache pages
17 pages in swap cache
Swap cache stats: add 17325, delete 17302, find 0/27
Free swap = 978940kB
Total swap = 1048572kB
524157 pages RAM
0 pages HighMem/MovableOnly
12629 pages reserved
0 pages cma reserved
0 pages hwpoisoned
[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name
[ 433] 0 433 4904 5 14 3 82 0 upstart-udev-br
[ 438] 0 438 12371 5 27 3 191 -1000 systemd-udevd
With investigation, skipping page of isolate_lru_pages makes reclaim
void because it returns zero nr_taken easily so LRU shrinking is
effectively nothing and just increases priority aggressively. Finally,
OOM happens.
The problem is that get_scan_count determines nr_to_scan with eligible
zones so although priority drops to zero, it couldn't reclaim any pages
if the LRU contains mostly ineligible pages.
get_scan_count:
size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
size = size >> sc->priority;
Assumes sc->priority is 0 and LRU list is as follows.
N-N-N-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
(Ie, small eligible pages are in the head of LRU but others are
almost ineligible pages)
In that case, size becomes 4 so VM want to scan 4 pages but 4 pages from
tail of the LRU are not eligible pages. If get_scan_count counts
skipped pages, it doesn't reclaim any pages remained after scanning 4
pages so it ends up OOM happening.
This patch makes isolate_lru_pages try to scan pages until it encounters
eligible zones's pages.
[akpm@linux-foundation.org: clean up mind-bending `for' statement. Tweak comment text]
Fixes:
|
||
Vlastimil Babka
|
499118e966 |
mm: introduce memalloc_noreclaim_{save,restore}
The previous patch ("mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC") has shown that simply setting and clearing PF_MEMALLOC in current->flags can result in wrongly clearing a pre-existing PF_MEMALLOC flag and potentially lead to recursive reclaim. Let's introduce helpers that support proper nesting by saving the previous stat of the flag, similar to the existing memalloc_noio_* and memalloc_nofs_* helpers. Convert existing setting/clearing of PF_MEMALLOC within mm to the new helpers. There are no known issues with the converted code, but the change makes it more robust. Link: http://lkml.kernel.org/r/20170405074700.29871-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Boris Brezillon <boris.brezillon@free-electrons.com> Cc: Chris Leech <cleech@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Josef Bacik <jbacik@fb.com> Cc: Lee Duncan <lduncan@suse.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Richard Weinberger <richard@nod.at> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
ccda7f4360 |
mm: memcontrol: use node page state naming scheme for memcg
The memory controllers stat function names are awkwardly long and arbitrarily different from the zone and node stat functions. The current interface is named: mem_cgroup_read_stat() mem_cgroup_update_stat() mem_cgroup_inc_stat() mem_cgroup_dec_stat() mem_cgroup_update_page_stat() mem_cgroup_inc_page_stat() mem_cgroup_dec_page_stat() This patch renames it to match the corresponding node stat functions: memcg_page_state() [node_page_state()] mod_memcg_state() [mod_node_state()] inc_memcg_state() [inc_node_state()] dec_memcg_state() [dec_node_state()] mod_memcg_page_state() [mod_node_page_state()] inc_memcg_page_state() [inc_node_page_state()] dec_memcg_page_state() [dec_node_page_state()] Link: http://lkml.kernel.org/r/20170404220148.28338-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
71cd31135d |
mm: memcontrol: re-use node VM page state enum
The current duplication is a high-maintenance mess, and it's painful to add new items or query memcg state from the rest of the VM. This increases the size of the stat array marginally, but we should aim to track all these stats on a per-cgroup level anyway. Link: http://lkml.kernel.org/r/20170404220148.28338-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
31176c7815 |
mm: memcontrol: clean up memory.events counting function
We only ever count single events, drop the @nr parameter. Rename the function accordingly. Remove low-information kerneldoc. Link: http://lkml.kernel.org/r/20170404220148.28338-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
2a2e48854d |
mm: vmscan: fix IO/refault regression in cache workingset transition
Since commit |
||
Minchan Kim
|
666e5a406c |
mm: make ttu's return boolean
try_to_unmap() returns SWAP_SUCCESS or SWAP_FAIL so it's suitable for boolean return. This patch changes it. Link: http://lkml.kernel.org/r/1489555493-14659-8-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
33fc80e257 |
mm: remove SWAP_AGAIN in ttu
In 2002, [1] introduced SWAP_AGAIN. At that time, try_to_unmap_one used
spin_trylock(&mm->page_table_lock) so it's really easy to contend and
fail to hold a lock so SWAP_AGAIN to keep LRU status makes sense.
However, now we changed it to mutex-based lock and be able to block
without skip pte so there is few of small window to return SWAP_AGAIN so
remove SWAP_AGAIN and just return SWAP_FAIL.
[1]
|
||
Minchan Kim
|
ad6b67041a |
mm: remove SWAP_MLOCK in ttu
ttu doesn't need to return SWAP_MLOCK. Instead, just return SWAP_FAIL because it means the page is not-swappable so it should move to another LRU list(active or unevictable). putback friends will move it to right list depending on the page's LRU flag. Link: http://lkml.kernel.org/r/1489555493-14659-6-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
18863d3a3f |
mm: remove SWAP_DIRTY in ttu
If we found lazyfree page is dirty, try_to_unmap_one can just SetPageSwapBakced in there like PG_mlocked page and just return with SWAP_FAIL which is very natural because the page is not swappable right now so that vmscan can activate it. There is no point to introduce new return value SWAP_DIRTY in try_to_unmap at the moment. Link: http://lkml.kernel.org/r/1489555493-14659-3-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yisheng Xie
|
d6622f6365 |
mm/vmscan: more restrictive condition for retry in do_try_to_free_pages
By reviewing code, I find that when enter do_try_to_free_pages, the may_thrash is always clear, and it will retry shrink zones to tap cgroup's reserves memory by setting may_thrash when the former shrink_zones reclaim nothing. However, when memcg is disabled or on legacy hierarchy, or there do not have any memcg protected by low limit, it should not do this useless retry at all, for we do not have any cgroup's reserves memory to tap, and we have already done hard work but made no progress, which as Michal pointed out in former version, we are trying hard to control the retry logical of page alloctor, and the current additional round of reclaim is just lame. Therefore, to avoid this unneeded retrying and make code more readable, we remove the may_thrash field in scan_control, instead, introduce memcg_low_reclaim and memcg_low_skipped, and only retry when memcg_low_skipped, by setting memcg_low_reclaim. [xieyisheng1@huawei.com: remove may_thrash field, introduce mem_cgroup_reclaim] Link: http://lkml.kernel.org/r/1490191893-5923-1-git-send-email-ysxie@foxmail.com Link: http://lkml.kernel.org/r/1490191893-5923-1-git-send-email-ysxie@foxmail.com Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Acked-by: Michal Hocko <mhocko@suse.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Michal Hocko <mhocko@kernel.org> Suggested-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
e716f2eb24 |
mm, vmscan: prevent kswapd sleeping prematurely due to mismatched classzone_idx
kswapd is woken to reclaim a node based on a failed allocation request
from any eligible zone. Once reclaiming in balance_pgdat(), it will
continue reclaiming until there is an eligible zone available for the
zone it was woken for. kswapd tracks what zone it was recently woken
for in pgdat->kswapd_classzone_idx. If it has not been woken recently,
this zone will be 0.
However, the decision on whether to sleep is made on
kswapd_classzone_idx which is 0 without a recent wakeup request and that
classzone does not account for lowmem reserves. This allows kswapd to
sleep when a low small zone such as ZONE_DMA is balanced for a GFP_DMA
request even if a stream of allocations cannot use that zone. While
kswapd may be woken again shortly in the near future there are two
consequences -- the pgdat bits that control congestion are cleared
prematurely and direct reclaim is more likely as kswapd slept
prematurely.
This patch flips kswapd_classzone_idx to default to MAX_NR_ZONES (an
invalid index) when there has been no recent wakeups. If there are no
wakeups, it'll decide whether to sleep based on the highest possible
zone available (MAX_NR_ZONES - 1). It then becomes critical that the
"pgdat balanced" decisions during reclaim and when deciding to sleep are
the same. If there is a mismatch, kswapd can stay awake continually
trying to balance tiny zones.
simoop was used to evaluate it again. Two of the preparation patches
regressed the workload so they are included as the second set of
results. Otherwise this patch looks artifically excellent
4.11.0-rc1 4.11.0-rc1 4.11.0-rc1
vanilla clear-v2 keepawake-v2
Amean p50-Read 21670074.18 ( 0.00%) 19786774.76 ( 8.69%) 22668332.52 ( -4.61%)
Amean p95-Read 25456267.64 ( 0.00%) 24101956.27 ( 5.32%) 26738688.00 ( -5.04%)
Amean p99-Read 29369064.73 ( 0.00%) 27691872.71 ( 5.71%) 30991404.52 ( -5.52%)
Amean p50-Write 1390.30 ( 0.00%) 1011.91 ( 27.22%) 924.91 ( 33.47%)
Amean p95-Write 412901.57 ( 0.00%) 34874.98 ( 91.55%) 1362.62 ( 99.67%)
Amean p99-Write 6668722.09 ( 0.00%) 575449.60 ( 91.37%) 16854.04 ( 99.75%)
Amean p50-Allocation 78714.31 ( 0.00%) 84246.26 ( -7.03%) 74729.74 ( 5.06%)
Amean p95-Allocation 175533.51 ( 0.00%) 400058.43 (-127.91%) 101609.74 ( 42.11%)
Amean p99-Allocation 247003.02 ( 0.00%) 10905600.00 (-4315.17%) 125765.57 ( 49.08%)
With this patch on top, write and allocation latencies are massively
improved. The read latencies are slightly impaired but it's worth
noting that this is mostly due to the IO scheduler and not directly
related to reclaim. The vmstats are a bit of a mix but the relevant
ones are as follows;
4.10.0-rc7 4.10.0-rc7 4.10.0-rc7
mmots-20170209 clear-v1r25keepawake-v1r25
Swap Ins 0 0 0
Swap Outs 0 608 0
Direct pages scanned 6910672
|
||
Mel Gorman
|
631b6e083e |
mm, vmscan: only clear pgdat congested/dirty/writeback state when balanced
A pgdat tracks if recent reclaim encountered too many dirty, writeback or congested pages. The flags control whether kswapd writes pages back from reclaim context, tags pages for immediate reclaim when IO completes, whether processes block on wait_iff_congested and whether kswapd blocks when too many pages marked for immediate reclaim are encountered. The state is cleared in a check function with side-effects. With the patch "mm, vmscan: fix zone balance check in prepare_kswapd_sleep", the timing of when the bits get cleared changed. Due to the way the check works, it'll clear the bits if ZONE_DMA is balanced for a GFP_DMA allocation because it does not account for lowmem reserves properly. For the simoop workload, kswapd is not stalling when it should due to the premature clearing, writing pages from reclaim context like crazy and generally being unhelpful. This patch resets the pgdat bits related to page reclaim only when kswapd is going to sleep. The comparison with simoop is then 4.11.0-rc1 4.11.0-rc1 4.11.0-rc1 vanilla fixcheck-v2 clear-v2 Amean p50-Read 21670074.18 ( 0.00%) 20464344.18 ( 5.56%) 19786774.76 ( 8.69%) Amean p95-Read 25456267.64 ( 0.00%) 25721423.64 ( -1.04%) 24101956.27 ( 5.32%) Amean p99-Read 29369064.73 ( 0.00%) 30174230.76 ( -2.74%) 27691872.71 ( 5.71%) Amean p50-Write 1390.30 ( 0.00%) 1395.28 ( -0.36%) 1011.91 ( 27.22%) Amean p95-Write 412901.57 ( 0.00%) 37737.74 ( 90.86%) 34874.98 ( 91.55%) Amean p99-Write 6668722.09 ( 0.00%) 666489.04 ( 90.01%) 575449.60 ( 91.37%) Amean p50-Allocation 78714.31 ( 0.00%) 86286.22 ( -9.62%) 84246.26 ( -7.03%) Amean p95-Allocation 175533.51 ( 0.00%) 351812.27 (-100.42%) 400058.43 (-127.91%) Amean p99-Allocation 247003.02 ( 0.00%) 6291171.56 (-2447.00%) 10905600.00 (-4315.17%) Read latency is improved, write latency is mostly improved but allocation latency is regressed. kswapd is still reclaiming inefficiently, pages are being written back from writeback context and a host of other issues. However, given the change, it needed to be spelled out why the side-effect was moved. Link: http://lkml.kernel.org/r/20170309075657.25121-3-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shantanu Goel <sgoel01@yahoo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shantanu Goel
|
333b0a459c |
mm, vmscan: fix zone balance check in prepare_kswapd_sleep
Patch series "Reduce amount of time kswapd sleeps prematurely", v2. The series is unusual in that the first patch fixes one problem and introduces other issues that are noted in the changelog. Patch 2 makes a minor modification that is worth considering on its own but leaves the kernel in a state where it behaves badly. It's not until patch 3 that there is an improvement against baseline. This was mostly motivated by examining Chris Mason's "simoop" benchmark which puts the VM under similar pressure to HADOOP. It has been reported that the benchmark has regressed severely during the last number of releases. While I cannot reproduce all the same problems Chris experienced due to hardware limitations, there was a number of problems on a 2-socket machine with a single disk. simoop latencies 4.11.0-rc1 4.11.0-rc1 vanilla keepawake-v2 Amean p50-Read 21670074.18 ( 0.00%) 22668332.52 ( -4.61%) Amean p95-Read 25456267.64 ( 0.00%) 26738688.00 ( -5.04%) Amean p99-Read 29369064.73 ( 0.00%) 30991404.52 ( -5.52%) Amean p50-Write 1390.30 ( 0.00%) 924.91 ( 33.47%) Amean p95-Write 412901.57 ( 0.00%) 1362.62 ( 99.67%) Amean p99-Write 6668722.09 ( 0.00%) 16854.04 ( 99.75%) Amean p50-Allocation 78714.31 ( 0.00%) 74729.74 ( 5.06%) Amean p95-Allocation 175533.51 ( 0.00%) 101609.74 ( 42.11%) Amean p99-Allocation 247003.02 ( 0.00%) 125765.57 ( 49.08%) These are latencies. Read/write are threads reading fixed-size random blocks from a simulated database. The allocation latency is mmaping and faulting regions of memory. The p50, 95 and p99 reports the worst latencies for 50% of the samples, 95% and 99% respectively. For example, the report indicates that while the test was running 99% of writes completed 99.75% faster. It's worth noting that on a UMA machine that no difference in performance with simoop was observed so milage will vary. It's noted that there is a slight impact to read latencies but it's mostly due to IO scheduler decisions and offset by the large reduction in other latencies. This patch (of 3): The check in prepare_kswapd_sleep needs to match the one in balance_pgdat since the latter will return as soon as any one of the zones in the classzone is above the watermark. This is specially important for higher order allocations since balance_pgdat will typically reset the order to zero relying on compaction to create the higher order pages. Without this patch, prepare_kswapd_sleep fails to wake up kcompactd since the zone balance check fails. It was first reported against 4.9.7 that kswapd is failing to wake up kcompactd due to a mismatch in the zone balance check between balance_pgdat() and prepare_kswapd_sleep(). balance_pgdat() returns as soon as a single zone satisfies the allocation but prepare_kswapd_sleep() requires all zones to do +the same. This causes prepare_kswapd_sleep() to never succeed except in the order == 0 case and consequently, wakeup_kcompactd() is never called. For the machine that originally motivated this patch, the state of compaction from /proc/vmstat looked this way after a day and a half +of uptime: compact_migrate_scanned 240496 compact_free_scanned 76238632 compact_isolated 123472 compact_stall 1791 compact_fail 29 compact_success 1762 compact_daemon_wake 0 After applying the patch and about 10 hours of uptime the state looks like this: compact_migrate_scanned 59927299 compact_free_scanned 2021075136 compact_isolated 640926 compact_stall 4 compact_fail 2 compact_success 2 compact_daemon_wake 5160 Further notes from Mel that motivated him to pick this patch up and resend it; It was observed for the simoop workload (pressures the VM similar to HADOOP) that kswapd was failing to keep ahead of direct reclaim. The investigation noted that there was a need to rationalise kswapd decisions to reclaim with kswapd decisions to sleep. With this patch on a 2-socket box, there was a 49% reduction in direct reclaim scanning. However, the impact otherwise is extremely negative. Kswapd reclaim efficiency dropped from 98% to 76%. simoop has three latency-related metrics for read, write and allocation (an anonymous mmap and fault). 4.11.0-rc1 4.11.0-rc1 vanilla fixcheck-v2 Amean p50-Read 21670074.18 ( 0.00%) 20464344.18 ( 5.56%) Amean p95-Read 25456267.64 ( 0.00%) 25721423.64 ( -1.04%) Amean p99-Read 29369064.73 ( 0.00%) 30174230.76 ( -2.74%) Amean p50-Write 1390.30 ( 0.00%) 1395.28 ( -0.36%) Amean p95-Write 412901.57 ( 0.00%) 37737.74 ( 90.86%) Amean p99-Write 6668722.09 ( 0.00%) 666489.04 ( 90.01%) Amean p50-Allocation 78714.31 ( 0.00%) 86286.22 ( -9.62%) Amean p95-Allocation 175533.51 ( 0.00%) 351812.27 (-100.42%) Amean p99-Allocation 247003.02 ( 0.00%) 6291171.56 (-2447.00%) Of greater concern is that the patch causes swapping and page writes from kswapd context rose from 0 pages to 4189753 pages during the hour the workload ran for. By and large, the patch has very bad behaviour but easily missed as the impact on a UMA machine is negligible. This patch is included with the data in case a bisection leads to this area. This patch is also a pre-requisite for the rest of the series. Link: http://lkml.kernel.org/r/20170309075657.25121-2-mgorman@techsingularity.net Signed-off-by: Shantanu Goel <sgoel01@yahoo.com> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
7dea19f9ee |
mm: introduce memalloc_nofs_{save,restore} API
GFP_NOFS context is used for the following 5 reasons currently: - to prevent from deadlocks when the lock held by the allocation context would be needed during the memory reclaim - to prevent from stack overflows during the reclaim because the allocation is performed from a deep context already - to prevent lockups when the allocation context depends on other reclaimers to make a forward progress indirectly - just in case because this would be safe from the fs POV - silence lockdep false positives Unfortunately overuse of this allocation context brings some problems to the MM. Memory reclaim is much weaker (especially during heavy FS metadata workloads), OOM killer cannot be invoked because the MM layer doesn't have enough information about how much memory is freeable by the FS layer. In many cases it is far from clear why the weaker context is even used and so it might be used unnecessarily. We would like to get rid of those as much as possible. One way to do that is to use the flag in scopes rather than isolated cases. Such a scope is declared when really necessary, tracked per task and all the allocation requests from within the context will simply inherit the GFP_NOFS semantic. Not only this is easier to understand and maintain because there are much less problematic contexts than specific allocation requests, this also helps code paths where FS layer interacts with other layers (e.g. crypto, security modules, MM etc...) and there is no easy way to convey the allocation context between the layers. Introduce memalloc_nofs_{save,restore} API to control the scope of GFP_NOFS allocation context. This is basically copying memalloc_noio_{save,restore} API we have for other restricted allocation context GFP_NOIO. The PF_MEMALLOC_NOFS flag already exists and it is just an alias for PF_FSTRANS which has been xfs specific until recently. There are no more PF_FSTRANS users anymore so let's just drop it. PF_MEMALLOC_NOFS is now checked in the MM layer and drops __GFP_FS implicitly same as PF_MEMALLOC_NOIO drops __GFP_IO. memalloc_noio_flags is renamed to current_gfp_context because it now cares about both PF_MEMALLOC_NOFS and PF_MEMALLOC_NOIO contexts. Xfs code paths preserve their semantic. kmem_flags_convert() doesn't need to evaluate the flag anymore. This patch shouldn't introduce any functional changes. Let's hope that filesystems will drop direct GFP_NOFS (resp. ~__GFP_FS) usage as much as possible and only use a properly documented memalloc_nofs_{save,restore} checkpoints where they are appropriate. [akpm@linux-foundation.org: fix comment typo, reflow comment] Link: http://lkml.kernel.org/r/20170306131408.9828-5-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Chinner <david@fromorbit.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Chris Mason <clm@fb.com> Cc: David Sterba <dsterba@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Brian Foster <bfoster@redhat.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Nikolay Borisov <nborisov@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shaohua Li
|
802a3a92ad |
mm: reclaim MADV_FREE pages
When memory pressure is high, we free MADV_FREE pages. If the pages are not dirty in pte, the pages could be freed immediately. Otherwise we can't reclaim them. We put the pages back to anonumous LRU list (by setting SwapBacked flag) and the pages will be reclaimed in normal swapout way. We use normal page reclaim policy. Since MADV_FREE pages are put into inactive file list, such pages and inactive file pages are reclaimed according to their age. This is expected, because we don't want to reclaim too many MADV_FREE pages before used once pages. Based on Minchan's original patch [minchan@kernel.org: clean up lazyfree page handling] Link: http://lkml.kernel.org/r/20170303025237.GB3503@bbox Link: http://lkml.kernel.org/r/14b8eb1d3f6bf6cc492833f183ac8c304e560484.1487965799.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shaohua Li
|
a128ca71fb |
mm: delete unnecessary TTU_* flags
Patch series "mm: fix some MADV_FREE issues", v5. We are trying to use MADV_FREE in jemalloc. Several issues are found. Without solving the issues, jemalloc can't use the MADV_FREE feature. - Doesn't support system without swap enabled. Because if swap is off, we can't or can't efficiently age anonymous pages. And since MADV_FREE pages are mixed with other anonymous pages, we can't reclaim MADV_FREE pages. In current implementation, MADV_FREE will fallback to MADV_DONTNEED without swap enabled. But in our environment, a lot of machines don't enable swap. This will prevent our setup using MADV_FREE. - Increases memory pressure. page reclaim bias file pages reclaim against anonymous pages. This doesn't make sense for MADV_FREE pages, because those pages could be freed easily and refilled with very slight penality. Even page reclaim doesn't bias file pages, there is still an issue, because MADV_FREE pages and other anonymous pages are mixed together. To reclaim a MADV_FREE page, we probably must scan a lot of other anonymous pages, which is inefficient. In our test, we usually see oom with MADV_FREE enabled and nothing without it. - Accounting. There are two accounting problems. We don't have a global accounting. If the system is abnormal, we don't know if it's a problem from MADV_FREE side. The other problem is RSS accounting. MADV_FREE pages are accounted as normal anon pages and reclaimed lazily, so application's RSS becomes bigger. This confuses our workloads. We have monitoring daemon running and if it finds applications' RSS becomes abnormal, the daemon will kill the applications even kernel can reclaim the memory easily. To address the first the two issues, we can either put MADV_FREE pages into a separate LRU list (Minchan's previous patches and V1 patches), or put them into LRU_INACTIVE_FILE list (suggested by Johannes). The patchset use the second idea. The reason is LRU_INACTIVE_FILE list is tiny nowadays and should be full of used once file pages. So we can still efficiently reclaim MADV_FREE pages there without interference with other anon and active file pages. Putting the pages into inactive file list also has an advantage which allows page reclaim to prioritize MADV_FREE pages and used once file pages. MADV_FREE pages are put into the lru list and clear SwapBacked flag, so PageAnon(page) && !PageSwapBacked(page) will indicate a MADV_FREE pages. These pages will directly freed without pageout if they are clean, otherwise normal swap will reclaim them. For the third issue, the previous post adds global accounting and a separate RSS count for MADV_FREE pages. The problem is we never get accurate accounting for MADV_FREE pages. The pages are mapped to userspace, can be dirtied without notice from kernel side. To get accurate accounting, we could write protect the page, but then there is extra page fault overhead, which people don't want to pay. Jemalloc guys have concerns about the inaccurate accounting, so this post drops the accounting patches temporarily. The info exported to /proc/pid/smaps for MADV_FREE pages are kept, which is the only place we can get accurate accounting right now. This patch (of 6): Johannes pointed out TTU_LZFREE is unnecessary. It's true because we always have the flag set if we want to do an unmap. For cases we don't do an unmap, the TTU_LZFREE part of code should never run. Also the TTU_UNMAP is unnecessary. If no other flags set (for example, TTU_MIGRATION), an unmap is implied. The patch includes Johannes's cleanup and dead TTU_ACTION macro removal code Link: http://lkml.kernel.org/r/4be3ea1bc56b26fd98a54d0a6f70bec63f6d8980.1487965799.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
3db65812d6 |
Revert "mm, vmscan: account for skipped pages as a partial scan"
This reverts commit
|
||
Johannes Weiner
|
c822f6223d |
mm: delete NR_PAGES_SCANNED and pgdat_reclaimable()
NR_PAGES_SCANNED counts number of pages scanned since the last page free event in the allocator. This was used primarily to measure the reclaimability of zones and nodes, and determine when reclaim should give up on them. In that role, it has been replaced in the preceding patches by a different mechanism. Being implemented as an efficient vmstat counter, it was automatically exported to userspace as well. It's however unlikely that anyone outside the kernel is using this counter in any meaningful way. Remove the counter and the unused pgdat_reclaimable(). Link: http://lkml.kernel.org/r/20170228214007.5621-8-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jia He <hejianet@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
688035f729 |
mm: don't avoid high-priority reclaim on memcg limit reclaim
Commit
|
||
Johannes Weiner
|
a2d7f8e461 |
mm: don't avoid high-priority reclaim on unreclaimable nodes
Commit |
||
Johannes Weiner
|
047d72c30e |
mm: remove seemingly spurious reclaimability check from laptop_mode gating
Commit
|
||
Johannes Weiner
|
d450abd81b |
mm: fix check for reclaimable pages in PF_MEMALLOC reclaim throttling
PF_MEMALLOC direct reclaimers get throttled on a node when the sum of
all free pages in each zone fall below half the min watermark. During
the summation, we want to exclude zones that don't have reclaimables.
Checking the same pgdat over and over again doesn't make sense.
Fixes:
|
||
Johannes Weiner
|
c73322d098 |
mm: fix 100% CPU kswapd busyloop on unreclaimable nodes
Patch series "mm: kswapd spinning on unreclaimable nodes - fixes and
cleanups".
Jia reported a scenario in which the kswapd of a node indefinitely spins
at 100% CPU usage. We have seen similar cases at Facebook.
The kernel's current method of judging its ability to reclaim a node (or
whether to back off and sleep) is based on the amount of scanned pages
in proportion to the amount of reclaimable pages. In Jia's and our
scenarios, there are no reclaimable pages in the node, however, and the
condition for backing off is never met. Kswapd busyloops in an attempt
to restore the watermarks while having nothing to work with.
This series reworks the definition of an unreclaimable node based not on
scanning but on whether kswapd is able to actually reclaim pages in
MAX_RECLAIM_RETRIES (16) consecutive runs. This is the same criteria
the page allocator uses for giving up on direct reclaim and invoking the
OOM killer. If it cannot free any pages, kswapd will go to sleep and
leave further attempts to direct reclaim invocations, which will either
make progress and re-enable kswapd, or invoke the OOM killer.
Patch #1 fixes the immediate problem Jia reported, the remainder are
smaller fixlets, cleanups, and overall phasing out of the old method.
Patch #6 is the odd one out. It's a nice cleanup to get_scan_count(),
and directly related to #5, but in itself not relevant to the series.
If the whole series is too ambitious for 4.11, I would consider the
first three patches fixes, the rest cleanups.
This patch (of 9):
Jia He reports a problem with kswapd spinning at 100% CPU when
requesting more hugepages than memory available in the system:
$ echo 4000 >/proc/sys/vm/nr_hugepages
top - 13:42:59 up 3:37, 1 user, load average: 1.09, 1.03, 1.01
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 12.5 sy, 0.0 ni, 85.5 id, 2.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 31371520 total, 30915136 used, 456384 free, 320 buffers
KiB Swap: 6284224 total, 115712 used, 6168512 free. 48192 cached Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
76 root 20 0 0 0 0 R 100.0 0.000 217:17.29 kswapd3
At that time, there are no reclaimable pages left in the node, but as
kswapd fails to restore the high watermarks it refuses to go to sleep.
Kswapd needs to back away from nodes that fail to balance. Up until
commit
|
||
Ingo Molnar
|
5b3cc15aff |
sched/headers: Prepare to move the memalloc_noio_*() APIs to <linux/sched/mm.h>
Update the .c files that depend on these APIs. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mel Gorman
|
c2f83143f1 |
mm, vmscan: clear PGDAT_WRITEBACK when zone is balanced
Hillf Danton pointed out that since commit |
||
Johannes Weiner
|
c55e8d035b |
mm: vmscan: move dirty pages out of the way until they're flushed
We noticed a performance regression when moving hadoop workloads from 3.10 kernels to 4.0 and 4.6. This is accompanied by increased pageout activity initiated by kswapd as well as frequent bursts of allocation stalls and direct reclaim scans. Even lowering the dirty ratios to the equivalent of less than 1% of memory would not eliminate the issue, suggesting that dirty pages concentrate where the scanner is looking. This can be traced back to recent efforts of thrash avoidance. Where 3.10 would not detect refaulting pages and continuously supply clean cache to the inactive list, a thrashing workload on 4.0+ will detect and activate refaulting pages right away, distilling used-once pages on the inactive list much more effectively. This is by design, and it makes sense for clean cache. But for the most part our workload's cache faults are refaults and its use-once cache is from streaming writes. We end up with most of the inactive list dirty, and we don't go after the active cache as long as we have use-once pages around. But waiting for writes to avoid reclaiming clean cache that *might* refault is a bad trade-off. Even if the refaults happen, reads are faster than writes. Before getting bogged down on writeback, reclaim should first look at *all* cache in the system, even active cache. To accomplish this, activate pages that are dirty or under writeback when they reach the end of the inactive LRU. The pages are marked for immediate reclaim, meaning they'll get moved back to the inactive LRU tail as soon as they're written back and become reclaimable. But in the meantime, by reducing the inactive list to only immediately reclaimable pages, we allow the scanner to deactivate and refill the inactive list with clean cache from the active list tail to guarantee forward progress. [hannes@cmpxchg.org: update comment] Link: http://lkml.kernel.org/r/20170202191957.22872-8-hannes@cmpxchg.org Link: http://lkml.kernel.org/r/20170123181641.23938-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
4eda482350 |
mm: vmscan: only write dirty pages that the scanner has seen twice
Dirty pages can easily reach the end of the LRU while there are still clean pages to reclaim around. Don't let kswapd write them back just because there are a lot of them. It costs more CPU to find the clean pages, but that's almost certainly better than to disrupt writeback from the flushers with LRU-order single-page writes from reclaim. And the flushers have been woken up by that point, so we spend IO capacity on flushing and CPU capacity on finding the clean cache. Only start writing dirty pages if they have cycled around the LRU twice now and STILL haven't been queued on the IO device. It's possible that the dirty pages are so sparsely distributed across different bdis, inodes, memory cgroups, that the flushers take forever to get to the ones we want reclaimed. Once we see them twice on the LRU, we know that's the quicker way to find them, so do LRU writeback. Link: http://lkml.kernel.org/r/20170123181641.23938-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
bbef938429 |
mm: vmscan: remove old flusher wakeup from direct reclaim path
Direct reclaim has been replaced by kswapd reclaim in pretty much all common memory pressure situations, so this code most likely doesn't accomplish the described effect anymore. The previous patch wakes up flushers for all reclaimers when we encounter dirty pages at the tail end of the LRU. Remove the crufty old direct reclaim invocation. Link: http://lkml.kernel.org/r/20170123181641.23938-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
726d061fbd |
mm: vmscan: kick flushers when we encounter dirty pages on the LRU
Memory pressure can put dirty pages at the end of the LRU without anybody running into dirty limits. Don't start writing individual pages from kswapd while the flushers might be asleep. Unlike the old direct reclaim flusher wakeup (removed in the next patch) that flushes the number of pages just scanned, this patch wakes the flushers for all outstanding dirty pages. That seemed to perform better in a synthetic test that pushes dirty pages to the end of the LRU and into reclaim, because we know LRU aging outstrips writeback already, and this way we give younger dirty pages a headstart rather than wait until reclaim runs into them as well. It also means less plugging and risk of exhausting the struct request pool from reclaim. There is a concern that this will cause temporary files that used to get dirtied and truncated before writeback to now get written to disk under memory pressure. If this turns out to be a real problem, we'll have to revisit this and tame the reclaim flusher wakeups. [hannes@cmpxchg.org: mention dirty expiration as a condition] Link: http://lkml.kernel.org/r/20170126174739.GA30636@cmpxchg.org Link: http://lkml.kernel.org/r/20170123181641.23938-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
1276ad68e2 |
mm: vmscan: scan dirty pages even in laptop mode
Patch series "mm: vmscan: fix kswapd writeback regression". We noticed a regression on multiple hadoop workloads when moving from 3.10 to 4.0 and 4.6, which involves kswapd getting tangled up in page writeout, causing direct reclaim herds that also don't make progress. I tracked it down to the thrash avoidance efforts after 3.10 that make the kernel better at keeping use-once cache and use-many cache sorted on the inactive and active list, with more aggressive protection of the active list as long as there is inactive cache. Unfortunately, our workload's use-once cache is mostly from streaming writes. Waiting for writes to avoid potential reloads in the future is not a good tradeoff. These patches do the following: 1. Wake the flushers when kswapd sees a lump of dirty pages. It's possible to be below the dirty background limit and still have cache velocity push them through the LRU. So start a-flushin'. 2. Let kswapd only write pages that have been rotated twice. This makes sure we really tried to get all the clean pages on the inactive list before resorting to horrible LRU-order writeback. 3. Move rotating dirty pages off the inactive list. Instead of churning or waiting on page writeback, we'll go after clean active cache. This might lead to thrashing, but in this state memory demand outstrips IO speed anyway, and reads are faster than writes. Mel backported the series to 4.10-rc5 with one minor conflict and ran a couple of tests on it. Mix of read/write random workload didn't show anything interesting. Write-only database didn't show much difference in performance but there were slight reductions in IO -- probably in the noise. simoop did show big differences although not as big as Mel expected. This is Chris Mason's workload that similate the VM activity of hadoop. Mel won't go through the full details but over the samples measured during an hour it reported 4.10.0-rc5 4.10.0-rc5 vanilla johannes-v1r1 Amean p50-Read 21346531.56 ( 0.00%) 21697513.24 ( -1.64%) Amean p95-Read 24700518.40 ( 0.00%) 25743268.98 ( -4.22%) Amean p99-Read 27959842.13 ( 0.00%) 28963271.11 ( -3.59%) Amean p50-Write 1138.04 ( 0.00%) 989.82 ( 13.02%) Amean p95-Write 1106643.48 ( 0.00%) 12104.00 ( 98.91%) Amean p99-Write 1569213.22 ( 0.00%) 36343.38 ( 97.68%) Amean p50-Allocation 85159.82 ( 0.00%) 79120.70 ( 7.09%) Amean p95-Allocation 204222.58 ( 0.00%) 129018.43 ( 36.82%) Amean p99-Allocation 278070.04 ( 0.00%) 183354.43 ( 34.06%) Amean final-p50-Read 21266432.00 ( 0.00%) 21921792.00 ( -3.08%) Amean final-p95-Read 24870912.00 ( 0.00%) 26116096.00 ( -5.01%) Amean final-p99-Read 28147712.00 ( 0.00%) 29523968.00 ( -4.89%) Amean final-p50-Write 1130.00 ( 0.00%) 977.00 ( 13.54%) Amean final-p95-Write 1033216.00 ( 0.00%) 2980.00 ( 99.71%) Amean final-p99-Write 1517568.00 ( 0.00%) 32672.00 ( 97.85%) Amean final-p50-Allocation 86656.00 ( 0.00%) 78464.00 ( 9.45%) Amean final-p95-Allocation 211712.00 ( 0.00%) 116608.00 ( 44.92%) Amean final-p99-Allocation 287232.00 ( 0.00%) 168704.00 ( 41.27%) The latencies are actually completely horrific in comparison to 4.4 (and 4.10-rc5 is worse than 4.9 according to historical data for reasons Mel hasn't analysed yet). Still, 95% of write latency (p95-write) is halved by the series and allocation latency is way down. Direct reclaim activity is one fifth of what it was according to vmstats. Kswapd activity is higher but this is not necessarily surprising. Kswapd efficiency is unchanged at 99% (99% of pages scanned were reclaimed) but direct reclaim efficiency went from 77% to 99% In the vanilla kernel, 627MB of data was written back from reclaim context. With the series, no data was written back. With or without the patch, pages are being immediately reclaimed after writeback completes. However, with the patch, only 1/8th of the pages are reclaimed like this. This patch (of 5): We have an elaborate dirty/writeback throttling mechanism inside the reclaim scanner, but for that to work the pages have to go through shrink_page_list() and get counted for what they are. Otherwise, we mess up the LRU order and don't match reclaim speed to writeback. Especially during deactivation, there is never a reason to skip dirty pages; nothing is even trying to write them out from there. Don't mess up the LRU order for nothing, shuffle these pages along. Link: http://lkml.kernel.org/r/20170123181641.23938-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
abd6e8a7ac |
Revert "mm: bail out in shrink_inactive_list()"
This reverts commit
|